1
|
Yutilova K, Shved E, Rozantsev G, Adamski A. Russia-Ukraine war impacts on environment: warfare chemical pollution and recovery prospects. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:5685-5702. [PMID: 39964404 DOI: 10.1007/s11356-025-36098-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 02/08/2025] [Indexed: 03/18/2025]
Abstract
As it is commonly known, the full-scale conflict between Russia and Ukraine started on February 24th, 2022. It has not only caused various geopolitical, strategic, and humanitarian challenges, shortages of basic goods, and infrastructural disruptions but also had significant consequences for the natural environment of the Ukrainian territory. This review article contains the comprehensive analysis of the multifaceted environmental challenges arising from the ongoing war, examining the instant and long-term impacts on air and water quality, soil health, biodiversity, and discusses possible measures on remediation of affected areas. The consequences of contamination of natural resources through military activities, the disruption of critical ecosystems, and the subsequent threats for human health in living and future generations, are described in this review. Through an in-depth analysis of scientific literature, governmental reports, and various international assessments, this review aims to emphasize the impact of the armed conflict in Ukraine on environmental degradation and its selected consequences.
Collapse
Affiliation(s)
- Kseniia Yutilova
- Faculty of Chemistry, Biology and Biotechnologies, Vasyl' Stus Donetsk National University, Vinnytsia, 21021, Ukraine.
| | - Elena Shved
- Faculty of Chemistry, Biology and Biotechnologies, Vasyl' Stus Donetsk National University, Vinnytsia, 21021, Ukraine
| | - Georgiy Rozantsev
- Faculty of Chemistry, Biology and Biotechnologies, Vasyl' Stus Donetsk National University, Vinnytsia, 21021, Ukraine
| | - Andrzej Adamski
- Faculty of Chemistry, Jagiellonian University, 30-387, Kraków, Poland
| |
Collapse
|
2
|
Wang Y, Nie B, Zheng S, Wu H, Chen N, Wang D. Emerging activated tungsten dust: Source, environmental behaviors, and health effects. ENVIRONMENT INTERNATIONAL 2024; 188:108774. [PMID: 38810497 DOI: 10.1016/j.envint.2024.108774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/18/2024] [Accepted: 05/23/2024] [Indexed: 05/31/2024]
Abstract
Fusion energy investigation has stepped to a new stage adopting deuterium and tritium as fuels from the previous stage concentrating hydrogen plasma physics. Special radiation safety issues would be introduced during this stage. In addition to industrial and military uses, tungsten is also regarded as the most promising plasma facing material for fusion reactors. During the operation of fusion reactors, tungsten-based plasma facing materials can be activated via neutron nuclear reaction. Meanwhile, activated tungsten dust can be produced when high-energy plasma interacts with the tungsten-based plasma facing materials, namely plasma wall interaction. Activated tungsten dust would be an emerging environmental pollutant with radiation toxicity containing various radionuclides in addition to the chemical toxicity of tungsten itself. Nonetheless, the historical underestimation of its environmental availability has led to limited research on tungsten compared to other environmental contaminants. This paper presents the first systematic review on the safety issue of emerging activated tungsten dust, encompassing source terms, environmental behaviors, and health effects. The key contents are as follows: 1) to detail the source terms of activated tungsten dust from aspects of tungsten basic properties, generation mechanism, physical morphology and chemical component, radioactivity, as well as potential release pathways, 2) to illustrate the environmental behaviors from aspects of atmospheric dispersion and deposition, transformation and migration in soil, as well as plant absorption and distribution, 3) to identify the toxicity and health effects from aspects of toxicity to plants, distribution in human body, as well as health effects by radiation and chemical toxicity, 4) based on the research progress, research and development issues needed are also pointed out to better knowledge of safety issue of activated tungsten dust, which would be beneficial to the area of fusion energy and ecological impact caused by the routine tungsten related industrial and military applications.
Collapse
Affiliation(s)
- Yuxuan Wang
- School of Nuclear Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Baojie Nie
- School of Nuclear Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Shanliang Zheng
- Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, 230031, China
| | - Hanyu Wu
- Sino-French Institute of Nuclear Engineering and Technology, Sun Yat-sen University, Zhuhai, 519082, China
| | - Ni Chen
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Dezhong Wang
- School of Nuclear Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
3
|
Skalny AV, Aschner M, Bobrovnitsky IP, Chen P, Tsatsakis A, Paoliello MMB, Buha Djordevic A, Tinkov AA. Environmental and health hazards of military metal pollution. ENVIRONMENTAL RESEARCH 2021; 201:111568. [PMID: 34174260 DOI: 10.1016/j.envres.2021.111568] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/18/2021] [Accepted: 06/18/2021] [Indexed: 06/13/2023]
Abstract
An increasing body of literature has demonstrated that armed conflicts and military activity may contribute to environmental pollution with metals, although the existing data are inconsistent. Therefore, in this paper, we discuss potential sources of military-related metal emissions, environmental metal contamination, as well as routes of metal exposure and their health hazards in relation to military activities. Emission of metals into the environment upon military activity occurs from weapon residues containing high levels of particles containing lead (Pb; leaded ammunition), copper (Cu; unleaded), and depleted uranium (DU). As a consequence, military activity results in soil contamination with Pb and Cu, as well as other metals including Cd, Sb, Cr, Ni, Zn, with subsequent metal translocation to water, thus increasing the risk of human exposure. Biomonitoring studies have demonstrated increased accumulation of metals in plants, invertebrates, and vertebrate species (fish, birds, mammals). Correspondingly, military activity is associated with human metal exposure that results from inhalation or ingestion of released particles, as well as injuries with subsequent metal release from embedded fragments. It is also notable that local metal accumulation following military injury may occur even without detectable fragments. Nonetheless, data on health effects of military-related metal exposures have yet to be systematized. The existing data demonstrate adverse neurological, cardiovascular, and reproductive outcomes in exposed military personnel. Moreover, military-related metal exposures also result in adverse neurodevelopmental outcome in children living within adulterated territories. Experimental in vivo and in vitro studies also demonstrated toxic effects of specific metals as well as widely used metal alloys, although laboratory data report much wider spectrum of adverse effects as compared to epidemiological studies. Therefore, further epidemiological, biomonitoring and laboratory studies are required to better characterize military-related metal exposures and their underlying mechanisms of their adverse toxic effects.
Collapse
Affiliation(s)
- Anatoly V Skalny
- IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia; KG Razumovsky Moscow State University of Technologies and Management, Moscow, Russia
| | - Michael Aschner
- IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia; Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Igor P Bobrovnitsky
- IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia; Centre for Strategic Planning of FMBA of Russia, Moscow, Russia
| | - Pan Chen
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Aristidis Tsatsakis
- IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia; Laboratory of Toxicology, Medical School, University of Crete, Voutes, Heraklion, Crete, Greece
| | - Monica M B Paoliello
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Aleksandra Buha Djordevic
- Department of Toxicology "Akademik Danilo Soldatović", University of Belgrade - Faculty of Pharmacy, Belgrade, Serbia
| | - Alexey A Tinkov
- IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia; Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, Yaroslavl, Russia.
| |
Collapse
|
4
|
Vechetti IJ, Wen Y, Hoffman JF, Alimov AP, Vergara VB, Kalinich JF, Gaitens JM, Hines SE, McDiarmid MA, McCarthy JJ, Peterson CA. Urine miRNAs as potential biomarkers for systemic reactions induced by exposure to embedded metal. Biomark Med 2021; 15:1397-1410. [PMID: 34541869 DOI: 10.2217/bmm-2021-0120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Aim: Explore the potential of urine microRNAs as biomarkers that may reflect the biological responses to pure metals embedded in skeletal muscle over time. Materials & methods: We tested a panel of military-relevant metals embedded in the gastrocnemius muscles of 3-month-old, male, Sprague-Dawley rats (n = 8/group) for a duration of 1, 3, 6 and 12 months, and performed small RNA-sequencing on the urine samples. Results: Results provide potential tissue targets affected by metal exposure and a list of unique or common urine microRNA biomarkers indicative of exposure to various metals, highlighting a complex systemic response. Conclusion: We have identified a panel of miRNAs as potential urine biomarkers to reflect the complex systemic response to embedded metal exposure.
Collapse
Affiliation(s)
- Ivan J Vechetti
- Department of Nutrition & Health Sciences, College of Education & Human Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Yuan Wen
- Department of Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, KY 40536, USA
- Center for Muscle Biology, University of Kentucky, Lexington, KY 40536, USA
| | - Jessica F Hoffman
- Internal Contamination & Metal Toxicity Program, Armed Forces Radiobiology Research Institute, Uniformed Services University, Bethesda, MD 20814, USA
| | - Alexander P Alimov
- Center for Muscle Biology, University of Kentucky, Lexington, KY 40536, USA
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Vernieda B Vergara
- Internal Contamination & Metal Toxicity Program, Armed Forces Radiobiology Research Institute, Uniformed Services University, Bethesda, MD 20814, USA
| | - John F Kalinich
- Internal Contamination & Metal Toxicity Program, Armed Forces Radiobiology Research Institute, Uniformed Services University, Bethesda, MD 20814, USA
| | - Joanna M Gaitens
- Department of Veterans Affairs Medical Center Baltimore, Baltimore, MD 21201, USA
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Stella E Hines
- Department of Veterans Affairs Medical Center Baltimore, Baltimore, MD 21201, USA
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Melissa A McDiarmid
- Department of Veterans Affairs Medical Center Baltimore, Baltimore, MD 21201, USA
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - John J McCarthy
- Center for Muscle Biology, University of Kentucky, Lexington, KY 40536, USA
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Charlotte A Peterson
- Department of Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, KY 40536, USA
- Center for Muscle Biology, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
5
|
Wen Y, Vechetti IJ, Alimov AP, Hoffman JF, Vergara VB, Kalinich JF, McCarthy JJ, Peterson CA. Time-course analysis of the effect of embedded metal on skeletal muscle gene expression. Physiol Genomics 2020; 52:575-587. [PMID: 33017228 DOI: 10.1152/physiolgenomics.00096.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
As a consequence of military operations, many veterans suffer from penetrating wounds and long-term retention of military-grade heavy metal fragments. Fragments vary in size and location, and complete surgical removal may not be feasible or beneficial in all cases. Increasing evidence suggests retention of heavy metal fragments may have serious biological implications, including increased risks for malignant transformation. Previous studies assessed the tumorigenic effects of metal alloys in rats, demonstrating combinations of metals are sufficient to induce tumor formation after prolonged retention in skeletal muscle tissue. In this study, we analyzed transcriptional changes in skeletal muscle tissue in response to eight different military-relevant pure metals over 12 mo. We found that most transcriptional changes occur at 1 and 3 mo after metal pellets are embedded in skeletal muscle and these effects resolve at 6 and 12 mo. We also report significant immunogenic effects of nickel and cobalt and suppressive effects of lead and depleted uranium on gene expression. Overall, skeletal muscle exhibits a remarkable capacity to adapt to and recover from internalized metal fragments; however, the cellular response to chronic exposure may be restricted to the metal-tissue interface. These data suggest that unless affected regions are specifically captured by biopsy, it would be difficult to reliably detect changes in muscle gene expression that would be indicative of long-term adverse health outcomes.
Collapse
Affiliation(s)
- Yuan Wen
- Department of Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, Kentucky.,Center for Muscle Biology, University of Kentucky, Lexington, Kentucky
| | - Ivan J Vechetti
- Center for Muscle Biology, University of Kentucky, Lexington, Kentucky.,Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky
| | - Alexander P Alimov
- Center for Muscle Biology, University of Kentucky, Lexington, Kentucky.,Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky
| | - Jessica F Hoffman
- Internal Contamination and Metal Toxicity Program, Armed Forces Radiobiology Research Institute, Uniformed Services University, Bethesda, Maryland
| | - Vernieda B Vergara
- Internal Contamination and Metal Toxicity Program, Armed Forces Radiobiology Research Institute, Uniformed Services University, Bethesda, Maryland
| | - John F Kalinich
- Internal Contamination and Metal Toxicity Program, Armed Forces Radiobiology Research Institute, Uniformed Services University, Bethesda, Maryland
| | - John J McCarthy
- Center for Muscle Biology, University of Kentucky, Lexington, Kentucky.,Department of Physiology, College of Medicine, University of Kentucky, Lexington, Kentucky
| | - Charlotte A Peterson
- Department of Physical Therapy, College of Health Sciences, University of Kentucky, Lexington, Kentucky.,Center for Muscle Biology, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
6
|
Bannon DI, Bao W, Turner SD, McCain WC, Dennis W, Wolfinger R, Perkins E, Abounader R. Gene expression in mouse muscle over time after nickel pellet implantation. Metallomics 2020; 12:528-538. [PMID: 32065191 DOI: 10.1039/c9mt00289h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The transition metal nickel is used in a wide variety of alloys and medical devices. Nickel can cause a range of toxicities from allergy in humans to tumors when implanted in animals. Several microarray studies have examined nickel toxicity, but so far none have comprehensively profiled expression over an extended period. In this work, male mice were implanted with a single nickel pellet in the muscle of the right leg with the left leg used as a control. At 3 week intervals up to 12 months, nickel concentrations in bioflulids and microarrays of surrounding tissue were used to track gene expression patterns. Pellet biocorrosion resulted in varying levels of systemic nickel over time, with peaks of 600 μg L-1 in serum, while global gene expression was cyclical in nature with immune related genes topping the list of overexpressed genes. IPA and KEGG pathway analyses was used to attribute overall biological function to changes in gene expression levels, supported by GO enrichment analysis. IPA pathways identified sirtuin, mitochondria, and oxidative phosphorylation as top pathways, based predominantly on downregulated genes, whereas immune processes were associated with upregulated genes. Top KEGG pathways identified were lysosome, osteoclast differentiation, and phasgosome. Both pathway approaches identified common immune responses, as well as hypoxia, toll like receptor, and matrix metalloproteinases. Overall, pathway analysis identified a negative impact on energy metabolism, and a positive impact on immune function, in particular the acute phase response. Inside the cell the impacts were on mitochondria and lysosome. New pathways and genes responsive to nickel were identified from the large dataset in this study which represents the first long-term analysis of the effects of chronic nickel exposure on global gene expression.
Collapse
Affiliation(s)
- Desmond I Bannon
- U.S. Army Public Health Centre, Toxicology Directorate, 8988 Willoughby Road, Aberdeen Proving Ground, Maryland 21010, USA.
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Palombella S, Pirrone C, Rossi F, Armenia I, Cherubino M, Valdatta L, Raspanti M, Bernardini G, Gornati R. Effects of Metal Micro and Nano-Particles on hASCs: An In Vitro Model. NANOMATERIALS 2017; 7:nano7080212. [PMID: 28771169 PMCID: PMC5575694 DOI: 10.3390/nano7080212] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 07/27/2017] [Accepted: 07/31/2017] [Indexed: 01/15/2023]
Abstract
As the knowledge about the interferences of nanomaterials on human staminal cells are scarce and contradictory, we undertook a comparative multidisciplinary study based on the size effect of zero-valent iron, cobalt, and nickel microparticles (MPs) and nanoparticles (NPs) using human adipose stem cells (hASCs) as a model, and evaluating cytotoxicity, morphology, cellular uptake, and gene expression. Our results suggested that the medium did not influence the cell sensitivity but, surprisingly, the iron microparticles (FeMPs) resulted in being toxic. These data were supported by modifications in mRNA expression of some genes implicated in the inflammatory response. Microscopic analysis confirmed that NPs, mainly internalized by endocytosis, persist in the vesicles without any apparent cell damage. Conversely, MPs are not internalized, and the effects on hASCs have to be ascribed to the release of ions in the culture medium, or to the reduced oxygen and nutrient exchange efficiency due to the presence of MP agglomerating around the cells. Notwithstanding the results depicting a heterogeneous scene that does not allow drawing a general conclusion, this work reiterates the importance of comparative investigations on MPs, NPs, and corresponding ions, and the need to continue the thorough verification of NP and MP innocuousness to ensure unaffected stem cell physiology and differentiation.
Collapse
Affiliation(s)
- Silvia Palombella
- Department of Biotechnology and Life Sciences, University of Insubria, via J.H. Dunant 3, 21100 Varese, Italy.
| | - Cristina Pirrone
- Department of Biotechnology and Life Sciences, University of Insubria, via J.H. Dunant 3, 21100 Varese, Italy.
| | - Federica Rossi
- Department of Biotechnology and Life Sciences, University of Insubria, via J.H. Dunant 3, 21100 Varese, Italy.
| | - Ilaria Armenia
- Department of Biotechnology and Life Sciences, University of Insubria, via J.H. Dunant 3, 21100 Varese, Italy.
| | - Mario Cherubino
- Department of Biotechnology and Life Sciences, University of Insubria, via J.H. Dunant 3, 21100 Varese, Italy.
| | - Luigi Valdatta
- Department of Biotechnology and Life Sciences, University of Insubria, via J.H. Dunant 3, 21100 Varese, Italy.
| | - Mario Raspanti
- Department of Medicine and Surgery, University of Insubria, Via Guicciardini 9, 21100 Varese, Italy.
| | - Giovanni Bernardini
- Department of Biotechnology and Life Sciences, University of Insubria, via J.H. Dunant 3, 21100 Varese, Italy.
- The Protein Factory Research Center, Politecnico of Milano, ICRM-CNR Milano and University of Insubria, Via Mancinelli 7, 20131 Milano, Italy.
| | - Rosalba Gornati
- Department of Biotechnology and Life Sciences, University of Insubria, via J.H. Dunant 3, 21100 Varese, Italy.
- The Protein Factory Research Center, Politecnico of Milano, ICRM-CNR Milano and University of Insubria, Via Mancinelli 7, 20131 Milano, Italy.
| |
Collapse
|
8
|
Elemental tungsten, tungsten–nickel alloys and shotgun ammunition: resolving issues of their relative toxicity. EUR J WILDLIFE RES 2015. [DOI: 10.1007/s10344-015-0979-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
9
|
Adams V, Dennis W, Bannon D. Toxic and transcriptional responses of PC12 cells to soluble tungsten alloy surrogates. Toxicol Rep 2015; 2:1437-1444. [PMID: 28962486 PMCID: PMC5598275 DOI: 10.1016/j.toxrep.2015.09.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 09/18/2015] [Indexed: 11/18/2022] Open
Abstract
There is increasing evidence that metals have a role in the etiology of diverse neurological diseases. This study used PC12 cells as an in vitro model to examine the toxicity of tungsten alloys that have important military applications. Initially, the relative concentrations of tungsten (W), nickel (Ni), and cobalt (Co) mobilized from pellets of a weapons-grade tungsten alloy incubated in physiologically relevant solutions were determined. Dosing solutions of soluble metal salts that were equivalent in ratio to those mobilized from these alloy pellets were used to treat nerve growth factor (NGF) differentiated PC12 cells. Treatments consisted of single (W, Ni or Co), paired (W/Ni, W/Co or Ni/Co) or complete (W/Ni/Co) metal exposures for 24 h followed by measurement of cytotoxicity, viability, and microarray analysis to examine their impact on survival and viability, global gene expression, and biological processes. Gene expression changed dramatically with addition of NGF. Addition of Ni or Co either singly or in combination further impacted gene expression. An observed additive effect of Ni and Co on gene expression was unaffected by the addition of W. The work showed that tungsten, as found in this tungsten alloy, had minimal relative toxicity as compared to the other alloy components when used either alone or in combination.
Collapse
Affiliation(s)
- V.H. Adams
- Army Public Health Center, Toxicology Portfolio, 5158 Blackhawk Rd. ATTN:MCHB-IP-THE, Aberdeen Proving Ground, MD 21010, United States
- Corresponding author. Fax: +1 410 436 8258.
| | - W.E. Dennis
- US Army Center for Environmental Health Research, Department of Chemistry, Fort Detrick, MD 21702-5010, United States
| | - D.I. Bannon
- Army Public Health Center, Toxicology Portfolio, 5158 Blackhawk Rd. ATTN:MCHB-IP-THE, Aberdeen Proving Ground, MD 21010, United States
| |
Collapse
|
10
|
Harris RM, Williams TD, Waring RH, Hodges NJ. Molecular basis of carcinogenicity of tungsten alloy particles. Toxicol Appl Pharmacol 2015; 283:223-33. [PMID: 25620057 DOI: 10.1016/j.taap.2015.01.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 01/10/2015] [Accepted: 01/13/2015] [Indexed: 11/18/2022]
Abstract
The tungsten alloy of 91% tungsten, 6% nickel and 3% cobalt (WNC 91-6-3) induces rhabdomyosarcoma when implanted into a rat thigh muscle. To investigate whether this effect is species-specific human HSkMc primary muscle cells were exposed to WNC 91-6-3 particles and responses were compared with those from a rat skeletal muscle cell line (L6-C11). Toxicity was assessed by the adenylate kinase assay and microscopy, DNA damage by the Comet assay. Caspase 3 enzyme activity was measured and oligonucleotide microarrays were used for transcriptional profiling. WNC 91-6-3 particles caused toxicity in cells adjacent to the particles and also increased DNA strand breaks. Inhibition of caspase 3 by WNC 91-6-3 occurred in rat but not in human cells. In both rat and human cells, the transcriptional response to WNC 91-6-3 showed repression of transcripts encoding muscle-specific proteins with induction of glycolysis, hypoxia, stress responses and transcripts associated with DNA damage and cell death. In human cells, genes encoding metallothioneins were also induced, together with genes related to angiogenesis, dysregulation of apoptosis and proliferation consistent with pre-neoplastic changes. An alloy containing iron, WNF 97-2-1, which is non-carcinogenic in vivo in rats, did not show these transcriptional changes in vitro in either species while the corresponding cobalt-containing alloy, WNC 97-2-1 elicited similar responses to WNC 91-6-3. Tungsten alloys containing both nickel and cobalt therefore have the potential to be carcinogenic in man and in vitro assays coupled with transcriptomics can be used to identify alloys, which may lead to tumour formation, by dysregulation of biochemical processes.
Collapse
Affiliation(s)
- Robert M Harris
- School of Biosciences, The University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Tim D Williams
- School of Biosciences, The University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Rosemary H Waring
- School of Biosciences, The University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Nikolas J Hodges
- School of Biosciences, The University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| |
Collapse
|
11
|
Kumbıçak U, Cavaş T, Cinkılıç N, Kumbıçak Z, Vatan O, Yılmaz D. Evaluation of in vitro cytotoxicity and genotoxicity of copper-zinc alloy nanoparticles in human lung epithelial cells. Food Chem Toxicol 2014; 73:105-12. [PMID: 25116682 DOI: 10.1016/j.fct.2014.07.040] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Revised: 07/07/2014] [Accepted: 07/31/2014] [Indexed: 10/24/2022]
Abstract
In the present study, in vitro cytotoxic and genotoxic effect of copper-zinc alloy nanoparticles (Cu-Zn ANPs) on human lung epithelial cells (BEAS-2B) were investigated. XTT test and clonogenic assay were used to determine cytotoxic effects. Cell death mode and intracellular reactive oxygen species formations were analyzed using M30, M65 and ROS Elisa assays. Genotoxic effects were evaluated using micronucleus, comet and γ-H2AX foci assays. Cu-Zn ANPs were characterized by transmission electron microscopy (TEM), dynamic light scattering (DLS) and zeta potential measurements. Characterization of Cu-Zn ANPs showed an average size of 200nm and zeta potential of -22mV. TEM analyses further revealed the intracellular localization of Cu-Zn ANPs in cytoplasm within 24h. Analysis of micronucleus, comet and γ-H2AX foci counts showed that exposure to Cu-Zn ANPs significantly induced chromosomal damage as well as single and double stranded DNA damage in BEAS-2B cells. Our results further indicated that exposure to Cu-Zn ANPs significantly induced intracellular ROS formation. Evaluation of M30:M65 ratios suggested that cell death was predominantly due to necrosis.
Collapse
Affiliation(s)
- Umit Kumbıçak
- Department of Molecular Biology and Genetics, Faculty of Science and Art, Nevşehir University, 50300 Nevşehir, Turkey
| | - Tolga Cavaş
- Cell Culture and Genetic Toxicology Laboratory, Department of Biology, Faculty of Sciences and Arts, Uludağ University, 16059 Nilüfer, Bursa, Turkey.
| | - Nilüfer Cinkılıç
- Cell Culture and Genetic Toxicology Laboratory, Department of Biology, Faculty of Sciences and Arts, Uludağ University, 16059 Nilüfer, Bursa, Turkey
| | - Zübeyde Kumbıçak
- Department of Molecular Biology and Genetics, Faculty of Science and Art, Nevşehir University, 50300 Nevşehir, Turkey
| | - Ozgür Vatan
- Cell Culture and Genetic Toxicology Laboratory, Department of Biology, Faculty of Sciences and Arts, Uludağ University, 16059 Nilüfer, Bursa, Turkey
| | - Dilek Yılmaz
- Cell Culture and Genetic Toxicology Laboratory, Department of Biology, Faculty of Sciences and Arts, Uludağ University, 16059 Nilüfer, Bursa, Turkey
| |
Collapse
|