1
|
Titoli S, Barra V, Gargano S, Di Leonardo A, Melfi R. RNA editing applied to cystic fibrosis: RESTORE can target G542X CFTR mRNA and revert the nonsense mutation. Gene 2025; 951:149384. [PMID: 40054708 DOI: 10.1016/j.gene.2025.149384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/07/2025] [Accepted: 02/28/2025] [Indexed: 03/24/2025]
Abstract
BACKGROUND Nonsense mutations in the CFTR gene are responsible for approximately 8 % of cystic fibrosis (CF) cases worldwide. The consequent premature termination of translation leads to the production of a truncated and non-functional CFTR protein. Despite the intensive research in the field, these patients cannot benefit from specific and approved therapies yet. To address this issue, in this study we evaluated a potential therapeutic strategy to overcome the nonsense G542X (UGG > UGA) mutation in the CFF-16HBEge human bronchial epithelial cells by restoring the full-length CFTR protein. METHODS We applied the RESTORE (Recruiting endogenous ADAR to specific transcripts for oligonucleotide-mediated RNA editing) approach, based on specifically designed antisense RNA oligonucleotides (ASOs) to recruit endogenous ADAR (adenosine deaminase acting on RNA) enzymes. The ADAR's recruitment to the target CFTR mRNA is expected to promote the deamination of adenosine (A) into inosine (I) within the premature termination codon (UGA). As the ribosome reads the inosine as guanosine (G), the stop codon could be recoded as a tryptophan (UGG), thereby allowing the synthesis of a full-length CFTR protein, albeit with a different amino acid. RESULTS Our results indicate that in the CFF-16HBEge G542X cell line, the transfection of a specific ASO allows the rescue of the CFTR transcript and protein expression, compared to the untransfected mutated cells. Next generation sequencing of CFTR cDNA also confirmed the occurrence of the expected RNA editing outcome. CONCLUSIONS The obtained results suggest that the RESTORE approach might be explored as a promising strategy to treating nonsense mutations in CFTR, potentially contributing to novel therapeutic options for CF patients.
Collapse
Affiliation(s)
- Simona Titoli
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo 90128, Italy.
| | - Viviana Barra
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo 90128, Italy.
| | - Serena Gargano
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo 90128, Italy.
| | - Aldo Di Leonardo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo 90128, Italy; Centro di Oncobiologia Sperimentale (C.O.B.S.), Viale Delle Scienze, Palermo 90128, Italy.
| | - Raffaella Melfi
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo 90128, Italy.
| |
Collapse
|
2
|
Carollo PS, Barra V. Induction of DNA Demethylation: Strategies and Consequences. EPIGENOMES 2025; 9:11. [PMID: 40265378 PMCID: PMC12015805 DOI: 10.3390/epigenomes9020011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 03/28/2025] [Accepted: 04/10/2025] [Indexed: 04/24/2025] Open
Abstract
DNA methylation is an important epigenetic modification with a plethora of effects on cells, ranging from the regulation of gene transcription to shaping chromatin structure. Notably, DNA methylation occurs thanks to the activity of DNA methyltransferases (DNMTs), which covalently add a methyl group to the cytosine in position 5' in CpG dinucleotides. Different strategies have been developed to study the effects of DNA methylation in cells, involving either DNMTs inhibition (passive DNA demethylation) or the use of Ten-eleven translocation protein (TET) family enzymes, which directly demethylate DNA (active DNA demethylation). In this manuscript, we will briefly cover the most commonly used strategies in the last two decades to achieve DNA demethylation, along with their effects on cells. We will also discuss some of the newest inducible ways to inhibit DNMTs without remarkable side effects, as well as the effect of non-coding RNAs on DNA methylation. Lastly, we will briefly examine the use of DNA methylation inhibition in biomedical research.
Collapse
Affiliation(s)
| | - Viviana Barra
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90128 Palermo, Italy
| |
Collapse
|
3
|
Aleksandrova Y, Neganova M. Antioxidant Senotherapy by Natural Compounds: A Beneficial Partner in Cancer Treatment. Antioxidants (Basel) 2025; 14:199. [PMID: 40002385 PMCID: PMC11851806 DOI: 10.3390/antiox14020199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 02/06/2025] [Accepted: 02/07/2025] [Indexed: 02/27/2025] Open
Abstract
Aging is a general biological process inherent in all living organisms. It is characterized by progressive cellular dysfunction. For many years, aging has been widely recognized as a highly effective mechanism for suppressing the progression of malignant neoplasms. However, in recent years, increasing evidence suggests a "double-edged" role of aging in cancer development. According to these data, aging is not only a tumor suppressor that leads to cell cycle arrest in neoplastic cells, but also a cancer promoter that ensures a chronic proinflammatory and immunosuppressive microenvironment. In this regard, in our review, we discuss recent data on the destructive role of senescent cells in the pathogenesis of cancer. We also identify for the first time correlations between the modulation of the senescence-associated secretory phenotype and the antitumor effects of naturally occurring molecules.
Collapse
Affiliation(s)
| | - Margarita Neganova
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova St. 28, Bld. 1, Moscow 119991, Russia;
| |
Collapse
|
4
|
Vazhappilly CG, Alsawaf S, Mathew S, Nasar NA, Hussain MI, Cherkaoui NM, Ayyub M, Alsaid SY, Thomas JG, Cyril AC, Ramadan WS, Chelakkot AL. Pharmacodynamics and safety in relation to dose and response of plant flavonoids in treatment of cancers. Inflammopharmacology 2025; 33:11-47. [PMID: 39580755 DOI: 10.1007/s10787-024-01581-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/02/2024] [Indexed: 11/26/2024]
Abstract
Despite the recent advancements in developing bioactive nutraceuticals as anticancer modalities, their pharmacodynamics, safety profiles, and tolerability remain elusive, limiting their success in clinical trials. The failure of anticancer drugs in clinical trials can be attributed to the changes in drug clearance, absorption, and cellular responses, which alter the dose-response efficacy, causing adverse health effects. Flavonoids demonstrate a biphasic dose-response phenomenon exerting a stimulatory or inhibitory effect and often follow a U-shaped curve in different preclinical cancer models. A double-edged sword, bioflavonoids' antioxidant or prooxidant properties contribute to their hormetic behavior and facilitate redox homeostasis by regulating the levels of reactive oxygen species (ROS) in cells. Emerging reports suggest a need to discuss the pharmacodynamic broad-spectrum of plant flavonoids to improve their therapeutic efficacy, primarily to determine the ideal dose for treating cancer. This review discusses the dose-response effects of a few common plant flavonoids against some types of cancers and assesses their safety and tolerability when administered to patients. Moreover, we have emphasized the role of dietary-rich plant flavonoids as nutraceuticals in cancer treatment and prevention.
Collapse
Affiliation(s)
- Cijo George Vazhappilly
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah, UAE.
| | - Seba Alsawaf
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah, UAE
| | - Shimy Mathew
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah, UAE
- Human Genetics & Stem Cells Research Group, Research Institute of Sciences & Engineering, University of Sharjah, Sharjah, UAE
| | - Noora Ali Nasar
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah, UAE
| | - Maheen Imtiaz Hussain
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah, UAE
| | - Noor Mustapha Cherkaoui
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah, UAE
| | - Mohammed Ayyub
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah, UAE
| | - Serin Yaser Alsaid
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah, UAE
| | - Joshua George Thomas
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah, UAE
| | - Asha Caroline Cyril
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah, UAE
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, UAE
| | - Wafaa S Ramadan
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, UAE
| | | |
Collapse
|
5
|
Martino S, Gargano S, Carollo PS, Di Leonardo A, Barra V. DNMT1 prolonged absence is a tunable cellular stress that triggers cell proliferation arrest to protect from major DNA methylation loss. Cell Mol Life Sci 2024; 82:7. [PMID: 39694934 DOI: 10.1007/s00018-024-05547-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 11/16/2024] [Accepted: 12/11/2024] [Indexed: 12/20/2024]
Abstract
Methylation of cytosine in CpG dinucleotides is an epigenetic modification carried out by DNA-methyltransferases (DNMTs) that contributes to chromatin condensation and structure and, thus, to gene transcription regulation and chromosome stability. DNMT1 maintains the DNA methylation pattern of the genome at each cell cycle by copying it to the newly synthesized DNA strand during the S-phase. DNMT1 pharmacological inhibition as well as genetic knockout and knockdown, leads to passive DNA methylation loss. However, these strategies have been associated with different cell fates, even in the same cell background, suggesting that they can question the interpretation of the obtained results. Using a cell system in which endogenous DNMT1 is fused with an inducible degron and can be rapidly degraded, we found that in non-tumoral RPE-1 cells, DNMT1 loss progressively induced cell proliferation slowing-down and cell cycle arrest at the G1/S transition. The latter is due to p21 activation, which is partly mediated by p53 and leads to a global reduction in DNA methylation. DNMT1 restoration rescues cell proliferation, indicating that its deregulation is sensed as tunable cellular stress.
Collapse
Affiliation(s)
- Salvatore Martino
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128, Palermo, Italy
| | - Serena Gargano
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128, Palermo, Italy
| | - Pietro Salvatore Carollo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128, Palermo, Italy
| | - Aldo Di Leonardo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128, Palermo, Italy
- Centro Di Oncobiologia Sperimentale (C.O.B.S.), Viale Delle Scienze, 90128, Palermo, Italy
| | - Viviana Barra
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128, Palermo, Italy.
| |
Collapse
|
6
|
Tavenier J, Nehlin JO, Houlind MB, Rasmussen LJ, Tchkonia T, Kirkland JL, Andersen O, Rasmussen LJH. Fisetin as a senotherapeutic agent: Evidence and perspectives for age-related diseases. Mech Ageing Dev 2024; 222:111995. [PMID: 39384074 DOI: 10.1016/j.mad.2024.111995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/25/2024] [Accepted: 09/30/2024] [Indexed: 10/11/2024]
Abstract
Fisetin, a flavonoid naturally occurring in plants, fruits, and vegetables, has recently gained attention for its potential role as a senotherapeutic agent for the treatment of age-related chronic diseases. Senotherapeutics target senescent cells, which accumulate with age and disease, in both circulating immune cell populations and solid organs and tissues. Senescent cells contribute to development of many chronic diseases, primarily by eliciting systemic chronic inflammation through their senescence-associated secretory phenotype. Here, we explore whether fisetin as a senotherapeutic can eliminate senescent cells, and thereby alleviate chronic diseases, by examining current evidence from in vitro studies and animal models that investigate fisetin's impact on age-related diseases, as well as from phase I/II trials in various patient populations. We discuss the application of fisetin in humans, including challenges and future directions. Our review of available data suggests that targeting senescent cells with fisetin offers a promising strategy for managing multiple chronic diseases, potentially transforming future healthcare for older and multimorbid patients. However, further studies are needed to establish the safety, pharmacokinetics, and efficacy of fisetin as a senotherapeutic, identify relevant and reliable outcome measures in human trials, optimize dosing, and better understand the possible limitations of fisetin as a senotherapeutic agent.
Collapse
Affiliation(s)
- Juliette Tavenier
- Department of Clinical Research, Copenhagen University Hospital Amager and Hvidovre, Kettegaard Allé 30, Hvidovre 2650, Denmark.
| | - Jan O Nehlin
- Department of Clinical Research, Copenhagen University Hospital Amager and Hvidovre, Kettegaard Allé 30, Hvidovre 2650, Denmark.
| | - Morten Baltzer Houlind
- Department of Clinical Research, Copenhagen University Hospital Amager and Hvidovre, Kettegaard Allé 30, Hvidovre 2650, Denmark; The Hospital Pharmacy, Marielundsvej 25, Herlev 2730, Denmark; Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, Copenhagen 2100, Denmark.
| | - Lene Juel Rasmussen
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, Copenhagen 2200, Denmark.
| | - Tamara Tchkonia
- Center for Advanced Gerotherapeutics, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Division of Endocrinology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Division of General Internal Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.
| | - James L Kirkland
- Center for Advanced Gerotherapeutics, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Division of Endocrinology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Division of General Internal Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.
| | - Ove Andersen
- Department of Clinical Research, Copenhagen University Hospital Amager and Hvidovre, Kettegaard Allé 30, Hvidovre 2650, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, Copenhagen N 2200, Denmark; The Emergency Department, Copenhagen University Hospital Amager and Hvidovre, Kettegaard Allé 30, Hvidovre 2650, Denmark.
| | - Line Jee Hartmann Rasmussen
- Department of Clinical Research, Copenhagen University Hospital Amager and Hvidovre, Kettegaard Allé 30, Hvidovre 2650, Denmark; Department of Psychology & Neuroscience, Duke University, 2020 West Main Street Suite 201, Durham, NC 27708, USA.
| |
Collapse
|
7
|
Bramwell LR, Frankum R, Harries LW. Repurposing Drugs for Senotherapeutic Effect: Potential Senomorphic Effects of Female Synthetic Hormones. Cells 2024; 13:517. [PMID: 38534362 PMCID: PMC10969307 DOI: 10.3390/cells13060517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/26/2024] [Accepted: 03/11/2024] [Indexed: 03/28/2024] Open
Abstract
Repurposing previously approved drugs may fast track the route to the clinic for potential senotherapeutics and improves the inefficiency of the clinical drug development pipeline. We performed a repurposing screen of 240 clinically approved molecules in human primary dermal fibroblasts for their effects on CDKN2A expression. Molecules demonstrating effects on CDKN2A expression underwent secondary screening for senescence-associated beta galactosidase (SAB) activity, based on effect size, direction, and/or molecule identity. Selected molecules then underwent a more detailed assessment of senescence phenotypes including proliferation, apoptosis, DNA damage, senescence-associated secretory phenotype (SASP) expression, and regulators of alternative splicing. A selection of the molecules demonstrating effects on senescence were then used in a new bioinformatic structure-function screen to identify common structural motifs. In total, 90 molecules displayed altered CDKN2A expression at one or other dose, of which 15 also displayed effects on SAB positivity in primary human dermal fibroblasts. Of these, 3 were associated with increased SAB activity, and 11 with reduced activity. The female synthetic sex hormones-diethylstilboestrol, ethynyl estradiol and levonorgestrel-were all associated with a reduction in aspects of the senescence phenotype in male cells, with no effects visible in female cells. Finally, we identified that the 30 compounds that decreased CDKN2A activity the most had a common substructure linked to this function. Our results suggest that several drugs licensed for other indications may warrant exploration as future senotherapies, but that different donors and potentially different sexes may respond differently to senotherapeutic compounds. This underlines the importance of considering donor-related characteristics when designing drug screening platforms.
Collapse
Affiliation(s)
| | | | - Lorna W. Harries
- RNA-Mediated Mechanisms of Disease Group, Department of Clinical and Biomedical Sciences (Medical School), Faculty of Health and Life Sciences, University of Exeter, Exeter EX2 5DW, UK; (L.R.B.); (R.F.)
| |
Collapse
|
8
|
Saleh T. Therapy-induced senescence is finally escapable, what is next? Cell Cycle 2024; 23:713-721. [PMID: 38879812 PMCID: PMC11229739 DOI: 10.1080/15384101.2024.2364579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 05/17/2024] [Indexed: 07/06/2024] Open
Abstract
Several breakthrough articles have recently confirmed the ability of tumor cells to escape the stable cell cycle arrest imposed by Therapy-Induced Senescence (TIS). Subsequently, accepting the hypothesis that TIS is escapable should encourage serious reassessments of the fundamental roles of senescence in cancer treatment. The potential for escape from TIS undermines the well-established tumor suppressor function of senescence, proposes it as a mechanism of tumor dormancy leading to disease recurrence and invites for further investigation of its unfavorable contribution to cancer therapy outcomes. Moreover, escaping TIS strongly indicates that the elimination of senescent tumor cells, primarily through pharmacological means, is a suitable approach for increasing the efficacy of cancer treatment, one that still requires further exploration. This commentary provides an overview of the recent evidence that unequivocally demonstrated the ability of therapy-induced senescent tumor cells in overcoming the terminal growth arrest fate and provides future perspectives on the roles of TIS in tumor biology.
Collapse
Affiliation(s)
- Tareq Saleh
- Department of Pharmacology and Public Health, Faculty of Medicine, The Hashemite University, Zarqa, Jordan
| |
Collapse
|
9
|
Novitasari D, Nakamae I, Istighfari Jenie R, Yoneda-Kato N, Kato JY, Meiyanto E. Pentagamavunone-1 inhibits aggressive breast cancer cell proliferation through mitotic catastrophe and ROS-mediated activities: in vitro and in vivo studies. Saudi Pharm J 2024; 32:101892. [PMID: 38146327 PMCID: PMC10749286 DOI: 10.1016/j.jsps.2023.101892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 12/01/2023] [Indexed: 12/27/2023] Open
Abstract
Pentagamavunone-1 (PGV-1), an analog of curcumin, has been studied for its cytotoxic effects in 4T1, MCF7, MCF7/HER2, and T47D breast cancer cells. Its antiproliferative effect is partly mediated through G2/M arrest; however, its molecular mechanism during cell cycle progression remains unknown. In this study, we aimed to determine whether PGV-1 has any anticancer effects on highly aggressive breast cancer cells, with a focus on cell cycle regulatory activity, reactive oxygen species (ROS) generation, and their mediated effects on cancer cells. MDA-MB-231 (triple-negative) and HCC1954 (overexpressed HER2) immortalized human breast cancer cells were used in the study. PGV-1 exhibited cytotoxic activity with an irreversible antiproliferative impact on treated cells and had good selectivity when tested in fibroblast cells. Oral PGV-1 administration suppressed tumor growth in a cell-derived xenograft mouse model. PGV-1 induced the phosphorylation of Aurora A kinase and PLK1 in MDA-MB-231 cells, while PLK1 and cyclin B1 phosphorylation were enhanced in the PGV-1-treated HCC1954 cells during prometaphase arrest. Intracellular ROS production was substantially higher upon PGV-1 treatment following mitotic arrest, and this activity caused impairment of mitochondrial respiration, induced senescence, and subsequently triggered early-to-late apoptosis. Collectively, these results suggest that the molecular mechanism of PGV-1 involves the regulation of mitotic kinases to cause cell cycle arrest and the enhancement of ROS production to impair mitochondrial activity and induce cellular senescence. The therapeutic activities demonstrated by PGV-1 in this study show its potential as an appealing candidate for chemotherapy in breast cancer treatment.
Collapse
Affiliation(s)
- Dhania Novitasari
- Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Ikuko Nakamae
- Laboratory of Tumor Cell Biology, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara 630-0192, Japan
| | - Riris Istighfari Jenie
- Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Noriko Yoneda-Kato
- Laboratory of Tumor Cell Biology, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara 630-0192, Japan
| | - Jun-ya Kato
- Laboratory of Tumor Cell Biology, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara 630-0192, Japan
| | - Edy Meiyanto
- Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| |
Collapse
|
10
|
Sorrenti V, Buriani A, Fortinguerra S, Davinelli S, Scapagnini G, Cassidy A, De Vivo I. Cell Survival, Death, and Proliferation in Senescent and Cancer Cells: the Role of (Poly)phenols. Adv Nutr 2023; 14:1111-1130. [PMID: 37271484 PMCID: PMC10509428 DOI: 10.1016/j.advnut.2023.05.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/26/2023] [Accepted: 05/27/2023] [Indexed: 06/06/2023] Open
Abstract
Cellular senescence has long been considered a permanent state of cell cycle arrest occurring in proliferating cells subject to different stressors, used as a cellular defense mechanism from acquiring potentially harmful genetic faults. However, recent studies highlight that senescent cells might also alter the local tissue environment and concur to chronic inflammation and cancer risk by secreting inflammatory and matrix remodeling factors, acquiring a senescence-associated secretory phenotype (SASP). Indeed, during aging and age-related diseases, senescent cells amass in mammalian tissues, likely contributing to the inevitable loss of tissue function as we age. Cellular senescence has thus become one potential target to tackle age-associated diseases as well as cancer development. One important aspect characterizing senescent cells is their telomere length. Telomeres shorten as a consequence of multiple cellular replications, gradually leading to permanent cell cycle arrest, known as replicative senescence. Interestingly, in the large majority of cancer cells, a senescence escape strategy is used and telomere length is maintained by telomerase, thus favoring cancer initiation and tumor survival. There is growing evidence showing how (poly)phenols can impact telomere maintenance through different molecular mechanisms depending on dose and cell phenotypes. Although normally, (poly)phenols maintain telomere length and support telomerase activity, in cancer cells this activity is negatively modulated, thus accelerating telomere attrition and promoting cancer cell death. Some (poly)phenols have also been shown to exert senolytic activity, thus suggesting both antiaging (directly eliminating senescent cells) and anticancer (indirectly, via SASP inhibition) potentials. In this review, we analyze selective (poly)phenol mechanisms in senescent and cancer cells to discriminate between in vitro and in vivo evidence and human applications considering (poly)phenol bioavailability, the influence of the gut microbiota, and their dose-response effects.
Collapse
Affiliation(s)
- Vincenzo Sorrenti
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy; Maria Paola Belloni Center for Personalized Medicine, Padova, Italy.
| | | | | | - Sergio Davinelli
- Department of Medicine and Health Sciences "V. Tiberio," University of Molise, Campobasso, Italy
| | - Giovanni Scapagnini
- Department of Medicine and Health Sciences "V. Tiberio," University of Molise, Campobasso, Italy
| | - Aedin Cassidy
- Institute for Global Food Security, Queen's University Belfast, Belfast, Northern Ireland
| | - Immaculata De Vivo
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, United States
| |
Collapse
|
11
|
Billimoria R, Bhatt P. Senescence in cancer: Advances in detection and treatment modalities. Biochem Pharmacol 2023; 215:115739. [PMID: 37562510 DOI: 10.1016/j.bcp.2023.115739] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 08/12/2023]
Abstract
Senescence is a form of irreversible cell cycle arrest. Senescence plays a dual role in cancer, as both a tumor suppressor by preventing the growth of damaged cells and a cancer promoter by creating an inflammatory milieu. Stress-induced premature senescence (SIPS) and replicative senescence are the two major sub-types of senescence. Senescence plays a dual role in cancer, depending on the context and kind of senescence involved. SIPS can cause cancer by nurturing an inflammatory environment, whereas replicative senescence may prevent cancer. Major pathways that are involved in senescence are the p53-p21, p16INK4A-Rb pathway along with mTOR, MAPK, and PI3K pathways. The lack of universal senescence markers makes it difficult to identify senescent cells in vivo. A combination of reliable detection methods of senescent cells in vivo is of utmost importance and will help in early detection and open new avenues for future treatment. New strategies that are being developed in order to tackle these shortcomings are in the field of fluorescent probes, nanoparticles, positron emission tomography probes, biosensors, and the detection of cell-free DNA from liquid biopsies. Along with detection, eradication of these senescent cells is also important to prevent cancer reoccurrence. Recently, the field of nano-senolytic and immunotherapy has also been emerging. This review provides up-to-date information on the various types of advancements made in the field of detection and treatment modalities for senescent cells that hold promise for the future treatment and prognosis of cancer, as well as their limitations and potential solutions.
Collapse
Affiliation(s)
- Rezina Billimoria
- Department of Biological Sciences, Sunandan Divatia School of Science, SVKM's NMIMS (Deemed-to-be University), Vile Parle (West), Mumbai, India
| | - Purvi Bhatt
- Department of Biological Sciences, Sunandan Divatia School of Science, SVKM's NMIMS (Deemed-to-be University), Vile Parle (West), Mumbai, India.
| |
Collapse
|
12
|
Kirsch-Volders M, Fenech M. Towards prevention of aneuploidy-associated cellular senescence and aging: more questions than answers? MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2023; 792:108474. [PMID: 37866738 DOI: 10.1016/j.mrrev.2023.108474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 10/10/2023] [Accepted: 10/16/2023] [Indexed: 10/24/2023]
Abstract
The aim of this review is to discuss how aneuploidy contributes to the aging process, and to identify plausible strategies for its prevention. After an overview of mechanisms leading to aneuploidy and the major features of cellular senescence, we discuss the link between (i) aneuploidy and cellular senescence; (ii) aneuploidy and aging; and (iii) cellular senescence and aging. We also consider (i) interactions between aneuploidy, micronuclei, cellular senescence and aging, (ii) the potential of nutritional treatments to prevent aneuploidy-associated senescence and aging, and (iii) knowledge and technological gaps. Evidence for a causal link between aneuploidy, senescence and aging is emerging. In vitro, aneuploidy accompanies the entry into cellular senescence and can itself induce senescence. How aneuploidy contributes in vivo to cellular senescence is less clear. Several routes depending on aneuploidy and/or senescence converge towards chronic inflammation, the major driver of unhealthy aging. Aneuploidy can induce the pro-inflammatory Senescence Associated Secretory Phenotype (SASP), either directly or as a result of micronucleus (MN) induction leading to leakage of DNA into the cytoplasm and triggering of the cGAS-STING pathway of innate immune response. A major difficulty in understanding the impact of aneuploidy on senescence and aging in vivo, results from the heterogeneity of cellular senescence in different tissues at the cytological and molecular level. Due to this complexity, there is at the present time no biomarker or biomarker combination characteristic for all types of senescent cells. In conclusion, a deeper understanding of the critical role aneuploidy plays in cellular senescence and aging is essential to devise practical strategies to protect human populations from aneuploidy-associated pathologies. We discuss emerging evidence, based on in vitro and in vivo studies, that adequate amounts of specific micronutrients are essential for prevention of aneuploidy in humans and that precise nutritional intervention may be essential to help avoid the scourge of aneuploidy-driven diseases.
Collapse
Affiliation(s)
- Micheline Kirsch-Volders
- Laboratory for Cell Genetics, Department Biology, Faculty of Sciences and Bio-engineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium.
| | - Michael Fenech
- Clinical and Health Sciences, University of South Australia, SA 5000, Australia; Genome Health Foundation, North Brighton, SA 5048, Australia.
| |
Collapse
|
13
|
Martino S, Carollo PS, Barra V. A Glimpse into Chromatin Organization and Nuclear Lamina Contribution in Neuronal Differentiation. Genes (Basel) 2023; 14:genes14051046. [PMID: 37239406 DOI: 10.3390/genes14051046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
During embryonic development, stem cells undergo the differentiation process so that they can specialize for different functions within the organism. Complex programs of gene transcription are crucial for this process to happen. Epigenetic modifications and the architecture of chromatin in the nucleus, through the formation of specific regions of active as well as inactive chromatin, allow the coordinated regulation of the genes for each cell fate. In this mini-review, we discuss the current knowledge regarding the regulation of three-dimensional chromatin structure during neuronal differentiation. We also focus on the role the nuclear lamina plays in neurogenesis to ensure the tethering of the chromatin to the nuclear envelope.
Collapse
Affiliation(s)
- Salvatore Martino
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90128 Palermo, Italy
| | - Pietro Salvatore Carollo
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90128 Palermo, Italy
- Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), 90015 Cefalù, Italy
| | - Viviana Barra
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90128 Palermo, Italy
| |
Collapse
|
14
|
Carollo PS, Barra V. Chromatin epigenetics and nuclear lamina keep the nucleus in shape: Examples from natural and accelerated aging. Biol Cell 2023; 115:e2200023. [PMID: 36117150 DOI: 10.1111/boc.202200023] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 09/11/2022] [Accepted: 09/12/2022] [Indexed: 01/07/2023]
Abstract
As the repository of genetic information, the cell nucleus must protect DNA integrity from mechanical stresses. The nuclear lamina, which resides within the nuclear envelope (NE), is made up of lamins, intermediate filaments bound to DNA. The nuclear lamina provides the nucleus with the ability to deal with inward as well as outward mechanical stimuli. Chromatin, in turn, through its degrees of compaction, shares this role with the nuclear lamina, thus, ensuring the plasticity of the nucleus. Perturbation of chromatin condensation or the nuclear lamina has been linked to a plethora of biological conditions, that range from cancer and genetic diseases (laminopathies) to aging, both natural and accelerated, such as the case of Hutchinson-Gilford Progeria Syndrome (HGPS). From the experimental results accumulated so far on the topic, a direct link between variations of the epigenetic pattern and nuclear lamina structure would be suggested, however, it has never been clarified thoroughly. This relationship, instead, has a downstream important implication on nucleus shape, genome preservation, force sensing, and, ultimately, aging-related disease onset. With this review, we aim to collect recent studies on the importance of both nuclear lamina components and chromatin status in nuclear mechanics. We also aim to bring to light evidence of the link between DNA methylation and nuclear lamina in natural and accelerated aging.
Collapse
Affiliation(s)
- Pietro Salvatore Carollo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| | - Viviana Barra
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| |
Collapse
|