1
|
Gupta OP, Singh A, Ankush, Malik VK, Pandey V, Kumar S, Ram S, Tiwari R. A multifaceted analysis: Unveiling the complexities of wheat genotypes, fortification, and processing on iron and zinc bioavailability in whole wheat flour and chapati. Food Chem 2025; 473:142907. [PMID: 39869989 DOI: 10.1016/j.foodchem.2025.142907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 12/23/2024] [Accepted: 01/12/2025] [Indexed: 01/29/2025]
Abstract
This study examines the complex interactions between wheat cultivar selection and fortification with NaFeEDTA and ascorbic acid (AA) on the bioavailability of iron (Fe) and zinc (Zn) in whole wheat flour (WWF) and chapati. Nineteen hexaploid wheat cultivars were rigorously assessed for their intrinsic Fe and Zn profiles, including total content (TC), solubility (S), and bio-accessibility (B), utilizing an in-vitro gastrointestinal model. Significant variations (P < 0.05) were observed among cultivars, with Fe content ranging from 32.8 mg.kg-1 to 42.8 mg.kg-1 and Zn content ranging from 34.5 mg.kg-1 to 43.8 mg.kg-1 in WWF. Fortification with NaFeEDTA (T3: 250 mg.kg-1) significantly increased total Fe TC in WWF by 85.0 %, Fe and Zn solubility by 51.2 % and 22.3 %, and bio-accessibility by 165.5 % and 84.2 %, respectively, compared to control. Conversely, AA fortification (T3: 250 mg.kg-1) elevated Fe and Zn solubility by 98.7 % and 62.1 %, and bio-accessibility by 282.2 % and 230.5 %, respectively, compared to control. Notably, cultivar-specific responses to both fortification strategies were also evident. When translated to chapati, both NaFeEDTA and AA fortification (T3) enhanced Fe and Zn bio-accessibility compared to unfortified chapati. The impact of fortification was cultivar-dependent, with certain cultivars showing greater efficacy in improving Fe and Zn bio-accessibility. Correlation analysis revealed intricate relationships among Fe and Zn bioavailability parameters, highlighting the importance of tailored fortification approaches. These findings have significant implications for optimizing fortification strategies to improve bioavailable Fe and Zn intake through wheat-based diets.
Collapse
Affiliation(s)
- Om Prakash Gupta
- Division of Quality and Basic Sciences, ICAR-Indian Institute of Wheat and Barley Research, Karnal 132001, Haryana, India.
| | - Ajeet Singh
- Division of Quality and Basic Sciences, ICAR-Indian Institute of Wheat and Barley Research, Karnal 132001, Haryana, India
| | - Ankush
- Division of Quality and Basic Sciences, ICAR-Indian Institute of Wheat and Barley Research, Karnal 132001, Haryana, India
| | - Vipin Kumar Malik
- Division of Quality and Basic Sciences, ICAR-Indian Institute of Wheat and Barley Research, Karnal 132001, Haryana, India
| | - Vanita Pandey
- Division of Quality and Basic Sciences, ICAR-Indian Institute of Wheat and Barley Research, Karnal 132001, Haryana, India
| | - Sunil Kumar
- Division of Quality and Basic Sciences, ICAR-Indian Institute of Wheat and Barley Research, Karnal 132001, Haryana, India
| | - Sewa Ram
- Division of Quality and Basic Sciences, ICAR-Indian Institute of Wheat and Barley Research, Karnal 132001, Haryana, India
| | - Ratan Tiwari
- Director, ICAR-Indian Institute of Wheat and Barley Research, Karnal 132001, Haryana, India
| |
Collapse
|
2
|
Leonova IN, Ageeva EV, Shumny VK. Prospects for mineral biofortification of wheat: classical breeding and agronomy. Vavilovskii Zhurnal Genet Selektsii 2024; 28:523-535. [PMID: 39280848 PMCID: PMC11393657 DOI: 10.18699/vjgb-24-59] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 09/18/2024] Open
Abstract
Low intake of micro- and macroelements and vitamins in food negatively affects the health of more than two billion people around the world provoking chronic diseases. For the majority of the world's population, these are soft and durum wheats that provide beneficial nutrients, however their modern high-yielding varieties have a significantly depleted grain mineral composition that have reduced mineral intake through food. Biofortification is a new research trend, whose main goal is to improve the nutritional qualities of agricultural crops using a set of classical (hybridization and selection) methods as well and the modern ones employing gene/QTL mapping, bioinformatic analysis, transgenesis, mutagenesis and genome editing. Using the classical breeding methods, biofortified varieties have been bred as a part of various international programs funded by HarvestPlus, CIMMYT, ICARDA. Despite the promise of transgenesis and genome editing, these labor-intensive methods require significant investments, so these technologies, when applied to wheat, are still at the development stage and cannot be applied routinely. In recent years, the interest in wheat biofortification has increased due to the advances in mapping genes and QTLs for agronomically important traits. The new markers obtained from wheat genome sequencing and application of bioinformatic methods (GWAS, meta-QTL analysis) has expanded our knowledge on the traits that determine the grain mineral concentration and has identified the key gene candidates. This review describes the current research on genetic biofortification of wheat in the world and in Russia and provides information on the use of cultivated and wild-relative germplasms to expand the genetic diversity of modern wheat varieties.
Collapse
Affiliation(s)
- I N Leonova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - E V Ageeva
- Siberian Research Institute of Plant Production and Breeding - Branch of the Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Krasnoobsk, Novosibirsk region, Russia
| | - V K Shumny
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
3
|
Kumar J, Saini DK, Kumar A, Kumari S, Gahlaut V, Rahim MS, Pandey AK, Garg M, Roy J. Biofortification of Triticum species: a stepping stone to combat malnutrition. BMC PLANT BIOLOGY 2024; 24:668. [PMID: 39004715 PMCID: PMC11247745 DOI: 10.1186/s12870-024-05161-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/16/2024] [Indexed: 07/16/2024]
Abstract
BACKGROUND Biofortification represents a promising and sustainable strategy for mitigating global nutrient deficiencies. However, its successful implementation poses significant challenges. Among staple crops, wheat emerges as a prime candidate to address these nutritional gaps. Wheat biofortification offers a robust approach to enhance wheat cultivars by elevating the micronutrient levels in grains, addressing one of the most crucial global concerns in the present era. MAIN TEXT Biofortification is a promising, but complex avenue, with numerous limitations and challenges to face. Notably, micronutrients such as iron (Fe), zinc (Zn), selenium (Se), and copper (Cu) can significantly impact human health. Improving Fe, Zn, Se, and Cu contents in wheat could be therefore relevant to combat malnutrition. In this review, particular emphasis has been placed on understanding the extent of genetic variability of micronutrients in diverse Triticum species, along with their associated mechanisms of uptake, translocation, accumulation and different classical to advanced approaches for wheat biofortification. CONCLUSIONS By delving into micronutrient variability in Triticum species and their associated mechanisms, this review underscores the potential for targeted wheat biofortification. By integrating various approaches, from conventional breeding to modern biotechnological interventions, the path is paved towards enhancing the nutritional value of this vital crop, promising a brighter and healthier future for global food security and human well-being.
Collapse
Affiliation(s)
- Jitendra Kumar
- National Agri-Food Biotechnology Institute (NABI), Mohali-140306, Mohali, Punjab, India.
| | - Dinesh Kumar Saini
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, 141004, India
| | - Ashish Kumar
- National Agri-Food Biotechnology Institute (NABI), Mohali-140306, Mohali, Punjab, India
| | - Supriya Kumari
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, New Delhi, 110078, India
| | - Vijay Gahlaut
- Department of Biotechnology, University Center for Research and Development Chandigarh University, Gharuan, Mohali, Punjab, 140413, India
| | - Mohammed Saba Rahim
- CSIR - Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176061, India
| | - Ajay Kumar Pandey
- National Agri-Food Biotechnology Institute (NABI), Mohali-140306, Mohali, Punjab, India
| | - Monika Garg
- National Agri-Food Biotechnology Institute (NABI), Mohali-140306, Mohali, Punjab, India
| | - Joy Roy
- National Agri-Food Biotechnology Institute (NABI), Mohali-140306, Mohali, Punjab, India.
| |
Collapse
|
4
|
Gupta OP, Singh A, Pandey V, Sendhil R, Khan MK, Pandey A, Kumar S, Hamurcu M, Ram S, Singh G. Critical assessment of wheat biofortification for iron and zinc: a comprehensive review of conceptualization, trends, approaches, bioavailability, health impact, and policy framework. Front Nutr 2024; 10:1310020. [PMID: 38239835 PMCID: PMC10794668 DOI: 10.3389/fnut.2023.1310020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 11/21/2023] [Indexed: 01/22/2024] Open
Abstract
Addressing global hidden hunger, particularly in women of childbearing age and children under five, presents a significant challenge, with a focus on iron (Fe) and zinc (Zn) deficiency. Wheat, a staple crop in the developing world, is crucial for addressing this issue through biofortification efforts. While extensive research has explored various approaches to enhance Fe and Zn content in wheat, there remains a scarcity of comprehensive data on their bioavailability and impact on human and animal health. This systematic review examines the latest trends in wheat biofortification approaches, assesses bioavailability, evaluates the effects of biofortified wheat on health outcomes in humans and animals, and analyzes global policy frameworks. Additionally, a meta-analysis of per capita daily Fe and Zn intake from average wheat consumption was conducted. Notably, breeding-based approaches have led to the release of 40 biofortified wheat varieties for commercial cultivation in India, Pakistan, Bangladesh, Mexico, Bolivia, and Nepal, but this progress has overlooked Africa, a particularly vulnerable continent. Despite these advancements, there is a critical need for large-scale systematic investigations into the nutritional impact of biofortified wheat, indicating a crucial area for future research. This article can serve as a valuable resource for multidisciplinary researchers engaged in wheat biofortification, aiding in the refinement of ongoing and future strategies to achieve the Sustainable Development Goal of eradicating hunger and malnutrition by 2030.
Collapse
Affiliation(s)
- Om Prakash Gupta
- Division of Quality and Basic Sciences, ICAR-Indian Institute of Wheat and Barley Research, Karnal, Haryana, India
| | - Ajeet Singh
- Division of Quality and Basic Sciences, ICAR-Indian Institute of Wheat and Barley Research, Karnal, Haryana, India
| | - Vanita Pandey
- Division of Quality and Basic Sciences, ICAR-Indian Institute of Wheat and Barley Research, Karnal, Haryana, India
| | - Ramadas Sendhil
- Division of Social Sciences, ICAR-Indian Institute of Wheat and Barley Research, Karnal, Haryana, India
| | - Mohd. Kamran Khan
- Department of Soil Science and Plant Nutrition, Selcuk University, Konya, Türkiye
| | - Anamika Pandey
- Department of Soil Science and Plant Nutrition, Selcuk University, Konya, Türkiye
| | - Sunil Kumar
- Division of Quality and Basic Sciences, ICAR-Indian Institute of Wheat and Barley Research, Karnal, Haryana, India
| | - Mehmet Hamurcu
- Department of Soil Science and Plant Nutrition, Selcuk University, Konya, Türkiye
| | - Sewa Ram
- Division of Quality and Basic Sciences, ICAR-Indian Institute of Wheat and Barley Research, Karnal, Haryana, India
| | - Gyanendra Singh
- Division of Quality and Basic Sciences, ICAR-Indian Institute of Wheat and Barley Research, Karnal, Haryana, India
| |
Collapse
|
5
|
Avnee, Sood S, Chaudhary DR, Jhorar P, Rana RS. Biofortification: an approach to eradicate micronutrient deficiency. Front Nutr 2023; 10:1233070. [PMID: 37789898 PMCID: PMC10543656 DOI: 10.3389/fnut.2023.1233070] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/21/2023] [Indexed: 10/05/2023] Open
Abstract
Micronutrient deficiency also known as "hidden hunger" refers to a condition that occurs when the body lacks essential vitamins and minerals that are required in small amounts for proper growth, development and overall health. These deficiencies are particularly common in developing countries, where a lack of access to a varied and nutritious diet makes it difficult for people to get the micronutrients they need. Micronutrient supplementation has been a topic of interest, especially during the Covid-19 pandemic, due to its potential role in supporting immune function and overall health. Iron (Fe), zinc (Zn), iodine (I), and selenium (Se) deficiency in humans are significant food-related issues worldwide. Biofortification is a sustainable strategy that has been developed to address micronutrient deficiencies by increasing the levels of essential vitamins and minerals in staple crops that are widely consumed by people in affected communities. There are a number of agricultural techniques for biofortification, including selective breeding of crops to have higher levels of specific nutrients, agronomic approach using fertilizers and other inputs to increase nutrient uptake by crops and transgenic approach. The agronomic approach offers a temporary but speedy solution while the genetic approach (breeding and transgenic) is the long-term solution but requires time to develop a nutrient-rich variety.
Collapse
Affiliation(s)
- Avnee
- Department of Agronomy, CSK Himachal Pradesh Krishi Vishvavidyalaya, Palampur, India
| | - Sonia Sood
- Department of Vegetable Science and Floriculture, CSK Himachal Pradesh Krishi Vishvavidyalaya, Palampur, India
| | - Desh Raj Chaudhary
- Department of Vegetable Science and Floriculture, CSK Himachal Pradesh Krishi Vishvavidyalaya, Palampur, India
| | - Pooja Jhorar
- Department of Agronomy, CSK Himachal Pradesh Krishi Vishvavidyalaya, Palampur, India
| | - Ranbir Singh Rana
- Department of Agronomy, CSK Himachal Pradesh Krishi Vishvavidyalaya, Palampur, India
| |
Collapse
|
6
|
Azeem A, Ul-Allah S, Azeem F, Naeem M, Sattar A, Ijaz M, Sher A. Effect of foliar applied zinc sulphate on phenotypic variability, association and heritability of yield and zinc biofortification related traits of wheat genotypes. Heliyon 2023; 9:e19643. [PMID: 37809928 PMCID: PMC10558863 DOI: 10.1016/j.heliyon.2023.e19643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/25/2023] [Accepted: 08/29/2023] [Indexed: 10/10/2023] Open
Abstract
Wheat is an important food crop worldwide, providing substantial calories and nourishment. Genetic variability in wheat germplasm is crucial for the development of cultivars with desirable features. This two years study (2020-21 and 2021-22) was conducted to evaluate 13 diverse wheat genotypes factorially combined with foliar-applied zinc sulphate (0, 0.4, 0.6%) arranged in a triplicate randomized complete block design. Boxplot analysis revealed the significant (P < 0.01) phenotypic variation of wheat germplasm for all the studied traits, but maximum variation was observed for yield and Zn biofortification-related traits. Correlation and path analysis revealed a significant (P < 0.01) association among yield and biofortification-related traits. Zinc uptake showed maximum strength of association (r = 0.96, p < 0.01) with grain Zn concentration. The Biplot analysis showed the graphical representation of wheat accessions based on similar characteristics and then assort into distinct groups. Broadsense heritability (Hbs) was calculated to determine the proportion of variation transmitted to future generations. The high value of Hbs for yield and Zn biofortification-related traits indicates that these traits are governed by the additive type of gene action and can be fixed in early segregating generations. In crux, this study validated the genetic variability in existing wheat genotypes for yield and Zn biofortification-related traits and may be helpful to devise an efficient breeding program for wheat Zn biofortification.
Collapse
Affiliation(s)
- Asad Azeem
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, Pakistan
| | - Sami Ul-Allah
- College of Agriculture, University of Layyah, Layyah, Pakistan
- Department of Plant Breeding and Genetics, Bahauddin Zakariya University, Multan, Pakistan
| | - Farrukh Azeem
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Muhammad Naeem
- Department of Plant Breeding and Genetics, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Abdul Sattar
- College of Agriculture, University of Layyah, Layyah, Pakistan
- Department of Agronomy, Bahauddin Zakariya University, Multan, Pakistan
| | - Muhammad Ijaz
- College of Agriculture, University of Layyah, Layyah, Pakistan
- Department of Agronomy, Bahauddin Zakariya University, Multan, Pakistan
| | - Ahmad Sher
- College of Agriculture, University of Layyah, Layyah, Pakistan
- Department of Agronomy, Bahauddin Zakariya University, Multan, Pakistan
| |
Collapse
|
7
|
Arikan B, Yildiztugay E, Ozfidan-Konakci C. Protective role of quercetin and kaempferol against oxidative damage and photosynthesis inhibition in wheat chloroplasts under arsenic stress. PHYSIOLOGIA PLANTARUM 2023; 175:e13964. [PMID: 37341362 DOI: 10.1111/ppl.13964] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/11/2023] [Accepted: 06/19/2023] [Indexed: 06/22/2023]
Abstract
Arsenic (As) toxicity negatively impacts plant development, limits agricultural production, and, by entering the food chain, endangers human health. Studies on the use of natural and bioactive molecules in increasing plants' resistance to abiotic stressors, such as As, have gained increasing attention in the last few years. Flavonols are plant secondary metabolites with high potential in stress tolerance due to their roles in signal transmission. Therefore, the focus of this study was to examine the effects of two flavonols, quercetin (Q, 25 μM) and kaempferol (K, 25 μM), on growth parameters, photosynthesis, and chloroplastic antioxidant activity in wheat leaves under As stress (100 μM). As stress reduced the relative growth rate by 50% and relative water content by 25% in leaves. However, applying Q and/or K alleviated the As-induced suppression of growth and water relations. Exogenous phenolic treatments reversed the effects of As toxicity in photochemistry and maintained the photochemical quantum efficiency of the Photosystem II (Fv /Fm ). As exposure increased, the H2 O2 content in wheat chloroplasts by 42% and high levels of H2 O2 accumulation were also observed in guard cells in confocal microscopy images. Analysis of the chloroplastic antioxidant system has shown that Q and K applications increase the activity of antioxidant enzymes, including superoxide dismutase, peroxidase, and ascorbate peroxidase. Phenolic applications have induced the ascorbate-glutathione (AsA-GSH) cycle in charge of the protection of the cellular redox balance in different ways. It has been determined that Q triggers the AsA renewal, and K maintains the GSH pool. As a result, Q and K applications provide tolerance to wheat plants under As stress by increasing the chloroplastic antioxidant system activity and protecting photosynthetic reactions from oxidative damage. This study reveals the potential use of plant phenolic compounds in agricultural systems as a biosafe strategy to enhance plant stress tolerance, hence increasing yield.
Collapse
Affiliation(s)
- Busra Arikan
- Department of Biotechnology, Faculty of Science, Selcuk University, Konya, Turkey
| | - Evren Yildiztugay
- Department of Biotechnology, Faculty of Science, Selcuk University, Konya, Turkey
| | - Ceyda Ozfidan-Konakci
- Department of Molecular Biology and Genetics, Faculty of Science, Necmettin Erbakan University, Konya, Turkey
| |
Collapse
|