Koller D, Benítez-Burraco A, Polimanti R. Enrichment of self-domestication and neural crest function loci in the heritability of neurodevelopmental disorders.
Hum Genet 2023;
142:1271-1279. [PMID:
36930228 PMCID:
PMC10472204 DOI:
10.1007/s00439-023-02541-5]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 03/01/2023] [Indexed: 03/18/2023]
Abstract
Self-domestication could contribute to shaping the biology of human brain and consequently the predisposition to neurodevelopmental disorders. Leveraging genome-wide data from the Psychiatric Genomics Consortium, we tested the enrichment of self-domestication and neural crest function loci with respect to the heritability of autism spectrum disorder, schizophrenia (SCZ in East Asian and European ancestries, EAS and EUR, respectively), attention-deficit/hyperactivity disorder, obsessive-compulsive disorder, and Tourette's syndrome (TS). Considering only self-domestication and neural-crest-function annotations in the linkage disequilibrium score regression (LDSC) model, our partitioned heritability analysis revealed statistically significant enrichments across all disorders investigated. The estimates of the heritability enrichments for self-domestication loci were similar across neurodevelopmental disorders, ranging from 0.902 (EAS SCZ, p = 4.55 × 10-20) to 1.577 (TS, p = 5.85 × 10-5). Conversely, a wider spectrum of heritability enrichment estimates was present for neural crest function with the highest enrichment observed for TS (enrichment = 3.453, p = 2.88 × 10-3) and the lowest for EAS SCZ (enrichment = 1.971, p = 3.81 × 10-3). Although these estimates appear to be strong, the enrichments for self-domestication and neural crest function were null once we included additional annotations related to different genomic features. This indicates that the effect of self-domestication on the polygenic architecture of neurodevelopmental disorders is not independent of other functions of human genome.
Collapse