1
|
Bhardwaj S, Kapoor B, Kapoor D, Thakur U, Dolma Y, Raza A. Manifold roles of potassium in mediating drought tolerance in plants and its underlying mechanisms. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 351:112337. [PMID: 39603421 DOI: 10.1016/j.plantsci.2024.112337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/22/2024] [Accepted: 11/23/2024] [Indexed: 11/29/2024]
Abstract
Drought stress (DS) is a major devastating factor affecting plant growth and development worldwide. Potassium (K) is considered a vigorous moiety and stress alleviator, which crop cultivars need for better yield. It is also helpful in alleviating the DS-induced negative consequences by regulating various morphological, physiological, biochemical, and molecular mechanisms in plants. Particularly, the K application improves plant tolerance against DS by improving plant growth parameters, photosynthetic pigments, cell turgor pressure, osmotic pressure, nutritional balance, compatible solutes, and the plant's antioxidant defense system. Apart from its role as a constituent of the plant structure, biochemical processes such as protein synthesis, carbohydrate metabolism, and enzyme activation are also regulated by K. However, the exact K-mediated molecular mechanisms of DS tolerance are still unclear and require more investigation. The present review aims to provide insight into the role of K in regulating various morphological and physico-chemical aspects under DS. It also emphasizes the crosstalk of K with other nutrients and phytohormones, as well as molecular mechanisms for K homeostasis under DS. We have also shed light on genomics analysis to discover K transporter's novel genes in different plant species.
Collapse
Affiliation(s)
- Savita Bhardwaj
- Department of Botany, MCM DAV College, Kangra, Himachal Pradesh 176001, India
| | - Bharat Kapoor
- Department of Hotel Management and Tourism, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Dhriti Kapoor
- School of Biological and Environmental Sciences, Shoolini University, Solan, Himachal Pradesh 173229, India.
| | - Usha Thakur
- Department of Botany, MCM DAV College, Kangra, Himachal Pradesh 176001, India
| | - Yanchen Dolma
- Department of Zoology, MCM DAV College, Kangra, Himachal Pradesh 176001, India
| | - Ali Raza
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
2
|
Anil Kumar S, Kaniganti S, Hima Kumari P, Sudhakar Reddy P, Suravajhala P, P S, Kishor PBK. Functional and biotechnological cues of potassium homeostasis for stress tolerance and plant development. Biotechnol Genet Eng Rev 2024; 40:3527-3570. [PMID: 36469501 DOI: 10.1080/02648725.2022.2143317] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/22/2022] [Accepted: 10/29/2022] [Indexed: 12/12/2022]
Abstract
Potassium (K+) is indispensable for the regulation of a plethora of functions like plant metabolism, growth, development, and abiotic stress responses. K+ is associated with protein synthesis and entangled in the activation of scores of enzymes, stomatal regulation, and photosynthesis. It has multiple transporters and channels that assist in the uptake, efflux, transport within the cell as well as from soil to different tissues, and the grain filling sites. While it is implicated in ion homeostasis during salt stress, it acts as a modulator of stomatal movements during water deficit conditions. K+ is reported to abate the effects of chilling and photooxidative stresses. K+ has been found to ameliorate effectively the co-occurrence of drought and high-temperature stresses. Nutrient deficiency of K+ makes leaves necrotic, leads to diminished photosynthesis, and decreased assimilate utilization highlighting the role it plays in photosynthesis. Notably, K+ is associated with the detoxification of reactive oxygen species (ROS) when plants are exposed to diverse abiotic stress conditions. It is irrefutable now that K+ reduces the activity of NADPH oxidases and at the same time maintains electron transport activity, which helps in mitigating the oxidative stress. K+ as a macronutrient in plant growth, the role of K+ during abiotic stress and the protein phosphatases involved in K+ transport have been reviewed. This review presents a holistic view of the biological functions of K+, its uptake, translocation, signaling, and the critical roles it plays under abiotic stress conditions, plant growth, and development that are being unraveled in recent times.
Collapse
Affiliation(s)
- S Anil Kumar
- Department of Biotechnology, Vignan's Foundation for Science, Technology & Research Deemed to be University, Guntur, Andhra Pradesh, India
| | - Sirisha Kaniganti
- Crop transformation Laboratory, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, India
| | | | - P Sudhakar Reddy
- Crop transformation Laboratory, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, India
| | | | - Suprasanna P
- Department of Biotechnology, Vignan's Foundation for Science, Technology & Research Deemed to be University, Guntur, Andhra Pradesh, India
- Amity Institute of Biotechnology, Amity University Mumbai, Bhatan, Mumbai, India
| | - P B Kavi Kishor
- Department of Biotechnology, Vignan's Foundation for Science, Technology & Research Deemed to be University, Guntur, Andhra Pradesh, India
| |
Collapse
|
3
|
Wang Q, Shan C, Zhang P, Zhao W, Zhu G, Sun Y, Wang Q, Jiang Y, Shakoor N, Rui Y. The combination of nanotechnology and potassium: applications in agriculture. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:1890-1906. [PMID: 38079036 DOI: 10.1007/s11356-023-31207-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 11/20/2023] [Indexed: 01/18/2024]
Abstract
Potassium fertilizer is indispensable for ensuring crop production, which in turn supports global food supply and safe farming practices. Potassium resources are primarily located in the Northern Hemisphere, leading to a current shortage of affordable potash and severe soil deficiencies in certain regions of the Southern Hemisphere. There is a shift away from mined salts in favor of locally available potassium resources. Utilizing potassium-rich silicates, for instance, could be a viable option to address this situation. The imperative of enhancing crop productivity and quality necessitates either increasing potassium availability or utilizing potassium more efficiently. Geneticists may find the development of plants that use potassium more effectively to be a valuable pursuit. Nanomaterials are increasingly becoming part of people's professional lives as a novel material category. This technology is gradually finding applications in agriculture to boost crop yields while reducing environmental pollution. This paper reviews the applications of common potassium-containing materials, explores the effects and mechanisms of nano-fertilizers on plants, and offers insights into future applications of nano-potassium fertilizers in agriculture. All in all, the application of nanotechnology in the production and utilization of potassium fertilizers is both necessary and effective. However, there are still many gaps in the current field of nano-potassium fertilizer application that require further research. It is hoped that this review can serve as a valuable reference for researchers working in this field.
Collapse
Affiliation(s)
- Qibin Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Chen Shan
- Department of Plant Nutrition, College of Resources and Environment, China Agricultural University, Beijing, 100193, China
| | - Peng Zhang
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Weichen Zhao
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Guikai Zhu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Yi Sun
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Quanlong Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Yaqi Jiang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Noman Shakoor
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Yukui Rui
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China.
- China Agricultural University Professor Workstation of Yuhuangmiao Town, Shanghe County, Jinan, Shandong, China.
- China Agricultural University Professor Workstation of Sunji Town, Shanghe County, Jinan, Shandong, China.
| |
Collapse
|
4
|
Wacal C, Basalirwa D, Byalebeka J, Tsubo M, Nishihara E. Low cost maize stover biochar as an alternative to inorganic fertilizer for improvement of soil chemical properties, growth and yield of tomatoes on degraded soil of Northern Uganda. BMC PLANT BIOLOGY 2023; 23:473. [PMID: 37803255 PMCID: PMC10559570 DOI: 10.1186/s12870-023-04468-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/15/2023] [Indexed: 10/08/2023]
Abstract
BACKGROUND Soil fertility decline due to nutrient mining coupled with low inorganic fertilizer usage is a major cause of low crop yields across sub-Saharan Africa. Recently, biochar potential to improve soil fertility has gained significant attention but there are limited studies on the use of biochar as an alternative to inorganic fertilizers. In this study, we determined the effect of maize stover biochar without inorganic fertilizers on soil chemical properties, growth and yield of tomatoes (Solanum lycopersicum L.). A field experiment was conducted in 2022 for two consecutive seasons in Northern Uganda. The experiment included five treatments; inorganic fertilizer (control), biochar applied at rates of 3.5, 6.9, 13.8 and 27.6 t ha-1. RESULTS In this study, maize stover biochar improved all the soil chemical properties. Compared to the control, pH significantly increased by 27% in the 27.6 t ha-1 while total N increased by 35.6% in the 13.8 t ha-1. Although P was significantly low in the 3.5 t ha-1, 6.9 t ha-1 and 13.8 t ha-1, it increased by 3.9% in the 27.6 t ha-1. Exchangeable K was significantly increased by 42.7% and 56.7% in the 13.8 t ha-1 and 27.6 t ha-1 respectively. Exchangeable Ca and Mg were also higher in the biochar treatment than the control. Results also showed that plant height, shoot weight, and all yield parameters were significantly higher in the inorganic fertilizer treatment than in the 3.5, 6.9, and 13.8 t ha-1 treatments. Interestingly, maize stover biochar at 27. 6 t ha-1 increased fruit yield by 16.1% compared to the control suggesting it could be used as an alternative to inorganic fertilizer. CONCLUSIONS Maize stover biochar applied at 27.6 t ha-1 improved soil chemical properties especially pH, N, P and K promoting growth and yield of tomatoes. Therefore, maize stover biochar could be recommended as an alternative to expensive inorganic fertilizers for tomato production in Northern Uganda.
Collapse
Affiliation(s)
- Cosmas Wacal
- Department of Crop and Animal Production, Faculty of Agriculture and Environmental Sciences, Mountains of the Moon University, P.O. Box 837, Fort Portal, Uganda.
- Department of Agriculture and Natural Resources, Faculty of Agriculture, Uganda Martyrs University, P.O. Box 5498, Kampala, Uganda.
| | - Daniel Basalirwa
- Department of Soil and Environment, Swedish University of Agricultural Sciences, Box 7014, 750 07, Uppsala, Sweden
| | - John Byalebeka
- Department of Agriculture and Natural Resources, Faculty of Agriculture, Uganda Martyrs University, P.O. Box 5498, Kampala, Uganda
| | - Mitsuri Tsubo
- Arid Land Research Center, Tottori University, 1390 Hamasaka, TottoriTottori, 680-0001, Japan
| | - Eiji Nishihara
- Faculty of Agriculture, Tottori University, 4-101 Koyama Minami, Tottori, 680-8553, Japan
| |
Collapse
|
5
|
Nieves-Cordones M, Amo J, Hurtado-Navarro L, Martínez-Martínez A, Martínez V, Rubio F. Inhibition of SlSKOR by SlCIPK23-SlCBL1/9 uncovers CIPK-CBL-target network rewiring in land plants. THE NEW PHYTOLOGIST 2023; 238:2495-2511. [PMID: 36967582 DOI: 10.1111/nph.18910] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 03/19/2023] [Indexed: 05/19/2023]
Abstract
Transport of K+ to the xylem is a key process in the mineral nutrition of the shoots. Although CIPK-CBL complexes have been widely shown to regulate K+ uptake transport systems, no information is available about the xylem ones. Here, we studied the physiological roles of the voltage-gated K+ channel SlSKOR and its regulation by the SlCIPK23-SlCBL1/9 complexes in tomato plants. We phenotyped gene-edited slskor and slcipk23 tomato knockout mutants and carried out two-electrode voltage-clamp (TEVC) and BiFC assays in Xenopus oocytes as key approaches. SlSKOR was preferentially expressed in the root stele and was important not only for K+ transport to shoots but also, indirectly, for that of Ca2+ , Mg2+ , Na+ , NO3 - , and Cl- . Surprisingly, the SlCIPK23-SlCBL1/9 complexes turned out to be negative regulators of SlSKOR. Inhibition of SlSKOR by SlCIPK23-SlCBL1/9 was observed in Xenopus oocytes and tomato plants. Regulation of SKOR-like channels by CIPK23-CBL1 complexes was also present in Medicago, grapevine, and lettuce but not in Arabidopsis and saltwater cress. Our results provide a molecular framework for coordinating root K+ uptake and its translocation to the shoot by SlCIPK23-SlCBL1/9 in tomato plants. Moreover, they evidenced that CIPK-CBL-target networks have evolved differently in land plants.
Collapse
Affiliation(s)
- Manuel Nieves-Cordones
- Departamento de Nutrición Vegetal, Centro de Edafología y Biología Aplicada del Segura-CSIC, Murcia, 30100, Spain
| | - Jesús Amo
- Departamento de Nutrición Vegetal, Centro de Edafología y Biología Aplicada del Segura-CSIC, Murcia, 30100, Spain
| | - Laura Hurtado-Navarro
- Departamento de Nutrición Vegetal, Centro de Edafología y Biología Aplicada del Segura-CSIC, Murcia, 30100, Spain
| | - Almudena Martínez-Martínez
- Departamento de Nutrición Vegetal, Centro de Edafología y Biología Aplicada del Segura-CSIC, Murcia, 30100, Spain
| | - Vicente Martínez
- Departamento de Nutrición Vegetal, Centro de Edafología y Biología Aplicada del Segura-CSIC, Murcia, 30100, Spain
| | - Francisco Rubio
- Departamento de Nutrición Vegetal, Centro de Edafología y Biología Aplicada del Segura-CSIC, Murcia, 30100, Spain
| |
Collapse
|
6
|
Heidari Z, Noruzi P, Rezapour-Fard J, Jabbarzadeh Z. Different LED light spectra's and nano-chelated potassium affect the quality traits of Dolce Vita cut roses in soilless culture condition. Sci Rep 2023; 13:6769. [PMID: 37185995 PMCID: PMC10130164 DOI: 10.1038/s41598-023-34056-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 04/24/2023] [Indexed: 05/17/2023] Open
Abstract
Roses are classified as neutral day plants, but high light and cool temperatures produce high quality flowers in roses. As light quantity, the light quality and its special spectra can affect the flower yield and quality. This research aimed to study of the effect of LED light (control (sunlight), blue and red spectra's) and nano-chelated potassium at three levels (0, 1.5 and 3 g/l) on some morphophysiological and biochemical traits of Rosa hybrida cv. Dolce Vita. Light and nano-chelated potassium treatments have a significant effect on most traits measured in the present study. According to the results, the use of red light and nano-chelated potassium in rose cultivation improved the quality characteristics and increased vase life. The highest fresh and dry weight of flowering branch and plant height was observed in red light treatment and the concentration of 3 g/l nano-chelated potassium. Biochemical parameters such as phenolic compounds, leaf and petal flavonoids, petal anthocyanin content, antioxidant capacity and vase life were also significantly increased under red light and with the concentration of 3 g/l nano-chelated potassium compared to the control. In general, it can be said that the use of red light and a concentration of 3 g/l nano-chelated potassium, can be effective in improving the quality of rose flowers, especially in low light condition.
Collapse
Affiliation(s)
- Zahra Heidari
- Department of Horticultural Sciences, Faculty of Agriculture, Urmia University, P.O. Box: 165-5715944931, Urmia, Iran
| | - Parviz Noruzi
- Department of Horticultural Sciences, Faculty of Agriculture, Urmia University, P.O. Box: 165-5715944931, Urmia, Iran.
| | - Javad Rezapour-Fard
- Department of Horticultural Sciences, Faculty of Agriculture, Urmia University, P.O. Box: 165-5715944931, Urmia, Iran
| | - Zohreh Jabbarzadeh
- Department of Horticultural Sciences, Faculty of Agriculture, Urmia University, P.O. Box: 165-5715944931, Urmia, Iran
| |
Collapse
|
7
|
Johnson R, Vishwakarma K, Hossen MS, Kumar V, Shackira AM, Puthur JT, Abdi G, Sarraf M, Hasanuzzaman M. Potassium in plants: Growth regulation, signaling, and environmental stress tolerance. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 172:56-69. [PMID: 35032888 DOI: 10.1016/j.plaphy.2022.01.001] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 12/02/2021] [Accepted: 01/02/2022] [Indexed: 05/14/2023]
Abstract
Potassium (K) is an essential element for the growth and development of plants; however, its scarcity or excessive level leads to distortion of numerous functions in plants. It takes part in the control of various significant functions in plant advancement. Because of the importance index, K is regarded second after nitrogen for whole plant growth. Approximately, higher than 60 enzymes are reliant on K for activation within the plant system, in which K plays a vital function as a regulator. Potassium provides assistance in plants against abiotic stress conditions in the environment. With this background, the present paper reviews the physiological functions of K in plants like stomatal regulation, photosynthesis and water uptake. The article also focuses upon the uptake and transport mechanisms of K along with its role in detoxification of reactive oxygen species and in conferring tolerance to plants against abiotic stresses. It also highlights the research progress made in the direction of K mediated signaling cascades.
Collapse
Affiliation(s)
- Riya Johnson
- Plant Physiology and Biochemistry Division, Department of Botany, University of Calicut, C.U. Campus P.O, Kerala, 673635, India
| | | | - Md Shahadat Hossen
- Independent Researcher, C/O: Prof. Mirza Hasanuzzaman, Department of Agronomy, Sher-e-Bangla Agricultural University, Dhaka-1207, Bangladesh
| | - Vinod Kumar
- Department of Botany, Government Degree College, Ramban, 182144, Jammu and Kashmir, India
| | - A M Shackira
- Department of Botany, Sir Syed College, Taliparamba, Kannur, Kerala, 670142, India
| | - Jos T Puthur
- Plant Physiology and Biochemistry Division, Department of Botany, University of Calicut, C.U. Campus P.O, Kerala, 673635, India
| | - Gholamreza Abdi
- Department of Biotechnology, Persian Gulf Research Institute, Persian Gulf University, Bushehr 75169, Iran
| | - Mohammad Sarraf
- Department of Horticulture Science, Shiraz Branch, Islamic Azad University, Shiraz, Iran.
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka, 1207, Bangladesh.
| |
Collapse
|
8
|
Managing the Product Quality of Vegetable Crops under Abiotic Stress. HORTICULTURAE 2021. [DOI: 10.3390/horticulturae8010025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Plants, as sessile organisms, are continuously exposed to varying environmental conditions and often face abiotic and biotic threats [...]
Collapse
|
9
|
Parada F, Gabarrell X, Rufí-Salís M, Arcas-Pilz V, Muñoz P, Villalba G. Optimizing irrigation in urban agriculture for tomato crops in rooftop greenhouses. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 794:148689. [PMID: 34323776 DOI: 10.1016/j.scitotenv.2021.148689] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/11/2021] [Accepted: 06/22/2021] [Indexed: 06/13/2023]
Abstract
The rise of population in urban areas makes it ever more important to promote urban agriculture (UA) that is efficient in terms of water and nutrients. How to meet the irrigation demand of UA is of particular concern in urban areas where water sources are often limited. With the aim of determining how to reduce water use for irrigation while maintaining productivity and reducing environmental impacts in UA, this study explores the agronomic performance and environmental life cycle impacts and benefits of three different fertigation management practices used in a rooftop greenhouse for tomato crop in Barcelona: 1) open management (OP); 2) recirculation (RC), in which 30% of the drained, unused water is used to irrigate the crop; and 3) the same recirculated management of RC with a further reduction in fresh water input of 15%(RR). Despite the recirculation and reduction of water and nutrients, all three irrigation management practices resulted in similar yields: 16.2, 17.9, and 16.8·kg·m-2 for OP, RC, and RR, respectively. In terms of water-use efficiency, RR management was the most efficient, requiring 48.7·liters·kg-1 of tomato, followed by RC (52.4·L·kg-1) and OP (75.2·L·kg-1). RR presented an improvement of 7% in water-use efficiency. In terms of environmental performance, RC had the best performance in almost all impact categories during the operational phase, especially in regard to marine and freshwater eutrophication, with 44% and 93% fewer impacts than OP due to the recirculation of nutrients and reduced nutrient loss through leachates. In terms of infrastructure, even though recirculation management requires additional equipment, the materials present better performance in the range from 0.2 to 14% depending on the impact category. This study can support evaluation of agricultural projects in the city, through yields and water consumption presented, incentivizing good practices aligned with the sustainability of UA.
Collapse
Affiliation(s)
- Felipe Parada
- Sostenipra Research Group (SGR 1683), Institute of Environmental Sciences and Technology (ICTA-UAB), MdM Unit of Excellence, Universitat (CEX2019-000940-M) Autònoma de Barcelona (UAB), Campus UAB, 08193 Bellaterra, Barcelona, Spain.
| | - Xavier Gabarrell
- Sostenipra Research Group (SGR 1683), Institute of Environmental Sciences and Technology (ICTA-UAB), MdM Unit of Excellence, Universitat (CEX2019-000940-M) Autònoma de Barcelona (UAB), Campus UAB, 08193 Bellaterra, Barcelona, Spain; Department of Chemical, Biological and Environmental Engineering, School of Engineering, Building Q, Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain.
| | - Martí Rufí-Salís
- Sostenipra Research Group (SGR 1683), Institute of Environmental Sciences and Technology (ICTA-UAB), MdM Unit of Excellence, Universitat (CEX2019-000940-M) Autònoma de Barcelona (UAB), Campus UAB, 08193 Bellaterra, Barcelona, Spain.
| | - Verónica Arcas-Pilz
- Sostenipra Research Group (SGR 1683), Institute of Environmental Sciences and Technology (ICTA-UAB), MdM Unit of Excellence, Universitat (CEX2019-000940-M) Autònoma de Barcelona (UAB), Campus UAB, 08193 Bellaterra, Barcelona, Spain.
| | - Pere Muñoz
- Sostenipra Research Group (SGR 1683), Institute of Environmental Sciences and Technology (ICTA-UAB), MdM Unit of Excellence, Universitat (CEX2019-000940-M) Autònoma de Barcelona (UAB), Campus UAB, 08193 Bellaterra, Barcelona, Spain.
| | - Gara Villalba
- Sostenipra Research Group (SGR 1683), Institute of Environmental Sciences and Technology (ICTA-UAB), MdM Unit of Excellence, Universitat (CEX2019-000940-M) Autònoma de Barcelona (UAB), Campus UAB, 08193 Bellaterra, Barcelona, Spain; Department of Chemical, Biological and Environmental Engineering, School of Engineering, Building Q, Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain.
| |
Collapse
|