1
|
Tezuka T, Nagai S, Matsuo C, Okamori T, Iizuka T, Marubashi W. Genetic Cause of Hybrid Lethality Observed in Reciprocal Interspecific Crosses between Nicotiana simulans and N. tabacum. Int J Mol Sci 2024; 25:1226. [PMID: 38279225 PMCID: PMC10817076 DOI: 10.3390/ijms25021226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/17/2024] [Accepted: 01/17/2024] [Indexed: 01/28/2024] Open
Abstract
Hybrid lethality, a type of postzygotic reproductive isolation, is an obstacle to wide hybridization breeding. Here, we report the hybrid lethality that was observed in crosses between the cultivated tobacco, Nicotiana tabacum (section Nicotiana), and the wild tobacco species, Nicotiana simulans (section Suaveolentes). Reciprocal hybrid seedlings were inviable at 28 °C, and the lethality was characterized by browning of the hypocotyl and roots, suggesting that hybrid lethality is due to the interaction of nuclear genomes derived from each parental species, and not to a cytoplasmic effect. Hybrid lethality was temperature-sensitive and suppressed at 36 °C. However, when hybrid seedlings cultured at 36 °C were transferred to 28 °C, all of them showed hybrid lethality. After crossing between an N. tabacum monosomic line missing one copy of the Q chromosome and N. simulans, hybrid seedlings with or without the Q chromosome were inviable and viable, respectively. These results indicated that gene(s) on the Q chromosome are responsible for hybrid lethality and also suggested that N. simulans has the same allele at the Hybrid Lethality A1 (HLA1) locus responsible for hybrid lethality as other species in the section Suaveolentes. Haplotype analysis around the HLA1 locus suggested that there are at least six and two haplotypes containing Hla1-1 and hla1-2 alleles, respectively, in the section Suaveolentes.
Collapse
Affiliation(s)
- Takahiro Tezuka
- Graduate School of Agriculture, Osaka Metropolitan University, Sakai 599-8531, Osaka, Japan;
- Education and Research Field, School of Agriculture, Osaka Metropolitan University, Sakai 599-8531, Osaka, Japan
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai 599-8531, Osaka, Japan;
- School of Life and Environmental Sciences, Osaka Prefecture University, Sakai 599-8531, Osaka, Japan
| | - Shota Nagai
- Graduate School of Agriculture, Osaka Metropolitan University, Sakai 599-8531, Osaka, Japan;
| | - Chihiro Matsuo
- School of Life and Environmental Sciences, Osaka Prefecture University, Sakai 599-8531, Osaka, Japan
| | - Toshiaki Okamori
- School of Life and Environmental Sciences, Osaka Prefecture University, Sakai 599-8531, Osaka, Japan
| | - Takahiro Iizuka
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai 599-8531, Osaka, Japan;
| | - Wataru Marubashi
- School of Agriculture, Meiji University, Kawasaki 214-8571, Kanagawa, Japan;
| |
Collapse
|
2
|
Wang P, Li Z, Zhu L, Cheng M, Chen X, Wang A, Wang C, Zhang X. Fine Mapping and Identification of a Candidate Gene for the Glossy Green Trait in Cabbage ( Brassica oleracea var. capitata). PLANTS (BASEL, SWITZERLAND) 2023; 12:3340. [PMID: 37765502 PMCID: PMC10538046 DOI: 10.3390/plants12183340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/12/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023]
Abstract
In higher plants, cuticular wax deposited on the surface of epidermal cells plays an important role in protecting the plant from biotic and abiotic stresses; however, the molecular mechanism of cuticular wax production is not completely understood. In this study, we identified a glossy green mutant (98-1030gl) from the glaucous cabbage inbred line 98-1030. Scanning electron microscopy indicated that the amount of leaf cuticular wax significantly decreased in 98-1030gl. Genetic analysis showed that the glossy green trait was controlled by a single recessive gene. Bulked segregant analysis coupled with whole genome sequencing revealed that the candidate gene for the glossy green trait was located at 13,860,000-25,070,000 bp (11.21 Mb) on Chromosome 5. Based on the resequencing data of two parents and the F2 population, insertion-deletion markers were developed and used to reduce the candidate mapping region. The candidate gene (Bol026949) was then mapped in a 50.97 kb interval. Bol026949 belongs to the Agenet/Tudor domain protein family, whose members are predicted to be involved in chromatin remodeling and RNA transcription. Sequence analysis showed that a single nucleotide polymorphism mutation (C → G) in the second exon of Bol026949 could result in the premature termination of its protein translation in 98-1030gl. Phylogenetic analysis showed that Bol026949 is relatively conserved in cruciferous plants. Transcriptome profiling indicated that Bol026949 might participate in cuticular wax production by regulating the transcript levels of genes involved in the post-translational cellular process and phytohormone signaling. Our findings provide an important clue for dissecting the regulatory mechanisms of cuticular wax production in cruciferous crops.
Collapse
Affiliation(s)
- Peiwen Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China; (P.W.); (Z.L.); (L.Z.); (M.C.); (X.C.); (A.W.); (C.W.)
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Ziheng Li
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China; (P.W.); (Z.L.); (L.Z.); (M.C.); (X.C.); (A.W.); (C.W.)
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Lin Zhu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China; (P.W.); (Z.L.); (L.Z.); (M.C.); (X.C.); (A.W.); (C.W.)
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Mozhen Cheng
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China; (P.W.); (Z.L.); (L.Z.); (M.C.); (X.C.); (A.W.); (C.W.)
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Xiuling Chen
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China; (P.W.); (Z.L.); (L.Z.); (M.C.); (X.C.); (A.W.); (C.W.)
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Aoxue Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China; (P.W.); (Z.L.); (L.Z.); (M.C.); (X.C.); (A.W.); (C.W.)
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Chao Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China; (P.W.); (Z.L.); (L.Z.); (M.C.); (X.C.); (A.W.); (C.W.)
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Xiaoxuan Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China; (P.W.); (Z.L.); (L.Z.); (M.C.); (X.C.); (A.W.); (C.W.)
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
3
|
He H, Shiragaki K, Tezuka T. Understanding and overcoming hybrid lethality in seed and seedling stages as barriers to hybridization and gene flow. FRONTIERS IN PLANT SCIENCE 2023; 14:1219417. [PMID: 37476165 PMCID: PMC10354522 DOI: 10.3389/fpls.2023.1219417] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 06/20/2023] [Indexed: 07/22/2023]
Abstract
Hybrid lethality is a type of reproductive isolation barrier observed in two developmental stages, hybrid embryos (hybrid seeds) and hybrid seedlings. Hybrid lethality has been reported in many plant species and limits distant hybridization breeding including interspecific and intergeneric hybridization, which increases genetic diversity and contributes to produce new germplasm for agricultural purposes. Recent studies have provided molecular and genetic evidence suggesting that underlying causes of hybrid lethality involve epistatic interaction of one or more loci, as hypothesized by the Bateson-Dobzhansky-Muller model, and effective ploidy or endosperm balance number. In this review, we focus on the similarities and differences between hybrid seed lethality and hybrid seedling lethality, as well as methods of recovering seed/seedling activity to circumvent hybrid lethality. Current knowledge summarized in our article will provides new insights into the mechanisms of hybrid lethality and effective methods for circumventing hybrid lethality.
Collapse
Affiliation(s)
- Hai He
- School of Agriculture, Sun Yat-sen University, Shenzhen, China
| | - Kumpei Shiragaki
- Laboratory of Plant Breeding and Genetics, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | - Takahiro Tezuka
- Laboratory of Breeding and Genetics, Graduate School of Agriculture, Osaka Metropolitan University, Sakai, Osaka, Japan
- Education and Research Field, School of Agriculture, Osaka Metropolitan University, Sakai, Osaka, Japan
| |
Collapse
|
4
|
Mino M, Tezuka T, Shomura S. The hybrid lethality of interspecific F 1 hybrids of Nicotiana: a clue to understanding hybrid inviability-a major obstacle to wide hybridization and introgression breeding of plants. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2022; 42:10. [PMID: 37309322 PMCID: PMC10248639 DOI: 10.1007/s11032-022-01279-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 01/23/2022] [Indexed: 06/14/2023]
Abstract
Reproductive isolation poses a major obstacle to wide hybridization and introgression breeding of plants. Hybrid inviability in the postzygotic isolation barrier inevitably reduces hybrid fitness, consequently causing hindrances in the establishment of novel genotypes from the hybrids among genetically divergent parents. The idea that the plant immune system is involved in the hybrid problem is applicable to the intra- and/or interspecific hybrids of many different taxa. The lethality characteristics and expression profile of genes associated with the hypersensitive response of the hybrids, along with the suppression of causative genes, support the deleterious epistatic interaction of parental NB-LRR protein genes, resulting in aberrant hyper-immunity reactions in the hybrid. Moreover, the cellular, physiological, and biochemical reactions observed in hybrid cells also corroborate this hypothesis. However, the difference in genetic backgrounds of the respective hybrids may contribute to variations in lethality phenotypes among the parental species combinations. The mixed state in parental components of the chaperone complex (HSP90-SGT1-RAR1) in the hybrid may also affect the hybrid inviability. This review article discusses the facts and hypothesis regarding hybrid inviability, alongside the findings of studies on the hybrid lethality of interspecific hybrids of the genus Nicotiana. A possible solution for averting the hybrid problem has also been scrutinized with the aim of improving the wide hybridization and introgression breeding program in plants.
Collapse
Affiliation(s)
- Masanobu Mino
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Hangi-cho, Shimogamo, Sakyo-ku, Kyoto, 606-8522 Japan
- Present Address: Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku Sakai, Osaka, 599-8531 Japan
| | - Takahiro Tezuka
- Present Address: Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku Sakai, Osaka, 599-8531 Japan
| | - Sachiko Shomura
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Hangi-cho, Shimogamo, Sakyo-ku, Kyoto, 606-8522 Japan
| |
Collapse
|
5
|
Si Y, Zheng S, Niu J, Tian S, Gu M, Lu Q, He Y, Zhang J, Shi X, Li Y, Ling HQ. Ne2, a typical CC-NBS-LRR-type gene, is responsible for hybrid necrosis in wheat. THE NEW PHYTOLOGIST 2021; 232:279-289. [PMID: 34160845 DOI: 10.1111/nph.17575] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 06/16/2021] [Indexed: 06/13/2023]
Abstract
Hybrid necrosis, caused by complementary genes Ne1 and Ne2, is a serious barrier for combining desirable traits from different genotypes of wheat, affecting the full utilisation of heterosis. To date, both Ne1 and Ne2 are still not isolated although they were documented decades ago. We report here the map-based cloning and functional characterisation of Ne2, encoding a coiled coil-nucleotide-binding site-leucine-rich repeat (CC-NBS-LRR) protein. Homozygous frameshift mutations generated using the CRISPR/Cas9 approach confirmed the Ne2-inducing hybrid necrosis in wheat. Upregulated expression of Ne2 induced by Ne1 and excess hydrogen peroxide accumulation are associated with the necrosis formation. Genetic analyses of a Ne2 allele (Ne2m ) and leaf rust resistance gene LrLC10/Lr13 revealed that they might be the same gene. Furthermore, we demonstrated that the frequency of the Ne2 allele was much lower in landraces (2.00%) compared with that in modern cultivars (13.62%), suggesting that Ne2 allele has been partially applied in wheat genetic improvement. Our findings open opportunities of thoroughly investigating the molecular mechanism of hybrid necrosis, selecting Lr13 and simultaneously avoiding hybrid necrosis in wheat breeding through marker-assisted selection.
Collapse
Affiliation(s)
- Yaoqi Si
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shusong Zheng
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianqing Niu
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuiquan Tian
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mengjun Gu
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiao Lu
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yilin He
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Juan Zhang
- Shi Jia Zhuang Academy of Agricultural and Forestry Sciences, Shijiazhuang, Hebei, 050041, China
| | - Xiaoli Shi
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yiwen Li
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hong-Qing Ling
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
6
|
Li L, Weigel D. One Hundred Years of Hybrid Necrosis: Hybrid Autoimmunity as a Window into the Mechanisms and Evolution of Plant-Pathogen Interactions. ANNUAL REVIEW OF PHYTOPATHOLOGY 2021; 59:213-237. [PMID: 33945695 DOI: 10.1146/annurev-phyto-020620-114826] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Hybrid necrosis in plants refers to a genetic autoimmunity syndrome in the progeny of interspecific or intraspecific crosses. Although the phenomenon was first documented in 1920, it has been unequivocally linked to autoimmunity only recently, with the discovery of the underlying genetic and biochemical mechanisms. The most common causal loci encode immune receptors, which are known to differ within and between species. One mechanism can be explained by the guard hypothesis, in which a guard protein, often a nucleotide-binding site-leucine-rich repeat protein, is activated by interaction with a plant protein that mimics standard guardees modified by pathogen effector proteins. Another surprising mechanism is the formation of inappropriately active immune receptor complexes. In this review, we summarize our current knowledge of hybrid necrosis and discuss how its study is not only informing the understanding of immune gene evolution but also revealing new aspects of plant immune signaling.
Collapse
Affiliation(s)
- Lei Li
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany; ,
| | - Detlef Weigel
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany; ,
| |
Collapse
|
7
|
Kawaguchi K, Ohya Y, Maekawa M, Iizuka T, Hasegawa A, Shiragaki K, He H, Oda M, Morikawa T, Yokoi S, Tezuka T. Two Nicotiana occidentalis accessions enable gene identification for Type II hybrid lethality by the cross to N. sylvestris. Sci Rep 2021; 11:17093. [PMID: 34429461 PMCID: PMC8384851 DOI: 10.1038/s41598-021-96482-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 08/11/2021] [Indexed: 12/18/2022] Open
Abstract
Hybrid lethality, meaning the death of F1 hybrid seedlings, has been observed in many plant species, including Nicotiana. Previously, we have revealed that hybrids of the selected Nicotiana occidentalis accession and N. tabacum, an allotetraploid with S and T genomes, exhibited lethality characterized by the fading of shoot color. The lethality was suggested to be controlled by alleles of loci on the S and T genomes derived from N. sylvestris and N. tomentosiformis, respectively. Here, we extended the analysis of hybrid lethality using other two accessions of N. occidentalis identified from the five tested accessions. The two accessions were crossed with N. tabacum and its two progenitors, N. sylvestris and N. tomentosiformis. After crosses with N. tabacum, the two N. occidentalis accessions yielded inviable hybrid seedlings whose lethality was characterized by the fading of shoot color, but only the T genome of N. tabacum was responsible for hybrid lethality. Genetic analysis indicated that first-mentioned N. occidentalis accession carries a single gene causing hybrid lethality by allelic interaction with the S genome.
Collapse
Affiliation(s)
- Kenji Kawaguchi
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, 599-8531, Japan
- NARO Hokkaido Agricultural Research Center, Memuro Research Station, 9-4 Shinsei-minami, Memuro, Kasai, Hokkaido, 082-0081, Japan
| | - Yuichiro Ohya
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, 599-8531, Japan
| | - Maho Maekawa
- School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, 599-8531, Japan
| | - Takahiro Iizuka
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, 599-8531, Japan
| | - Akira Hasegawa
- School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, 599-8531, Japan
| | - Kumpei Shiragaki
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, 599-8531, Japan
| | - Hai He
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, 599-8531, Japan
| | - Masayuki Oda
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, 599-8531, Japan
- Education and Research Field, College of Life, Environment, and Advanced Sciences, Osaka Prefecture University, Sakai, Osaka, 599-8531, Japan
| | - Toshinobu Morikawa
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, 599-8531, Japan
- Education and Research Field, College of Life, Environment, and Advanced Sciences, Osaka Prefecture University, Sakai, Osaka, 599-8531, Japan
| | - Shuji Yokoi
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, 599-8531, Japan
- Education and Research Field, College of Life, Environment, and Advanced Sciences, Osaka Prefecture University, Sakai, Osaka, 599-8531, Japan
- Bioeconomy Research Institute, Research Center for the 21St Century, Osaka Prefecture University, Sakai, Osaka, 599-8531, Japan
| | - Takahiro Tezuka
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Osaka, 599-8531, Japan.
- Education and Research Field, College of Life, Environment, and Advanced Sciences, Osaka Prefecture University, Sakai, Osaka, 599-8531, Japan.
| |
Collapse
|
8
|
Xiao Z, Liu X, Fang Z, Yang L, Zhang Y, Wang Y, Zhuang M, Lv H. Transcriptome and plant hormone analyses provide new insight into the molecular regulatory networks underlying hybrid lethality in cabbage (Brassica oleracea). PLANTA 2021; 253:96. [PMID: 33839925 DOI: 10.1007/s00425-021-03608-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 03/24/2021] [Indexed: 06/12/2023]
Abstract
Comparative morphological, transcriptomic and phytohormone analyses reveal a defence network leading to PCD involved in cabbage hybrid lethality. Hybrid lethality (HL) plays an essential role in the stability of a population by blocking gene exchange between species, but the molecular mechanism remains largely undetermined. In this study, we performed phenotype, transcriptome and plant hormone analyses of HL in cabbage. Phenotype analysis confirmed that HL is characterised by a typical programmed cell death (PCD) process. A time-resolved RNA-Seq identified 2724 differentially expressed genes (DEGs), and functional annotations analyses revealed that HL was closely associated with the defence response. A defence regulation network was constructed based on the plant-pathogen interaction pathway and MAPK signalling pathway, which comprised DEGs related to Ca2+ and hydrogen peroxide (H2O2) leading to PCD. Moreover, important DEGs involved in hormone signal transduction pathways including salicylic acid (SA) and jasmonic acid (JA) were identified, which were further confirmed by endogenous and exogenous SA and JA measurements. Our results identified key genes and pathways in the regulating network of HL in cabbage, and might open the gate for revealing the molecular mechanism of HL in plants.
Collapse
Affiliation(s)
- Zhiliang Xiao
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, 12# Zhongguancun Nandajie Street, Beijing, 100081, China
| | - Xing Liu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, 12# Zhongguancun Nandajie Street, Beijing, 100081, China
| | - Zhiyuan Fang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, 12# Zhongguancun Nandajie Street, Beijing, 100081, China
| | - Limei Yang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, 12# Zhongguancun Nandajie Street, Beijing, 100081, China
| | - Yangyong Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, 12# Zhongguancun Nandajie Street, Beijing, 100081, China
| | - Yong Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, 12# Zhongguancun Nandajie Street, Beijing, 100081, China
| | - Mu Zhuang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, 12# Zhongguancun Nandajie Street, Beijing, 100081, China.
| | - Honghao Lv
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, 12# Zhongguancun Nandajie Street, Beijing, 100081, China.
| |
Collapse
|
9
|
Wan WL, Kim ST, Castel B, Charoennit N, Chae E. Genetics of autoimmunity in plants: an evolutionary genetics perspective. THE NEW PHYTOLOGIST 2021; 229:1215-1233. [PMID: 32970825 DOI: 10.1111/nph.16947] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 08/12/2020] [Indexed: 05/14/2023]
Abstract
Autoimmunity in plants has been found in numerous hybrids as a form of hybrid necrosis and mutant panels. Uncontrolled cell death is a main cellular outcome of autoimmunity, which negatively impacts growth. Its occurrence highlights the vulnerable nature of the plant immune system. Genetic investigation of autoimmunity in hybrid plants revealed that extreme variation in the immune receptor repertoire is a major contributor, reflecting an evolutionary conundrum that plants face in nature. In this review, we discuss natural variation in the plant immune system and its contribution to fitness. The value of autoimmunity genetics lies in its ability to identify combinations of a natural immune receptor and its partner that are predisposed to triggering autoimmunity. The network of immune components for autoimmunity becomes instrumental in revealing mechanistic details of how immune receptors recognize cellular invasion and activate signaling. The list of autoimmunity-risk variants also allows us to infer evolutionary processes contributing to their maintenance in the natural population. Our approach to autoimmunity, which integrates mechanistic understanding and evolutionary genetics, has the potential to serve as a prognosis tool to optimize immunity in crops.
Collapse
Affiliation(s)
- Wei-Lin Wan
- Department of Biological Sciences, National University of Singapore, Singapore, 117558, Singapore
| | - Sang-Tae Kim
- Department of Life Sciences, The Catholic University of Korea, Bucheon, Gyeonggi-do, 14662, South Korea
| | - Baptiste Castel
- Department of Biological Sciences, National University of Singapore, Singapore, 117558, Singapore
| | - Nuri Charoennit
- Department of Biological Sciences, National University of Singapore, Singapore, 117558, Singapore
| | - Eunyoung Chae
- Department of Biological Sciences, National University of Singapore, Singapore, 117558, Singapore
| |
Collapse
|
10
|
Xiao Z, Xing M, Liu X, Fang Z, Yang L, Zhang Y, Wang Y, Zhuang M, Lv H. An efficient virus-induced gene silencing (VIGS) system for functional genomics in Brassicas using a cabbage leaf curl virus (CaLCuV)-based vector. PLANTA 2020; 252:42. [PMID: 32870402 DOI: 10.1007/s00425-020-03454-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 08/27/2020] [Indexed: 06/11/2023]
Abstract
CaLCuV-based VIGS effectively works in cabbage and contributes to efficient functional genomics research in Brassica crop species. Virus-induced gene silencing (VIGS), a posttranscriptional gene silencing method, is an effective technique for analysing the functions of genes in plants. However, no VIGS vectors have been available for Brassica oleracea until now. Here, tobacco rattle virus (TRV), pTYs and cabbage leaf curl virus (CaLCuV) gene-silencing vectors (PCVA/PCVB) were chosen to improve the VIGS system in cabbage using the phytoene desaturase (PDS) gene as an efficient visual indicator of VIGS. We successfully silenced the expression of PDS and observed photobleaching phenomena in cabbage in response to pTYs and CaLCuV, with the latter being more easy to operate and less expensive. The parameters potentially affecting the silencing efficiency of VIGS by CaLCuV in cabbage, including the targeting fragment strategy, inoculation method and incubation temperature, were then compared. The optimized CaLCuV-based VIGS system involves the following: an approximately 500 bp insert sequence, an Agrobacterium OD600 of 1.0, use of the vacuum osmosis method applied at the bud stage, and an incubation temperature of 22 °C. Using these parameters, we achieved a stable silencing efficiency of 65%. To further test the effectiveness of the system, we selected the Mg-chelatase H subunit (ChlH) gene in cabbage and knocked down its expression, and we observed yellow leaves, as expected. We successfully applied the CaLCuV-based VIGS system to two other representative Brassica crop species, B. rapa and B. nigra, and thus expanded the application scope of this system. Our VIGS system described here will contribute to efficient functional genomics research in Brassica crop species.
Collapse
Affiliation(s)
- Zhiliang Xiao
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, 12# Zhongguancun Nandajie Street, Beijing, 100081, China
| | - Miaomiao Xing
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, 12# Zhongguancun Nandajie Street, Beijing, 100081, China
| | - Xing Liu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, 12# Zhongguancun Nandajie Street, Beijing, 100081, China
| | - Zhiyuan Fang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, 12# Zhongguancun Nandajie Street, Beijing, 100081, China
| | - Limei Yang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, 12# Zhongguancun Nandajie Street, Beijing, 100081, China
| | - Yangyong Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, 12# Zhongguancun Nandajie Street, Beijing, 100081, China
| | - Yong Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, 12# Zhongguancun Nandajie Street, Beijing, 100081, China
| | - Mu Zhuang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, 12# Zhongguancun Nandajie Street, Beijing, 100081, China.
| | - Honghao Lv
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, 12# Zhongguancun Nandajie Street, Beijing, 100081, China.
| |
Collapse
|
11
|
Xu Y, Zeng A, Song L, Li J, Yan J. Comparative transcriptomics analysis uncovers alternative splicing events and molecular markers in cabbage (Brassica oleracea L.). PLANTA 2019; 249:1599-1615. [PMID: 30771045 DOI: 10.1007/s00425-019-03108-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 02/07/2019] [Indexed: 05/20/2023]
Abstract
Alternative splicing (AS) events were identified and verified in cabbage by comparative transcriptome analysis. The corresponding markers were developed and the germplasm resources were identified. Alternative splicing (AS) is a central regulatory mechanism that greatly contributes to plant gene expression and transcriptome diversity. A large body of evidence has shown that AS complexity is relevant for plant development, evolution, complexity, and adaptation. Both insertion/deletion (InDel) and single nucleotide polymorphism (SNP) are typically co-dominant inheritance markers and have abundant polymorphisms. These have been widely used for marker-assisted selection, genetic mapping, and germplasm identification in plants. However, little is known about the molecular mechanisms underlying AS events and the development of markers including SNP and InDel from the cabbage transcriptome. In this study, three cabbage transcriptome datasets were collected and aligned to the cabbage reference genome to analyze AS events and marker development. 31,524 AS events were identified from three cabbage genotypes, accounting for 20.8% of the total cabbage genes. Alternative 3' splice site donor (A3SS) was the most frequent type of the four main AS events in cabbage. 70,475 InDels and 706,269 SNPs were identified with average frequencies of 1 InDel/6.9 kb and 1 SNP/0.7 kb, respectively. 71,942 potential SSRs were identified in 53,129 assembled unigenes with a density of 1 SSR/6.8 kb. The ratio of SNPs with synonymous/non-synonymous mutations was 1:0.65. 142 InDels and 36 SNPs were randomly selected and validated via Sanger sequencing and polymorphism was found among 66.2% of the InDels and 78.6% of the SNPs. Furthermore, 35 informative InDel markers were successfully used for genetic diversity analysis on 36 cabbage accessions. These results facilitate understanding of the molecular regulation mechanism underlying AS events in cabbage. They also provide molecular marker resource data for genetic mapping construction and germplasm identification, and facilitate the genetic improvement of cabbage via breeding.
Collapse
Affiliation(s)
- Yuanyuan Xu
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, People's Republic of China
| | - Aisong Zeng
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, People's Republic of China.
| | - Lixiao Song
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, People's Republic of China
| | - Jiaqing Li
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100083, People's Republic of China
| | - Jiyong Yan
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, People's Republic of China.
| |
Collapse
|
12
|
Bayer PE, Golicz AA, Tirnaz S, Chan CK, Edwards D, Batley J. Variation in abundance of predicted resistance genes in the Brassica oleracea pangenome. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:789-800. [PMID: 30230187 PMCID: PMC6419861 DOI: 10.1111/pbi.13015] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 08/16/2018] [Accepted: 09/14/2018] [Indexed: 05/19/2023]
Abstract
Brassica oleracea is an important agricultural species encompassing many vegetable crops including cabbage, cauliflower, broccoli and kale; however, it can be susceptible to a variety of fungal diseases such as clubroot, blackleg, leaf spot and downy mildew. Resistance to these diseases is meditated by specific disease resistance genes analogs (RGAs) which are differently distributed across B. oleracea lines. The sequenced reference cultivar does not contain all B. oleracea genes due to gene presence/absence variation between individuals, which makes it necessary to search for RGA candidates in the B. oleracea pangenome. Here we present a comparative analysis of RGA candidates in the pangenome of B. oleracea. We show that the presence of RGA candidates differs between lines and suggests that in B. oleracea, SNPs and presence/absence variation drive RGA diversity using separate mechanisms. We identified 59 RGA candidates linked to Sclerotinia, clubroot, and Fusarium wilt resistance QTL, and these findings have implications for crop breeding in B. oleracea, which may also be applicable in other crops species.
Collapse
Affiliation(s)
- Philipp E. Bayer
- School of Biological Sciences and Institute of AgricultureThe University of Western AustraliaCrawleyWAAustralia
| | - Agnieszka A. Golicz
- Plant Molecular Biology and Biotechnology LaboratoryFaculty of Veterinary and Agricultural SciencesUniversity of MelbourneMelbourneVic.Australia
| | - Soodeh Tirnaz
- School of Biological Sciences and Institute of AgricultureThe University of Western AustraliaCrawleyWAAustralia
| | - Chon‐Kit Kenneth Chan
- School of Biological Sciences and Institute of AgricultureThe University of Western AustraliaCrawleyWAAustralia
- Australian Genome Research FacilityMelbourneVic.Australia
| | - David Edwards
- School of Biological Sciences and Institute of AgricultureThe University of Western AustraliaCrawleyWAAustralia
| | - Jacqueline Batley
- School of Biological Sciences and Institute of AgricultureThe University of Western AustraliaCrawleyWAAustralia
| |
Collapse
|
13
|
Yu TF, Zhao WY, Fu JD, Liu YW, Chen M, Zhou YB, Ma YZ, Xu ZS, Xi YJ. Genome-Wide Analysis of CDPK Family in Foxtail Millet and Determination of SiCDPK24 Functions in Drought Stress. FRONTIERS IN PLANT SCIENCE 2018; 9:651. [PMID: 30093908 PMCID: PMC6071576 DOI: 10.3389/fpls.2018.00651] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 04/27/2018] [Indexed: 05/22/2023]
Abstract
Plant calcium-dependent protein kinases (CDPKs) were reported to play important roles in plant resistance to abiotic stress. Foxtail millet cultivation "H138" was used for RNA-seq analysis. The data from drought-induced de novo transcriptomic sequences of foxtail millet showed that CDPKs were up- or down-regulated by drought to different degrees. In this study, 29 foxtail millet CDPKs were classified into four subgroups. These genes were unevenly distributed on nine foxtail millet chromosomes, and chromosomes 2, 3, and 9 contained the most SiCDPK members. Analysis of putative cis-acting elements showed that most foxtail millet CDPK genes contained the ABRE, LTR, HSE, MYB, MYC, DRE, CGTCA-motif, and TGACG-motif cis-acting elements, which could be activated by abiotic stresses. Real-time PCR analysis indicated that 29 SiCDPK genes experienced different degrees of induction under drought and ABA stresses. SiCDPK24 had the highest expression levels at 6 and 12 h of drought treatment and was chosen for further analysis. SiCDPK24 localized to the cell membrane and the nucleus of Arabidopsis mesophyll protoplasts. Western blot analysis showed that SiCDPK24 protein had autophosphorylation activity. Overexpression of SiCDPK24 in Arabidopsis enhanced drought resistance and improved the survival rate under drought stress. It also activated the expressions of nine stress-related genes, namely RD29A, RD29B, RD22, KIN1, COR15, COR47, LEA14, CBF3/DREB1A, and DREB2A. These genes are involved in resistance to abiotic stresses in Arabidopsis. These results indicate that foxtail millet CDPK genes play important roles in resisting drought stress.
Collapse
Affiliation(s)
- Tai-Fei Yu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest Agricultural and Forestry University, Yangling, China
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Wan-Ying Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest Agricultural and Forestry University, Yangling, China
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Jin-Dong Fu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Yong-Wei Liu
- Institute of Genetics and Physiology, Hebei Academy of Agriculture and Forestry Sciences, Plant Genetic Engineering Center of Hebei Province, Shijiazhuang, China
| | - Ming Chen
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Yong-Bin Zhou
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - You-Zhi Ma
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Zhao-Shi Xu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Ya-Jun Xi
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest Agricultural and Forestry University, Yangling, China
| |
Collapse
|