1
|
Kim TH, Shahroz M, Alabdullah B, Innab N, Baili J, Umer M, Majeed F, Ashraf I. ANFIS Fuzzy convolutional neural network model for leaf disease detection. FRONTIERS IN PLANT SCIENCE 2024; 15:1465960. [PMID: 39568452 PMCID: PMC11577083 DOI: 10.3389/fpls.2024.1465960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 10/01/2024] [Indexed: 11/22/2024]
Abstract
Leaf disease detection is critical in agriculture, as it directly impacts crop health, yield, and quality. Early and accurate detection of leaf diseases can prevent the spread of infections, reduce the need for chemical treatments, and minimize crop losses. This not only ensures food security but also supports sustainable farming practices. Effective leaf disease detection systems empower farmers with the knowledge to take timely actions, leading to healthier crops and more efficient resource management. In an era of increasing global food demand and environmental challenges, advanced leaf disease detection technologies are indispensable for modern agriculture. This study presents an innovative approach for detecting pepper bell leaf disease using an ANFIS Fuzzy convolutional neural network (CNN) integrated with local binary pattern (LBP) features. Experiments involve using the models without LBP, as well as, with LBP features. For both sets of experiments, the proposed ANFIS CNN model performs superbly. It shows an accuracy score of 0.8478 without using LBP features while its precision, recall, and F1 scores are 0.8959, 0.9045, and 0.8953, respectively. Incorporating LBP features, the proposed model achieved exceptional performance, with accuracy, precision, recall, and an F1 score of higher than 99%. Comprehensive comparisons with state-of-the-art techniques further highlight the superiority of the proposed method. Additionally, cross-validation was applied to ensure the robustness and reliability of the results. This approach demonstrates a significant advancement in agricultural disease detection, promising enhanced accuracy and efficiency in real-world applications.
Collapse
Affiliation(s)
- Tae-Hoon Kim
- School of Information and Electronic Engineering and Zhejiang Key Laboratory of Biomedical Intelligent Computing Technology, Zhejiang University of Science and Technology, Hangzhou, Zhejiang, China
| | - Mobeen Shahroz
- Department of Artificial Intelligence, The Islamia University of Bahawalpur, Bahawalpur, Punjab, Pakistan
| | - Bayan Alabdullah
- Department of Information Systems, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Nisreen Innab
- Department of Computer Science and Information Systems, College of Applied Sciences, AlMaarefa University, Riyadh, Saudi Arabia
| | - Jamel Baili
- Department of Computer Engineering, College of Computer Science, King Khalid University, Abha, Saudi Arabia
| | - Muhammad Umer
- Department of Computer Science and Information Technology, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Fiaz Majeed
- Department of Software Engineering, University of Gujrat, Gujrat, Pakistan
| | - Imran Ashraf
- Department of Information and Communication Engineering, Yeungnam University, Gyeongsan, Republic of Korea
| |
Collapse
|
2
|
Singh T, Mishra S, Kalra R, Satakshi, Kumar M, Kim T. COVID-19 severity detection using chest X-ray segmentation and deep learning. Sci Rep 2024; 14:19846. [PMID: 39191941 PMCID: PMC11349901 DOI: 10.1038/s41598-024-70801-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 08/21/2024] [Indexed: 08/29/2024] Open
Abstract
COVID-19 has resulted in a significant global impact on health, the economy, education, and daily life. The disease can range from mild to severe, with individuals over 65 or those with underlying medical conditions being more susceptible to severe illness. Early testing and isolation are vital due to the virus's variable incubation period. Chest radiographs (CXR) have gained importance as a diagnostic tool due to their efficiency and reduced radiation exposure compared to CT scans. However, the sensitivity of CXR in detecting COVID-19 may be lower. This paper introduces a deep learning framework for accurate COVID-19 classification and severity prediction using CXR images. U-Net is used for lung segmentation, achieving a precision of 0.9924. Classification is performed using a Convulation-capsule network, with high true positive rates of 86% for COVID-19, 93% for pneumonia, and 85% for normal cases. Severity assessment employs ResNet50, VGG-16, and DenseNet201, with DenseNet201 showing superior accuracy. Empirical results, validated with 95% confidence intervals, confirm the framework's reliability and robustness. This integration of advanced deep learning techniques with radiological imaging enhances early detection and severity assessment, improving patient management and resource allocation in clinical settings.
Collapse
Affiliation(s)
- Tinku Singh
- School of Information and Communication Engineering, Chungbuk National University, Cheongju, South Korea
| | - Suryanshi Mishra
- Department of Mathematics & Statistics, SHUATS, Prayagraj, Uttar Pradesh, India
| | - Riya Kalra
- Indian Institute of Information Technology Allahabad, Prayagraj, Uttar Pradesh, India
| | - Satakshi
- Department of Mathematics & Statistics, SHUATS, Prayagraj, Uttar Pradesh, India
| | - Manish Kumar
- Indian Institute of Information Technology Allahabad, Prayagraj, Uttar Pradesh, India
| | - Taehong Kim
- School of Information and Communication Engineering, Chungbuk National University, Cheongju, South Korea.
| |
Collapse
|
3
|
Prusty S, Patnaik S, Dash SK, Prusty SGP, Rautaray J, Sahoo G. Predicting cervical cancer risk probabilities using advanced H20 AutoML and local interpretable model-agnostic explanation techniques. PeerJ Comput Sci 2024; 10:e1916. [PMID: 38855252 PMCID: PMC11157523 DOI: 10.7717/peerj-cs.1916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 02/08/2024] [Indexed: 06/11/2024]
Abstract
Background Cancer is positioned as a major disease, particularly for middle-aged people, which remains a global concern that can develop in the form of abnormal growth of body cells at any place in the human body. Cervical cancer, often known as cervix cancer, is cancer present in the female cervix. In the area where the endocervix (upper two-thirds of the cervix) and ectocervix (lower third of the cervix) meet, the majority of cervical cancers begin. Despite an influx of people entering the healthcare industry, the demand for machine learning (ML) specialists has recently outpaced the supply. To close the gap, user-friendly applications, such as H2O, have made significant progress these days. However, traditional ML techniques handle each stage of the process separately; whereas H2O AutoML can automate a major portion of the ML workflow, such as automatic training and tuning of multiple models within a user-defined timeframe. Methods Thus, novel H2O AutoML with local interpretable model-agnostic explanations (LIME) techniques have been proposed in this research work that enhance the predictability of an ML model in a user-defined timeframe. We herein collected the cervical cancer dataset from the freely available Kaggle repository for our research work. The Stacked Ensembles approach, on the other hand, will automatically train H2O models to create a highly predictive ensemble model that will outperform the AutoML Leaderboard in most instances. The novelty of this research is aimed at training the best model using the AutoML technique that helps in reducing the human effort over traditional ML techniques in less amount of time. Additionally, LIME has been implemented over the H2O AutoML model, to uncover black boxes and to explain every individual prediction in our model. We have evaluated our model performance using the findprediction() function on three different idx values (i.e., 100, 120, and 150) to find the prediction probabilities of two classes for each feature. These experiments have been done in Lenovo core i7 NVidia GeForce 860M GPU laptop in Windows 10 operating system using Python 3.8.3 software on Jupyter 6.4.3 platform. Results The proposed model resulted in the prediction probabilities depending on the features as 87%, 95%, and 87% for class '0' and 13%, 5%, and 13% for class '1' when idx_value=100, 120, and 150 for the first case; 100% for class '0' and 0% for class '1', when idx_value= 10, 12, and 15 respectively. Additionally, a comparative analysis has been drawn where our proposed model outperforms previous results found in cervical cancer research.
Collapse
Affiliation(s)
- Sashikanta Prusty
- Department of Computer Science and Engineering, Siksha O Anusandhan University Institute of Technical Education and Research, Bhubaneswar, Odisha, India
| | - Srikanta Patnaik
- Director of IIMT, Interscience Institute of Management and Technology, Bhubaneswar, Odisha, India
| | - Sujit Kumar Dash
- P & IT, Biju Pattanaik University of Technology, Rourkela, Odisha, India
| | - Sushree Gayatri Priyadarsini Prusty
- Department of Computer Science and Engineering, Siksha O Anusandhan University Institute of Technical Education and Research, Bhubaneswar, Odisha, India
| | - Jyotirmayee Rautaray
- Department of Computer Science, Odisha University of Technology and Research, Bhubaneswar, Odisha, India
| | - Ghanashyam Sahoo
- Department of Computer Science and Engineering, GITA Autonomous College, Bhubaneswaer, Odisha, India
| |
Collapse
|
4
|
Saidani O, Umer M, Alturki N, Alshardan A, Kiran M, Alsubai S, Kim TH, Ashraf I. White blood cells classification using multi-fold pre-processing and optimized CNN model. Sci Rep 2024; 14:3570. [PMID: 38347011 PMCID: PMC10861568 DOI: 10.1038/s41598-024-52880-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 01/24/2024] [Indexed: 02/15/2024] Open
Abstract
White blood cells (WBCs) play a vital role in immune responses against infections and foreign agents. Different WBC types exist, and anomalies within them can indicate diseases like leukemia. Previous research suffers from limited accuracy and inflated performance due to the usage of less important features. Moreover, these studies often focus on fewer WBC types, exaggerating accuracy. This study addresses the crucial task of classifying WBC types using microscopic images. This study introduces a novel approach using extensive pre-processing with data augmentation techniques to produce a more significant feature set to achieve more promising results. The study conducts experiments employing both conventional deep learning and transfer learning models, comparing performance with state-of-the-art machine and deep learning models. Results reveal that a pre-processed feature set and convolutional neural network classifier achieves a significantly better accuracy of 0.99. The proposed method demonstrates superior accuracy and computational efficiency compared to existing state-of-the-art works.
Collapse
Affiliation(s)
- Oumaima Saidani
- Department of Information Systems, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, 11671, Riyadh, Saudi Arabia
| | - Muhammad Umer
- Department of Computer Science and Information Technology, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Nazik Alturki
- Department of Information Systems, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, 11671, Riyadh, Saudi Arabia
| | - Amal Alshardan
- Department of Information Systems, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, 11671, Riyadh, Saudi Arabia
| | - Muniba Kiran
- Department of Biotechnology, Virtual University of Pakistan, M.A. Jinnah Campus, Defence Road, Off Raiwind Road, Lahore, 54000, Pakistan
| | - Shtwai Alsubai
- Department of Computer Science, College of Computer Engineering and Sciences, Prince Sattam bin Abdulaziz University, P.O. Box 151, 11942, Al-Kharj, Saudi Arabia
| | - Tai-Hoon Kim
- School of Electrical and Computer Engineering, Yeosu Campus, Chonnam National University, 50, Daehak-ro, Yeosu-si, Jeollanam-do, 59626, Republic of Korea.
| | - Imran Ashraf
- Information and Communication Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
| |
Collapse
|
5
|
Champendal M, Müller H, Prior JO, Dos Reis CS. A scoping review of interpretability and explainability concerning artificial intelligence methods in medical imaging. Eur J Radiol 2023; 169:111159. [PMID: 37976760 DOI: 10.1016/j.ejrad.2023.111159] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/26/2023] [Accepted: 10/19/2023] [Indexed: 11/19/2023]
Abstract
PURPOSE To review eXplainable Artificial Intelligence/(XAI) methods available for medical imaging/(MI). METHOD A scoping review was conducted following the Joanna Briggs Institute's methodology. The search was performed on Pubmed, Embase, Cinhal, Web of Science, BioRxiv, MedRxiv, and Google Scholar. Studies published in French and English after 2017 were included. Keyword combinations and descriptors related to explainability, and MI modalities were employed. Two independent reviewers screened abstracts, titles and full text, resolving differences through discussion. RESULTS 228 studies met the criteria. XAI publications are increasing, targeting MRI (n = 73), radiography (n = 47), CT (n = 46). Lung (n = 82) and brain (n = 74) pathologies, Covid-19 (n = 48), Alzheimer's disease (n = 25), brain tumors (n = 15) are the main pathologies explained. Explanations are presented visually (n = 186), numerically (n = 67), rule-based (n = 11), textually (n = 11), and example-based (n = 6). Commonly explained tasks include classification (n = 89), prediction (n = 47), diagnosis (n = 39), detection (n = 29), segmentation (n = 13), and image quality improvement (n = 6). The most frequently provided explanations were local (78.1 %), 5.7 % were global, and 16.2 % combined both local and global approaches. Post-hoc approaches were predominantly employed. The used terminology varied, sometimes indistinctively using explainable (n = 207), interpretable (n = 187), understandable (n = 112), transparent (n = 61), reliable (n = 31), and intelligible (n = 3). CONCLUSION The number of XAI publications in medical imaging is increasing, primarily focusing on applying XAI techniques to MRI, CT, and radiography for classifying and predicting lung and brain pathologies. Visual and numerical output formats are predominantly used. Terminology standardisation remains a challenge, as terms like "explainable" and "interpretable" are sometimes being used indistinctively. Future XAI development should consider user needs and perspectives.
Collapse
Affiliation(s)
- Mélanie Champendal
- School of Health Sciences HESAV, HES-SO, University of Applied Sciences Western Switzerland, Lausanne, CH, Switzerland; Faculty of Biology and Medicine, University of Lausanne, Lausanne, CH, Switzerland.
| | - Henning Müller
- Informatics Institute, University of Applied Sciences Western Switzerland (HES-SO Valais) Sierre, CH, Switzerland; Medical faculty, University of Geneva, CH, Switzerland.
| | - John O Prior
- Faculty of Biology and Medicine, University of Lausanne, Lausanne, CH, Switzerland; Nuclear Medicine and Molecular Imaging Department, Lausanne University Hospital (CHUV), Lausanne, CH, Switzerland.
| | - Cláudia Sá Dos Reis
- School of Health Sciences HESAV, HES-SO, University of Applied Sciences Western Switzerland, Lausanne, CH, Switzerland.
| |
Collapse
|
6
|
Santosh KC, GhoshRoy D, Nakarmi S. A Systematic Review on Deep Structured Learning for COVID-19 Screening Using Chest CT from 2020 to 2022. Healthcare (Basel) 2023; 11:2388. [PMID: 37685422 PMCID: PMC10486542 DOI: 10.3390/healthcare11172388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/16/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
The emergence of the COVID-19 pandemic in Wuhan in 2019 led to the discovery of a novel coronavirus. The World Health Organization (WHO) designated it as a global pandemic on 11 March 2020 due to its rapid and widespread transmission. Its impact has had profound implications, particularly in the realm of public health. Extensive scientific endeavors have been directed towards devising effective treatment strategies and vaccines. Within the healthcare and medical imaging domain, the application of artificial intelligence (AI) has brought significant advantages. This study delves into peer-reviewed research articles spanning the years 2020 to 2022, focusing on AI-driven methodologies for the analysis and screening of COVID-19 through chest CT scan data. We assess the efficacy of deep learning algorithms in facilitating decision making processes. Our exploration encompasses various facets, including data collection, systematic contributions, emerging techniques, and encountered challenges. However, the comparison of outcomes between 2020 and 2022 proves intricate due to shifts in dataset magnitudes over time. The initiatives aimed at developing AI-powered tools for the detection, localization, and segmentation of COVID-19 cases are primarily centered on educational and training contexts. We deliberate on their merits and constraints, particularly in the context of necessitating cross-population train/test models. Our analysis encompassed a review of 231 research publications, bolstered by a meta-analysis employing search keywords (COVID-19 OR Coronavirus) AND chest CT AND (deep learning OR artificial intelligence OR medical imaging) on both the PubMed Central Repository and Web of Science platforms.
Collapse
Affiliation(s)
- KC Santosh
- 2AI: Applied Artificial Intelligence Research Lab, Vermillion, SD 57069, USA
| | - Debasmita GhoshRoy
- School of Automation, Banasthali Vidyapith, Tonk 304022, Rajasthan, India;
| | - Suprim Nakarmi
- Department of Computer Science, University of South Dakota, Vermillion, SD 57069, USA;
| |
Collapse
|
7
|
Ogundokun RO, Li A, Babatunde RS, Umezuruike C, Sadiku PO, Abdulahi AT, Babatunde AN. Enhancing Skin Cancer Detection and Classification in Dermoscopic Images through Concatenated MobileNetV2 and Xception Models. Bioengineering (Basel) 2023; 10:979. [PMID: 37627864 PMCID: PMC10451641 DOI: 10.3390/bioengineering10080979] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/04/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
One of the most promising research initiatives in the healthcare field is focused on the rising incidence of skin cancer worldwide and improving early discovery methods for the disease. The most significant factor in the fatalities caused by skin cancer is the late identification of the disease. The likelihood of human survival may be significantly improved by performing an early diagnosis followed by appropriate therapy. It is not a simple process to extract the elements from the photographs of the tumors that may be used for the prospective identification of skin cancer. Several deep learning models are widely used to extract efficient features for a skin cancer diagnosis; nevertheless, the literature demonstrates that there is still room for additional improvements in various performance metrics. This study proposes a hybrid deep convolutional neural network architecture for identifying skin cancer by adding two main heuristics. These include Xception and MobileNetV2 models. Data augmentation was introduced to balance the dataset, and the transfer learning technique was utilized to resolve the challenges of the absence of labeled datasets. It has been detected that the suggested method of employing Xception in conjunction with MobileNetV2 attains the most excellent performance, particularly concerning the dataset that was evaluated: specifically, it produced 97.56% accuracy, 97.00% area under the curve, 100% sensitivity, 93.33% precision, 96.55% F1 score, and 0.0370 false favorable rates. This research has implications for clinical practice and public health, offering a valuable tool for dermatologists and healthcare professionals in their fight against skin cancer.
Collapse
Affiliation(s)
- Roseline Oluwaseun Ogundokun
- Department of Computer Science, Landmark University, Omu Aran 251103, Nigeria
- Department of Multimedia Engineering, Kaunas University of Technology, 44249 Kaunas, Lithuania
| | - Aiman Li
- School of Marxism, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | | | | | - Peter O. Sadiku
- Department of Computer Science, University of Ilorin, Ilorin 240003, Nigeria
| | | | | |
Collapse
|
8
|
Hossen MR, Alfaz N, Sami A, Tanim SA, Bin Sarwar T, Islam MK. An EfficientNet to Classify Monkeypox-Comparable Skin Lesions Using Transfer Learning. 2023 IEEE INTERNATIONAL CONFERENCE ON OMNI-LAYER INTELLIGENT SYSTEMS (COINS) 2023. [DOI: 10.1109/coins57856.2023.10189311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Affiliation(s)
- Md. Rifat Hossen
- American International University-Bangladesh (AIUB),Department of Computer Science and Engineering,Dhaka,Bangladesh
| | - Nazia Alfaz
- American International University-Bangladesh (AIUB),Department of Computer Science,Dhaka,Bangladesh
| | - Adnan Sami
- American International University-Bangladesh (AIUB),Department of Computer Science and Engineering,Dhaka,Bangladesh
| | - Sharia Arfin Tanim
- American International University-Bangladesh (AIUB),Department of Computer Science and Engineering,Dhaka,Bangladesh
| | - Talha Bin Sarwar
- College of Computing and Applied Science, Universiti Malaysia Pahang,Faculty of Computing,Pekan,Malaysia
| | - Md. Kamrul Islam
- American International University-Bangladesh (AIUB),Department of Computer Science and Engineering,Dhaka,Bangladesh
| |
Collapse
|
9
|
de Vries BM, Zwezerijnen GJC, Burchell GL, van Velden FHP, Menke-van der Houven van Oordt CW, Boellaard R. Explainable artificial intelligence (XAI) in radiology and nuclear medicine: a literature review. Front Med (Lausanne) 2023; 10:1180773. [PMID: 37250654 PMCID: PMC10213317 DOI: 10.3389/fmed.2023.1180773] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/17/2023] [Indexed: 05/31/2023] Open
Abstract
Rational Deep learning (DL) has demonstrated a remarkable performance in diagnostic imaging for various diseases and modalities and therefore has a high potential to be used as a clinical tool. However, current practice shows low deployment of these algorithms in clinical practice, because DL algorithms lack transparency and trust due to their underlying black-box mechanism. For successful employment, explainable artificial intelligence (XAI) could be introduced to close the gap between the medical professionals and the DL algorithms. In this literature review, XAI methods available for magnetic resonance (MR), computed tomography (CT), and positron emission tomography (PET) imaging are discussed and future suggestions are made. Methods PubMed, Embase.com and Clarivate Analytics/Web of Science Core Collection were screened. Articles were considered eligible for inclusion if XAI was used (and well described) to describe the behavior of a DL model used in MR, CT and PET imaging. Results A total of 75 articles were included of which 54 and 17 articles described post and ad hoc XAI methods, respectively, and 4 articles described both XAI methods. Major variations in performance is seen between the methods. Overall, post hoc XAI lacks the ability to provide class-discriminative and target-specific explanation. Ad hoc XAI seems to tackle this because of its intrinsic ability to explain. However, quality control of the XAI methods is rarely applied and therefore systematic comparison between the methods is difficult. Conclusion There is currently no clear consensus on how XAI should be deployed in order to close the gap between medical professionals and DL algorithms for clinical implementation. We advocate for systematic technical and clinical quality assessment of XAI methods. Also, to ensure end-to-end unbiased and safe integration of XAI in clinical workflow, (anatomical) data minimization and quality control methods should be included.
Collapse
Affiliation(s)
- Bart M. de Vries
- Department of Radiology and Nuclear Medicine, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Gerben J. C. Zwezerijnen
- Department of Radiology and Nuclear Medicine, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | | | | | | | - Ronald Boellaard
- Department of Radiology and Nuclear Medicine, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
10
|
Lakshmi M, Das R. Classification of Monkeypox Images Using LIME-Enabled Investigation of Deep Convolutional Neural Network. Diagnostics (Basel) 2023; 13:1639. [PMID: 37175030 PMCID: PMC10178151 DOI: 10.3390/diagnostics13091639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/04/2023] [Accepted: 03/07/2023] [Indexed: 05/15/2023] Open
Abstract
In this research, we demonstrate a Deep Convolutional Neural Network-based classification model for the detection of monkeypox. Monkeypox can be difficult to diagnose clinically in its early stages since it resembles both chickenpox and measles in symptoms. The early diagnosis of monkeypox helps doctors cure it more quickly. Therefore, pre-trained models are frequently used in the diagnosis of monkeypox, because the manual analysis of a large number of images is labor-intensive and prone to inaccuracy. Therefore, finding the monkeypox virus requires an automated process. The large layer count of convolutional neural network (CNN) architectures enables them to successfully conceptualize the features on their own, thereby contributing to better performance in image classification. The scientific community has recently articulated significant attention in employing artificial intelligence (AI) to diagnose monkeypox from digital skin images due primarily to AI's success in COVID-19 identification. The VGG16, VGG19, ResNet50, ResNet101, DenseNet201, and AlexNet models were used in our proposed method to classify patients with monkeypox symptoms with other diseases of a similar kind (chickenpox, measles, and normal). The majority of images in our research are collected from publicly available datasets. This study suggests an adaptive k-means clustering image segmentation technique that delivers precise segmentation results with straightforward operation. Our preliminary computational findings reveal that the proposed model could accurately detect patients with monkeypox. The best overall accuracy achieved by ResNet101 is 94.25%, with an AUC of 98.59%. Additionally, we describe the categorization of our model utilizing feature extraction using Local Interpretable Model-Agnostic Explanations (LIME), which provides a more in-depth understanding of particular properties that distinguish the monkeypox virus.
Collapse
Affiliation(s)
| | - Raja Das
- Department of Mathematics, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India;
| |
Collapse
|
11
|
Esfandiari MA, Fallah Tafti M, Jafarnia Dabanloo N, Yousefirizi F. Detection of the rotator cuff tears using a novel convolutional neural network from magnetic resonance image (MRI). Heliyon 2023; 9:e15804. [PMID: 37206038 PMCID: PMC10189183 DOI: 10.1016/j.heliyon.2023.e15804] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/21/2023] Open
Abstract
The rotator cuff tear is a common situation for basketballers, handballers, or other athletes that strongly use their shoulders. This injury can be diagnosed precisely from a magnetic resonance (MR) image. In this paper, a novel deep learning-based framework is proposed to diagnose rotator cuff tear from MRI images of patients suspected of the rotator cuff tear. First, we collected 150 shoulders MRI images from two classes of rotator cuff tear patients and healthy ones with the same numbers. These images were observed by an orthopedic specialist and then tagged and used as input in the various configurations of the Convolutional Neural Network (CNN). At this stage, five different configurations of convolutional networks have been examined. Then, in the next step, the selected network with the highest accuracy is used to extract the deep features and classify the two classes of rotator cuff tear and healthy. Also, MRI images are feed to two quick pre-trained CNNs (MobileNetv2 and SqueezeNet) to compare with the proposed CNN. Finally, the evaluation is performed using the 5-fold cross-validation method. Also, a specific Graphical User Interface (GUI) was designed in the MATLAB environment for simplicity, which allows for testing by detecting the image class. The proposed CNN achieved higher accuracy than the two mentioned pre-trained CNNs. The average accuracy, precision, sensitivity, and specificity achieved by the best selected CNN configuration are equal to 92.67%, 91.13%, 91.75%, and 92.22%, respectively. The deep learning algorithm could accurately rule out significant rotator cuff tear based on shoulder MRI.
Collapse
Affiliation(s)
- Mohammad Amin Esfandiari
- Department of Biomedical Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Fallah Tafti
- Department of Biomedical Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran
- Corresponding author.
| | - Nader Jafarnia Dabanloo
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Fereshteh Yousefirizi
- School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran
| |
Collapse
|
12
|
Velu M, Dhanaraj RK, Balusamy B, Kadry S, Yu Y, Nadeem A, Rauf HT. Human Pathogenic Monkeypox Disease Recognition Using Q-Learning Approach. Diagnostics (Basel) 2023; 13:diagnostics13081491. [PMID: 37189591 DOI: 10.3390/diagnostics13081491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/15/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023] Open
Abstract
While the world is working quietly to repair the damage caused by COVID-19's widespread transmission, the monkeypox virus threatens to become a global pandemic. There are several nations that report new monkeypox cases daily, despite the virus being less deadly and contagious than COVID-19. Monkeypox disease may be detected using artificial intelligence techniques. This paper suggests two strategies for improving monkeypox image classification precision. Based on reinforcement learning and parameter optimization for multi-layer neural networks, the suggested approaches are based on feature extraction and classification: the Q-learning algorithm determines the rate at which an act occurs in a particular state; Malneural networks are binary hybrid algorithms that improve the parameters of neural networks. The algorithms are evaluated using an openly available dataset. In order to analyze the proposed optimization feature selection for monkeypox classification, interpretation criteria were utilized. In order to evaluate the efficiency, significance, and robustness of the suggested algorithms, a series of numerical tests were conducted. There were 95% precision, 95% recall, and 96% f1 scores for monkeypox disease. As compared to traditional learning methods, this method has a higher accuracy value. The overall macro average was around 0.95, and the overall weighted average was around 0.96. When compared to the benchmark algorithms, DDQN, Policy Gradient, and Actor-Critic, the Malneural network had the highest accuracy (around 0.985). In comparison with traditional methods, the proposed methods were found to be more effective. Clinicians can use this proposal to treat monkeypox patients and administration agencies can use it to observe the origin and current status of the disease.
Collapse
Affiliation(s)
- Malathi Velu
- School of Computer Science and Engineering, Panimalar Engineering College, Poonamallee, Chennai 600123, India
| | - Rajesh Kumar Dhanaraj
- School of Computing Science and Engineering, Galgotias University, Greater Noida 203201, India
| | - Balamurugan Balusamy
- Associate Dean-Student Engagement, Shiv Nadar Institution of Eminence, Delhi-National Capital Region (NCR), Gautam Buddha Nagar 201314, India
| | - Seifedine Kadry
- Department of Applied Data Science, Noroff University College, 4612 Kristiansand, Norway
- Artificial Intelligence Research Center (AIRC), Ajman University, Ajman P.O. Box 346, United Arab Emirates
- Department of Electrical and Computer Engineering, Lebanese American University, Byblos 13-5053, Lebanon
| | - Yang Yu
- Centre for Infrastructure Engineering and Safety (CIES), The University of New South Wales, Sydney, NSW 2052, Australia
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Hafiz Tayyab Rauf
- Centre for Smart Systems, A.I. and Cybersecurity, Staffordshire University, Stoke-on-Trent ST4 2DE, UK
| |
Collapse
|
13
|
Ahsan MM, Uddin MR, Ali MS, Islam MK, Farjana M, Sakib AN, Momin KA, Luna SA. Deep transfer learning approaches for Monkeypox disease diagnosis. EXPERT SYSTEMS WITH APPLICATIONS 2023; 216:119483. [PMID: 36624785 PMCID: PMC9814470 DOI: 10.1016/j.eswa.2022.119483] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 12/24/2022] [Accepted: 12/27/2022] [Indexed: 06/01/2023]
Abstract
Monkeypox has become a significant global challenge as the number of cases increases daily. Those infected with the disease often display various skin symptoms and can spread the infection through contamination. Recently, Machine Learning (ML) has shown potential in image-based diagnoses, such as detecting cancer, identifying tumor cells, and identifying coronavirus disease (COVID)-19 patients. Thus, ML could potentially be used to diagnose Monkeypox as well. In this study, we developed a Monkeypox diagnosis model using Generalization and Regularization-based Transfer Learning approaches (GRA-TLA) for binary and multiclass classification. We tested our proposed approach on ten different convolutional Neural Network (CNN) models in three separate studies. The preliminary computational results showed that our proposed approach, combined with Extreme Inception (Xception), was able to distinguish between individuals with and without Monkeypox with an accuracy ranging from 77% to 88% in Studies One and Two, while Residual Network (ResNet)-101 had the best performance for multiclass classification in Study Three, with an accuracy ranging from 84% to 99%. In addition, we found that our proposed approach was computationally efficient compared to existing TL approaches in terms of the number of parameters (NP) and Floating-Point Operations per Second (FLOPs) required. We also used Local Interpretable Model-Agnostic Explanations (LIME) to explain our model's predictions and feature extractions, providing a deeper understanding of the specific features that may indicate the onset of Monkeypox.
Collapse
Affiliation(s)
- Md Manjurul Ahsan
- Industrial and Systems Engineering, University of Oklahoma, Norman, OK 73019, USA
| | - Muhammad Ramiz Uddin
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019, USA
| | - Md Shahin Ali
- Department of Biomedical Engineering, Islamic University, Kushtia 7003, Bangladesh
| | - Md Khairul Islam
- Department of Biomedical Engineering, Islamic University, Kushtia 7003, Bangladesh
| | - Mithila Farjana
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019, USA
| | - Ahmed Nazmus Sakib
- Department of Aerospace and Mechanical Engineering, University of Oklahoma, Norman, OK, 73019, USA
| | - Khondhaker Al Momin
- Department of Civil Engineering, Daffodil International University, Dhaka, 1341, Bangladesh
| | - Shahana Akter Luna
- Medicine & Surgery, Dhaka Medical College & Hospital, Dhaka, 1000, Bangladesh
| |
Collapse
|
14
|
Makkar A, Santosh KC. SecureFed: federated learning empowered medical imaging technique to analyze lung abnormalities in chest X-rays. INT J MACH LEARN CYB 2023; 14:1-12. [PMID: 36817940 PMCID: PMC9928498 DOI: 10.1007/s13042-023-01789-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 01/20/2023] [Indexed: 02/16/2023]
Abstract
Machine learning is an effective and accurate technique to diagnose COVID-19 infections using image data, and chest X-Ray (CXR) is no exception. Considering privacy issues, machine learning scientists end up receiving less medical imaging data. Federated Learning (FL) is a privacy-preserving distributed machine learning paradigm that generates an unbiased global model that follows local model (from clients) without exposing their personal data. In the case of heterogeneous data among clients, vanilla or default FL mechanism still introduces an insecure method for updating models. Therefore, we proposed SecureFed-a secure aggregation method-which ensures fairness and robustness. In our experiments, we employed COVID-19 CXR dataset (of size 2100 positive cases) and compared it with the existing FL frameworks such as FedAvg, FedMGDA+, and FedRAD. In our comparison, we primarily considered robustness (accuracy) and fairness (consistency). As the SecureFed produced consistently better results, it is generic enough to be considered for multimodal data.
Collapse
Affiliation(s)
- Aaisha Makkar
- College of Science and Engineering, University of Derby, Kedleston Rd, Derby, DE22 1GB UK
| | - KC Santosh
- Applied AI Research Lab, Department of Computer Science, University of South Dakota, 414 E Clark St, Vermillion, SD 57069 USA
| |
Collapse
|
15
|
Li H, Tao X, Liang T, Jiang J, Zhu J, Wu S, Chen L, Zhang Z, Zhou C, Sun X, Huang S, Chen J, Chen T, Ye Z, Chen W, Guo H, Yao Y, Liao S, Yu C, Fan B, Liu Y, Lu C, Hu J, Xie Q, Wei X, Fang C, Liu H, Huang C, Pan S, Zhan X, Liu C. Comprehensive AI-assisted tool for ankylosing spondylitis based on multicenter research outperforms human experts. Front Public Health 2023; 11:1063633. [PMID: 36844823 PMCID: PMC9947660 DOI: 10.3389/fpubh.2023.1063633] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 01/18/2023] [Indexed: 02/11/2023] Open
Abstract
Introduction The diagnosis and treatment of ankylosing spondylitis (AS) is a difficult task, especially in less developed countries without access to experts. To address this issue, a comprehensive artificial intelligence (AI) tool was created to help diagnose and predict the course of AS. Methods In this retrospective study, a dataset of 5389 pelvic radiographs (PXRs) from patients treated at a single medical center between March 2014 and April 2022 was used to create an ensemble deep learning (DL) model for diagnosing AS. The model was then tested on an additional 583 images from three other medical centers, and its performance was evaluated using the area under the receiver operating characteristic curve analysis, accuracy, precision, recall, and F1 scores. Furthermore, clinical prediction models for identifying high-risk patients and triaging patients were developed and validated using clinical data from 356 patients. Results The ensemble DL model demonstrated impressive performance in a multicenter external test set, with precision, recall, and area under the receiver operating characteristic curve values of 0.90, 0.89, and 0.96, respectively. This performance surpassed that of human experts, and the model also significantly improved the experts' diagnostic accuracy. Furthermore, the model's diagnosis results based on smartphone-captured images were comparable to those of human experts. Additionally, a clinical prediction model was established that accurately categorizes patients with AS into high-and low-risk groups with distinct clinical trajectories. This provides a strong foundation for individualized care. Discussion In this study, an exceptionally comprehensive AI tool was developed for the diagnosis and management of AS in complex clinical scenarios, especially in underdeveloped or rural areas that lack access to experts. This tool is highly beneficial in providing an efficient and effective system of diagnosis and management.
Collapse
Affiliation(s)
- Hao Li
- The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xiang Tao
- The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Tuo Liang
- The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jie Jiang
- The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jichong Zhu
- The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Shaofeng Wu
- The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Liyi Chen
- The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Zide Zhang
- The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Chenxing Zhou
- The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xuhua Sun
- The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Shengsheng Huang
- The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jiarui Chen
- The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Tianyou Chen
- The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Zhen Ye
- The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Wuhua Chen
- The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Hao Guo
- The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yuanlin Yao
- The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Shian Liao
- The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Chaojie Yu
- The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Binguang Fan
- The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yihong Liu
- Guangxi Medical University, Nanning, Guangxi, China
| | - Chunai Lu
- Guangxi Medical University, Nanning, Guangxi, China
| | - Junnan Hu
- Guangxi Medical University, Nanning, Guangxi, China
| | - Qinghong Xie
- Guangxi Medical University, Nanning, Guangxi, China
| | - Xiao Wei
- Guangxi Medical University, Nanning, Guangxi, China
| | - Cairen Fang
- Guangxi Medical University, Nanning, Guangxi, China
| | - Huijiang Liu
- Orthopaedics of The First People's Hospital of Nanning, Nanning, Guangxi, China
| | - Chengqian Huang
- Orthopaedics of People's Hospital of Baise, Baise, Guangxi, China
| | - Shixin Pan
- Orthopaedics of Wuzhou Red Cross Hospital, Wuzhou, Guangxi, China
| | - Xinli Zhan
- The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Chong Liu
- The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China,*Correspondence: Chong Liu ✉
| |
Collapse
|
16
|
Shinohara I, Yoshikawa T, Inui A, Mifune Y, Nishimoto H, Mukohara S, Kato T, Furukawa T, Tanaka S, Kusunose M, Hoshino Y, Matsushita T, Kuroda R. Degree of Accuracy With Which Deep Learning for Ultrasound Images Identifies Osteochondritis Dissecans of the Humeral Capitellum. Am J Sports Med 2023; 51:358-366. [PMID: 36622401 DOI: 10.1177/03635465221142280] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND Medical screening using ultrasonography (US) has been performed on young baseball players for early detection of osteochondritis dissecans (OCD) of the humeral capitellum. Deep learning (DL) and artificial intelligence (AI) techniques are widely adopted in the medical imaging research field. PURPOSE/HYPOTHESIS The purpose of this study was to calculate the diagnostic accuracy using DL for US images of OCD. We hypothesized that using DL for US imaging would improve the prediction accuracy of OCD. STUDY DESIGN Cohort study (Diagnosis); Level of evidence, 2. METHODS A total of 40 elbows (mean age of patients, 12.1 years) that were suspected of having OCD at a medical checkup and later confirmed by radiographs and magnetic resonance imaging were included in the study. The affected elbows were used as the OCD group and the contralateral elbows as the control group. From US videos, 100 images per elbow were captured from different angles, and 4000 images of the elbows were prepared for both groups. Of these, 80% were randomly selected by DL models and used as training data; the remaining were used as test data. Transfer learning was conducted using 3 pretrained DL models. The confusion matrix and the area under the receiver operating characteristic curve (AUC) were used to evaluate the model, and the visualization of the areas deemed important by the DL models was also performed. Furthermore, OCD regions were detected using an automatic image recognition model based on DL. RESULTS Classification of the OCD image by the DL model was performed; the best accuracy score was 0.87; the recall was 1.00. AUC was high for all DL models. Visualization of important features showed that AI predicted the presence of OCD by focusing on the irregularity or discontinuity of the surface of subchondral bone. In the detection of OCD task, the mean average precision was 0.83. CONCLUSION The DL on US images identified OCD with high accuracy. The important features detected by the DL models correspond to the areas used by clinicians in screening the US images. The OCD was also detected with high accuracy using the object detection model. The AI model may be used in medical screening for OCD.
Collapse
Affiliation(s)
- Issei Shinohara
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Japan.,Investigation performed at Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tomoya Yoshikawa
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Japan.,Investigation performed at Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Atsuyuki Inui
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Japan.,Investigation performed at Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yutaka Mifune
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Japan.,Investigation performed at Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hanako Nishimoto
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Japan.,Investigation performed at Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Shintaro Mukohara
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Japan.,Investigation performed at Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tatsuo Kato
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Japan.,Investigation performed at Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takahiro Furukawa
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Japan.,Investigation performed at Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Shuya Tanaka
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Japan.,Investigation performed at Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Masaya Kusunose
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Japan.,Investigation performed at Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yuichi Hoshino
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Japan.,Investigation performed at Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takehiko Matsushita
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Japan.,Investigation performed at Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Ryosuke Kuroda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Japan.,Investigation performed at Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
17
|
Valeri F, Bartolucci M, Cantoni E, Carpi R, Cisbani E, Cupparo I, Doria S, Gori C, Grigioni M, Lasagni L, Marconi A, Mazzoni LN, Miele V, Pradella S, Risaliti G, Sanguineti V, Sona D, Vannucchi L, Taddeucci A. UNet and MobileNet CNN-based model observers for CT protocol optimization: comparative performance evaluation by means of phantom CT images. J Med Imaging (Bellingham) 2023; 10:S11904. [PMID: 36895439 PMCID: PMC9989681 DOI: 10.1117/1.jmi.10.s1.s11904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 02/09/2023] [Indexed: 03/09/2023] Open
Abstract
Purpose The aim of this work is the development and characterization of a model observer (MO) based on convolutional neural networks (CNNs), trained to mimic human observers in image evaluation in terms of detection and localization of low-contrast objects in CT scans acquired on a reference phantom. The final goal is automatic image quality evaluation and CT protocol optimization to fulfill the ALARA principle. Approach Preliminary work was carried out to collect localization confidence ratings of human observers for signal presence/absence from a dataset of 30,000 CT images acquired on a PolyMethyl MethAcrylate phantom containing inserts filled with iodinated contrast media at different concentrations. The collected data were used to generate the labels for the training of the artificial neural networks. We developed and compared two CNN architectures based respectively on Unet and MobileNetV2, specifically adapted to achieve the double tasks of classification and localization. The CNN evaluation was performed by computing the area under localization-ROC curve (LAUC) and accuracy metrics on the test dataset. Results The mean of absolute percentage error between the LAUC of the human observer and MO was found to be below 5% for the most significative test data subsets. An elevated inter-rater agreement was achieved in terms of S-statistics and other common statistical indices. Conclusions Very good agreement was measured between the human observer and MO, as well as between the performance of the two algorithms. Therefore, this work is highly supportive of the feasibility of employing CNN-MO combined with a specifically designed phantom for CT protocol optimization programs.
Collapse
Affiliation(s)
- Federico Valeri
- Università degli Studi di Firenze, Dipartimento di Fisica e Astronomia, Florence, Italy
- Università degli Studi di Firenze, Scuola di Scienze della Salute Umana, Florence, Italy
| | - Maurizio Bartolucci
- Ospedale S. Stefano, Azienda USL Toscana Centro, SOC Radiodiagnostica, Prato, Italy
| | - Elena Cantoni
- Università degli Studi di Firenze, Dipartimento di Fisica e Astronomia, Florence, Italy
| | - Roberto Carpi
- Ospedale Santa Maria Nuova, Azienda USL Toscana Centro, SOC Radiologia, Florence, Italy
| | - Evaristo Cisbani
- Istituto Superiore di Sanità, Centro Nazionale Tecnologie Innvative in Sanità Pubblica, Rome, Italy
| | - Ilaria Cupparo
- Università degli Studi di Firenze, Dipartimento di Fisica e Astronomia, Florence, Italy
- Università degli Studi di Firenze, Scuola di Scienze della Salute Umana, Florence, Italy
| | - Sandra Doria
- Istituto di Chimica dei Composti OrganoMetallici, Consiglio Nazionale delle Ricerche, Florence, Italy
- Università degli Studi di Firenze, European Laboratory for Nonlinear Spectroscopy, Florence, Italy
| | - Cesare Gori
- Università degli Studi di Firenze, Dipartimento di Fisica e Astronomia, Florence, Italy
| | - Mauro Grigioni
- Istituto Superiore di Sanità, Centro Nazionale Tecnologie Innvative in Sanità Pubblica, Rome, Italy
| | - Lorenzo Lasagni
- Università degli Studi di Firenze, Dipartimento di Fisica e Astronomia, Florence, Italy
- Università degli Studi di Firenze, Scuola di Scienze della Salute Umana, Florence, Italy
| | - Alessandro Marconi
- Università degli Studi di Firenze, Dipartimento di Fisica e Astronomia, Florence, Italy
| | - Lorenzo Nicola Mazzoni
- Ospedale San Jacopo, Azienda USL Toscana Centro, UO Fisica Sanitaria Prato e Pistoia, Pistoia, Italy
| | - Vittorio Miele
- Azienda Ospedaliero-Universitaria Careggi, SOD Radiodiagnostica di Emergenza-Urgenza, Florence, Italy
| | - Silvia Pradella
- Azienda Ospedaliero-Universitaria Careggi, SOD Radiodiagnostica di Emergenza-Urgenza, Florence, Italy
| | - Guido Risaliti
- Università degli Studi di Firenze, Dipartimento di Fisica e Astronomia, Florence, Italy
| | - Valentina Sanguineti
- Istituto Italiano di Tecnologia, Pattern Analysis & Computer Vision, Genoa, Italy
| | - Diego Sona
- Fondazione Bruno Kessler, Data Science for Health Unit, Trento, Italy
| | - Letizia Vannucchi
- Ospedale S. Jacopo, AUSL Toscana Centro, SOC Radiodiagnostica, Pistoia, Italy
| | - Adriana Taddeucci
- Azienda Ospedaliero-Universitaria Careggi, UO Fisica Sanitaria, Florence, Italy
- Istituto Nazionale di Fisica Nucleare - Sezione di Firenze, Sesto Fiorentino, Italy
| |
Collapse
|
18
|
Development of a Computer System for Automatically Generating a Laser Photocoagulation Plan to Improve the Retinal Coagulation Quality in the Treatment of Diabetic Retinopathy. Symmetry (Basel) 2023. [DOI: 10.3390/sym15020287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
In this article, the development of a computer system for high-tech medical uses in ophthalmology is proposed. An overview of the main methods and algorithms that formed the basis of the coagulation plan planning system is presented. The system provides the formation of a more effective plan for laser coagulation in comparison with the use of existing coagulation techniques. An analysis of monopulse- and pattern-based laser coagulation techniques in the treatment of diabetic retinopathy has shown that modern treatment methods do not provide the required efficacy of medical laser coagulation procedures, as the laser energy is nonuniformly distributed across the pigment epithelium and may exert an excessive effect on parts of the retina and anatomical elements. The analysis has shown that the efficacy of retinal laser coagulation for the treatment of diabetic retinopathy is determined by the relative position of coagulates and parameters of laser exposure. In the course of the development of the computer system proposed herein, main stages of processing diagnostic data were identified. They are as follows: the allocation of the laser exposure zone, the evaluation of laser pulse parameters that would be safe for the fundus, mapping a coagulation plan in the laser exposure zone, followed by the analysis of the generated plan for predicting the therapeutic effect. In the course of the study, it was found that the developed algorithms for placing coagulates in the area of laser exposure provide a more uniform distribution of laser energy across the pigment epithelium when compared to monopulse- and pattern-based laser coagulation techniques.
Collapse
|
19
|
Wali A, Ali S, Naseer A, Karim S, Alamgir Z. Computer-aided COVID-19 diagnosis: a possibility? J EXP THEOR ARTIF IN 2023. [DOI: 10.1080/0952813x.2023.2165722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Aamir Wali
- FAST School of Computing, National University of Computer and Emerging Sciences, Faisal Town, Lahore, Pakistan
| | - Shahroze Ali
- FAST School of Computing, National University of Computer and Emerging Sciences, Faisal Town, Lahore, Pakistan
| | - Asma Naseer
- FAST School of Computing, National University of Computer and Emerging Sciences, Faisal Town, Lahore, Pakistan
| | - Saira Karim
- FAST School of Computing, National University of Computer and Emerging Sciences, Faisal Town, Lahore, Pakistan
| | - Zareen Alamgir
- FAST School of Computing, National University of Computer and Emerging Sciences, Faisal Town, Lahore, Pakistan
| |
Collapse
|
20
|
Thandapani S, Mahaboob MI, Iwendi C, Selvaraj D, Dumka A, Rashid M, Mohan S. IoMT with Deep CNN: AI-Based Intelligent Support System for Pandemic Diseases. ELECTRONICS 2023; 12:424. [DOI: 10.3390/electronics12020424] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
The Internet of Medical Things (IoMT) is an extended version of the Internet of Things (IoT). It mainly concentrates on the integration of medical things for servicing needy people who cannot get medical services easily, especially rural area people and aged peoples living alone. The main objective of this work is to design a real time interactive system for providing medical services to the needy who do not have a sufficient medical infrastructure. With the help of this system, people will get medical services at their end with minimal medical infrastructure and less treatment cost. However, the designed system could be upgraded to address the family of SARs viruses, and for experimentation, we have taken COVID-19 as a test case. The proposed system comprises of many modules, such as the user interface, analytics, cloud, etc. The proposed user interface is designed for interactive data collection. At the initial stage, it collects preliminary medical information, such as the pulse oxygen rate and RT-PCR results. With the help of a pulse oximeter, they could get the pulse oxygen level. With the help of swap test kit, they could find COVID-19 positivity. That information is uploaded as preliminary information to the designed proposed system via the designed UI. If the system identifies the COVID positivity, it requests that the person upload X-ray/CT images for ranking the severity of the disease. The system is designed for multi-model data. Hence, it can deal with X-ray, CT images, and textual data (RT-PCR results). Once X-ray/CT images are collected via the designed UI, those images are forwarded to the designed AI module for analytics. The proposed AI system is designed for multi-disease classification. It classifies the patients affected with COVID-19 or pneumonia or any other viral infection. It also measures the intensity level of lung infection for providing suitable treatment to the patients. Numerous deep convolution neural network (DCNN) architectures are available for medical image classification. We used ResNet-50, ResNet-100, ResNet-101, VGG 16, and VGG 19 for better classification. From the experimentation, it observed that ResNet101 and VGG 19 outperform, with an accuracy of 97% for CT images. ResNet101 outperforms with an accuracy of 98% for X-ray images. For obtaining enhanced accuracy, we used a major voting classifier. It combines all the classifiers result and presents the majority voted one. It results in reduced classifier bias. Finally, the proposed system presents an automatic test summary report textually. It can be accessed via user-friendly graphical user interface (GUI). It results in a reduced report generation time and individual bias.
Collapse
Affiliation(s)
- Sujithra Thandapani
- Department of Computer Science & Engineering, Manipal Institute of Technology, Manipal 576104, India
| | | | - Celestine Iwendi
- School of Creative Technologies, University of Bolton, A676 Dean Rd., Bolton BL3 5AB, UK
| | - Durai Selvaraj
- Department of Computer Science & Engineering, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai 600062, India
| | - Ankur Dumka
- Women Institute of Technology, Dehradun 248007, India
- Department of Computer Science and Engineering, Graphic Era Deemed to be University, Dehradun 248002, India
| | - Mamoon Rashid
- Department of Computer Engineering, Faculty of Science and Technology, Vishwakarma University, Pune 411048, India
- Research Center of Excellence for Health Informatics, Vishwakarma University, Pune 411048, India
| | - Senthilkumar Mohan
- School of Information Technology and Engineering, Vellore Institute of Technology, Vellore 632014, India
| |
Collapse
|
21
|
Alam MS, Rashid MM, Roy R, Faizabadi AR, Gupta KD, Ahsan MM. Empirical Study of Autism Spectrum Disorder Diagnosis Using Facial Images by Improved Transfer Learning Approach. Bioengineering (Basel) 2022; 9:710. [PMID: 36421111 PMCID: PMC9687350 DOI: 10.3390/bioengineering9110710] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/09/2022] [Accepted: 11/14/2022] [Indexed: 09/29/2023] Open
Abstract
Autism spectrum disorder (ASD) is a neurological illness characterized by deficits in cognition, physical activities, and social skills. There is no specific medication to treat this illness; only early intervention can improve brain functionality. Since there is no medical test to identify ASD, a diagnosis might be challenging. In order to determine a diagnosis, doctors consider the child's behavior and developmental history. The human face can be used as a biomarker as it is one of the potential reflections of the brain and thus can be used as a simple and handy tool for early diagnosis. This study uses several deep convolutional neural network (CNN)-based transfer learning approaches to detect autistic children using the facial image. An empirical study is conducted to select the best optimizer and set of hyperparameters to achieve better prediction accuracy using the CNN model. After training and validating with the optimized setting, the modified Xception model demonstrates the best performance by achieving an accuracy of 95% on the test set, whereas the VGG19, ResNet50V2, MobileNetV2, and EfficientNetB0 achieved 86.5%, 94%, 92%, and 85.8%, accuracy, respectively. Our preliminary computational results demonstrate that our transfer learning approaches outperformed existing methods. Our modified model can be employed to assist doctors and practitioners in validating their initial screening to detect children with ASD disease.
Collapse
Affiliation(s)
- Md Shafiul Alam
- Department of Mechatronics Engineering, International Islamic University Malaysia, Kula Lumpur 43200, Malaysia
| | - Muhammad Mahbubur Rashid
- Department of Mechatronics Engineering, International Islamic University Malaysia, Kula Lumpur 43200, Malaysia
| | - Rupal Roy
- Department of Mechatronics Engineering, International Islamic University Malaysia, Kula Lumpur 43200, Malaysia
| | - Ahmed Rimaz Faizabadi
- Department of Mechatronics Engineering, International Islamic University Malaysia, Kula Lumpur 43200, Malaysia
| | - Kishor Datta Gupta
- Computer and Information Science, Clark Atlanta University, Atlanta, GA 30314, USA
| | - Md Manjurul Ahsan
- School of Industrial and Systems Engineering, University of Oklahoma, Norman, OK 73019, USA
| |
Collapse
|
22
|
Bhandari M, Shahi TB, Siku B, Neupane A. Explanatory classification of CXR images into COVID-19, Pneumonia and Tuberculosis using deep learning and XAI. Comput Biol Med 2022; 150:106156. [PMID: 36228463 PMCID: PMC9549800 DOI: 10.1016/j.compbiomed.2022.106156] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 09/05/2022] [Accepted: 09/24/2022] [Indexed: 11/18/2022]
Abstract
Chest X-ray (CXR) images are considered useful to monitor and investigate a variety of pulmonary disorders such as COVID-19, Pneumonia, and Tuberculosis (TB). With recent technological advancements, such diseases may now be recognized more precisely using computer-assisted diagnostics. Without compromising the classification accuracy and better feature extraction, deep learning (DL) model to predict four different categories is proposed in this study. The proposed model is validated with publicly available datasets of 7132 chest x-ray (CXR) images. Furthermore, results are interpreted and explained using Gradient-weighted Class Activation Mapping (Grad-CAM), Local Interpretable Modelagnostic Explanation (LIME), and SHapley Additive exPlanation (SHAP) for better understandably. Initially, convolution features are extracted to collect high-level object-based information. Next, shapely values from SHAP, predictability results from LIME, and heatmap from Grad-CAM are used to explore the black-box approach of the DL model, achieving average test accuracy of 94.31 ± 1.01% and validation accuracy of 94.54 ± 1.33 for 10-fold cross validation. Finally, in order to validate the model and qualify medical risk, medical sensations of classification are taken to consolidate the explanations generated from the eXplainable Artificial Intelligence (XAI) framework. The results suggest that XAI and DL models give clinicians/medical professionals persuasive and coherent conclusions related to the detection and categorization of COVID-19, Pneumonia, and TB.
Collapse
Affiliation(s)
- Mohan Bhandari
- Samriddhi College, Lokanthali, Bhaktapur, Kathmandu, Nepal.
| | - Tej Bahadur Shahi
- School of Engineering and Technology, Central Queensland University, Norman Gardens, 4701, Rockhampton, Queensland, Australia.
| | - Birat Siku
- Samriddhi College, Lokanthali, Bhaktapur, Kathmandu, Nepal.
| | - Arjun Neupane
- School of Engineering and Technology, Central Queensland University, Norman Gardens, 4701, Rockhampton, Queensland, Australia.
| |
Collapse
|
23
|
Shinohara I, Inui A, Mifune Y, Nishimoto H, Yamaura K, Mukohara S, Yoshikawa T, Kato T, Furukawa T, Hoshino Y, Matsushita T, Kuroda R. Using deep learning for ultrasound images to diagnose carpal tunnel syndrome with high accuracy. ULTRASOUND IN MEDICINE & BIOLOGY 2022; 48:2052-2059. [PMID: 35868907 DOI: 10.1016/j.ultrasmedbio.2022.05.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 05/08/2022] [Accepted: 05/22/2022] [Indexed: 06/15/2023]
Abstract
Recently, deep learning (DL) algorithms have been adapted for the diagnosis of medical images. The purpose of this study was to detect image features using DL without measuring median nerve cross-sectional area (CSA) in ultrasonography (US) images of carpal tunnel syndrome (CTS) and calculate the diagnostic accuracy from the confusion matrix obtained. US images of 50 hands without CTS and 50 hands diagnosed with CTS were used in this study. The short-axis image of the median nerve was visualized, and 5000 images of both groups were prepared. Forty hands in each group were used as training data for the DL algorithm, while the remainder were used as test data. Transfer learning was performed using three pre-trained models. The confusion matrix and receiver operating characteristic curves were used to evaluate diagnostic accuracy. Furthermore, regions where DL was determined to be important were visualized. The highest score had an accuracy of 0.96, precision of 0.99 and recall of 0.94. Visualization of the important features revealed that the DL models focused on the epineurium of the median nerve and the surrounding soft tissue. The proposed technique enables the accurate prediction of CTS without measurement of the CSA.
Collapse
Affiliation(s)
- Issei Shinohara
- Department of Orthopaedic Surgery, Kobe University, Graduate School of Medicine, 5-2, Kusunoki-cho7, Chuo-ku, Kobe City, Hyogo 650-0017, Japan
| | - Atsuyuki Inui
- Department of Orthopaedic Surgery, Kobe University, Graduate School of Medicine, 5-2, Kusunoki-cho7, Chuo-ku, Kobe City, Hyogo 650-0017, Japan.
| | - Yutaka Mifune
- Department of Orthopaedic Surgery, Kobe University, Graduate School of Medicine, 5-2, Kusunoki-cho7, Chuo-ku, Kobe City, Hyogo 650-0017, Japan
| | - Hanako Nishimoto
- Department of Orthopaedic Surgery, Kobe University, Graduate School of Medicine, 5-2, Kusunoki-cho7, Chuo-ku, Kobe City, Hyogo 650-0017, Japan
| | - Kohei Yamaura
- Department of Orthopaedic Surgery, Kobe University, Graduate School of Medicine, 5-2, Kusunoki-cho7, Chuo-ku, Kobe City, Hyogo 650-0017, Japan
| | - Shintaro Mukohara
- Department of Orthopaedic Surgery, Kobe University, Graduate School of Medicine, 5-2, Kusunoki-cho7, Chuo-ku, Kobe City, Hyogo 650-0017, Japan
| | - Tomoya Yoshikawa
- Department of Orthopaedic Surgery, Kobe University, Graduate School of Medicine, 5-2, Kusunoki-cho7, Chuo-ku, Kobe City, Hyogo 650-0017, Japan
| | - Tatsuo Kato
- Department of Orthopaedic Surgery, Kobe University, Graduate School of Medicine, 5-2, Kusunoki-cho7, Chuo-ku, Kobe City, Hyogo 650-0017, Japan
| | - Takahiro Furukawa
- Department of Orthopaedic Surgery, Kobe University, Graduate School of Medicine, 5-2, Kusunoki-cho7, Chuo-ku, Kobe City, Hyogo 650-0017, Japan
| | - Yuichi Hoshino
- Department of Orthopaedic Surgery, Kobe University, Graduate School of Medicine, 5-2, Kusunoki-cho7, Chuo-ku, Kobe City, Hyogo 650-0017, Japan
| | - Takehiko Matsushita
- Department of Orthopaedic Surgery, Kobe University, Graduate School of Medicine, 5-2, Kusunoki-cho7, Chuo-ku, Kobe City, Hyogo 650-0017, Japan
| | - Ryosuke Kuroda
- Department of Orthopaedic Surgery, Kobe University, Graduate School of Medicine, 5-2, Kusunoki-cho7, Chuo-ku, Kobe City, Hyogo 650-0017, Japan
| |
Collapse
|
24
|
Khan MA, Azhar M, Ibrar K, Alqahtani A, Alsubai S, Binbusayyis A, Kim YJ, Chang B. COVID-19 Classification from Chest X-Ray Images: A Framework of Deep Explainable Artificial Intelligence. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:4254631. [PMID: 35845911 PMCID: PMC9284325 DOI: 10.1155/2022/4254631] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/06/2022] [Indexed: 11/25/2022]
Abstract
COVID-19 detection and classification using chest X-ray images is a current hot research topic based on the important application known as medical image analysis. To halt the spread of COVID-19, it is critical to identify the infection as soon as possible. Due to time constraints and the expertise of radiologists, manually diagnosing this infection from chest X-ray images is a difficult and time-consuming process. Artificial intelligence techniques have had a significant impact on medical image analysis and have also introduced several techniques for COVID-19 diagnosis. Deep learning and explainable AI have shown significant popularity among AL techniques for COVID-19 detection and classification. In this work, we propose a deep learning and explainable AI technique for the diagnosis and classification of COVID-19 using chest X-ray images. Initially, a hybrid contrast enhancement technique is proposed and applied to the original images that are later utilized for the training of two modified deep learning models. The deep transfer learning concept is selected for the training of pretrained modified models that are later employed for feature extraction. Features of both deep models are fused using improved canonical correlation analysis that is further optimized using a hybrid algorithm named Whale-Elephant Herding. Through this algorithm, the best features are selected and classified using an extreme learning machine (ELM). Moreover, the modified deep models are utilized for Grad-CAM visualization. The experimental process was conducted on three publicly available datasets and achieved accuracies of 99.1, 98.2, and 96.7%, respectively. Moreover, the ablation study was performed and showed that the proposed accuracy is better than the other methods.
Collapse
Affiliation(s)
| | - Marium Azhar
- Department of Computer Science, University of Wah, Wah Cantt, Pakistan
| | - Kainat Ibrar
- Department of Computer Science, University of Wah, Wah Cantt, Pakistan
| | - Abdullah Alqahtani
- College of Computer Engineering and Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Shtwai Alsubai
- College of Computer Engineering and Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Adel Binbusayyis
- College of Computer Engineering and Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Ye Jin Kim
- Department of Computer Science, Hanyang University, Seoul 04763, Republic of Korea
| | - Byoungchol Chang
- Center for Computational Social Science, Hanyang University, Seoul 04763, Republic of Korea
| |
Collapse
|
25
|
Accurate Numerical Treatment on a Stochastic SIR Epidemic Model with Optimal Control Strategy. TECHNOLOGIES 2022. [DOI: 10.3390/technologies10040082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In this paper, a numerical study has been undertaken on the susceptible-infected-recovered (SIR) epidemic model that encompasses the mechanisms of the evolution of disease transmission; a prophylactic vaccination strategy in the susceptible populations, depending on the infective individuals. We furnish numerical and graphical simulation combined with explicit series solutions of the proposed model using the New Iterative Method (NIM) and Modified New Iterative Method (MNIM). The analytic-numeric New Iterative Method failed to deliver accurate solution for the large time domain. A new reliable algorithm based on NIM, the coupling of the Laplace transforms, and the New Iterative method is called Modified New Iterative Method (MNIM) which is presented to enhance the validity domain of NIM techniques. The convergence analysis of the MNIM has also been illustrated. The simulation results show that the vaccination strategy can slow down the spread of the epidemic rapidly. Numerical results illustrate the excellent performance of the MNIM and show that the modified method is much more accurate than the NIM.
Collapse
|
26
|
Deep Learning Methods to Reveal Important X-ray Features in COVID-19 Detection: Investigation of Explainability and Feature Reproducibility. REPORTS 2022. [DOI: 10.3390/reports5020020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
X-ray technology has been recently employed for the detection of the lethal human coronavirus disease 2019 (COVID-19) as a timely, cheap, and helpful ancillary method for diagnosis. The scientific community evaluated deep learning methods to aid in the automatic detection of the disease, utilizing publicly available small samples of X-ray images. In the majority of cases, the results demonstrate the effectiveness of deep learning and suggest valid detection of the disease from X-ray scans. However, little has been investigated regarding the actual findings of deep learning through the image process. In the present study, a large-scale dataset of pulmonary diseases, including COVID-19, was utilized for experiments, aiming to shed light on this issue. For the detection task, MobileNet (v2) was employed, which has been proven very effective in our previous works. Through analytical experiments utilizing feature visualization techniques and altering the input dataset classes, it was suggested that MobileNet (v2) discovers important image findings and not only features. It was demonstrated that MobileNet (v2) is an effective, accurate, and low-computational-cost solution for distinguishing COVID-19 from 12 various other pulmonary abnormalities and normal subjects. This study offers an analysis of image features extracted from MobileNet (v2), aiming to investigate the validity of those features and their medical importance. The pipeline can detect abnormal X-rays with an accuracy of 95.45 ± 1.54% and can distinguish COVID-19 with an accuracy of 89.88 ± 3.66%. The visualized results of the Grad-CAM algorithm provide evidence that the methodology identifies meaningful areas on the images. Finally, the detected image features were reproducible in 98% of the times after repeating the experiment for three times.
Collapse
|
27
|
A Modified Iterative Algorithm for Numerical Investigation of HIV Infection Dynamics. ALGORITHMS 2022. [DOI: 10.3390/a15050175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The human immunodeficiency virus (HIV) mainly attacks CD4+ T cells in the host. Chronic HIV infection gradually depletes the CD4+ T cell pool, compromising the host’s immunological reaction to invasive infections and ultimately leading to acquired immunodeficiency syndrome (AIDS). The goal of this study is not to provide a qualitative description of the rich dynamic characteristics of the HIV infection model of CD4+ T cells, but to produce accurate analytical solutions to the model using the modified iterative approach. In this research, a new efficient method using the new iterative method (NIM), the coupling of the standard NIM and Laplace transform, called the modified new iterative method (MNIM), has been introduced to resolve the HIV infection model as a class of system of ordinary differential equations (ODEs). A nonlinear HIV infection dynamics model is adopted as an instance to elucidate the identification process and the solution process of MNIM, only two iterations lead to ideal results. In addition, the model has also been solved using NIM and the fourth order Runge–Kutta (RK4) method. The results indicate that the solutions by MNIM match with those of RK4 method to a minimum of eight decimal places, whereas NIM solutions are not accurate enough. Numerical comparisons between the MNIM, NIM, the classical RK4 and other methods reveal that the modified technique has potential as a tool for the nonlinear systems of ODEs.
Collapse
|
28
|
A Comparative Analysis on Suicidal Ideation Detection Using NLP, Machine, and Deep Learning. TECHNOLOGIES 2022. [DOI: 10.3390/technologies10030057] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Social networks are essential resources to obtain information about people’s opinions and feelings towards various issues as they share their views with their friends and family. Suicidal ideation detection via online social network analysis has emerged as an essential research topic with significant difficulties in the fields of NLP and psychology in recent years. With the proper exploitation of the information in social media, the complicated early symptoms of suicidal ideations can be discovered and hence, it can save many lives. This study offers a comparative analysis of multiple machine learning and deep learning models to identify suicidal thoughts from the social media platform Twitter. The principal purpose of our research is to achieve better model performance than prior research works to recognize early indications with high accuracy and avoid suicide attempts. We applied text pre-processing and feature extraction approaches such as CountVectorizer and word embedding, and trained several machine learning and deep learning models for such a goal. Experiments were conducted on a dataset of 49,178 instances retrieved from live tweets by 18 suicidal and non-suicidal keywords using Python Tweepy API. Our experimental findings reveal that the RF model can achieve the highest classification score among machine learning algorithms, with an accuracy of 93% and an F1 score of 0.92. However, training the deep learning classifiers with word embedding increases the performance of ML models, where the BiLSTM model reaches an accuracy of 93.6% and a 0.93 F1 score.
Collapse
|
29
|
Probing the Immune System Dynamics of the COVID-19 Disease for Vaccine Designing and Drug Repurposing Using Bioinformatics Tools. IMMUNO 2022. [DOI: 10.3390/immuno2020022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The pathogenesis of COVID-19 is complicated by immune dysfunction. The impact of immune-based therapy in COVID-19 patients has been well documented, with some notable studies on the use of anti-cytokine medicines. However, the complexity of disease phenotypes, patient heterogeneity and the varying quality of evidence from immunotherapy studies provide problems in clinical decision-making. This review seeks to aid therapeutic decision-making by giving an overview of the immunological responses against COVID-19 disease that may contribute to the severity of the disease. We have extensively discussed theranostic methods for COVID-19 detection. With advancements in technology, bioinformatics has taken studies to a higher level. The paper also discusses the application of bioinformatics and machine learning tools for the diagnosis, vaccine design and drug repurposing against SARS-CoV-2.
Collapse
|
30
|
Lightweight Ensemble Network for Detecting Heart Disease Using ECG Signals. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12073291] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Heart disease should be treated quickly when symptoms appear. Machine-learning methods for detecting heart disease require desktop computers, an obstacle that can have fatal consequences for patients who must check their health periodically. Herein, we propose a MobileNet-based ensemble algorithm for arrhythmia diagnosis that can be easily and quickly operated in a mobile environment. The electrocardiogram (ECG) signal measured over a short period of time was augmented using the matching pursuit algorithm to achieve a high accuracy. The arrhythmia data were classified through an ensemble classifier combining MobileNetV2 and BiLSTM. By classifying the data using this algorithm, an accuracy of 91.7% was achieved. The performance of the algorithm was evaluated using a confusion matrix and a receiver operating characteristic curve. The sensitivity, specificity, precision, and F1 score were 0.92, 0.91, 0.92, and 0.92, respectively. Because the proposed algorithm does not require long-term ECG signal measurement, it facilitates health management for busy people. Moreover, parameters are exchanged when learning data, enhancing the security of the system. In addition, owing to the lightweight deep-learning model, the proposed algorithm can be applied to mobile healthcare, object detection, text recognition, and authentication.
Collapse
|
31
|
Ahsan MM, Luna SA, Siddique Z. Machine-Learning-Based Disease Diagnosis: A Comprehensive Review. Healthcare (Basel) 2022; 10:541. [PMID: 35327018 PMCID: PMC8950225 DOI: 10.3390/healthcare10030541] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/08/2022] [Accepted: 03/10/2022] [Indexed: 02/06/2023] Open
Abstract
Globally, there is a substantial unmet need to diagnose various diseases effectively. The complexity of the different disease mechanisms and underlying symptoms of the patient population presents massive challenges in developing the early diagnosis tool and effective treatment. Machine learning (ML), an area of artificial intelligence (AI), enables researchers, physicians, and patients to solve some of these issues. Based on relevant research, this review explains how machine learning (ML) is being used to help in the early identification of numerous diseases. Initially, a bibliometric analysis of the publication is carried out using data from the Scopus and Web of Science (WOS) databases. The bibliometric study of 1216 publications was undertaken to determine the most prolific authors, nations, organizations, and most cited articles. The review then summarizes the most recent trends and approaches in machine-learning-based disease diagnosis (MLBDD), considering the following factors: algorithm, disease types, data type, application, and evaluation metrics. Finally, in this paper, we highlight key results and provides insight into future trends and opportunities in the MLBDD area.
Collapse
Affiliation(s)
- Md Manjurul Ahsan
- School of Industrial and Systems Engineering, University of Oklahoma, Norman, OK 73019, USA
| | - Shahana Akter Luna
- Medicine & Surgery, Dhaka Medical College & Hospital, Dhaka 1000, Bangladesh;
| | - Zahed Siddique
- Department of Aerospace and Mechanical Engineering, University of Oklahoma, Norman, OK 73019, USA;
| |
Collapse
|
32
|
Shinohara I, Inui A, Mifune Y, Nishimoto H, Yamaura K, Mukohara S, Yoshikawa T, Kato T, Furukawa T, Hoshino Y, Matsushita T, Kuroda R. Diagnosis of Cubital Tunnel Syndrome Using Deep Learning on Ultrasonographic Images. Diagnostics (Basel) 2022; 12:diagnostics12030632. [PMID: 35328185 PMCID: PMC8947597 DOI: 10.3390/diagnostics12030632] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 02/04/2023] Open
Abstract
Although electromyography is the routine diagnostic method for cubital tunnel syndrome (CuTS), imaging diagnosis by measuring cross-sectional area (CSA) with ultrasonography (US) has also been attempted in recent years. In this study, deep learning (DL), an artificial intelligence (AI) method, was used on US images, and its diagnostic performance for detecting CuTS was investigated. Elbow images of 30 healthy volunteers and 30 patients diagnosed with CuTS were used. Three thousand US images were prepared per each group to visualize the short axis of the ulnar nerve. Transfer learning was performed on 5000 randomly selected training images using three pre-trained models, and the remaining images were used for testing. The model was evaluated by analyzing a confusion matrix and the area under the receiver operating characteristic curve. Occlusion sensitivity and locally interpretable model-agnostic explanations were used to visualize the features deemed important by the AI. The highest score had an accuracy of 0.90, a precision of 0.86, a recall of 1.00, and an F-measure of 0.92. Visualization results show that the DL models focused on the epineurium of the ulnar nerve and the surrounding soft tissue. The proposed technique enables the accurate prediction of CuTS without the need to measure CSA.
Collapse
Affiliation(s)
| | - Atsuyuki Inui
- Correspondence: ; Tel.: +81-78-382-5111; Fax: +81-78-351-6944
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Sakai A, Komatsu M, Komatsu R, Matsuoka R, Yasutomi S, Dozen A, Shozu K, Arakaki T, Machino H, Asada K, Kaneko S, Sekizawa A, Hamamoto R. Medical Professional Enhancement Using Explainable Artificial Intelligence in Fetal Cardiac Ultrasound Screening. Biomedicines 2022; 10:551. [PMID: 35327353 PMCID: PMC8945208 DOI: 10.3390/biomedicines10030551] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 12/10/2022] Open
Abstract
Diagnostic support tools based on artificial intelligence (AI) have exhibited high performance in various medical fields. However, their clinical application remains challenging because of the lack of explanatory power in AI decisions (black box problem), making it difficult to build trust with medical professionals. Nevertheless, visualizing the internal representation of deep neural networks will increase explanatory power and improve the confidence of medical professionals in AI decisions. We propose a novel deep learning-based explainable representation "graph chart diagram" to support fetal cardiac ultrasound screening, which has low detection rates of congenital heart diseases due to the difficulty in mastering the technique. Screening performance improves using this representation from 0.966 to 0.975 for experts, 0.829 to 0.890 for fellows, and 0.616 to 0.748 for residents in the arithmetic mean of area under the curve of a receiver operating characteristic curve. This is the first demonstration wherein examiners used deep learning-based explainable representation to improve the performance of fetal cardiac ultrasound screening, highlighting the potential of explainable AI to augment examiner capabilities.
Collapse
Affiliation(s)
- Akira Sakai
- Artificial Intelligence Laboratory, Research Unit, Fujitsu Research, Fujitsu Ltd., 4-1-1 Kamikodanaka, Nakahara-ku, Kawasaki 211-8588, Japan; (A.S.); (S.Y.)
- RIKEN AIP-Fujitsu Collaboration Center, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan; (R.K.); (R.M.)
- Department of NCC Cancer Science, Biomedical Science and Engineering Track, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
- Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (A.D.); (K.S.); (H.M.); (K.A.); (S.K.)
| | - Masaaki Komatsu
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan
| | - Reina Komatsu
- RIKEN AIP-Fujitsu Collaboration Center, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan; (R.K.); (R.M.)
- Department of Obstetrics and Gynecology, School of Medicine, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8666, Japan; (T.A.); (A.S.)
| | - Ryu Matsuoka
- RIKEN AIP-Fujitsu Collaboration Center, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan; (R.K.); (R.M.)
- Department of Obstetrics and Gynecology, School of Medicine, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8666, Japan; (T.A.); (A.S.)
| | - Suguru Yasutomi
- Artificial Intelligence Laboratory, Research Unit, Fujitsu Research, Fujitsu Ltd., 4-1-1 Kamikodanaka, Nakahara-ku, Kawasaki 211-8588, Japan; (A.S.); (S.Y.)
- RIKEN AIP-Fujitsu Collaboration Center, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan; (R.K.); (R.M.)
| | - Ai Dozen
- Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (A.D.); (K.S.); (H.M.); (K.A.); (S.K.)
| | - Kanto Shozu
- Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (A.D.); (K.S.); (H.M.); (K.A.); (S.K.)
| | - Tatsuya Arakaki
- Department of Obstetrics and Gynecology, School of Medicine, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8666, Japan; (T.A.); (A.S.)
| | - Hidenori Machino
- Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (A.D.); (K.S.); (H.M.); (K.A.); (S.K.)
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan
| | - Ken Asada
- Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (A.D.); (K.S.); (H.M.); (K.A.); (S.K.)
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan
| | - Syuzo Kaneko
- Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (A.D.); (K.S.); (H.M.); (K.A.); (S.K.)
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan
| | - Akihiko Sekizawa
- Department of Obstetrics and Gynecology, School of Medicine, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8666, Japan; (T.A.); (A.S.)
| | - Ryuji Hamamoto
- Department of NCC Cancer Science, Biomedical Science and Engineering Track, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
- Division of Medical AI Research and Development, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan; (A.D.); (K.S.); (H.M.); (K.A.); (S.K.)
| |
Collapse
|
34
|
Mahmood AF, Mahmood SW. Cough/X-ray/CT (CXC) website for testing COVID-19 and auto-informing results. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2022; 93:013705. [PMID: 35104981 DOI: 10.1063/5.0076314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 12/30/2021] [Indexed: 06/14/2023]
Abstract
Despite the development of vaccines and the emergence of various treatments for COVID-19, the number of confirmed cases of the coronavirus disease (COVID-19) is increasing worldwide, and it is unlikely that the disease will ever disappear completely. Having a non-contact remote testing system can improve the workload of health-care centers and contribute to reducing the infection by recommending early self-isolation for those who suffer from a cough. In the proposed system, patients can upload an audio cough recording via mobile phones through the suggested Cough/X-ray/CT website and then receive the diagnosis within seconds on the same phone. Moreover, in the case of infection, the health center and the community are informed in addition to automatically calling the mobile phones of the injured cases. The higher proposed accuracy with deep cough training was achieved on the ResNet152v2 model after converting the cough signal into an image using the Mel-spectrogram, where the accuracy was 99.95%, the sensitivity was 100%, and the specificity was 99%.
Collapse
Affiliation(s)
| | - Saja Waleed Mahmood
- Computer Engineering, College of Engineering, University of Mosul, Mosul, Iraq
| |
Collapse
|