1
|
Posa A. Spike protein-related proteinopathies: A focus on the neurological side of spikeopathies. Ann Anat 2025; 260:152662. [PMID: 40254264 DOI: 10.1016/j.aanat.2025.152662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/07/2025] [Accepted: 04/09/2025] [Indexed: 04/22/2025]
Abstract
BACKGROUND The spike protein (SP) is an outward-projecting transmembrane glycoprotein on viral surfaces. SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus 2), responsible for COVID-19 (Coronavirus Disease 2019), uses SP to infect cells that express angiotensin converting enzyme 2 (ACE2) on their membrane. Remarkably, SP has the ability to cross the blood-brain barrier (BBB) into the brain and cause cerebral damage through various pathomechanisms. To combat the COVID-19 pandemic, novel gene-based products have been used worldwide to induce human body cells to produce SP to stimulate the immune system. This artificial SP also has a harmful effect on the human nervous system. STUDY DESIGN Narrative review. OBJECTIVE This narrative review presents the crucial role of SP in neurological complaints after SARS-CoV-2 infection, but also of SP derived from novel gene-based anti-SARS-CoV-2 products (ASP). METHODS Literature searches using broad terms such as "SARS-CoV-2", "spike protein", "COVID-19", "COVID-19 pandemic", "vaccines", "COVID-19 vaccines", "post-vaccination syndrome", "post-COVID-19 vaccination syndrome" and "proteinopathy" were performed using PubMed. Google Scholar was used to search for topic-specific full-text keywords. CONCLUSIONS The toxic properties of SP presented in this review provide a good explanation for many of the neurological symptoms following SARS-CoV-2 infection and after injection of SP-producing ASP. Both SP entities (from infection and injection) interfere, among others, with ACE2 and act on different cells, tissues and organs. Both SPs are able to cross the BBB and can trigger acute and chronic neurological complaints. Such SP-associated pathologies (spikeopathies) are further neurological proteinopathies with thrombogenic, neurotoxic, neuroinflammatory and neurodegenerative potential for the human nervous system, particularly the central nervous system. The potential neurotoxicity of SP from ASP needs to be critically examined, as ASPs have been administered to millions of people worldwide.
Collapse
Affiliation(s)
- Andreas Posa
- University Clinics and Outpatient Clinics for Radiology, Neuroradiology and Neurology, Martin Luther University Halle-Wittenberg, Ernst-Grube-Straße 40, Halle 06120, Germany.
| |
Collapse
|
2
|
Balzanelli MG, Rastmanesh R, Distratis P, Lazzaro R, Inchingolo F, Del Prete R, Pham VH, Aityan SK, Cong TT, Nguyen KCD, Isacco CG. The Role of SARS-CoV-2 Spike Protein in Long-term Damage of Tissues and Organs, the Underestimated Role of Retrotransposons and Stem Cells, a Working Hypothesis. Endocr Metab Immune Disord Drug Targets 2025; 25:85-98. [PMID: 38468535 DOI: 10.2174/0118715303283480240227113401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/09/2024] [Accepted: 02/09/2024] [Indexed: 03/13/2024]
Abstract
Coronavirus disease-2019 (COVID-19) is a respiratory disease in which Spike protein from SARS-CoV-2 plays a key role in transferring virus genomic code into target cells. Spike protein, which is found on the surface of the SARS-CoV-2 virus, latches onto angiotensin-converting enzyme 2 receptors (ACE2r) on target cells. The RNA genome of coronaviruses, with an average length of 29 kb, is the longest among all RNA viruses and comprises six to ten open reading frames (ORFs) responsible for encoding replicase and structural proteins for the virus. Each component of the viral genome is inserted into a helical nucleocapsid surrounded by a lipid bilayer. The Spike protein is responsible for damage to several organs and tissues, even leading to severe impairments and long-term disabilities. Spike protein could also be the cause of the long-term post-infectious conditions known as Long COVID-19, characterized by a group of unresponsive idiopathic severe neuro- and cardiovascular disorders, including strokes, cardiopathies, neuralgias, fibromyalgia, and Guillaume- Barret's like-disease. In this paper, we suggest a pervasive mechanism whereby the Spike proteins either from SARS-CoV-2 mRNA or mRNA vaccines, tend to enter the mature cells, and progenitor, multipotent, and pluripotent stem cells (SCs), altering the genome integrity. This will eventually lead to the production of newly affected clones and mature cells. The hypothesis presented in this paper proposes that the mRNA integration into DNA occurs through several components of the evolutionarily genetic mechanism such as retrotransposons and retrotransposition, LINE-1 or L1 (long interspersed element-1), and ORF-1 and 2 responsible for the generation of retrogenes. Once the integration phase is concluded, somatic cells, progenitor cells, and SCs employ different silencing mechanisms. DNA methylation, followed by histone modification, begins to generate unlimited lines of affected cells and clones that form affected tissues characterized by abnormal patterns that become targets of systemic immune cells, generating uncontrolled inflammatory conditions, as observed in both Long COVID-19 syndrome and the mRNA vaccine.
Collapse
Affiliation(s)
- Mario G Balzanelli
- 118 SET, Department of Pre-hospital and Emergency, SG Giuseppe Moscati Hospital, 74120 Taranto, Italy
| | - Reza Rastmanesh
- Department of Nutrition and Metabolism, The Nutrition Society, Boyd Orr House, 10 Cambridge Court, 210 Shepherds Bush Road, London, UK
| | - Pietro Distratis
- 118 SET, Department of Pre-hospital and Emergency, SG Giuseppe Moscati Hospital, 74120 Taranto, Ital
| | - Rita Lazzaro
- 118 SET, Department of Pre-hospital and Emergency, SG Giuseppe Moscati Hospital, 74120 Taranto, Ital
| | - Francesco Inchingolo
- Department of Interdisciplinary Medicine, Section of Microbiology and Virology, School of Medicine, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Raffaele Del Prete
- Department of Interdisciplinary Medicine, Section of Microbiology and Virology, School of Medicine, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Van H Pham
- Phan Chau Trinh University of Medicine, Quang Nam 70000, Vietnam
| | - Sergey K Aityan
- Northwestern University, Multidisciplinary Research Center, Oakland, CA 94612, USA
| | - Toai Tran Cong
- Pham Ngoc Thach University of Medicine, Ho Chi Minh City 700000, Vietnam
| | - Kieu C D Nguyen
- Department of Interdisciplinary Medicine, Section of Microbiology and Virology, School of Medicine, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Ciro Gargiulo Isacco
- 118 SET, Department of Pre-hospital and Emergency, SG Giuseppe Moscati Hospital, 74120 Taranto, Italy
- Department of Interdisciplinary Medicine, Section of Microbiology and Virology, School of Medicine, University of Bari "Aldo Moro", 70124 Bari, Italy
| |
Collapse
|
3
|
Sellers RS, Dormitzer PR. Toxicologic Pathology Forum: mRNA Vaccine Safety-Separating Fact From Fiction. Toxicol Pathol 2024; 52:333-342. [PMID: 39254115 PMCID: PMC11528946 DOI: 10.1177/01926233241278298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
SARS-CoV-2 spread rapidly across the globe, contributing to the death of millions of individuals from 2019 to 2023, and has continued to be a major cause of morbidity and mortality after the pandemic. At the start of the pandemic, no vaccines or anti-viral treatments were available to reduce the burden of disease associated with this virus, as it was a novel SARS coronavirus. Because of the tremendous need, the development of vaccines to protect against COVID-19 was critically important. The flexibility and ease of manufacture of nucleic acid-based vaccines, specifically mRNA-based products, allowed the accelerated development of COVID-19 vaccines. Although mRNA-based vaccines and therapeutics had been in clinical trials for over a decade, there were no licensed mRNA vaccines on the market at the start of the pandemic. The rapid development of mRNA-based COVID-19 vaccines reduced serious complications and death from the virus but also engendered significant public concerns, which continue now, years after emergency-use authorization and subsequent licensure of these vaccines. This article summarizes and addresses some of the safety concerns that continue to be expressed about these vaccines and their underlying technology.
Collapse
Affiliation(s)
- Rani S. Sellers
- The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | | |
Collapse
|
4
|
Tadic S, Martínez A. Nucleic acid cancer vaccines targeting tumor related angiogenesis. Could mRNA vaccines constitute a game changer? Front Immunol 2024; 15:1433185. [PMID: 39081320 PMCID: PMC11286457 DOI: 10.3389/fimmu.2024.1433185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/01/2024] [Indexed: 08/02/2024] Open
Abstract
Tumor related angiogenesis is an attractive target in cancer therapeutic research due to its crucial role in tumor growth, invasion, and metastasis. Different agents were developed aiming to inhibit this process; however they had limited success. Cancer vaccines could be a promising tool in anti-cancer/anti-angiogenic therapy. Cancer vaccines aim to initiate an immune response against cancer cells upon presentation of tumor antigens which hopefully will result in the eradication of disease and prevention of its recurrence by inducing an efficient and long-lasting immune response. Different vaccine constructs have been developed to achieve this and they could include either protein-based or nucleic acid-based vaccines. Nucleic acid vaccines are simple and relatively easy to produce, with high efficiency and safety, thus prompting a high interest in the field. Different DNA vaccines have been developed to target crucial regulators of tumor angiogenesis. Most of them were successful in pre-clinical studies, mostly when used in combination with other therapeutics, but had limited success in the clinic. Apparently, different tumor evasion mechanisms and reduced immunogenicity still limit the potential of these vaccines and there is plenty of room for improvement. Nowadays, mRNA cancer vaccines are making remarkable progress due to improvements in the manufacturing technology and represent a powerful potential alternative. Apart from their efficiency, mRNA vaccines are simple and cheap to produce, can encompass multiple targets simultaneously, and can be quickly transferred from bench to bedside. mRNA vaccines have already accomplished amazing results in cancer clinical trials, thus ensuring a bright future in the field, although no anti-angiogenic mRNA vaccines have been described yet. This review aims to describe recent advances in anti-angiogenic DNA vaccine therapy and to provide perspectives for use of revolutionary approaches such are mRNA vaccines for anti-angiogenic treatments.
Collapse
Affiliation(s)
| | - Alfredo Martínez
- Angiogenesis Unit, Oncology Area, Center for Biomedical Research of La Rioja (CIBIR), Logroño, Spain
| |
Collapse
|
5
|
P P, Riyaz A, Choudhury A, Choudhury PR, Pradhan N, Singh A, Nakul M, Dudeja C, Yadav A, Nath SK, Khanna V, Sharma T, Pradhan G, Takkar S, Rawal K. DNASCANNER v2: A Web-Based Tool to Analyze the Characteristic Properties of Nucleotide Sequences. J Comput Biol 2024; 31:651-669. [PMID: 38662479 DOI: 10.1089/cmb.2023.0227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024] Open
Abstract
Throughout the process of evolution, DNA undergoes the accumulation of distinct mutations, which can often result in highly organized patterns that serve various essential biological functions. These patterns encompass various genomic elements and provide valuable insights into the regulatory and functional aspects of DNA. The physicochemical, mechanical, thermodynamic, and structural properties of DNA sequences play a crucial role in the formation of specific patterns. These properties contribute to the three-dimensional structure of DNA and influence their interactions with proteins, regulatory elements, and other molecules. In this study, we introduce DNASCANNER v2, an advanced version of our previously published algorithm DNASCANNER for analyzing DNA properties. The current tool is built using the FLASK framework in Python language. Featuring a user-friendly interface tailored for nonspecialized researchers, it offers an extensive analysis of 158 DNA properties, including mono/di/trinucleotide frequencies, structural, physicochemical, thermodynamics, and mechanical properties of DNA sequences. The tool provides downloadable results and offers interactive plots for easy interpretation and comparison between different features. We also demonstrate the utility of DNASCANNER v2 in analyzing splice-site junctions, casposon insertion sequences, and transposon insertion sites (TIS) within the bacterial and human genomes, respectively. We also developed a deep learning module for the prediction of potential TIS in a given nucleotide sequence. In the future, we aim to optimize the performance of this prediction model through extensive training on larger data sets.
Collapse
Affiliation(s)
- Preeti P
- Center for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Azeen Riyaz
- Center for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Alakto Choudhury
- Center for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Priyanka Ray Choudhury
- Center for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Nischal Pradhan
- Center for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Abhishek Singh
- Center for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Mihir Nakul
- Center for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Chhavi Dudeja
- Center for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Abhijeet Yadav
- Center for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Swarsat Kaushik Nath
- Center for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Vrinda Khanna
- Center for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Trapti Sharma
- Center for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Gayatri Pradhan
- Center for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Simran Takkar
- Center for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Kamal Rawal
- Center for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| |
Collapse
|
6
|
Minty A. On learning molecular biology in François Gros' lab in the late 1970s and early 1980s. C R Biol 2024; 346:37-40. [PMID: 38127064 DOI: 10.5802/crbiol.134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 10/11/2023] [Indexed: 12/23/2023]
Abstract
Although reflection is obviously crucial in molecular biology, experimentation is nonetheless the basis of most major advances. I was lucky to begin my research career at a particularly interesting time, and privileged to have spent a number of years in Francois Gros' laboratory at the Institut Pasteur. His influence, and that of his lab, were crucial in shaping my early career.
Collapse
|
7
|
Camperi J, Lippold S, Ayalew L, Roper B, Shao S, Freund E, Nissenbaum A, Galan C, Cao Q, Yang F, Yu C, Guilbaud A. Comprehensive Impurity Profiling of mRNA: Evaluating Current Technologies and Advanced Analytical Techniques. Anal Chem 2024; 96:3886-3897. [PMID: 38377434 PMCID: PMC10918618 DOI: 10.1021/acs.analchem.3c05539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/24/2024] [Accepted: 02/12/2024] [Indexed: 02/22/2024]
Abstract
In vitro transcription (IVT) of mRNA is a versatile platform for a broad range of biotechnological applications. Its rapid, scalable, and cost-effective production makes it a compelling choice for the development of mRNA-based cancer therapies and vaccines against infectious diseases. The impurities generated during mRNA production can potentially impact the safety and efficacy of mRNA therapeutics, but their structural complexity has not been investigated in detail yet. This study pioneers a comprehensive profiling of IVT mRNA impurities, integrating current technologies with innovative analytical tools. We have developed highly reproducible, efficient, and stability-indicating ion-pair reversed-phase liquid chromatography and capillary gel electrophoresis methods to determine the purity of mRNA from different suppliers. Furthermore, we introduced the applicability of microcapillary electrophoresis for high-throughput (<1.5 min analysis time per sample) mRNA impurity profiling. Our findings revealed that impurities are mainly attributed to mRNA variants with different poly(A) tail lengths due to aborted additions or partial hydrolysis and the presence of double-stranded mRNA (dsRNA) byproducts, particularly the dsRNA 3'-loop back form. We also implemented mass photometry and native mass spectrometry for the characterization of mRNA and its related product impurities. Mass photometry enabled the determination of the number of nucleotides of different mRNAs with high accuracy as well as the detection of their size variants [i.e., aggregates and partial and/or total absence of the poly(A) tail], thus providing valuable information on mRNA identity and integrity. In addition, native mass spectrometry provided insights into mRNA intact mass, heterogeneity, and important sequence features such as poly(A) tail length and distribution. This study highlights the existing bottlenecks and opportunities for improvement in the analytical characterization of IVT mRNA, thus contributing to the refinement and streamlining of mRNA production, paving the way for continued advancements in biotechnological applications.
Collapse
Affiliation(s)
- Julien Camperi
- Cell
Therapy Engineering and Development, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | - Steffen Lippold
- Protein
Analytical Chemistry, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | - Luladey Ayalew
- Cell
Therapy Engineering and Development, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | - Brian Roper
- Cell
Therapy Engineering and Development, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | - Stephanie Shao
- Cell
Therapy Engineering and Development, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | - Emily Freund
- Department
of Molecular Biology, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | - Ariane Nissenbaum
- Department
of Molecular Biology, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | - Carolina Galan
- Department
of Molecular Biology, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | - Qinjingwen Cao
- Protein
Analytical Chemistry, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | - Feng Yang
- Protein
Analytical Chemistry, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | - Christopher Yu
- Cell
Therapy Engineering and Development, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | - Axel Guilbaud
- Protein
Analytical Chemistry, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| |
Collapse
|
8
|
Igyártó BZ, Qin Z. The mRNA-LNP vaccines - the good, the bad and the ugly? Front Immunol 2024; 15:1336906. [PMID: 38390323 PMCID: PMC10883065 DOI: 10.3389/fimmu.2024.1336906] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 01/23/2024] [Indexed: 02/24/2024] Open
Abstract
The mRNA-LNP vaccine has received much attention during the COVID-19 pandemic since it served as the basis of the most widely used SARS-CoV-2 vaccines in Western countries. Based on early clinical trial data, these vaccines were deemed safe and effective for all demographics. However, the latest data raise serious concerns about the safety and effectiveness of these vaccines. Here, we review some of the safety and efficacy concerns identified to date. We also discuss the potential mechanism of observed adverse events related to the use of these vaccines and whether they can be mitigated by alterations of this vaccine mechanism approach.
Collapse
Affiliation(s)
- Botond Z. Igyártó
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA, United States
| | | |
Collapse
|
9
|
Mir S, Mir M. The mRNA vaccine, a swift warhead against a moving infectious disease target. Expert Rev Vaccines 2024; 23:336-348. [PMID: 38369742 DOI: 10.1080/14760584.2024.2320327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 02/14/2024] [Indexed: 02/20/2024]
Abstract
INTRODUCTION The rapid development of mRNA vaccines against SARS-CoV-2 has revolutionized vaccinology, offering hope for swift responses to emerging infectious diseases. Initially met with skepticism, mRNA vaccines have proven effective and safe, reducing vaccine hesitancy amid the evolving COVID-19 pandemic. The COVID-19 pandemic has demonstrated that the time required to modify mRNA vaccines to counter new mutant strains is significantly shorter than the time it takes for pathogens to mutate and generate new variants that can thrive in vaccinated populations. This highlights the notion that mRNA vaccine technology appears to be outpacing viruses in the ongoing evolutionary race. AREAS COVERED This review article offers valuable insights into several crucial aspects of mRNA vaccine development and deployment, including the fundamentals of mRNA vaccine design and synthesis, the utilization of delivery systems, considerations regarding vaccine safety, the longevity of the immune response, strategies for modifying the original mRNA vaccine to address emerging mutant strains, as well as addressing vaccine hesitancy and potential approaches to mitigate reluctance. EXPERT OPINION Challenges such as stability, storage, manufacturing complexities, production capacity, allergic reactions, long-term effects, accessibility, and misinformation must be addressed. Despite these hurdles, mRNA vaccine technology holds promise for revolutionizing future vaccination strategies.
Collapse
Affiliation(s)
- Sheema Mir
- College of Veterinary Sciences, Western University of Health Sciences, Pomona, CA, USA
| | - Mohammad Mir
- College of Veterinary Sciences, Western University of Health Sciences, Pomona, CA, USA
| |
Collapse
|
10
|
Deo S, Desai K, Patare A, Wadapurkar R, Rade S, Mahudkar S, Sathe M, Srivastava S, Prasanna P, Singh A. Evaluation of self-amplifying mRNA platform for protein expression and genetic stability: Implication for mRNA therapies. Biochem Biophys Res Commun 2023; 680:108-118. [PMID: 37738900 DOI: 10.1016/j.bbrc.2023.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/01/2023] [Accepted: 09/07/2023] [Indexed: 09/24/2023]
Abstract
The consecutive launch of mRNA vaccines like mRNA-1273, BNT 162b2, and GEMCOVAC®-19 against COVID-19 has triggered the debate of long-term expression, safety, and genomic integration of the mRNA vaccine platforms. In the present study, we examined the longevity of antigenic protein expression of mRNA-614 and mRNA-S1LC based on self-amplifying mRNA (SAM) in Expi-293F™, HEK-293 T, and ARPE-19 cells. The protein expression was checked by sandwich-ELISA, FACS, luciferase activity assay, and Western blot. The transcribed antigenic mRNA was sequenced and found to be un-mutated. Additionally, no genomic integration of the reverse transcribed mRNA was observed even up to 7 days post-transfection as verified by PCR. Furthermore, we have generated high-quality 3D structures of non-structural proteins (nsPs) in silico and the genes encoding for the nsPs were cloned and expressed using the T7 system. Findings from the current study have strengthened the fact that the alphavirus-based SAM platform has the potential to become a modality in the upcoming years.
Collapse
Affiliation(s)
- Swarda Deo
- Gennova Biopharmaceuticals Ltd. ITBT Park, Hinjawadi Phase 2 Road, Hinjawadi Rajiv Gandhi Infotech Park, Hinjawadi, Pune, Maharashtra, 411057, India
| | - Kaushik Desai
- Gennova Biopharmaceuticals Ltd. ITBT Park, Hinjawadi Phase 2 Road, Hinjawadi Rajiv Gandhi Infotech Park, Hinjawadi, Pune, Maharashtra, 411057, India
| | - Aishwarya Patare
- Gennova Biopharmaceuticals Ltd. ITBT Park, Hinjawadi Phase 2 Road, Hinjawadi Rajiv Gandhi Infotech Park, Hinjawadi, Pune, Maharashtra, 411057, India
| | - Rucha Wadapurkar
- Gennova Biopharmaceuticals Ltd. ITBT Park, Hinjawadi Phase 2 Road, Hinjawadi Rajiv Gandhi Infotech Park, Hinjawadi, Pune, Maharashtra, 411057, India
| | - Saniya Rade
- Gennova Biopharmaceuticals Ltd. ITBT Park, Hinjawadi Phase 2 Road, Hinjawadi Rajiv Gandhi Infotech Park, Hinjawadi, Pune, Maharashtra, 411057, India
| | - Siddhi Mahudkar
- Gennova Biopharmaceuticals Ltd. ITBT Park, Hinjawadi Phase 2 Road, Hinjawadi Rajiv Gandhi Infotech Park, Hinjawadi, Pune, Maharashtra, 411057, India
| | - Madhura Sathe
- Gennova Biopharmaceuticals Ltd. ITBT Park, Hinjawadi Phase 2 Road, Hinjawadi Rajiv Gandhi Infotech Park, Hinjawadi, Pune, Maharashtra, 411057, India
| | - Shalini Srivastava
- Gennova Biopharmaceuticals Ltd. ITBT Park, Hinjawadi Phase 2 Road, Hinjawadi Rajiv Gandhi Infotech Park, Hinjawadi, Pune, Maharashtra, 411057, India
| | - Pragya Prasanna
- Gennova Biopharmaceuticals Ltd. ITBT Park, Hinjawadi Phase 2 Road, Hinjawadi Rajiv Gandhi Infotech Park, Hinjawadi, Pune, Maharashtra, 411057, India
| | - Ajay Singh
- Gennova Biopharmaceuticals Ltd. ITBT Park, Hinjawadi Phase 2 Road, Hinjawadi Rajiv Gandhi Infotech Park, Hinjawadi, Pune, Maharashtra, 411057, India.
| |
Collapse
|
11
|
Parry PI, Lefringhausen A, Turni C, Neil CJ, Cosford R, Hudson NJ, Gillespie J. 'Spikeopathy': COVID-19 Spike Protein Is Pathogenic, from Both Virus and Vaccine mRNA. Biomedicines 2023; 11:2287. [PMID: 37626783 PMCID: PMC10452662 DOI: 10.3390/biomedicines11082287] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/17/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
The COVID-19 pandemic caused much illness, many deaths, and profound disruption to society. The production of 'safe and effective' vaccines was a key public health target. Sadly, unprecedented high rates of adverse events have overshadowed the benefits. This two-part narrative review presents evidence for the widespread harms of novel product COVID-19 mRNA and adenovectorDNA vaccines and is novel in attempting to provide a thorough overview of harms arising from the new technology in vaccines that relied on human cells producing a foreign antigen that has evidence of pathogenicity. This first paper explores peer-reviewed data counter to the 'safe and effective' narrative attached to these new technologies. Spike protein pathogenicity, termed 'spikeopathy', whether from the SARS-CoV-2 virus or produced by vaccine gene codes, akin to a 'synthetic virus', is increasingly understood in terms of molecular biology and pathophysiology. Pharmacokinetic transfection through body tissues distant from the injection site by lipid-nanoparticles or viral-vector carriers means that 'spikeopathy' can affect many organs. The inflammatory properties of the nanoparticles used to ferry mRNA; N1-methylpseudouridine employed to prolong synthetic mRNA function; the widespread biodistribution of the mRNA and DNA codes and translated spike proteins, and autoimmunity via human production of foreign proteins, contribute to harmful effects. This paper reviews autoimmune, cardiovascular, neurological, potential oncological effects, and autopsy evidence for spikeopathy. With many gene-based therapeutic technologies planned, a re-evaluation is necessary and timely.
Collapse
Affiliation(s)
- Peter I. Parry
- Children’s Health Research Clinical Unit, Faculty of Medicine, The University of Queensland, South Brisbane, QLD 4101, Australia
- Department of Psychiatry, College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia
| | - Astrid Lefringhausen
- Children’s Health Defence (Australia Chapter), Huskisson, NSW 2540, Australia; (A.L.); (R.C.); (J.G.)
| | - Conny Turni
- Microbiology Research, QAAFI (Queensland Alliance for Agriculture and Food Innovation), The University of Queensland, St. Lucia, QLD 4072, Australia;
| | - Christopher J. Neil
- Department of Medicine, University of Melbourne, Melbourne, VIC 3010, Australia;
| | - Robyn Cosford
- Children’s Health Defence (Australia Chapter), Huskisson, NSW 2540, Australia; (A.L.); (R.C.); (J.G.)
| | - Nicholas J. Hudson
- School of Agriculture and Food Science, The University of Queensland, Brisbane, QLD 4072, Australia;
| | - Julian Gillespie
- Children’s Health Defence (Australia Chapter), Huskisson, NSW 2540, Australia; (A.L.); (R.C.); (J.G.)
| |
Collapse
|
12
|
Kambouris ME. Global Catastrophic Biological Risks in the Post-COVID-19 World: Time to Act Is Now. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2023; 27:153-170. [PMID: 36946656 DOI: 10.1089/omi.2022.0178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Global Catastrophic Biological Risks (GCBRs) refer to events with biological agents that can result in unprecedented or catastrophic disasters that are beyond the collective response-abilities of nation-states and the existing governance instruments of global governance and international affairs. This article offers a narrative review, with a view to new hypothesis development to rethink GCBRs after coronavirus disease 2019 (COVID-19) so as to better prepare for future pandemics and ecological crises, if not to completely prevent them. To determine GCBRs' spatiotemporal contexts, define causality, impacts, differentiate the risk and the event, would improve theorization of GCBRs compared to the impact-centric current definition. This could in turn lead to improvements in preparedness, response, allocation of resources, and possibly deterrence, while actively discouraging lack of due biosecurity diligence. Critical governance of GCBRs in ways that unpack the political power-related dimensions could be particularly valuable because the future global catastrophic events might be different in quality, scale, and actors. Theorization of GCBRs remains an important task going forward in the 21st century in ways that draw from experiences in the field, while integrating flexibility, versatility, and critically informed responses to GCBRs.
Collapse
|
13
|
Chen S, Pounraj S, Sivakumaran N, Kakkanat A, Sam G, Kabir MT, Rehm BHA. Precision-engineering of subunit vaccine particles for prevention of infectious diseases. Front Immunol 2023; 14:1131057. [PMID: 36817419 PMCID: PMC9935699 DOI: 10.3389/fimmu.2023.1131057] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 01/23/2023] [Indexed: 02/05/2023] Open
Abstract
Vaccines remain the best approach for the prevention of infectious diseases. Protein subunit vaccines are safe compared to live-attenuated whole cell vaccines but often show reduced immunogenicity. Subunit vaccines in particulate format show improved vaccine efficacy by inducing strong immune responses leading to protective immunity against the respective pathogens. Antigens with proper conformation and function are often required to induce functional immune responses. Production of such antigens requiring post-translational modifications and/or composed of multiple complex domains in bacterial hosts remains challenging. Here, we discuss strategies to overcome these limitations toward the development of particulate vaccines eliciting desired humoral and cellular immune responses. We also describe innovative concepts of assembling particulate vaccine candidates with complex antigens bearing multiple post-translational modifications. The approaches include non-covalent attachments (e.g. biotin-avidin affinity) and covalent attachments (e.g. SpyCatcher-SpyTag) to attach post-translationally modified antigens to particles.
Collapse
Affiliation(s)
- Shuxiong Chen
- Centre for Cell Factories and Biopolymers (CCFB), Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, Australia,*Correspondence: Bernd H. A. Rehm, ; Shuxiong Chen,
| | - Saranya Pounraj
- Centre for Cell Factories and Biopolymers (CCFB), Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, Australia
| | - Nivethika Sivakumaran
- Centre for Cell Factories and Biopolymers (CCFB), Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, Australia
| | - Anjali Kakkanat
- Centre for Cell Factories and Biopolymers (CCFB), Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, Australia
| | - Gayathri Sam
- Centre for Cell Factories and Biopolymers (CCFB), Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, Australia
| | - Md. Tanvir Kabir
- Centre for Cell Factories and Biopolymers (CCFB), Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, Australia
| | - Bernd H. A. Rehm
- Centre for Cell Factories and Biopolymers (CCFB), Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, Australia,Menzies Health Institute Queensland (MHIQ), Griffith University, Gold Coast, QLD, Australia,*Correspondence: Bernd H. A. Rehm, ; Shuxiong Chen,
| |
Collapse
|
14
|
Kamiya M, Matsumoto M, Yamashita K, Izumi T, Kawaguchi M, Mizukami S, Tsurumaru M, Mukai H, Kawakami S. Stability Study of mRNA-Lipid Nanoparticles Exposed to Various Conditions Based on the Evaluation between Physicochemical Properties and Their Relation with Protein Expression Ability. Pharmaceutics 2022; 14:2357. [PMID: 36365175 PMCID: PMC9697436 DOI: 10.3390/pharmaceutics14112357] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/27/2022] [Accepted: 10/30/2022] [Indexed: 07/31/2023] Open
Abstract
Lipid nanoparticles (LNPs) are currently in the spotlight as delivery systems for mRNA therapeutics and have been used in the Pfizer/BioNTech and Moderna COVID-19 vaccines. mRNA-LNP formulations have been indicated to require strict control, including maintenance at fairly low temperatures during their transport and storage. Since it is a new pharmaceutical modality, there is a lack of information on the systematic investigation of how storage and handling conditions affect the physicochemical properties of mRNA-LNPs and their protein expression ability. In this study, using the mRNA-LNPs with standard composition, we evaluated the effects of temperature, cryoprotectants, vibration, light exposure, and syringe aspiration from the vials on the physicochemical properties of nanoparticles in relation to their in vitro/in vivo protein expression ability. Among these factors, storage at -80 °C without a cryoprotectant caused a decrease in protein expression, which may be attributed to particle aggregation. Exposure to vibration and light also caused similar changes under certain conditions. Exposure to these factors can occur during laboratory and hospital handling. It is essential to have sufficient knowledge of the stability of mRNA-LNPs in terms of their physical properties and protein expression ability at an early stage to ensure reproducible research and development and medical care.
Collapse
Affiliation(s)
- Mariko Kamiya
- Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan
| | - Makoto Matsumoto
- Under Graduate School of Pharmaceutical Sciences, Nagasaki University, 1-14 Bunkyo, Nagasaki 852-8521, Japan
| | - Kazuma Yamashita
- Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan
| | - Tatsunori Izumi
- Under Graduate School of Pharmaceutical Sciences, Nagasaki University, 1-14 Bunkyo, Nagasaki 852-8521, Japan
| | - Maho Kawaguchi
- Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan
| | - Shusaku Mizukami
- Department of Immune Regulation, SHionogi Global INfectious DiseasEs Division (SHINE), Institute of Tropical Medicine, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Masako Tsurumaru
- Department of Hospital Pharmacy, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki 852-8501, Japan
| | - Hidefumi Mukai
- Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan
- Under Graduate School of Pharmaceutical Sciences, Nagasaki University, 1-14 Bunkyo, Nagasaki 852-8521, Japan
| | - Shigeru Kawakami
- Graduate School of Biomedical Sciences, Nagasaki University, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan
- Under Graduate School of Pharmaceutical Sciences, Nagasaki University, 1-14 Bunkyo, Nagasaki 852-8521, Japan
| |
Collapse
|
15
|
Cosentino M, Marino F. Understanding the Pharmacology of COVID-19 mRNA Vaccines: Playing Dice with the Spike? Int J Mol Sci 2022; 23:10881. [PMID: 36142792 PMCID: PMC9502275 DOI: 10.3390/ijms231810881] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/11/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Coronavirus disease-19 (COVID-19) mRNA vaccines are the mainstays of mass vaccination campaigns in most Western countries. However, the emergency conditions in which their development took place made it impossible to fully characterize their effects and mechanism of action. Here, we summarize and discuss available evidence indicating that COVID-19 mRNA vaccines better reflect pharmaceutical drugs than conventional vaccines, as they do not contain antigens but an active SARS-CoV-2 S protein mRNA, representing at the same time an active principle and a prodrug, which upon intracellular translation results in the endogenous production of the SARS-CoV-2 S protein. Both vaccine-derived SARS-CoV-2 S protein mRNA and the resulting S protein exhibit a complex pharmacology and undergo systemic disposition. Defining COVID-19 mRNA vaccines as pharmaceutical drugs has straightforward implications for their pharmacodynamic, pharmacokinetic, clinical and post-marketing safety assessment. Only an accurate characterization of COVID-19 mRNA vaccines as pharmaceutical drugs will guarantee a safe, rational and individualized use of these products.
Collapse
Affiliation(s)
- Marco Cosentino
- Center for Research in Medical Pharmacology, University of Insubria, 21100 Varese, Italy
| | | |
Collapse
|
16
|
Gu Y, Duan J, Yang N, Yang Y, Zhao X. mRNA vaccines in the prevention and treatment of diseases. MedComm (Beijing) 2022; 3:e167. [PMID: 36033422 PMCID: PMC9409637 DOI: 10.1002/mco2.167] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/11/2022] [Accepted: 07/18/2022] [Indexed: 11/23/2022] Open
Abstract
Messenger ribonucleic acid (mRNA) vaccines made their successful public debut in the effort against the COVID-19 outbreak starting in late 2019, although the history of mRNA vaccines can be traced back decades. This review provides an overview to discuss the historical course and present situation of mRNA vaccine development in addition to some basic concepts that underly mRNA vaccines. We discuss the general preparation and manufacturing of mRNA vaccines and also discuss the scientific advances in the in vivo delivery system and evaluate popular approaches (i.e., lipid nanoparticle and protamine) in detail. Next, we highlight the clinical value of mRNA vaccines as potent candidates for therapeutic treatment and discuss clinical progress in the treatment of cancer and coronavirus disease 2019. Data suggest that mRNA vaccines, with several prominent advantages, have achieved encouraging results and increasing attention due to tremendous potential in disease management. Finally, we suggest some potential directions worthy of further investigation and optimization. In addition to basic research, studies that help to facilitate storage and transportation will be indispensable for practical applications.
Collapse
Affiliation(s)
- Yangzhuo Gu
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University; Collaborative Innovation Center for BiotherapyChengduChina
| | - Jiangyao Duan
- Department of Life SciencesImperial College LondonLondonUK
| | - Na Yang
- Stem Cell and Tissue Engineering Research Center/School of Basic Medical SciencesGuizhou Medical UniversityGuiyangChina
| | - Yuxin Yang
- Stem Cell and Tissue Engineering Research Center/School of Basic Medical SciencesGuizhou Medical UniversityGuiyangChina
| | - Xing Zhao
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan University; Collaborative Innovation Center for BiotherapyChengduChina
- Stem Cell and Tissue Engineering Research Center/School of Basic Medical SciencesGuizhou Medical UniversityGuiyangChina
| |
Collapse
|