1
|
Kłobukowski F, Śmiechowska M, Skotnicka M. Edible Insects from the Perspective of Sustainability-A Review of the Hazards and Benefits. Foods 2025; 14:1382. [PMID: 40282784 PMCID: PMC12026621 DOI: 10.3390/foods14081382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 04/11/2025] [Accepted: 04/15/2025] [Indexed: 04/29/2025] Open
Abstract
The increasing global population, projected to exceed 9.1 billion by 2050, presents a critical challenge for sustainable food production. Edible insects have emerged as a promising alternative protein source due to their high nutritional value, low environmental footprint, and efficient resource utilization. This review explores the opportunities and challenges of integrating edible insects into food systems. Benefits include their high protein content and quality, low greenhouse gas emissions, low-cost production, and ability to thrive on organic waste. Furthermore, edible insect cultivation requires significantly less land and water compared to traditional livestock. Edible insects are nutritionally rich, containing substantial amounts of essential amino acids, unsaturated fatty acids, and minerals. However, barriers to widespread adoption persist, such as cultural perceptions, regulatory hurdles, potential allergenicity, and biological and chemical contamination. Furthermore, standardizing rearing practices and ensuring food safety are critical for broader adoption. While edible insects represent a nutritious, low-cost food and feed, there are a lot of variables that have not been fully investigated. Only after further research, promising results, and solutions that are relatively easy to apply might edible insects be considered a sustainable food source. Considering the challenges that may arise by 2050, more intensive research is highly advised.
Collapse
Affiliation(s)
- Filip Kłobukowski
- Division of Food Commodity Science, Faculty of Health Sciences with the Institute of Maritime and Tropical Medicine, Medical University of Gdańsk, 80-210 Gdańsk, Poland;
| | - Maria Śmiechowska
- Department of Quality Management, Faculty of Management and Quality Science, Gdynia Maritime University, 81-225 Gdynia, Poland;
| | - Magdalena Skotnicka
- Division of Food Commodity Science, Faculty of Health Sciences with the Institute of Maritime and Tropical Medicine, Medical University of Gdańsk, 80-210 Gdańsk, Poland;
| |
Collapse
|
2
|
Alejandro Ruiz FE, Ortega Jácome JF, Tejera E, Alvarez-Suarez JM. Edible insects as functional foods: bioactive compounds, health benefits, safety concerns, allergenicity, and regulatory considerations. Front Nutr 2025; 12:1571084. [PMID: 40230715 PMCID: PMC11994413 DOI: 10.3389/fnut.2025.1571084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Accepted: 03/11/2025] [Indexed: 04/16/2025] Open
Abstract
The growing demand for sustainable and nutrient-rich food sources has positioned edible insects as a viable alternative to traditional animal-based proteins. This review explores the bioactive properties and food safety considerations of edible insects, emphasizing their potential health benefits and the challenges associated with their widespread consumption. Research has identified bioactive compounds in insects with antioxidant, antimicrobial, immunomodulatory, cardioprotective, and digestive health-promoting properties, highlighting their potential as functional foods for preventing or managing chronic diseases such as cardiovascular conditions and inflammatory disorders. Additionally, this review examines findings related to contaminants in edible insects, including heavy metals, microbial pathogens, and allergens, which could pose health risks. Certain insect species have shown accumulation of heavy metals, such as cadmium and lead, depending on their diet and environment. Moreover, microbial contamination, including bacteria, fungi, and parasites, can occur if farming and processing conditions are not properly controlled. Furthermore, insect proteins exhibit cross-reactivity with allergens found in crustaceans and dust mites, raising concerns for individuals with food allergies. For edible insects to be successfully integrated into global food systems, further technological advancements, regulatory oversight, and consumer acceptance strategies must be implemented. Addressing these challenges will enable edible insects to become a key component of sustainable food systems, contributing to global nutrition, environmental sustainability, and human health.
Collapse
Affiliation(s)
- Fernando E. Alejandro Ruiz
- Laboratorio de Investigación en Ingeniería en Alimentos (LabInAli), Departamento de Ingeniería en Alimentos, Colegio de Ciencias e Ingenierías, Universidad San Francisco de Quito USFQ, Quito, Ecuador
- Laboratorio de Bioexploración, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Julio F. Ortega Jácome
- Laboratorio de Investigación en Ingeniería en Alimentos (LabInAli), Departamento de Ingeniería en Alimentos, Colegio de Ciencias e Ingenierías, Universidad San Francisco de Quito USFQ, Quito, Ecuador
- Laboratorio de Bioexploración, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Eduardo Tejera
- Grupo de Bioquimioinformática, Facultad de Ingeniería y Ciencias Aplicadas, Universidad de Las Américas (UDLA), Quito, Ecuador
| | - José M. Alvarez-Suarez
- Laboratorio de Investigación en Ingeniería en Alimentos (LabInAli), Departamento de Ingeniería en Alimentos, Colegio de Ciencias e Ingenierías, Universidad San Francisco de Quito USFQ, Quito, Ecuador
- Laboratorio de Bioexploración, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| |
Collapse
|
3
|
Ahmad T, Mehmood Z, Ali M, Ul Mawa J, Irshad MA. Navigating the nexus: unraveling the impact of sustainability and the circular economy on food safety. Ital J Food Saf 2025. [PMID: 40152926 DOI: 10.4081/ijfs.2025.12580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 01/15/2025] [Indexed: 03/30/2025] Open
Abstract
Sustainable food production systems can be achieved through a circular economy, yet the whole system remains susceptible to various known, emerging, or even unknown/novel food safety hazards and contaminants. These upcycled foods can introduce related risks for human or animal health and ecological balance. These potential risks can be effectively mitigated by adopting integrated smart "safe-by-design" approaches. These multi-effective strategies can cascade far beyond consequences by addressing all potential food safety risks at each stage of the food supply chain, even at the post-consumption stage. Sustainability through circularity without harming food production systems can be achieved by integrating and harmonizing evidence-based risk control strategies, fostered with extensive and objective-oriented research and development and preemptive ideological relationships with relevant stakeholders. The current review aimed at addressing the possible occurrence and risks associated with potential emerging or unknown hazards/contaminants linked to various production systems, along with relevant mitigation strategies. It also highlights the importance of implementing quality control measures and safety precautions throughout the food supply chain to prevent the occurrence and propagation of hazardous substances. Agricultural production systems can be transformed into sustainable entities by vigilant monitoring of end-products quality through the use of upcycled technologies.
Collapse
Affiliation(s)
- Tauqeer Ahmad
- Food and Nutrition Division, Nuclear Institute for Food and Agriculture, Peshawar.
| | - Zahid Mehmood
- Food and Nutrition Division, Nuclear Institute for Food and Agriculture, Peshawar.
| | - Murad Ali
- Department of Food Science and Technology, University of Agriculture, Peshawar.
| | - Janat Ul Mawa
- Department of Food Science and Technology, University of Agriculture, Peshawar.
| | - Muhammad Asim Irshad
- Food and Nutrition Division, Nuclear Institute for Food and Agriculture, Peshawar.
| |
Collapse
|
4
|
Papastavropoulou K, Koupa A, Kritikou E, Kostakis M, Dervisoglou S, Roussos A, Perdikis D, Thomaidis NS, Oz E, Oz F, Proestos C, Wu H. Study of the effect of feeding Tenebrio molitor larvae during their rearing on their growth, nutritional profile, value and safety of the produced flour. Food Chem X 2024; 24:101838. [PMID: 39398869 PMCID: PMC11470474 DOI: 10.1016/j.fochx.2024.101838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/23/2024] [Accepted: 09/15/2024] [Indexed: 10/15/2024] Open
Abstract
Science and food industry must strive to ensure and improve edible insect's benefits, and especially their safety and nutritional value. This study investigated how various food substrates used in the rearing of Tenebrio molitor larvae influence their growth, the safety of the larvae, and the nutritional quality of the resulting flour. The main findings indicate that all samples showed significant differences in their nutritional profile, larval characteristics, and heavy metal content. Regarding the content of protein, fat and fiber it ranges from 44.1 to 51.8 %, 28.6-34.8 % and 10.5-14.9 %, respectively. These results suggest that insect diet is a very crucial parameter that can affect all that factors and must be taken into account, especially when they are intended as raw materials to be used for food production.
Collapse
Affiliation(s)
- Konstantina Papastavropoulou
- Laboratory of Food Chemistry, Department of Chemistry, School of Sciences, National and Kapodistrian University of Athens, 15771, Athens, Greece
| | - Anastasia Koupa
- Laboratory of Food Chemistry, Department of Chemistry, School of Sciences, National and Kapodistrian University of Athens, 15771, Athens, Greece
- Laboratory of Analytical Chemistry, Department of Chemistry, School of Sciences, National and Kapodistrian University of Athens, 15771, Athens, Greece
| | - Evangelia Kritikou
- Laboratory of Analytical Chemistry, Department of Chemistry, School of Sciences, National and Kapodistrian University of Athens, 15771, Athens, Greece
| | - Marios Kostakis
- Laboratory of Analytical Chemistry, Department of Chemistry, School of Sciences, National and Kapodistrian University of Athens, 15771, Athens, Greece
| | - Sofia Dervisoglou
- Laboratory of Agricultural Zoology & Entomology, Department of Crop Science, School of Plant Sciences, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece
| | - Andreas Roussos
- Laboratory of Agricultural Zoology & Entomology, Department of Crop Science, School of Plant Sciences, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece
| | - Dionysios Perdikis
- Laboratory of Agricultural Zoology & Entomology, Department of Crop Science, School of Plant Sciences, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece
| | - Nikolaos S. Thomaidis
- Laboratory of Analytical Chemistry, Department of Chemistry, School of Sciences, National and Kapodistrian University of Athens, 15771, Athens, Greece
| | - Emel Oz
- Department of Food Engineering, Faculty of Agriculture, Ataturk University, Erzurum 25240, Türkiye
| | - Fatih Oz
- Department of Food Engineering, Faculty of Agriculture, Ataturk University, Erzurum 25240, Türkiye
| | - Charalampos Proestos
- Laboratory of Food Chemistry, Department of Chemistry, School of Sciences, National and Kapodistrian University of Athens, 15771, Athens, Greece
| | - Haizhou Wu
- Hubei Technology Innovation Center for Meat Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
5
|
San Onofre N, Vie D, Soriano JM, Soler C. Presence of Trace Elements in Edible Insects Commercialized through Online E-Commerce Platform. TOXICS 2024; 12:741. [PMID: 39453160 PMCID: PMC11510773 DOI: 10.3390/toxics12100741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/09/2024] [Accepted: 10/11/2024] [Indexed: 10/26/2024]
Abstract
This study aimed to evaluate the presence of various elements in edible insect-based food products available for human consumption. Several products were analyzed using atomic spectroscopy, and descriptive statistical analysis was conducted with IBM SPSS Statistics 27. The results revealed the presence of elements such as arsenic, cadmium, copper, magnesium, nickel, silver, lead, tungsten, uranium, mercury, platinum, aluminum, beryllium, bismuth, lithium, antimony, and thallium. Significant differences were found based on product type, insect species, and country of origin. The findings underscore the need to assess each insect species for its potential as a food source, taking into account element bioaccumulation factors. A comprehensive, global approach is essential for ensuring the food safety of edible insects as a sustainable protein source. Further research is needed to address these safety concerns.
Collapse
Affiliation(s)
- Nadia San Onofre
- Food & Health Lab, Institute of Materials Science, University of Valencia, 46980 Paterna, Spain; (N.S.O.); (C.S.)
- FoodLab Research Group, Faculty of Health Sciences, Universitat Oberta de Catalunya, Rambla del Poblenou 156, 08018 Barcelona, Spain
| | - David Vie
- Institute of Materials Science, University of Valencia, 46980 Paterna, Spain;
| | - Jose M. Soriano
- Food & Health Lab, Institute of Materials Science, University of Valencia, 46980 Paterna, Spain; (N.S.O.); (C.S.)
- Joint Research Unit on Endocrinology, Nutrition and Clinical Dietetics, University of Valencia-Health Research Institute La Fe, 46026 Valencia, Spain
| | - Carla Soler
- Food & Health Lab, Institute of Materials Science, University of Valencia, 46980 Paterna, Spain; (N.S.O.); (C.S.)
- Joint Research Unit on Endocrinology, Nutrition and Clinical Dietetics, University of Valencia-Health Research Institute La Fe, 46026 Valencia, Spain
| |
Collapse
|
6
|
Cardoso DN, Duarte RMBO, Silva ARR, Prodana M, Góis A, Silva PV, Mostafaie A, Pinto J, Brandão PF, Lopes IG, Brooks BW, Loureiro S. Edible insects: Understanding benzo(a)pyrene toxicokinetics in yellow mealworms for safe and sustainable consumption. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174164. [PMID: 38909798 DOI: 10.1016/j.scitotenv.2024.174164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/18/2024] [Accepted: 06/18/2024] [Indexed: 06/25/2024]
Abstract
The global interest in edible insects as sustainable protein sources raises concerns about the bioaccumulation of contaminants, including polycyclic aromatic hydrocarbons (PAHs), to problematic levels. Understanding the accumulation dynamics of PAHs in edible insects is highly relevant due to the widespread sources and toxicological profiles; however, the bioaccumulative potential of PAHs in edible insects is unexplored. This study examined the uptake and elimination dynamics of benzo(a)pyrene (B(a)P), a representative and carcinogenic PAH, in yellow mealworm larvae (YMW, Tenebrio molitor). Larvae were exposed to feeding substrate with varying B(a)P concentrations (0.03, 0.3, and 3 mg kg-1), and uptake (21 days in B(a)P-contaminated substrate) and elimination (21 days in B(a)P-free substrate) kinetics were subsequently assessed. The results showed that YMW can eliminate B(a)P, revealing dose-dependent B(a)P bioaccumulation in these insects. Larvae fed on a substrate with 0.03 mg kg-1 accumulated B(a)P over 21 days, presenting values of 0.049 (Standard deviation - 0.011) mg kg-1 and a kinetic-based (BAFkinetic) of 1.93 g substrate g organism-1, exceeding the EU regulatory limits for food. However, with a B(a)P half-life (DT50) of 4.19 days in the larvae, an EU legislation safety criterion was met after a 13-day depuration period in clean substrate. Larvae exposed to substrates with 0.3 and 3 mg kg-1 showed B(a)P accumulation, with BAFkinetic values of 3.27 and 2.09 g substrate g organism-1, respectively, not meeting the current legal standards for food consumption at the end of the exposure to B(a)P. Although the B(a)P half-life values after 35 days were 4.30 and 10.22 days (DT50s), the larvae retained B(a)P levels exceeding permitted food safety limits. These findings highlight a significant oversight in regulating PAHs in animal feed and the need for comprehensive safety evaluations of PAH hazards in edible insects for improved PAH feeding guidelines.
Collapse
Affiliation(s)
- Diogo N Cardoso
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Regina M B O Duarte
- CESAM - Centre for Environmental and Marine Studies, Department of Chemistry, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ana Rita R Silva
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Marija Prodana
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Ana Góis
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Patricia V Silva
- CICECO - Aveiro Institute of Materials and Department of Materials and Ceramic Engineering, University of Aveiro, Aveiro, Portugal
| | - Amid Mostafaie
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal
| | - José Pinto
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Pedro F Brandão
- CESAM - Centre for Environmental and Marine Studies, Department of Chemistry, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ivã G Lopes
- Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Bryan W Brooks
- Department of Environmental Science, Baylor University, Waco, TX, United States of America
| | - Susana Loureiro
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
7
|
Macan Schönleben A, Yin S, Strak E, Johnson A, Belova L, Ait Bamai Y, van Nuijs ALN, Poma G, Covaci A. Stable isotope ratios and current-use pesticide levels in edible insects: Implications on chemical food safety. Food Res Int 2024; 179:114020. [PMID: 38342520 DOI: 10.1016/j.foodres.2024.114020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/08/2024] [Accepted: 01/12/2024] [Indexed: 02/13/2024]
Abstract
In the past years, the European Union (EU) has added edible insects to the list of novel foods, allowing an increasing number of insect-based products into the European market. With insects gaining more popularity in the Western world, it is crucial to investigate their chemical food safety. This study aimed at investigating possible isotopic patterns in different edible insect species (n = 52) from Asia, Africa and Europe using stable isotope ratio analysis (SIRA) to provide a framework for future investigations on food authenticity and traceability. Additionally, complementary mass-spectrometric screening approaches were applied to gain a comprehensive overview of contamination levels of current-use pesticides (CUPs) in edible insects, to assess their chemical food safety. SIRA revealed significant differences between countries in δ13CVPDB- (p < 0.001) and δ15Nair- (p < 0.001) values. While it was not possible to distinguish between individual countries using principal component analysis (PCA) and linear discriminative analysis (LDA), the latter could be used to distinguish between larger geographical areas (i.e. Africa, Europe and Asia). In general, African samples had a more distinct isotopic profile compared to European and Asian samples. When comparing the isotopic compositions of samples containing pesticides with samples with no detected pesticides, differences in sulphur compositions could be observed. Additionally, LDA was able to correctly classify the presence of pesticides in a sample with 76% correct classification based on the sulphur composition. These findings show that SIRA could be a useful tool to provide a framework for future investigations on food authenticity and traceability of edible insects. A total of 26 CUPs were detected using suspect screening and an additional 30 CUPS were quantified using target analysis, out of which 9 compounds had a detection frequency higher than 30%. Most detected pesticides were below the maximum residue levels (MRLs) for meat, suggesting low contamination levels. However, dichlorvos and fipronil could be detected in the same order of magnitude as the MRLs, even in samples purchased in Europe. These findings indicate a limited chemical risk for edible insects regarding pesticide contamination. Nevertheless, the study also highlights that further and more extensive investigations are needed to give a comprehensive assessment of the chemical risk of edible insects as a novel food source in Europe. With insects recently being potentially more incorporated into daily diets, more attention should be paid to possible chemical hazards to accurately assess their risk and to ensure food safety.
Collapse
Affiliation(s)
| | - Shanshan Yin
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Ethan Strak
- Food Forensics, 5 Frensham Road, NR3 2BT Norwich, United Kingdom
| | - Alison Johnson
- Food Forensics, 5 Frensham Road, NR3 2BT Norwich, United Kingdom
| | - Lidia Belova
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Yu Ait Bamai
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium; Center for Environmental and Health Sciences, Hokkaido University, Sapporo, Japan
| | | | - Giulia Poma
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| | - Adrian Covaci
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| |
Collapse
|
8
|
Conway A, Jaiswal S, Jaiswal AK. The Potential of Edible Insects as a Safe, Palatable, and Sustainable Food Source in the European Union. Foods 2024; 13:387. [PMID: 38338521 PMCID: PMC10855650 DOI: 10.3390/foods13030387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 02/12/2024] Open
Abstract
Entomophagy describes the practice of eating insects. Insects are considered extremely nutritious in many countries worldwide. However, there is a lethargic uptake of this practice in Europe where consuming insects and insect-based foodstuffs is often regarded with disgust. Such perceptions and concerns are often due to a lack of exposure to and availability of food-grade insects as a food source and are often driven by neophobia and cultural norms. In recent years, due to accelerating climate change, an urgency to develop alternate safe and sustainable food-sources has emerged. There are currently over 2000 species of insects approved by the World Health Organization as safe to eat and suitable for human consumption. This review article provides an updated overview of the potential of edible insects as a safe, palatable, and sustainable food source. Furthermore, legislation, food safety issues, and the nutritional composition of invertebrates including, but not limited, to crickets (Orthoptera) and mealworms (Coleoptera) are also explored within this review. This article also discusses insect farming methods and the potential upscaling of the industry with regard to future prospects for insects as a sustainable food source. Finally, the topics addressed in this article are areas of potential concern to current and future consumers of edible insects.
Collapse
Affiliation(s)
- Ann Conway
- School of Food Science and Environmental Health, Faculty of Sciences and Health, Technological University Dublin—City Campus, Grangegorman, Dublin 7, D07 ADY7, Ireland; (A.C.); (S.J.)
- Environmental Sustainability and Health Institute, Technological University Dublin—City Campus, Grangegorman, Dublin 7, D07 H6K8, Ireland
| | - Swarna Jaiswal
- School of Food Science and Environmental Health, Faculty of Sciences and Health, Technological University Dublin—City Campus, Grangegorman, Dublin 7, D07 ADY7, Ireland; (A.C.); (S.J.)
- Environmental Sustainability and Health Institute, Technological University Dublin—City Campus, Grangegorman, Dublin 7, D07 H6K8, Ireland
| | - Amit K. Jaiswal
- School of Food Science and Environmental Health, Faculty of Sciences and Health, Technological University Dublin—City Campus, Grangegorman, Dublin 7, D07 ADY7, Ireland; (A.C.); (S.J.)
- Environmental Sustainability and Health Institute, Technological University Dublin—City Campus, Grangegorman, Dublin 7, D07 H6K8, Ireland
| |
Collapse
|
9
|
Malematja E, Sebola NA, Manyelo TG, Kolobe SD, Mabelebele M. Copping out of novel feeds: HOW climate change pledgers and food summits overlooked insect protein. Heliyon 2023; 9:e22773. [PMID: 38089979 PMCID: PMC10711128 DOI: 10.1016/j.heliyon.2023.e22773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 11/07/2023] [Accepted: 11/19/2023] [Indexed: 09/12/2024] Open
Abstract
The intention with this critical review is to appraise recent work done on insect proteins as animal feeds, and to discuss the possible factors which led to the ruling out of insect proteins by food and feed commissioners, as well as climate change pledgers. Of late, edible insect larvae have gained popularity as a promising protein source. On the basis of proximate analysis, insect species such as Tenebrio molitor, Musca domestica, Acheta domestica, Zophobas morio and Hermetia illucens have been reported to contain substantial amounts of protein, essential amino acids and minerals. Given these chemical properties, insects may be fruitfully utilized as a partial or sole protein source for monogastric rations. Although insect larvae hold immense potential as promising sustainable protein ingredients which are both ecologically and environmentally friendly, these unconventional feedstuffs are frequently overlooked and/or excluded from policies and legislation on feedstuff of animal origin, at local and international summits which pledge to develop sustainable food systems. Concerns about food insecurity, our expanding carbon footprint and deteriorating ecosystems, dictate that food and climate change summits bring to the mitigation table the concept of transitioning animal diets. A change must be effected from standard to sustainable diets, starting with a declaration on environmental impact and climate change concerns related to soybean cultivation and marine loss due to overfishing. The available literature on the chemical properties and environmental impact of fishmeal and soyabean meal production was scrutinized by accessing electronic databases and comparing these to insects' nutritional composition and the impact which insect rearing has on the environment. As the literature search results revealed, information on the specific laws dealing with insect proteins as feed ingredients is scant, while the existing laws vary greatly. This has implications for innovation, as well as the trade in insect protein at a global level.
Collapse
Affiliation(s)
- Emmanuel Malematja
- University of South Africa, Department of Agriculture and Animal Health, College of Agriculture and Environmental Sciences, Florida, 1710, South Africa
| | - Nthabiseng Amenda Sebola
- University of South Africa, Department of Agriculture and Animal Health, College of Agriculture and Environmental Sciences, Florida, 1710, South Africa
| | - Tlou Grace Manyelo
- University of South Africa, Department of Agriculture and Animal Health, College of Agriculture and Environmental Sciences, Florida, 1710, South Africa
| | - Sekobane Daniel Kolobe
- University of South Africa, Department of Agriculture and Animal Health, College of Agriculture and Environmental Sciences, Florida, 1710, South Africa
| | - Monnye Mabelebele
- University of South Africa, Department of Agriculture and Animal Health, College of Agriculture and Environmental Sciences, Florida, 1710, South Africa
| |
Collapse
|
10
|
Matsumoto E, Matsumoto M. Determination of Arsenic Species in Edible Insects by LC-ICP-MS. J AOAC Int 2023; 106:1525-1531. [PMID: 37449912 DOI: 10.1093/jaoacint/qsad083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND Edible insects may contain arsenic. Analysis of arsenic species is necessary in order to accurately assess arsenic exposure. OBJECTIVE An analytical method was validated and used to determine and quantitate arsenic species in edible insects. METHODS Arsenic species were extracted from edible insects by heating at 100°C in 0.3 mol/L nitric acid. The concentration of arsenic species was then determined by LC-inductively coupled plasma-mass spectrometry (LC-ICP-MS) using an octadecylsilane (ODS) column with a mobile phase containing an ion-pair reagent. RESULTS The LOD (0.007-0.012 mg/kg), LOQ (0.021-0.038 mg/kg), repeatability (1.2-3.2%), intermediate precision (2.8-4.5%), and trueness (recoveries 97-102% based on spiked samples) of the proposed method were satisfactory for inorganic arsenic, dimethylarsinic acid (DMA), and arsenobetaine (AB) in edible insects. Total arsenic was detected in all samples obtained in Japan (Asian forest scorpion, diving beetles, giant water bug, grasshoppers, June beetles, mole crickets, male rhino beetle, female rhino beetle, sago worms, and silkworm pupae) and consisted of mostly inorganic arsenic. Beetles in particular showed relatively high levels. CONCLUSION Arsenic content varies among edible insect species. Feed control is important, as arsenic concentrations in edible insects may be feed dependent. HIGHLIGHTS Arsenic species in edible insects were analyzed by LC-ICP-MS using an ODS column with a mobile phase containing an ion-pair reagent. Inorganic arsenic was detected in most samples, with concentrations ranging from <0.04 to 29.3 mg/kg.
Collapse
Affiliation(s)
- Eri Matsumoto
- Japan Food Research Laboratories, 6-11-10 Nagayama, Tama-shi, Tokyo 206-0025, Japan
| | - Makoto Matsumoto
- Japan Food Research Laboratories, 6-11-10 Nagayama, Tama-shi, Tokyo 206-0025, Japan
| |
Collapse
|
11
|
Siddiqui SA, Tettey E, Yunusa BM, Ngah N, Debrah SK, Yang X, Fernando I, Povetkin SN, Shah MA. Legal situation and consumer acceptance of insects being eaten as human food in different nations across the world-A comprehensive review. Compr Rev Food Sci Food Saf 2023; 22:4786-4830. [PMID: 37823805 DOI: 10.1111/1541-4337.13243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 08/06/2023] [Accepted: 08/28/2023] [Indexed: 10/13/2023]
Abstract
Insect consumption is a traditional practice in many countries. Currently, the urgent need for ensuring food sustainability and the high pressure from degrading environment are urging food scientists to rethink the possibility of introducing edible insects as a promising food type. However, due to the lack of the standardized legislative rules and the adequate scientific data that demonstrate the safety of edible insects, many countries still consider it a grey area to introduce edible insects into food supply chains. In this review, we comprehensively reviewed the legal situation, consumer willingness, acceptance, and the knowledge on edible insect harvesting, processing as well as their safety concerns. We found that, despite the great advantage of introducing edible insects in food supply chains, the legal situation and consumer acceptance for edible insects are still unsatisfactory and vary considerably in different countries, which mostly depend on geographical locations and cultural backgrounds involving psychological, social, religious, and anthropological factors. Besides, the safety concern of edible insect consumption is still a major issue hurdling the promotion of edible insects, which is particularly concerning for countries with no practice in consuming insects. Fortunately, the situation is improving. So far, some commercial insect products like energy bars, burgers, and snack foods have emerged in the market. Furthermore, the European Union has also recently issued a specific item for regulating new foods, which is believed to establish an authorized procedure to promote insect-based foods and should be an important step for marketizing edible insects in the near future.
Collapse
Affiliation(s)
- Shahida Anusha Siddiqui
- Technical University of Munich, Campus Straubing for Biotechnology and Sustainability, Straubing, Germany
- German Institute of Food Technologies (DIL e.V.), D-Quakenbrück, Germany
| | - Elizabeth Tettey
- Council for Scientific and Industrial Research - Oil Palm Research Institute, Sekondi, Takoradi W/R, Ghana
| | | | - Norhayati Ngah
- Faculty of Bioresources and Food Industry, Universiti Sultan Zainal Abidin, Besut, Terengganu, Malaysia
| | - Shadrack Kwaku Debrah
- Department of Horticulture and Crop Production, University of Energy and Natural Resources, Sunyani, Ghana
| | - Xi Yang
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, Minato-ku, Tokyo, Japan
| | - Ito Fernando
- Department of Plant Pest and Diseases, Faculty of Agriculture, Universitas Brawijaya, Malang, East Java, Indonesia
| | | | - Mohd Asif Shah
- Department of Economics, Kabridahar University, Kabridahar, Somali, Ethiopia
- School of Business, Woxsen University, Hyderabad, India
- Division of Research and Development, Lovely Professional University, Phagwara, Punjab, India
- Research Fellow, INTI International University, Nilai, Negeri Sembilan, Malaysia
| |
Collapse
|
12
|
Carloni P, Girolametti F, Giorgini E, Bacchetti T, Truzzi C, Illuminati S, Damiani E. Insights on the Nutraceutical Properties of Different Specialty Teas Grown and Processed in a German Tea Garden. Antioxidants (Basel) 2023; 12:1943. [PMID: 38001796 PMCID: PMC10669839 DOI: 10.3390/antiox12111943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/26/2023] [Accepted: 10/28/2023] [Indexed: 11/26/2023] Open
Abstract
European countries have recently started experimenting with growing and producing their own teas in small quantities, mainly for the specialty tea sector. To characterize European teas, this study investigated a set of five tea types obtained from different Camellia sinensis varieties/cultivars, representing various oxidation grades (green, white, yellow, oolong, black), all grown and processed in the only tea garden in Europe (in Germany) that focuses on all five types. Hot and cold brews were studied by measuring the total phenolic (TPC) and flavonoid contents (TFC), the antioxidant capacity and UV-Vis spectra, also with the objective of discriminating between the different tea types and the different plant varieties. The dried leaves were analyzed to measure the content of essential and toxic elements and by ATR-FTIR spectroscopy to determine a chemical fingerprint for identifying the tea varieties and types. The average levels of TPC (hot brew = 5.82 ± 2.06; cold brew = 5.4 ± 2.46 mM GAEq), TFC (hot brew = 0.87 ± 0.309; cold brew = 0.87 ± 0.413 mM CAEq), and antioxidant capacity (ORAC assay-hot brew = 20.9 ± 605; cold brew = 21.8 ± 8.0 mM TXEq, ABTS assay-hot brew = 15.2 ± 5.09; cold brew = 15.1 ± 5.8 mM TXEq, FRAP assay-hot brew = 9.2 ± 3.84; cold brew = 10.4 ± 5.23 mM AAEq) observed compared well with those from other parts of the world such as China, Africa, and Taiwan. The hazard quotient <1 and the hazard index of 0.14 indicate that there is no non-carcinogenic risk from consumption of these teas. The obtained information is essential for elucidating the characteristics and the impact of tea processing and tea variety on the health benefits of these tea products coming from a single European tea garden. This multifaceted approach would help tea growers in Europe increase their knowledge on the health attributes of the teas they grow, ultimately leading to optimization of the nutraceutical properties of these teas.
Collapse
Affiliation(s)
- Patricia Carloni
- Department of Agricultural, Food and Environmental Sciences-D3A, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy;
| | - Federico Girolametti
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy; (F.G.); (E.G.); (T.B.); (C.T.); (S.I.)
| | - Elisabetta Giorgini
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy; (F.G.); (E.G.); (T.B.); (C.T.); (S.I.)
| | - Tiziana Bacchetti
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy; (F.G.); (E.G.); (T.B.); (C.T.); (S.I.)
| | - Cristina Truzzi
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy; (F.G.); (E.G.); (T.B.); (C.T.); (S.I.)
| | - Silvia Illuminati
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy; (F.G.); (E.G.); (T.B.); (C.T.); (S.I.)
| | - Elisabetta Damiani
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy; (F.G.); (E.G.); (T.B.); (C.T.); (S.I.)
| |
Collapse
|
13
|
Seyedalmoosavi MM, Mielenz M, Schleifer K, Görs S, Wolf P, Tränckner J, Hüther L, Dänicke S, Daş G, Metges CC. Upcycling of recycled minerals from sewage sludge through black soldier fly larvae (Hermetia illucens): Impact on growth and mineral accumulation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118695. [PMID: 37542865 DOI: 10.1016/j.jenvman.2023.118695] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/15/2023] [Accepted: 07/25/2023] [Indexed: 08/07/2023]
Abstract
Phosphorous (P) resources are finite. Sewage sludge recyclates (SSR) are not only of interest as plant fertilizer but also as potential source of minerals in animal nutrition. However, besides P and calcium (Ca), SSR contain heavy metals. Under EU legislation, the use of SSR derivatives in animal feed is not permitted, but given the need to improve nutrient recycling, it could be an environmentally sound future mineral source. Black soldier fly larvae (BSFL) convert low-grade biomass into valuable proteins and lipids, and accumulate minerals in their body. It was hypothesized that BSFL modify and increase their mineral content in response to feeding on SSR containing substrates. The objective was to evaluate the upcycling of minerals from SSR into agri-food nutrient cycles through BSFL. Growth, nutrient and mineral composition were compared in BSFL reared either on a modified Gainesville fly diet (FD) or on FD supplemented with either 4% of biochar (FD + BCH) or 3.6% of single-superphosphate (FD + SSP) recyclate (n = 6 BSFL rearing units/group). Larval mass, mineral and nutrient concentrations and yields were determined, and the bioaccumulation factor (BAF) was calculated. The FD + SSP substrate decreased specific growth rate and crude fat of BSFL (P < 0.05) compared to FD. The FD + SSP larvae had higher Ca and P contents and yields but the BAF for Ca was lowest. The FD + BCH larvae increased Ca, iron, cadmium and lead contents compared to FD. Larvae produced on FD + SSP showed lower lead and higher arsenic concentration than on FD + BCH. Frass of FD + BCH had higher heavy metal concentration than FD + SSP and FD (P < 0.05). Except for cadmium and manganese, the larval heavy metal concentration was below the legally permitted upper concentrations for feed. In conclusion, the SSR used could enrich BSFL with Ca and P but at the expense of growth. Due to the accumulation of Cd and Mn, BSFL or products thereof can only be a component of farmed animal feed whereas in BSFL frass heavy metal concentrations remained below the upper limit authorized by EU.
Collapse
Affiliation(s)
- Mohammad M Seyedalmoosavi
- Research Institute for Farm Animal Biology (FBN), Institute of Nutritional Physiology, Dummerstorf, Germany
| | - Manfred Mielenz
- Research Institute for Farm Animal Biology (FBN), Institute of Nutritional Physiology, Dummerstorf, Germany
| | - Kai Schleifer
- Research Institute for Farm Animal Biology (FBN), Institute of Nutritional Physiology, Dummerstorf, Germany
| | - Solvig Görs
- Research Institute for Farm Animal Biology (FBN), Institute of Nutritional Physiology, Dummerstorf, Germany
| | - Petra Wolf
- University of Rostock, Nutritional Physiology and Animal Nutrition, Faculty of Agricultural and Environmental Sciences, Rostock, Germany
| | - Jens Tränckner
- University of Rostock, Water Management, Faculty of Agricultural and Environmental Sciences, Rostock, Germany
| | - Liane Hüther
- Federal Research Institute for Animal Health, Institute of Animal Nutrition, Braunschweig, Germany
| | - Sven Dänicke
- Federal Research Institute for Animal Health, Institute of Animal Nutrition, Braunschweig, Germany
| | - Gürbüz Daş
- Research Institute for Farm Animal Biology (FBN), Institute of Nutritional Physiology, Dummerstorf, Germany
| | - Cornelia C Metges
- Research Institute for Farm Animal Biology (FBN), Institute of Nutritional Physiology, Dummerstorf, Germany.
| |
Collapse
|
14
|
Noyens I, Schoeters F, Van Peer M, Berrens S, Goossens S, Van Miert S. The nutritional profile, mineral content and heavy metal uptake of yellow mealworm reared with supplementation of agricultural sidestreams. Sci Rep 2023; 13:11604. [PMID: 37463987 DOI: 10.1038/s41598-023-38747-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/13/2023] [Indexed: 07/20/2023] Open
Abstract
Insect farming, a potential approach to deal with the increasing global protein demand, is a new activity in the Western world with many unanswered questions regarding product quality and safety. Insects may fulfill an important role in a circular economy by upcycling biowaste into valuable biomass. About half of the total mass of mealworm feeding substrates exists out of wet feed. This can be sourced from biowaste, increasing the sustainability of insect farming. This paper reports on the nutritional profile of yellow mealworm, Tenebrio molitor, reared with supplementation of organic sidestreams. These included unsold vegetables, potato cuttings, fermented chicory roots and horticultural foliage. The evaluation was performed by analyzing proximate compositions, fatty acid profiles, mineral and heavy metal contents. Mealworms fed with potato cuttings doubled their fat content and increased saturated and mono-unsaturated fatty acids. Providing fermented chicory roots increased the mineral content and accumulated heavy metals. Additionally, the uptake of minerals by mealworms was selective as only calcium, iron and manganese concentrations increased. Adding vegetable mix or horticultural foliage to the diet did not significantly change the nutritional profile. In conclusion, sidestreams were successfully recycled into protein-rich biomass and their nutrient content and bio-availability influenced the composition of mealworms.
Collapse
Affiliation(s)
- Isabelle Noyens
- RADIUS, Thomas More University of Applied Sciences, Kleinhoefstraat 4, 2440, Geel, Belgium.
| | - Floris Schoeters
- RADIUS, Thomas More University of Applied Sciences, Kleinhoefstraat 4, 2440, Geel, Belgium
| | - Meggie Van Peer
- RADIUS, Thomas More University of Applied Sciences, Kleinhoefstraat 4, 2440, Geel, Belgium
| | - Siebe Berrens
- RADIUS, Thomas More University of Applied Sciences, Kleinhoefstraat 4, 2440, Geel, Belgium
| | - Sarah Goossens
- RADIUS, Thomas More University of Applied Sciences, Kleinhoefstraat 4, 2440, Geel, Belgium
| | - Sabine Van Miert
- RADIUS, Thomas More University of Applied Sciences, Kleinhoefstraat 4, 2440, Geel, Belgium
| |
Collapse
|
15
|
Naccarato A, Vommaro ML, Amico D, Sprovieri F, Pirrone N, Tagarelli A, Giglio A. Triazine Herbicide and NPK Fertilizer Exposure: Accumulation of Heavy Metals and Rare Earth Elements, Effects on Cuticle Melanization, and Immunocompetence in the Model Species Tenebrio molitor. TOXICS 2023; 11:499. [PMID: 37368599 DOI: 10.3390/toxics11060499] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/27/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023]
Abstract
The increasing use of agrochemicals, including fertilizers and herbicides, has led to worrying metal contamination of soils and waters and raises serious questions about the effects of their transfer to different levels of the trophic web. Accumulation and biomagnification of essential (K, Na, Mg, Zn, Ca), nonessential (Sr, Hg, Rb, Ba, Se, Cd, Cr, Pb, As), and rare earth elements (REEs) were investigated in newly emerged adults of Tenebrio molitor exposed to field-admitted concentrations of a metribuzin-based herbicide and an NPK blend fertilizer. Chemical analyses were performed using inductively coupled plasma tandem mass spectrometry (ICP-MS/MS) supported by unsupervised pattern recognition techniques. Physiological parameters such as cuticle melanization, cellular (circulating hemocytes), and humoral (phenoloxidase enzyme activity) immune responses and mass loss were tested as exposure markers in both sexes. The results showed that NPK fertilizer application is the main cause of REE accumulation in beetles over time, besides toxic elements (Sr, Hg, Cr, Rb, Ba, Ni, Al, V, U) also present in the herbicide-treated beetles. The biomagnification of Cu and Zn suggested a high potential for food web transfer in agroecosystems. Gender differences in element concentrations suggested that males and females differ in element uptake and excretion. Differences in phenotypic traits show that exposure affects metabolic pathways involving sequestration and detoxification during the transition phase from immature-to-mature beetles, triggering a redistribution of resources between sexual maturation and immune responses. Our findings highlight the importance of setting limits for metals and REEs in herbicides and fertilizers to avoid adverse effects on species that provide ecosystem services and contribute to soil health in agroecosystems.
Collapse
Affiliation(s)
- Attilio Naccarato
- Department of Chemistry and Chemical Technologies, University of Calabria,87036 Rende, Italy
| | - Maria Luigia Vommaro
- Department of Biology, Ecology and Earth Science, University of Calabria, 87036 Rende, Italy
| | - Domenico Amico
- CNR-Institute of Atmospheric Pollution Research, 87036 Rende, Italy
| | | | - Nicola Pirrone
- CNR-Institute of Atmospheric Pollution Research, 87036 Rende, Italy
| | - Antonio Tagarelli
- Department of Chemistry and Chemical Technologies, University of Calabria,87036 Rende, Italy
| | - Anita Giglio
- Department of Biology, Ecology and Earth Science, University of Calabria, 87036 Rende, Italy
| |
Collapse
|
16
|
Girolametti F, Annibaldi A, Illuminati S, Damiani E, Carloni P, Truzzi C. Essential and Potentially Toxic Elements (PTEs) Content in European Tea ( Camellia sinensis) Leaves: Risk Assessment for Consumers. Molecules 2023; 28:molecules28093802. [PMID: 37175212 PMCID: PMC10179902 DOI: 10.3390/molecules28093802] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
Tea (Camellia sinensis) is the second most consumed beverage worldwide, playing a key role in the human diet. Tea is considered a healthy drink, as its consumption has been linked to a lower risk of cardiovascular disease-related events and death, stroke, metabolic syndrome and obesity. However, several studies have shown that C. sinensis is a hyperaccumulator of Al and other elements that are considered potentially toxic. In the present study, the contents of 15 elements (both essential and toxic) were determined for the first time in tea leaves collected in tea gardens located in six different European countries and processed to provide black and green tea. The results showed that Al was the major toxic element detected, followed by Ni, Cr, Pb, As, Cd, Ag, and Hg. Essential elements were detected in the order of Mn, Fe, Zn, Cu, Co, and Se. Statistically significant correlations (p < 0.05) were found in the distribution of some elements, highlighting mechanisms of synergic or antagonist interaction. Multivariate analysis revealed that geographical origin was the main driver in clustering the samples, while the different treatment processes (black or green) did not significantly affect the contents of elements in the leaves. The estimation of potential non-carcinogenic risk revealed no risk for the consumption of European teas for consumers in terms of potentially toxic elements.
Collapse
Affiliation(s)
- Federico Girolametti
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Anna Annibaldi
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Silvia Illuminati
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Elisabetta Damiani
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Patricia Carloni
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Cristina Truzzi
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy
| |
Collapse
|
17
|
Malematja E, Manyelo TG, Sebola NA, Kolobe SD, Mabelebele M. The accumulation of heavy metals in feeder insects and their impact on animal production. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 885:163716. [PMID: 37116798 DOI: 10.1016/j.scitotenv.2023.163716] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/28/2023] [Accepted: 04/20/2023] [Indexed: 05/09/2023]
Abstract
Insects have emerged as a novel feed protein source that could help to produce enough food to feed the growing global population. Good-quality protein content, minerals and bioactive compounds are the main reasons for the use of insects in livestock. Nonetheless, insects should be proven to be safe for use before being used as feeder insects for livestock. The accumulation of heavy metals in the feedstuff is becoming a major food safety concern, as this poses a serious problem to animal health and threatens human health through the transmission of toxic substances into the human food chain. It has been shown that feeder insects grown from agricultural waste materials contain chemical contaminants such as pesticides and veterinary drug residues. Current research mostly focuses on the safety evaluation of undesirable substances in edible insects for human consumption, but rarely indicates if these insects are safe to use in livestock feeds, particularly for avian species. Therefore, owing to the potential risks of heavy metal in animal production, heavy metal residues in feeder insects have received scientific attention. Hence, this review article is intended to evaluate and discuss selected heavy metals in insects, comparing them with toxicity limits for feedstuff of animal origin, and their potential risks of exposure. A literature search on metal elements present in insects was conducted using electronic databases. In addition, the citations included in articles were used to find other relevant articles or documents on this topic. Identified published articles were grouped and evaluated according to the insect species, growth stage and substrate from which the insects were grown. It was observed that the accumulation of heavy metals in insects is mainly associated with agricultural waste materials fed to insects. Furthermore, metal toxicity in animals varies according to animal species and age, metal type, concentration, and chemical form.
Collapse
Affiliation(s)
- Emmanuel Malematja
- University of South Africa, Department of Agriculture and Animal Health, College of Agriculture and Environmental Sciences, FL 1710, South Africa
| | - Tlou Grace Manyelo
- University of South Africa, Department of Agriculture and Animal Health, College of Agriculture and Environmental Sciences, FL 1710, South Africa
| | - Nthabiseng Amenda Sebola
- University of South Africa, Department of Agriculture and Animal Health, College of Agriculture and Environmental Sciences, FL 1710, South Africa
| | - Sekobane Daniel Kolobe
- University of South Africa, Department of Agriculture and Animal Health, College of Agriculture and Environmental Sciences, FL 1710, South Africa
| | - Monnye Mabelebele
- University of South Africa, Department of Agriculture and Animal Health, College of Agriculture and Environmental Sciences, FL 1710, South Africa.
| |
Collapse
|
18
|
Belluco S, Bertola M, Montarsi F, Di Martino G, Granato A, Stella R, Martinello M, Bordin F, Mutinelli F. Insects and Public Health: An Overview. INSECTS 2023; 14:240. [PMID: 36975925 PMCID: PMC10059202 DOI: 10.3390/insects14030240] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 05/27/2023]
Abstract
Insects are, by far, the most common animals on our planet. The ubiquity and plethora of ecological niches occupied by insects, along with the strict and sometimes forced coexistence between insects and humans, make insects a target of public health interest. This article reports the negative aspects historically linked to insects as pests and vectors of diseases, and describes their potential as bioindicators of environmental pollution, and their use as food and feed. Both negative and positive impacts of insects on human and animal health need to be addressed by public health professionals who should aim to strike a balance within the wide range of sometimes conflicting goals in insect management, such as regulating their production, exploiting their potential, protecting their health and limiting their negative impact on animals and humans. This requires increased insect knowledge and strategies to preserve human health and welfare. The aim of this paper is to provide an overview of traditional and emerging topics bridging insects and public health to highlight the need for professionals, to address these topics during their work. The present and future role and activities of public health authorities regarding insects are analyzed.
Collapse
Affiliation(s)
| | - Michela Bertola
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università 10, 35020 Legnaro, Italy
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Deng B, Wang G, Yuan Q, Zhu J, Xu C, Zhang X, Wang P. Enrichment and speciation changes of Cu and Cd in black soldier fly (Hermetia illucens) larval compost and their effects on larval growth performance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 845:157299. [PMID: 35842144 DOI: 10.1016/j.scitotenv.2022.157299] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 07/07/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
Municipal sludge (MS), rainwater sludge (RS), and kitchen waste (KW) were used as nutritional supplements for black soldier fly larvae (BSFL). Cd (52.3 %) was more easily assimilated in the BSFL body than Cu (34.8 %). After biotransformation in BSFL, the weak acid-soluble fraction (F1) of Cu and Cd increased by an average of 29.0 % and 42.7 %, respectively, whereas the reducible fraction (F2) of Cu and Cd decreased by an average of 13.8 % and 56.4 %, respectively, in the BSFL sand (BSFL feces and waste residues). A significant correlation (P < 0.01) was found between pH and the speciation of Cu and Cd. The abundance of Bacteroides had a positive correlation (P < 0.05) with the F1 of Cu, an extremely significant negative correlation (P < 0.001) with the F2 of Cd, and an extremely significant positive correlation with the F1 of Cd (P < 0.001). In addition, Cu and Cd exposures significantly (P < 0.01) reduced larval weight by 67.7 % and 45.3 %, respectively, pupation rate by 46.3 % and 26.5 %, respectively, and eclosion rate by 35.5 % and 33.4 %, respectively. Exposure to high concentrations of Cu and Cd also prolonged the development cycle (1-12 days) of BSFL and led to the failure of BSFL to complete their metamorphosis.
Collapse
Affiliation(s)
- Bo Deng
- College of Engineering, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Agricultural Equipment in Mid-lower Yangtze River, Ministry of Agriculture and Rural Affairs, Wuhan 430070, China; Technology & Equipment Center for Carbon Neutrality in Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Guoqing Wang
- College of Engineering, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Agricultural Equipment in Mid-lower Yangtze River, Ministry of Agriculture and Rural Affairs, Wuhan 430070, China; Technology & Equipment Center for Carbon Neutrality in Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiaoxia Yuan
- College of Engineering, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Agricultural Equipment in Mid-lower Yangtze River, Ministry of Agriculture and Rural Affairs, Wuhan 430070, China; Technology & Equipment Center for Carbon Neutrality in Agriculture, Huazhong Agricultural University, Wuhan 430070, China.
| | - Junyu Zhu
- College of Engineering, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Agricultural Equipment in Mid-lower Yangtze River, Ministry of Agriculture and Rural Affairs, Wuhan 430070, China; Technology & Equipment Center for Carbon Neutrality in Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Chao Xu
- College of Engineering, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Agricultural Equipment in Mid-lower Yangtze River, Ministry of Agriculture and Rural Affairs, Wuhan 430070, China; Technology & Equipment Center for Carbon Neutrality in Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Xin Zhang
- College of Engineering, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Agricultural Equipment in Mid-lower Yangtze River, Ministry of Agriculture and Rural Affairs, Wuhan 430070, China; Technology & Equipment Center for Carbon Neutrality in Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Panpan Wang
- College of Engineering, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Agricultural Equipment in Mid-lower Yangtze River, Ministry of Agriculture and Rural Affairs, Wuhan 430070, China; Technology & Equipment Center for Carbon Neutrality in Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
20
|
Arévalo Arévalo HA, Menjura Rojas EM, Barragan Fonseca KB, Vásquez Mejía SM. Implementation of the HACCP system for production of Tenebrio molitor larvae meal. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
21
|
Girolametti F, Panfili M, Colella S, Frapiccini E, Annibaldi A, Illuminati S, Marini M, Truzzi C. Mercury levels in Merluccius merluccius muscle tissue in the central Mediterranean Sea: Seasonal variation and human health risk. MARINE POLLUTION BULLETIN 2022; 176:113461. [PMID: 35193004 DOI: 10.1016/j.marpolbul.2022.113461] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/04/2022] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
In this study we analysed total mercury (THg) levels in European hake (Merluccius merluccius) - an ecologically and commercially important species throughout the Mediterranean - caught in the northern and central Adriatic Sea. To the best of our knowledge, this is the first study evaluating THg levels in hake fillets in relation to ecological (season) and biological (body size, sex, sexual maturity, lipid content) parameters. THg levels in muscle showed no sex-related differences; in contrast, significant season-related differences were found in females, with higher levels in spring-summer compared with autumn-winter. No season-related differences were seen in males. A significant sex effect was found for body size and sexual maturity. Females showed a correlation between THg level and length, THg being significantly higher in mature compared with immature specimens. No significant sex effect was found for muscle lipid content, because a correlation between THg concentration and tissue lipids was found in both sexes. Since the mean THg concentration found in M. merluccius fillets (0.64 ± 0.29 mg kg-1 dry weight; range, 0.20-1.53) was consistently under the level set by EU regulations, this study demonstrates that European hake caught in the northern and central Adriatic is safe for human consumption.
Collapse
Affiliation(s)
- Federico Girolametti
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Monica Panfili
- Institute for Biological Resources and Marine Biotechnologies, National Research Council (IRBIM-CNR), 60125 Ancona, Italy
| | - Sabrina Colella
- Institute for Biological Resources and Marine Biotechnologies, National Research Council (IRBIM-CNR), 60125 Ancona, Italy
| | - Emanuela Frapiccini
- Institute for Biological Resources and Marine Biotechnologies, National Research Council (IRBIM-CNR), 60125 Ancona, Italy.
| | - Anna Annibaldi
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy; Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies (FMC), 61032 Fano, Italy
| | - Silvia Illuminati
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Mauro Marini
- Institute for Biological Resources and Marine Biotechnologies, National Research Council (IRBIM-CNR), 60125 Ancona, Italy; Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies (FMC), 61032 Fano, Italy
| | - Cristina Truzzi
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy
| |
Collapse
|
22
|
New Eco-Sustainable Feed in Aquaculture: Influence of Insect-Based Diets on the Content of Potentially Toxic Elements in the Experimental Model Zebrafish ( Danio rerio). MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030818. [PMID: 35164082 PMCID: PMC8839634 DOI: 10.3390/molecules27030818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 11/16/2022]
Abstract
According to the concept of circular economy, insects represent good candidates as aquafeed ingredients. Nevertheless, there are some potential chemical risks linked with insect consumption. In this study, we reared the teleost Danio rerio, used as an experimental model, with five experimental diets characterized by increasing levels (0%, 25%, 50%, 75%, and 100%) of full-fat Hermetia illucens (Hi) prepupae, substituting for fish meal (FM) and fish oil (FO). We investigated the presence of potentially toxic elements (PTEs) Cd, Pb, Ni, As, and Hg in larval (20 days), juvenile (2 months), and adult (6 months) fish. Quantitative determinations of Cd, Pb, Ni, and As were made with an atomic absorption spectrometer; the total mercury content was determined by a direct mercury analyzer. The substitution of FM and FO with Hermetia illucens meal led to a reduction in the content of some PTEs, such as Pb, As, and Ni, in fishfeed, leading to concentrations below the legal limit of undesirable substances in animal feed. By increasing the Hi meal dietary content, we observed in the Danio rerio specimens an increase in Cd, Pb, and Ni content and a reduction in As content for all life stages. Moreover, a general increase in the content of Cd, Pb, Hg, and Ni from larvae to juvenile was measured, while the shift of Danio rerio from the juvenile to the adult stage involved a significant increase in the content of Pb, Hg, and Ni. Larvae had a reduced ability to bioaccumulate metal(loid)s compared to juveniles and adults. In conclusion, the content of PTEs in Danio rerio is influenced both by the type of diet administered and by the life stage of the animal itself. This research demonstrates the possibility of using Hi prepupae as an aquafeed ingredient without exposing fish to a chemical risk and, in perspective, allows applying these eco-sustainable diets for the breeding of edible fish species, without endangering human health.
Collapse
|
23
|
Mariutti LRB, Rebelo KS, Bisconsin-Junior A, de Morais JS, Magnani M, Maldonade IR, Madeira NR, Tiengo A, Maróstica MR, Cazarin CBB. The use of alternative food sources to improve health and guarantee access and food intake. Food Res Int 2021; 149:110709. [PMID: 34600699 DOI: 10.1016/j.foodres.2021.110709] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 09/03/2021] [Accepted: 09/03/2021] [Indexed: 12/18/2022]
Abstract
To feed and provide Food Security to all people in the world is a big challenge to be achieved with the 2030 Agenda. Undernutrition and obesity are to the opposite of a healthy nutritional status. Both conditions are associated with unbalanced nutrition, absence of food or excess of non-nutritive foods intake. These two nutritional conditions associated with food production are closely related to some goals highlighted by the United Nations in the 2030 Agenda to achieve sustainable world development. In this context, the search for alternative foods whose sustainable production and high nutritional quality guarantee regular access to food for the population must be encouraged. Alternative foods can contribute to Food Security in many ways as they contribute to the local economy and income generation. Popularizing and demystifying the uses of unconventional food plants, ancestral grains, flowers, meliponiculture products, and edible insects as sources of nutrients and non-nutrients is another challenge. Herein, we present an overview of alternative foods - some of them cultivated mostly in Brazil - that can be explored as sources of nutrients to fight hunger and malnutrition, improve food production and the economic growth of nations.
Collapse
Affiliation(s)
| | | | - Antonio Bisconsin-Junior
- School of Food Engineering, University of Campinas, Campinas, SP, Brazil; Federal Institute of Rondônia, Ariquemes/RO, Brazil
| | - Janne Santos de Morais
- Department of Food Engineering Centro de Tecnologia, Universidade Federal da Paraíba, Paraíba, Brazil
| | - Marciane Magnani
- Department of Food Engineering Centro de Tecnologia, Universidade Federal da Paraíba, Paraíba, Brazil
| | | | - Nuno Rodrigo Madeira
- Laboratory of Food Science and Techonology, Embrapa Hortaliças, Distrito Federal, Brazil
| | - Andrea Tiengo
- Universidade do Vale do Sapucaí, Pouso Alegre, MG, Brazil
| | | | | |
Collapse
|
24
|
Bessa LW, Pieterse E, Marais J, Dhanani K, Hoffman LC. Food Safety of Consuming Black Soldier Fly ( Hermetia illucens) Larvae: Microbial, Heavy Metal and Cross-Reactive Allergen Risks. Foods 2021; 10:1934. [PMID: 34441710 PMCID: PMC8394208 DOI: 10.3390/foods10081934] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/13/2021] [Accepted: 07/26/2021] [Indexed: 11/16/2022] Open
Abstract
Black soldier fly (Hermetia illucens) larvae (BSFL) are a promising, sustainable source of nutrients, however, there is limited knowledge regarding the food safety of consuming BSFL. This study determined the safety of consuming BSFL for direct human consumption in terms of microbial, heavy metal and allergen content. Microbial counts were determined using ISO (International Organization for Standardization) methods, heavy metals were determined using inductively coupled plasma mass spectrometry and allergens were determined via Orbitrap mass spectrometry and ELISA (enzyme-linked immunosorbent assay) kits. Feed and killing method influenced the presence of Bacillus cereus (p = 0.011), and only the killing method influenced Escherichia coli (p < 0.00) and total viable count (TVC) (p < 0.00). Blanching resulted in a 3-log reduction in E. coli and a 3.4 log reduction in the TVC counts. Salmonella spp. and Listeria spp. were not detected in the BSFL samples. Heavy metals were detected although they were below maximum legal limits. Cross-reactive allergens, tropomyosin and arginine kinase, were detected in the BSFL samples, although the clinical significance requires research. The feed fed to the BSFL and blanching were found to influence the safety of consuming BSFL, highlighting the importance of incorporating sufficient decontamination steps, such as blanching, to ensure food safety.
Collapse
Affiliation(s)
- Leah W. Bessa
- Department of Animal Sciences, University of Stellenbosch, Stellenbosch 7600, South Africa; (L.W.B.); (E.P.)
| | - Elsje Pieterse
- Department of Animal Sciences, University of Stellenbosch, Stellenbosch 7600, South Africa; (L.W.B.); (E.P.)
| | - Jeannine Marais
- Department of Food Science, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa;
| | - Karim Dhanani
- The Woodmill Office 11, 1st Floor, Vredenburg Road, Stellenbosch 7602, South Africa;
| | - Louwrens C. Hoffman
- Department of Animal Sciences, University of Stellenbosch, Stellenbosch 7600, South Africa; (L.W.B.); (E.P.)
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Coopers Plains, QLD 4108, Australia
| |
Collapse
|
25
|
Khodaparast Z, van Gestel CAM, Papadiamantis AG, Gonçalves SF, Lynch I, Loureiro S. Toxicokinetics of silver nanoparticles in the mealworm Tenebrio molitor exposed via soil or food. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 777:146071. [PMID: 33684768 DOI: 10.1016/j.scitotenv.2021.146071] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/26/2021] [Accepted: 02/20/2021] [Indexed: 06/12/2023]
Abstract
Silver nanoparticles (AgNPs) may reach the soil compartment via sewage sludge or nanoagrochemical applications. Understanding how NPs interact with biological systems is crucial for an accurate hazard assessment. Therefore, this study aimed at determining the Ag toxicokinetics in the mealworm Tenebrio molitor, exposed via Lufa 2.2 soil or via food to different Ag forms (uncoated 50 nm AgNPs, paraffin coated 3-8 nm and PVP-stabilised 60 nm, Ag2S NPs 20 nm, and ionic Ag). Mealworms were exposed for 21 days followed by a 21-day elimination phase (clean soil/food). A one-compartment kinetics model with inert fraction (simulating a storage compartment, where detoxified forms are located) was used to describe Ag accumulation. Fully understanding the uptake route in mealworms is difficult. For that reason several approaches were used, showing that food, soil and pore water all are valid uptake routes, but with different importance. Silver taken up from soil pore water or from soil showed to be related to Ag dissolution in soil pore water. In general, the uptake and elimination rate constants were similar for 3-8 nm and 60 nm AgNPs and for AgNO3, but significantly different for the uncoated 50 nm AgNPs. Upon food exposure, uptake rate constants were similar for 50 nm AgNPs and AgNO3, while those for 60 nm and 3-8 nm AgNPs and for Ag2S NPs also grouped together. NP exposure in soil appeared more difficult to characterize, with different patterns obtained for the different NPs. But it was evident that upon soil or food exposure, particle characteristics highly affected Ag bioavailability and bioaccumulation. Although Ag2S NPs were taken up, their elimination was faster than for other Ag forms, showing the lowest inert fraction. The significantly different elimination rate constants suggest that the mechanism of elimination may not be the same for different AgNPs either.
Collapse
Affiliation(s)
- Zahra Khodaparast
- Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Portugal
| | - Cornelis A M van Gestel
- Vrije Universiteit Amsterdam, Faculty of Science, Department of Ecological Science, the Netherlands
| | - Anastasios G Papadiamantis
- School of Geography, Earth and Environmental Sciences, University of Birmingham, B15 2TT Birmingham, UK; NovaMechanics Ltd., 1065 Nicosia, Cyprus
| | - Sandra F Gonçalves
- Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Portugal
| | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, B15 2TT Birmingham, UK
| | - Susana Loureiro
- Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Portugal.
| |
Collapse
|
26
|
Girolametti F, Annibaldi A, Carnevali O, Pignalosa P, Illuminati S, Truzzi C. Potential toxic elements (PTEs) in wild and farmed Atlantic bluefin tuna (Thunnus thynnus) from Mediterranean Sea: Risks and benefits for human consumption. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
27
|
Barre A, Pichereaux C, Simplicien M, Burlet-Schiltz O, Benoist H, Rougé P. A Proteomic- and Bioinformatic-Based Identification of Specific Allergens from Edible Insects: Probes for Future Detection as Food Ingredients. Foods 2021; 10:foods10020280. [PMID: 33573235 PMCID: PMC7911787 DOI: 10.3390/foods10020280] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 12/12/2022] Open
Abstract
The increasing development of edible insect flours as alternative sources of proteins added to food and feed products for improving their nutritional value, necessitates an accurate evaluation of their possible adverse side-effects, especially for individuals suffering from food allergies. Using a proteomic- and bioinformatic-based approach, the diversity of proteins occurring in currently consumed edible insects such as silkworm (Bombyx mori), cricket (Acheta domesticus), African migratory locust (Locusta migratoria), yellow mealworm (Tenebrio molitor), red palm weevil (Rhynchophorus ferrugineus), and giant milworm beetle (Zophobas atratus), was investigated. Most of them consist of phylogenetically-related protein allergens widely distributed in the different groups of arthropods (mites, insects, crustaceans) and mollusks. However, a few proteins belonging to discrete protein families including the chemosensory protein, hexamerin, and the odorant-binding protein, emerged as proteins highly specific for edible insects. To a lesser extent, other proteins such as apolipophorin III, the larval cuticle protein, and the receptor for activated protein kinase, also exhibited a rather good specificity for edible insects. These proteins, that are apparently missing or much less represented in other groups of arthropods, mollusks and nematods, share well conserved amino acid sequences and very similar three-dimensional structures. Owing to their ability to trigger allergic responses in sensitized people, they should be used as probes for the specific detection of insect proteins as food ingredients in various food products and thus, to assess their food safety, especially for people allergic to edible insects.
Collapse
Affiliation(s)
- Annick Barre
- UMR 152 PharmaDev, Institut de Recherche et Développement, Faculté de Pharmacie, Université Paul Sabatier, 35 Chemin des Maraîchers, 31062 Toulouse, France; (A.B.); (M.S.); (H.B.)
| | - Carole Pichereaux
- Fédération de Recherche (FR3450), Agrobiosciences, Interactions et Biodiversité (AIB), CNRS, 31326 Toulouse, France;
- Institut de Pharmacologie et Biologie Structurale (IPBS), Université de Toulouse UPS, CNRS, 31077 Toulouse, France;
| | - Mathias Simplicien
- UMR 152 PharmaDev, Institut de Recherche et Développement, Faculté de Pharmacie, Université Paul Sabatier, 35 Chemin des Maraîchers, 31062 Toulouse, France; (A.B.); (M.S.); (H.B.)
| | - Odile Burlet-Schiltz
- Institut de Pharmacologie et Biologie Structurale (IPBS), Université de Toulouse UPS, CNRS, 31077 Toulouse, France;
| | - Hervé Benoist
- UMR 152 PharmaDev, Institut de Recherche et Développement, Faculté de Pharmacie, Université Paul Sabatier, 35 Chemin des Maraîchers, 31062 Toulouse, France; (A.B.); (M.S.); (H.B.)
| | - Pierre Rougé
- UMR 152 PharmaDev, Institut de Recherche et Développement, Faculté de Pharmacie, Université Paul Sabatier, 35 Chemin des Maraîchers, 31062 Toulouse, France; (A.B.); (M.S.); (H.B.)
- Correspondence: ; Tel.: +33-6955-20851
| |
Collapse
|
28
|
Keil C, Maares M, Kröncke N, Benning R, Haase H. Dietary zinc enrichment reduces the cadmium burden of mealworm beetle (Tenebrio molitor) larvae. Sci Rep 2020; 10:20033. [PMID: 33208833 PMCID: PMC7674442 DOI: 10.1038/s41598-020-77079-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 11/05/2020] [Indexed: 11/12/2022] Open
Abstract
The industrial production of Tenebrio molitor L. requires optimized rearing and processing conditions to generate insect biomass with high nutritional value in large quantities. One of the problems arising from processing is a tremendous loss in mineral accessibility, affecting, amongst others, the essential trace element Zn. As a feasible strategy this study investigates Zn-enrichment of mealworms during rearing to meet the nutritional requirements for humans and animals. Following feeding ZnSO4-spiked wheat bran substrates late instar mealworm larvae were evaluated for essential micronutrients and human/animal toxic elements. In addition, growth rate and viability were assessed to select optimal conditions for future mass-rearing. Zn-feeding dose-dependently raised the total Zn content, yet the Znlarvae/Znwheat bran ratio decreased inversely related to its concentration, indicating an active Zn homeostasis within the mealworms. The Cu status remained stable, suggesting that, in contrast to mammals, the intestinal Cu absorption in mealworm larvae is not affected by Zn. Zn biofortification led to a moderate Fe and Mn reduction in mealworms, a problem that certainly can be overcome by Fe/Mn co-supplementation during rearing. Most importantly, Zn feeding massively reduced the levels of the human/animal toxicant Cd within the mealworm larvae, a technological novelty of outstanding importance to be implemented in the future production process to ensure the consumer safety of this edible insect species.
Collapse
Affiliation(s)
- Claudia Keil
- Institute for Food Technology and Food Chemistry, Technische Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Maria Maares
- Institute for Food Technology and Food Chemistry, Technische Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Nina Kröncke
- Institute of Food Technology and Bioprocess Engineering, University of Applied Sciences Bremerhaven, An der Karlstadt 8, 27568, Bremerhaven, Germany
| | - Rainer Benning
- Institute of Food Technology and Bioprocess Engineering, University of Applied Sciences Bremerhaven, An der Karlstadt 8, 27568, Bremerhaven, Germany
| | - Hajo Haase
- Institute for Food Technology and Food Chemistry, Technische Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany.
| |
Collapse
|
29
|
Hg Levels in Marine Porifera of Montecristo and Giglio Islands (Tuscan Archipelago, Italy). APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10124342] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Porifera are filter-feeding organisms known to bioaccumulate different contaminants in their tissues. The presence of mercury (Hg) has been reported in different Mediterranean species, mainly collected in the southern coast of France. In the present study, mercury concentrations in the tissue of the sponges of Montecristo and Giglio, two islands of Tuscany Archipelago National Park (TANP), are presented for the first time. Analyses of total mercury content were performed by Direct Mercury Analyzer. Statistical differences have been reported in the Hg concentrations of species collected in both islands, but they do not appear related to the anthropic impacts of the islands. Among the collected species, a high intra- and inter-variability have been recorded, with Cliona viridis showing the lowest concentration (0.0167–0.033 mg·kg−1 dry weight), and Chondrosia reniformis and Sarcotragus spinosulus the highest (0.57 ± 0.15 and 0.64 ± 0.01 mg·kg−1 dry weight, respectively). The variability of Hg measured did not allow us to identify sponges as bioindicators of toxic elements. Anyway, these results improve knowledge on the ecosystem of the TANP, underlining the species-specificity of metal concentrations for Porifera, and providing additional data to address the main input of the Marine Strategy guidelines to protect coasts, seas and oceans.
Collapse
|
30
|
Truzzi C, Annibaldi A, Girolametti F, Giovannini L, Riolo P, Ruschioni S, Olivotto I, Illuminati S. A Chemically Safe Way to Produce Insect Biomass for Possible Application in Feed and Food Production. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E2121. [PMID: 32209995 PMCID: PMC7142791 DOI: 10.3390/ijerph17062121] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/17/2020] [Accepted: 03/20/2020] [Indexed: 01/14/2023]
Abstract
Black soldier fly (Hermetia illucens, HI, Diptera, Stratiomydae) has great potential as a food and feed ingredient in the European Union (EU). The production of insects as livestock feed or as food ingredients requires strict monitoring of the content of potentially toxic elements (PTEs) in the growth substrate, to meet the security requirements. This study aims to investigate the presence of PTEs, like cadmium, lead, mercury, arsenic, and nickel, in HI prepupae and in their growth substrates based on coffee roasting by-product and microalgae Schizochytrium sp. and Isochrysis sp. Analyses were carried out via graphite furnace atomic absorption spectrophotometry for Cd, Pb, Ni, and As, and via Direct Mercury Analyzer for Hg. All element concentrations found in growth substrates were below the legal limit of undesirable substances in animal feed (2002/32/EC). Elements concentrations in HI prepupae were in the range (mg kg-1 wet weight) of 0.072 to 0.084 for Cd, 0.018 to 0.026 for Pb, 0.010 to 0.032 for Hg, 0.036 to 0.047 for As, and 0.18 to 0.76 for Ni. Even if HI prepupae accumulated Cd, Pb, and Hg, our results indicated that the risk of exposure to PTEs from HI prepupae consumption is relatively low and in compliance with EU regulations.
Collapse
Affiliation(s)
- Cristina Truzzi
- Dipartimento di Scienze della Vita e dell’Ambiente, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy; (F.G.); (L.G.); (I.O.); (S.I.)
| | - Anna Annibaldi
- Dipartimento di Scienze della Vita e dell’Ambiente, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy; (F.G.); (L.G.); (I.O.); (S.I.)
| | - Federico Girolametti
- Dipartimento di Scienze della Vita e dell’Ambiente, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy; (F.G.); (L.G.); (I.O.); (S.I.)
| | - Leonardo Giovannini
- Dipartimento di Scienze della Vita e dell’Ambiente, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy; (F.G.); (L.G.); (I.O.); (S.I.)
| | - Paola Riolo
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, 60131 Ancona, Italy; (P.R.); (S.R.)
| | - Sara Ruschioni
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, 60131 Ancona, Italy; (P.R.); (S.R.)
| | - Ike Olivotto
- Dipartimento di Scienze della Vita e dell’Ambiente, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy; (F.G.); (L.G.); (I.O.); (S.I.)
| | - Silvia Illuminati
- Dipartimento di Scienze della Vita e dell’Ambiente, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy; (F.G.); (L.G.); (I.O.); (S.I.)
| |
Collapse
|