1
|
Li X, Wang F, Ta N, Huang J. The compositions, characteristics, health benefits and applications of anthocyanins in Brassica crops. FRONTIERS IN PLANT SCIENCE 2025; 16:1544099. [PMID: 40034154 PMCID: PMC11872724 DOI: 10.3389/fpls.2025.1544099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 01/20/2025] [Indexed: 03/05/2025]
Abstract
Brassica crops, well known for their nutritional and medicinal value, encompass a diverse range of species and varieties, many of which are rich in anthocyanins. These flavonoid pigments not only contribute to the vibrant colors of Brassica plants but also possess significant antioxidant, anti-inflammatory, and neuroprotective properties. This review provides an in-depth analysis of the distribution, composition, and health benefits of anthocyanins in Brassica crops, highlighting their potential applications in the food industry and medicine. We discuss the accumulation patterns of anthocyanins in various Brassica tissues, the influence of genetic and environmental factors on their concentration, and the impact of acylation on their stability and biological activities. This review also explores the antioxidant capacity and cardioprotective effects of Brassica anthocyanins, as well as their roles in protecting against hepatic and renal injury and promoting neuroprotection. Furthermore, we examine the use of anthocyanins as natural food colorants and their integration into intelligent packaging for the real-time monitoring of food freshness. Our findings underscore the multifaceted benefits of Brassica anthocyanins, positioning them as key components in the development of functional foods and sustainable food systems.
Collapse
Affiliation(s)
- Xinjie Li
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Fan Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Na Ta
- School of Modern Agriculture and Biotechnology, Ankang University, Ankang, China
| | - Jinyong Huang
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
2
|
Collado-González J, Piñero MC, Otalora G, Lopez-Marín J, Del Amor FM. Unraveling the nutritional and bioactive constituents in baby-leaf lettuce for challenging climate conditions. Food Chem 2022; 384:132506. [PMID: 35231710 DOI: 10.1016/j.foodchem.2022.132506] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/12/2022] [Accepted: 02/16/2022] [Indexed: 11/23/2022]
Abstract
The isolated effects of heat stress, fertilization and elevated CO2 on the content of several health-promoting compounds in plants have been quite studied. However, few studies have focused on two of these three factors together. This work provides information on how two different levels of CO2, four different NO3-/NH4+ ratios in the nutrient solution, and a short-term heat stress affect the biomass and nutritional quality of baby-leaf lettuce cv Derbi. Furthermore, the nutritional quality of the inner and outer leaves was also studied and compared. Results indicated that the strategy used led to a bigger and healthier baby-leaf lettuces. So, this lettuces contained a higher content of sugars, minerals and phenolic compounds and showed an enhanced antioxidant activity. On the other hand, results exhibited that whilst in inner leaves the biosynthesis of antioxidant compounds were favored, in outer leaves was favored the biosynthesis of sugars and mineral content.
Collapse
Affiliation(s)
- Jacinta Collado-González
- Department of Crop Production and Agri-Technology, Murcia Institute of Agri-Food Research and Development (IMIDA), C/Mayor s/n, 30150 Murcia, Spain.
| | - María Carmen Piñero
- Department of Crop Production and Agri-Technology, Murcia Institute of Agri-Food Research and Development (IMIDA), C/Mayor s/n, 30150 Murcia, Spain
| | - Ginés Otalora
- Department of Crop Production and Agri-Technology, Murcia Institute of Agri-Food Research and Development (IMIDA), C/Mayor s/n, 30150 Murcia, Spain
| | - Josefa Lopez-Marín
- Department of Crop Production and Agri-Technology, Murcia Institute of Agri-Food Research and Development (IMIDA), C/Mayor s/n, 30150 Murcia, Spain
| | - Francisco M Del Amor
- Department of Crop Production and Agri-Technology, Murcia Institute of Agri-Food Research and Development (IMIDA), C/Mayor s/n, 30150 Murcia, Spain.
| |
Collapse
|
3
|
Enhancement of Bioactive Constituents in Fresh Cauliflower By-Products in Challenging Climate Conditions. Antioxidants (Basel) 2022; 11:antiox11050958. [PMID: 35624822 PMCID: PMC9137807 DOI: 10.3390/antiox11050958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/05/2022] [Accepted: 05/11/2022] [Indexed: 11/28/2022] Open
Abstract
In order to mitigate the detrimental impact that climate change is having on plants, the study of new practices that allow for the reduction of such effects has become imperative. In addition, the revaluation of the promotion of healthy plant by-products has also markedly increased in importance in recent years. In this work, the modifications in biomass and some antioxidant compounds of cauliflower by-products treated with putrescine under extreme temperatures in two different CO2 scenarios (the control (400 ppm) and a high concentration of CO2 (1000 ppm)) were studied. Additionally, the compositions of inner and outer leaves were also compared. According to results found in this work, cauliflower grown under elevated CO2 and treated with putrescine (2.5 mM) prior to heat stress showed the highest biomass accumulation (20%) compared to the control. Moreover, in the outer leaves from cauliflower grown under elevated CO2 and treated with putrescine prior to high temperature exposure, the highest biosynthesis of sugars (20%) was recorded. Although cauliflower by-products turned out to be rich in polyamines (208.6 nmoles g−1 fresh weight (FW) and 124.3 nmoles g−1 FW for outer and inner leaves, respectively) and phenolic compounds (1070.2 mg gallic acid equivalents ( (GAE) 100 g−1 FW in outer leaves and 772.0 mg GAE 100 g−1 FW in inner leaves), it was the outer leaves that after applying the new strategy showed the greatest increase in polyamines (68%) and phenolic compounds (39%), obtaining here the highest increase in antioxidant activity (3%). Thus, they should no longer be regarded as mere by-products and should be used for pharmaceutical or nutraceutical purposes. The novel strategy presented in this work may allow us to take advantage of both the continued increase in CO2 and heat waves that are becoming more frequent.
Collapse
|
4
|
Park SI, Kim JJ, Kim HS, Kim YS, Yoon HS. Enhanced glutathione content improves lateral root development and grain yield in rice plants. PLANT MOLECULAR BIOLOGY 2021; 105:365-383. [PMID: 33206358 DOI: 10.1007/s11103-020-01093-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 11/04/2020] [Indexed: 05/20/2023]
Abstract
Enhanced glutathione content improves lateral root development by positively regulating the transcripts of root development genes responsive to glutathione treatment, thereby increasing the overall productivity of rice plants. Glutathione is primarily known as a cellular antioxidant molecule, but its role in lateral root development in rice plants has not been elucidated. Here, we have investigated its role in lateral root development of rice Oryza sativa L. Exogenous glutathione (GSH) promoted both the number and length of lateral roots in rice, and the GSH biosynthesis inhibitor buthionine sulfoximine (BSO) significantly reduced these parameters, compared to untreated plants. The inhibition by BSO was reversed with exogenous GSH. Transcript profiling by RNA-seq revealed that expression of the transcription factor genes DREB and ERF and the hormone-related genes AOS, LOX, JAZ, and SAUR were significantly downregulated in the BSO-treated plants and, in contrast, upregulated in plants treated with GSH and with GSH and BSO together. We generated OsGS-overexpressing transgenic plants in which the transgene is controlled by the abiotic-stress-inducible OsRab21 promoter to study the effect of endogenously increased GSH levels. In cold stress, transgenic rice plants enhanced stress tolerance and lateral root development by maintaining redox homeostasis and improving upregulating the expression of transcription factors and hormone-related genes involved in lateral root development. We observed improved root growth of OsGS-overexpressing plants in paddy fields compared to the wild-type controls. These traits may have alleviated transplanting stress during early growth in the field and accounted for the increased productivity. These results provide information and perspectives on the role of GSH in gene expression, lateral root development, and grain yield in rice.
Collapse
Affiliation(s)
- Seong-Im Park
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Jin-Ju Kim
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Hyeng-Soo Kim
- Institute of Life Science and Biotechnology, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Young-Saeng Kim
- Research Institute for Dok-Do and Ulleung-Do, Kyungpook National University, Daegu, 41566, Republic of Korea.
| | - Ho-Sung Yoon
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea.
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, Republic of Korea.
- Advanced Bio-Resource Research Center, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
5
|
Sisymbrium Officinale (the Singers' Plant) as an Ingredient: Analysis of Somatosensory Active Volatile Isothiocyanates in Model Food and Drinks. Foods 2021; 10:foods10020308. [PMID: 33546123 PMCID: PMC7913150 DOI: 10.3390/foods10020308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/28/2021] [Accepted: 01/31/2021] [Indexed: 11/17/2022] Open
Abstract
Sisymbrium officinale (L.) Scop. (hedge mustard) is a wild common plant of the Brassicaceae family. It is known as “the singers’ plant” for its traditional use in treating aphonia and vocal disability. The plant is rich in glucosinolates and isothiocyanates; the latter has been demonstrated to be a strong agonist in vitro of the Transient Receptor Potential Ankirine 1 (TRPA1) channel, which is involved in the somatosensory perception of pungency as well as in the nociception pathway of inflammatory pain. Volatile ITCs are released by the enzymatic or chemical hydrolysis of GLSs (glucosinolates) during sample crushing and/or by the mastication of fresh plant tissues when the plant is used as an ingredient. Some functional food and drink model preparations have been realised: honey enriched with seeds and flowers, infusions, cold drink (voice drink), artisanal beer, and a fermented tea (kombucha). Using SPME-GCMS chromatography, we analysed samples of the plant and of the food preparations adopting conditions that simulate the release of isothiocyanates (ITCs) during oral assumption. Two active compounds, iso-propylisothiocyanate and 2-butylisothiocyanate, have been assayed. The concentration of ITCs varies according to temperature, pH, grinding conditions, and different plant organs used. Kombucha-type fermentation seems to eliminate the ITCs, whereas they are retained in beer. The ITCs’ concentration is higher when entire seeds and flowers are used.
Collapse
|
6
|
Abstract
Greenhouse horticulture is one of the most intensive agricultural systems, with the advantages of environmental parameter control (temperature, light, etc.), higher efficiency of resource utilization (water, fertilizers, etc.) and the use of advanced technologies (hydroponics, automation, etc.) for higher productivity, earliness, stability of production and better quality. On the other hand, climate change and the application of high inputs without suitable management could have negative impacts on the expansion of the greenhouse horticulture sector. This special issue gathers twelve papers: three reviews and nine of original research. There is one review that focuses on irrigation of greenhouse crops, while a second surveys the effects of biochar on container substrate properties and plant growth. A third review examines the impact of light quality on plant–microbe interactions, especially non-phototrophic organisms. The research papers report both the use of new technologies as well as advanced cultivation practices. In particular, new technologies are presented such as dye-sensitized solar cells for the glass cover of a greenhouse, automation for water and nitrogen deficit stress detection in soilless tomato crops based on spectral indices, light-emitting diode (LED) lighting and gibberellic acid supplementation on potted ornamentals, the integration of brewery wastewater treatment through anaerobic digestion with substrate-based soilless agriculture, and application of diatomaceous earth as a silica supplement on potted ornamentals. Research studies about cultivation practices are presented comparing different systems (organic-conventional, aeroponic-nutrient film technique (NFT)-substrate culture), quantitative criteria for determining the quality of grafted seedlings, and of wild species as alternative crops for cultivation.
Collapse
|
7
|
Zhang N, Jing P. Anthocyanins in Brassicaceae: composition, stability, bioavailability, and potential health benefits. Crit Rev Food Sci Nutr 2020; 62:2205-2220. [DOI: 10.1080/10408398.2020.1852170] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Nan Zhang
- Shanghai Food Safety and Engineering Technology Research Center, Key Lab of Urban Agriculture Ministry of Agriculture, Bor S. Luh Food Safety Research Center, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Pu Jing
- Shanghai Food Safety and Engineering Technology Research Center, Key Lab of Urban Agriculture Ministry of Agriculture, Bor S. Luh Food Safety Research Center, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
8
|
Borgonovo G, Zimbaldi N, Guarise M, Bedussi F, Winnig M, Vennegeerts T, Bassoli A. Glucosinolates in Sisymbrium officinale (L.) Scop.: Comparative Analysis in Cultivated and Wild Plants and in Vitro Assays with T2Rs Bitter Taste Receptors. Molecules 2019; 24:molecules24244572. [PMID: 31847178 PMCID: PMC6943552 DOI: 10.3390/molecules24244572] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/06/2019] [Accepted: 12/09/2019] [Indexed: 11/16/2022] Open
Abstract
Sisymbrium officinale (L.) Scop., commonly known as "hedge mustard" or "the singer's plant" is a wild plant common in Eurasian regions. Its cultivation is mainly dedicated to herboristic applications and it has only recently been introduced into Italy. The active botanicals in S. officinale are glucosinolates, generally estimated by using UV or high-performance liquid chromatography (HPLC). Using both techniques, we measured the total glucosinolates from S. officinale in different parts of the plant as roots, leaves, seeds, and flowers. A comparison was made for cultivated and wild samples, and for samples obtained with different pre-treatment and fresh, frozen, and dried storage conditions. Cultivated and wild plants have a comparable amount of total glucosinolates, while drying procedures can reduce the final glucosinolates content. The content in glucoputranjivin, which is the chemical marker for glucosinolates in S. officinale, has been determined using HPLC and a pure reference standard. Glucoputranjivin and two isothiocyanates from S. officinale have been submitted to in vitro assays with the platform of bitter taste receptors of the T2Rs family. The results show that glucoputranjivin is a selective agonist of receptor T2R16.
Collapse
Affiliation(s)
- Gigliola Borgonovo
- Department of Food, Environmental and Nutritional Sciences-DeFENS, University of Milan, Via Celoria 2, I-20133 Milano, Italy; (G.B.); (N.Z.)
| | - Nathan Zimbaldi
- Department of Food, Environmental and Nutritional Sciences-DeFENS, University of Milan, Via Celoria 2, I-20133 Milano, Italy; (G.B.); (N.Z.)
| | - Marta Guarise
- Department of Agricultural and Environmental Sciences-DISAA, University of Milan, Via Celoria 2, I-20133 Milano, Italy; (M.G.); (F.B.)
| | - Floriana Bedussi
- Department of Agricultural and Environmental Sciences-DISAA, University of Milan, Via Celoria 2, I-20133 Milano, Italy; (M.G.); (F.B.)
| | - Marcel Winnig
- IMAX Discovery GmbH, Otto-Hahn-Straße, 15, 44227 Dortmund, Germany; (M.W.); (T.V.)
- Axxam S.p.A. Via Meucci, 3, 20091 Bresso, Italy
| | - Timo Vennegeerts
- IMAX Discovery GmbH, Otto-Hahn-Straße, 15, 44227 Dortmund, Germany; (M.W.); (T.V.)
- Axxam S.p.A. Via Meucci, 3, 20091 Bresso, Italy
| | - Angela Bassoli
- Department of Food, Environmental and Nutritional Sciences-DeFENS, University of Milan, Via Celoria 2, I-20133 Milano, Italy; (G.B.); (N.Z.)
- Correspondence: ; Tel.: +39-025-031-6815
| |
Collapse
|
9
|
Chenopodium album L. and Sisymbrium officinale (L.) Scop.: Phytochemical Content and In Vitro Antioxidant and Anti-Inflammatory Potential. PLANTS 2019; 8:plants8110505. [PMID: 31731582 PMCID: PMC6918386 DOI: 10.3390/plants8110505] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 10/29/2019] [Accepted: 11/13/2019] [Indexed: 01/09/2023]
Abstract
Spontaneous edible plants have an old history of use in popular traditions all around the world, and the rediscovery of these species could also be useful for the search of new drugs. Chenopodium album L. (Amaranthaceae) and Sisymbrium officinale (L.) Scop. (Brassicaceae) are two annual plants traditionally used both as food and herbal remedies against inflammatory disorders. In this work, the potential anti-inflammatory and anti-arthritic activities of these plant species have been investigated, together with their antioxidant potential. The phytochemical composition was assessed as well by means of gas chromatography coupled to mass spectrometry (GC-MS) and high performance thin layer chromatography (HPTLC). The antioxidant properties were assessed using the DPPH and β-carotene bleaching test. The ability of extracts to protect against lipid peroxidation was also examined in rat-liver microsomal membranes. All the samples showed a preservation of antioxidant activity up to 60 min. A significant inhibitory activity on the production of the pro-inflammatory mediator nitric oxide was induced in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells by the dichloromethane fraction of C. album extract, with an IC50 value equal to 81.7 ± 0.9 μg/mL. The same sample showed also a concentration-dependent anti-denaturation effect on heat-treated bovine serum albumin (IC50 = 975.6 ± 5.5 μg/mL), even if the best in vitro anti-arthritic activity was observed for the dichloromethane fraction of S. officinale extract, with an IC50 value of 680.9 ± 13.2 μg/mL.
Collapse
|
10
|
Isothiocyanates and Glucosinolates from Sisymbrium officinale (L.) Scop. ("the Singers' Plant"): Isolation and in Vitro Assays on the Somatosensory and Pain Receptor TRPA1 Channel. Molecules 2019; 24:molecules24050949. [PMID: 30857138 PMCID: PMC6429275 DOI: 10.3390/molecules24050949] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 02/26/2019] [Accepted: 03/07/2019] [Indexed: 11/24/2022] Open
Abstract
Sisymbrium officinale (L.) Scop. is a wild common plant of the Brassicaceae family. It is known as “the singers’ plant” for its traditional use in treating aphonia and vocal disability. Despite its wide use in herbal preparations, the molecular mechanism of action of S. officinale extracts is not known. The plant is rich in glucosinolates and isothiocyanates, which are supposed to be its active compounds. Some members of this family, in particular allylisothiocyanate, are strong agonists of the transient receptor potential ankyrin 1 (TRPA1) channel, which is involved in the somatosensory perception of pungency as well as in the nociception pathway of inflammatory pain. This study aims to isolate the glucosinolates and isothiocianates from fresh S. officinale to identify the major components and test their activity in in vitro assays with a cloned TRPA1 channel. Samples of cultivated S. officinale have been extracted and the active compounds isolated by column chromatography, HPLC and PTLC. The main components glucoputranjivin, isopropylisothiocyanate and 2-buthylisothiocianate have been tested on TRPA1. The glucosinolates glucoputranjivin and sinigrin turned out to be inactive, while isopropylisothiocyanate and 2-buthylisothiocyanate are potent agonists of TRPA1, with an EC50 in the range of the high potency natural agonists identified so far for this somatosensory channel.
Collapse
|