1
|
Choi G, Kan E, Lee JH, Choi Y. Insight into the performance and microbial community of anaerobic digestion treating cow manure with a novel iron-functionalized activated biochar. CHEMOSPHERE 2024; 364:143058. [PMID: 39121954 DOI: 10.1016/j.chemosphere.2024.143058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/06/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
The main objective of this research was to evaluate the impacts of FeCl3-activated biochar (FA-BC) on anaerobic digestion (AD) treating cow manure. The study focused on improving AD performance and understanding microbial community structure with the addition of FA-BC, while comparing FA-BC with other conductive additives, such as pristine biochar (P-BC), NaOH-activated biochar (NA-BC), and magnetite. Key findings indicated that FA- BC significantly enhanced the AD performance, supported by an increase in CH4 yield of 11-16% and a reduction in the lag phase by 51%. The high surface area and electrical conductivity of FA-BC synergistically facilitated direct interspecies electron transfer (DIET), leading to these improvements. On contrast, P-BC and NA-BC were not efficient in enhancing the AD performance due to relatively low electrical conductivity. P-BC also improved the CH4 yield, but less effectively than FA-BC. The effects of NA-BC varied with its dosage, showing inhibition at higher dosages due to excessive surface area. Magnetite, despite its high conductivity, made the limited enhancement in CH4 yield owing to its low surface area. Additionally, the statistical analyses revealed that each additive differently affected specific bacterial and archaeal groups depending on their physical and chemical properties. Thus, these findings suggest that FA-BC would be a highly promising additive for enhan cing AD systems, with potential applications in waste management and renewable energy production.
Collapse
Affiliation(s)
- Gyucheol Choi
- Department of Biological and Agricultural Engineering & Texas A&M AgriLife Research Center, Texas A&M University, TX 77843, USA
| | - Eunsung Kan
- Department of Biological and Agricultural Engineering & Texas A&M AgriLife Research Center, Texas A&M University, TX 77843, USA.
| | - Jin Hyung Lee
- Korea Institute of Ceramic Engineering and Technology, Cheongju 28160, Republic of Korea
| | - Yunjeong Choi
- Department of Civil, Urban, Earth, and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 44919, Republic of Korea
| |
Collapse
|
2
|
Jo S, Bae J, Kadam R, Lee J, Park J, Jun H. Enhanced anaerobic co-digestion of cattle manure with food waste and pig manure: Statistical optimization of pretreatment condition and substrate mixture ratio. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 183:32-41. [PMID: 38714120 DOI: 10.1016/j.wasman.2024.04.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/19/2024] [Accepted: 04/24/2024] [Indexed: 05/09/2024]
Abstract
This study investigated the optimal pretreatment condition and mixture ratio of cattle manure (CM) for its efficient anaerobic co-digestion (AcoD) with food waste (FW) and pig manure (PM). The pretreatment performances of thermal (TM), microwave (MW), and ultrasound (US) technologies and the AcoD performance were statistically and experimentally evaluated at various mixture ratios of CM, FW, and PM. The results revealed that the most effective pretreatment condition with the TM, MW, and US pretreatments was 129.3 °C for 49.6 min, 824.2 W for 7.3 min, and 418.0 W for 36.3 min, respectively. The best AcoD performance of optimally pretreated CM (PCM) was achieved when 30.5 % PCM was mixed with 42.5 % FW and 27.0 % PM. A long-term evaluation showed that the start-up rate for the anaerobic mono-digestion of PCM was 2.3 times faster than that of CM and the amount of methane produced was 4.7 times higher; process stability was thus preferentially maintained under a higher organic loading rate (OLR) (2.0 kg-VS/m3∙d). The start-up rate for the AcoD of PCM with FW and PM was 1.2 times higher than that of the AcoD of CM with FW and PM. Although the performance gap between the AcoD reactors after steady state was not significantly different, the PCM AcoD reactor provided a more stable operation under a higher OLR (5.0 kg-VS/m3∙d). This study demonstrates that the pretreatment and co-digestion of CM could significantly enhance the production of biogas and improve process stability.
Collapse
Affiliation(s)
- Sangyeol Jo
- Department of Advanced Energy Engineering, Chosun University, Gwangju 61452, Republic of Korea.
| | - Jonghun Bae
- Department of Management Strategy, Livestock Environmental Management Institute, Sejong 30127, Republic of Korea
| | - Rahul Kadam
- Department of Advanced Energy Engineering, Chosun University, Gwangju 61452, Republic of Korea
| | - Jonghwa Lee
- Department of Advanced Energy Engineering, Chosun University, Gwangju 61452, Republic of Korea
| | - Jungyu Park
- Department of Advanced Energy Engineering, Chosun University, Gwangju 61452, Republic of Korea
| | - Hangbae Jun
- Department of Environmental Engineering, Chungbuk National University, Cheongju 28644, Republic of Korea.
| |
Collapse
|
3
|
Oh DY, Kim D, Park KY. A comprehensive comparative study on microwave- assisted pyrolysis products derived from raw and digested organic waste, with emphasis on sewage sludge, food waste, and livestock manure. Heliyon 2024; 10:e29618. [PMID: 38699720 PMCID: PMC11063431 DOI: 10.1016/j.heliyon.2024.e29618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/21/2024] [Accepted: 04/10/2024] [Indexed: 05/05/2024] Open
Abstract
This study focused on characterizing sewage sludge, food waste, and livestock manure, representative of continuously generated organic wastes, along with their anaerobic digestion residues. Microwave assisted pyrolysis was employed to investigate the relationship between the properties of the raw organic wastes and the resulting pyrolysis products, utilizing the R-program for analysis. Evaluation of the pyrolysis products of these six organic wastes revealed that char yield was primarily influenced by ash and fixed carbon contents, with higher yields observed in residues from anaerobic digestion compared to the original organic waste. Liquid and gaseous product quantities were found to increase with volatile content, while high-fat content within the volatile fraction notably enhanced liquid product yields, impacting syngas production. Analysis of syngas composition indicated a negative correlation between high nitrogen content in the feedstock and H2 generation. Furthermore, examining the correlation between chemical properties of organic waste and pyrolysis products revealed a proportional increase in protein components with nitrogen content, suggesting potential improvements in pyrolysis efficiency through raw material pretreatment enhancements by the R program.
Collapse
Affiliation(s)
- Doo Young Oh
- Department of Civil and Environmental Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Daegi Kim
- Department of Environmental Engineering, Mokpo National University, 1666, Yeongsan-ro, Cheonggye-myeon, Muan-gun, Jeollanam-do, 58554, Republic of Korea
| | - Ki Young Park
- Department of Civil and Environmental Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| |
Collapse
|
4
|
Hangri S, Derbal K, Policastro G, Panico A, Contestabile P, Pontoni L, Race M, Fabbricino M. Combining pretreatments and co-fermentation as successful approach to improve biohydrogen production from dairy cow manure. ENVIRONMENTAL RESEARCH 2024; 246:118118. [PMID: 38199469 DOI: 10.1016/j.envres.2024.118118] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/02/2024] [Accepted: 01/04/2024] [Indexed: 01/12/2024]
Abstract
The present paper is focused on enhancing the production of biohydrogen (bioH2) from dairy cow manure (DCM) through dark fermentation (DF). Two enhancement production strategies have been tested: i) the combination of H2O2 with sonification as pretreatment and ii) the co-fermentation with cheese whey as co-substrate. Concerning the pretreatment, the best combination was investigated according to the response surface methodology (RSM) by varying H2O2 dosage between 0.0015 and 0.06 g/gTS and ultrasonic specific energy input (USEI) between 35.48 and 1419.36 J/gTS. The increase of carbohydrates concentration was used as target parameter. Results showed that the combination of 0.06 g/gTS of H2O2 with 1419.36 J/gTS of USEI maximized the concentration of carbohydrates. The optimized conditions were used to pretreat the substrate prior conducting DF tests. The use of pretreatment resulted in obtaining a cumulative bioH2 volume of 51.25 mL/L and enhanced the bioH2 production by 125% compared to the control test conducted using raw DCM. Moreover, the second strategy, i.e. co-fermentation with cheese whey (20% v/v) as co-substrate ended up to enhancing the DF performance as the bioH2 production reached a value of 334.90 mL/L with an increase of 1372% compared to the control DF test. To further improve the process, dark fermentation effluents (DFEs) were valorized via photo fermentation (PF), obtaining an additional hydrogen production aliquot.
Collapse
Affiliation(s)
- S Hangri
- Department of Process Engineering National Polytechnic School of Constantine, Algeria
| | - K Derbal
- Department of Process Engineering National Polytechnic School of Constantine, Algeria
| | - G Policastro
- Department of Engineering and Computer Science Telematic University, Pegaso, Italy.
| | - A Panico
- Department of Engineering, University of Campania "Luigi Vanvitelli", Italy.
| | - P Contestabile
- Department of Engineering, University of Campania "Luigi Vanvitelli", Italy
| | - L Pontoni
- Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, Italy
| | - M Race
- Department of Civil and Mechanical Engineering University of Cassino and Southern, Lazio, Italy
| | - M Fabbricino
- Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, Italy
| |
Collapse
|
5
|
Kim D, Cha J, Lee C. Enhanced methane production with co-feeding spent coffee grounds using spare capacity of existing anaerobic food waste digesters. Sci Rep 2024; 14:4472. [PMID: 38396086 PMCID: PMC10891051 DOI: 10.1038/s41598-024-54610-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
With increasing coffee consumption worldwide, the efficient and sustainable management of spent coffee grounds (SCG) has become increasingly challenging. This study investigated the anaerobic co-digestion of small amounts of SCG with food waste (FW) at increasing co-feeding ratios of 1:100-1:10 (volatile solids basis) to assess the possibility of SCG treatment using the spare capacity of existing anaerobic digesters. Co-feeding SCG increased methane production compared to FW mono-digestion in the tested range of co-feeding ratios without compromising process stability. Methane yield did not further increase when the SCG/FW ratio increased above 4%, and process failure occurred at a 1:10 co-feeding ratio without trace element supplementation. The enhanced methanogenic performance was attributed to increased protein removal efficiency, which was potentially related to the promotion of peptide hydrolysis. The overall results suggest that co-feeding appropriate small amounts of SCG to FW digesters can be a realistic sustainable option for SCG management.
Collapse
Affiliation(s)
- Danbee Kim
- Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-Gil, Eonyang-Eup, Ulju-Gun, Ulsan, 44919, Republic of Korea
- Gwangju Clean Energy Research Center, Korea Institute of Energy Research, 25, Samso-Ro 270Beon-Gil, Buk-Gu, Gwangju, 61003, Republic of Korea
| | - Junho Cha
- Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-Gil, Eonyang-Eup, Ulju-Gun, Ulsan, 44919, Republic of Korea
| | - Changsoo Lee
- Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-Gil, Eonyang-Eup, Ulju-Gun, Ulsan, 44919, Republic of Korea.
- Graduate School of Carbon Neutrality, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-Gil, Eonyang-Eup, Ulju-Gun, Ulsan, 44919, Republic of Korea.
| |
Collapse
|
6
|
Osei-Owusu BA, Arthur R, Baidoo MF, Oduro-Kwarteng S, Amenaghawon AN. Anaerobic co-digestion of human excreta, food leftovers and kitchen residue: 1 ternary mixture design, synergistic effects and RSM approach. Heliyon 2024; 10:e24080. [PMID: 38293336 PMCID: PMC10826170 DOI: 10.1016/j.heliyon.2024.e24080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/31/2023] [Accepted: 01/03/2024] [Indexed: 02/01/2024] Open
Abstract
Anaerobic digestion of multiple substrates can generate more biogas while remaining stable, if positive synergistic effects are achieved. The type of co-digested substrates and the mixing ratio used, are the most important variables as each substrate has unique set of characteristics. Optimizing the volume ratios by testing various substrate mixing ratios is a popular method for determining the best-performing ratio of substrate mixture. The ternary mixture design has reportedly been found to quicken the process of testing different mixing ratios with high accuracy without running several experiments. Therefore, a ternary mixture design and a response surface approach are used in this work to ascertain the relationship between substrate mix and responses (biogas yield, methane yield, and synergy). The findings of the experiment revealed that R9 comprising 78.8 % human excreta, 11.8 % food leftovers and 9.4 % kitchen residue, had the highest methane production of 764.79 mLCH4/gVS and a synergistic index of 3.26. Additionally, the 3D response surface plots from the response surface model showed important and shared interactions between Human Excreta, (HE), Food Leftovers (FLO), and Kitchen Residue (KR). HE and KR had a similar positive synergistic effect on biogas yield, methane yield, and synergy, which was not the case for FLO. The response surface plots showed that the predicted responses (methane yield, biogas yield and synergy) increased with increasing HE and KR fractions and decreased with increasing FLO fractions in the substrate mixtures.
Collapse
Affiliation(s)
- Blissbern Appiagyei Osei-Owusu
- Regional Water and Environmental Sanitation Centre, Kumasi. Department of Civil Engineering, College of Engineering Kwame Nkrumah University of Science and Technology, UPO, Kumasi, Ghana
| | - Richard Arthur
- Department of Energy Systems Engineering, Koforidua Technical University, Koforidua P.O. Box KF 981, Ghana
| | - Martina Francisca Baidoo
- Department of Chemical Engineering, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Sampson Oduro-Kwarteng
- Regional Water and Environmental Sanitation Centre, Department of Civil Engineering, Kwame Nkrumah University of Science and Technology, UPO, Kumasi, Ghana
| | | |
Collapse
|
7
|
Zaki M, Rowles LS, Adjeroh DA, Orner KD. A Critical Review of Data Science Applications in Resource Recovery and Carbon Capture from Organic Waste. ACS ES&T ENGINEERING 2023; 3:1424-1467. [PMID: 37854077 PMCID: PMC10580293 DOI: 10.1021/acsestengg.3c00043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 09/11/2023] [Accepted: 09/11/2023] [Indexed: 10/20/2023]
Abstract
Municipal and agricultural organic waste can be treated to recover energy, nutrients, and carbon through resource recovery and carbon capture (RRCC) technologies such as anaerobic digestion, struvite precipitation, and pyrolysis. Data science could benefit such technologies by improving their efficiency through data-driven process modeling along with reducing environmental and economic burdens via life cycle assessment (LCA) and techno-economic analysis (TEA), respectively. We critically reviewed 616 peer-reviewed articles on the use of data science in RRCC published during 2002-2022. Although applications of machine learning (ML) methods have drastically increased over time for modeling RRCC technologies, the reviewed studies exhibited significant knowledge gaps at various model development stages. In terms of sustainability, an increasing number of studies included LCA with TEA to quantify both environmental and economic impacts of RRCC. Integration of ML methods with LCA and TEA has the potential to cost-effectively investigate the trade-off between efficiency and sustainability of RRCC, although the literature lacked such integration of techniques. Therefore, we propose an integrated data science framework to inform efficient and sustainable RRCC from organic waste based on the review. Overall, the findings from this review can inform practitioners about the effective utilization of various data science methods for real-world implementation of RRCC technologies.
Collapse
Affiliation(s)
- Mohammed
T. Zaki
- Wadsworth
Department of Civil and Environmental Engineering, West Virginia University, Morgantown, West Virginia 26505, United States
| | - Lewis S. Rowles
- Department
of Civil Engineering and Construction, Georgia
Southern University, Statesboro, Georgia 30458, United States
| | - Donald A. Adjeroh
- Lane
Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, West Virginia 26505, United States
| | - Kevin D. Orner
- Wadsworth
Department of Civil and Environmental Engineering, West Virginia University, Morgantown, West Virginia 26505, United States
| |
Collapse
|
8
|
Valorization of Fourth-Range Wastes: Evaluating Pyrolytic Behavior of Fresh and Digested Wastes. FERMENTATION 2022. [DOI: 10.3390/fermentation8120744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Changes in daily habits and a stressful lifestyle create modifications in consumer preferences and open opportunities to new market products. This is the case of fourth-range products in which the industrial sector generates a waste stream of high quality. Valorization of this type of waste as a single stream is desirable to avoid lowering quality with other low-grade materials. Anaerobic digestion of fourth-range wastes was studied under discontinuous and semi-continuous conditions. A high carbon content characterizes the organic material composed of fruit and vegetable wastes. The fast degradation of the substrate indicated no limitations associated with the hydrolysis stage, as observed from kinetic parameters estimated from batch assays. However, the easiness of degradation did not translate into short hydraulic retention times when operating under semi-continuous conditions. Additionally, the insufficient amount of nutrients prevented the development of a well-balanced digestion process. Specific methane production was 325 mL CH4/g VS added at a hydraulic retention time of 30 days. However, solid accumulation was observed at the end of the experiment, indicating that conditions established did not allow for the complete conversion of the organic material. Digestate evaluation using thermal analysis under inert conditions showed a thermal profile evidencing the presence of complex components and a high tendency to char formation.
Collapse
|
9
|
Bechara R. Improvements to the ADM1 based Process Simulation Model: Reaction segregation, parameter estimation and process optimization. Heliyon 2022; 8:e11793. [PMCID: PMC9712131 DOI: 10.1016/j.heliyon.2022.e11793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 10/31/2022] [Accepted: 11/14/2022] [Indexed: 12/03/2022] Open
Abstract
Anaerobic digestion is a sustainable organic waste treatment technique with energy recovery via biogas generation. This work presents a novel Aspen Plus ADM1-based flowsheet for this process. Three reactor segments were chosen: stoichiometric for the hydrolysis step, kinetic for acido-aceto-methanogenesis, and equilibrium for hydrogenotrophic methane production. Selected parameters- conversion ratios, kinetic pre-exponent and inhibitor factors- were controlled to best fit model and experimental results. The parity plot fitting had an R2 = 0.999, a slope of 1.0058 and an intercept of −0.8651. Obtained parameter values stressed the importance of inhibitions, and simulation results showcased the bell-shaped curve for acetic and volatile fatty acid reduction. The model was used for a subsequent sensitivity analysis as well as an optimization runs, leading to a 50% higher methane production ratio. The proposed model presents itself as a significant contribution for optimal anaerobic digestion process design. A robust process simulation model is constructed to simulate anaerobic digestion. The ADM1 model is the basis for kinetic reactions with associated inhibitions. Reaction parameters are optimized to fit literature and model results. pH, inhibition, and pre-exponential reaction factors differ from literature. Preliminary sensitivity analysis and process optimization are realized.
Collapse
|
10
|
Kim S, Shim S, Won S, Kwag J, Ra C. Real-Time Control Technology for a Bio-Liquor Circulation System in a Swine Barn with Slurry Pit: Pilot Scale Study. Animals (Basel) 2022; 12:2941. [PMID: 36359064 PMCID: PMC9655288 DOI: 10.3390/ani12212941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/15/2022] [Accepted: 10/21/2022] [Indexed: 01/12/2024] Open
Abstract
The livestock industry, especially swine production, has been pressurized by vicinity complaints about odor in Korea. Therefore, a lot of effort has been undertaken regarding reducing the odor emissions from pigsties, widely carried out and the washing out manure in slurry pit by liquid-phase compost has particularly been spotlighted with outstanding performance of odor reduction. However, such a washing out manure called bio-liquor circulation system (BCS) has been controlled by a timer with designated reaction time, which cannot guarantee the system performance. This research proposes an effective real-time control technology for BCS, which circulates bio-liquor to the slurry pit of swine barns. The real-time control system was operated through accurate detection of the designated control points on the oxidation reduction potential (ORP) and pH time profiles for the nitrate knee point (NKP) and nitrogen break point (NBP) in anoxic and aerobic conditions with 100 and 99.6% performances, respectively. The duration of the anoxic and aerobic phases was also automated and noticeably lowered the concentration of nutrients in the manure in the slurry-pit, which served as a source of malodor. The real-time control strategy may be an innovative way to reduce odor and simultaneously produce liquid fertilizer, and provides a reference for the optimization of the industrial scale.
Collapse
Affiliation(s)
- Seungsoo Kim
- Department of Animal Industry Convergence, College of Animal Life Sciences, Kangwon National University, Chuncheon 24341, Korea
| | - Soomin Shim
- Department of Animal Industry Convergence, College of Animal Life Sciences, Kangwon National University, Chuncheon 24341, Korea
| | - Seunggun Won
- Department of Animal Resources, College of Life and Environmental Science, Daegu University, Gyeongsan 38453, Korea
| | - Junghoon Kwag
- Department of Animal Industry Convergence, College of Animal Life Sciences, Kangwon National University, Chuncheon 24341, Korea
| | - Changsix Ra
- Department of Animal Industry Convergence, College of Animal Life Sciences, Kangwon National University, Chuncheon 24341, Korea
| |
Collapse
|
11
|
Kim D, Choi H, Yu H, Kim H, Baek G, Lee C. Potential treatment of aged cow manure using spare capacity in anaerobic digesters treating a mixture of food waste and pig manure. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 148:22-32. [PMID: 35653950 DOI: 10.1016/j.wasman.2022.05.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/11/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
With the increasing production of cow manure (CM) and the continuing decrease in the demand for manure compost, CM management has become an urgent and challenging task in Korea. In most cattle farms in Korea, CM mixed with bedding materials is left in pens exposed to the open air for several months before treatment, which makes CM an unsuitable feedstock for anaerobic digestion. This study examined the co-digestion of aged CM with a mixture of food waste and pig manure as the base substrate to assess the possibility of treating and valorizing CM using spare capacity in existing anaerobic digesters dealing with other wastes. The duplicate digesters initially fed with the base substrate were subjected to the addition of increasing amounts of CM (3-10% in the feed, w/v) over nine months. Co-feeding CM up to 5% in the feed (w/v) did not compromise the methanogenic degradation of the substrates, but adding more CM led to a significant performance deterioration likely related to the buildup of inhibitory free ammonia and H2S. Adding CM substantially influenced the digester microbial communities, especially methanogenic communities, and induced a dominance shift from aceticlastic Methanothrix to hydrogenotrophic methanogens as the CM fraction increased. The overall results suggest that the CM fraction should not exceed 5% in the feed (w/v) for its stable treatment with the base substrate in the experimental digesters. Although further studies are needed, anaerobic treatment using spare capacity in existing digesters can be a useful strategy for the management of aged CM.
Collapse
Affiliation(s)
- Danbee Kim
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 44919, Republic of Korea
| | - Hyungmin Choi
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 44919, Republic of Korea
| | - Hyeonjung Yu
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 44919, Republic of Korea
| | - Hanwoong Kim
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 44919, Republic of Korea
| | - Gahyun Baek
- Enrivonmental Research Group, Research Institute of Industrial Science and Technology (RIST), 67 Cheongam-ro, Nam-gu, Pohang-si, Gyeongsangbuk-do 37673, Republic of Korea
| | - Changsoo Lee
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 44919, Republic of Korea.
| |
Collapse
|
12
|
Haffiez N, Chung TH, Zakaria BS, Shahidi M, Mezbahuddin S, Hai FI, Dhar BR. A critical review of process parameters influencing the fate of antibiotic resistance genes in the anaerobic digestion of organic waste. BIORESOURCE TECHNOLOGY 2022; 354:127189. [PMID: 35439559 DOI: 10.1016/j.biortech.2022.127189] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/13/2022] [Accepted: 04/15/2022] [Indexed: 06/14/2023]
Abstract
The overuse and inappropriate disposal of antibiotics raised severe public health risks worldwide. Specifically, the incomplete antibiotics metabolism in human and animal bodies contributes to the significant release of antibiotics into the natural ecosystems and the proliferation of antibiotic-resistant bacteria carrying antibiotic-resistant genes. Moreover, the organic feedstocks used for anaerobic digestion are often highly-rich in residual antibiotics and antibiotic-resistant genes. Hence, understanding their fate during anaerobic digestion has become a significant research focus recently. Previous studies demonstrated that various process parameters could considerably influence the propagation of the antibiotic-resistant genes during anaerobic digestion and their transmission via land application of digestate. This review article scrutinizes the influences of process parameters on antibiotic-resistant genes propagation in anaerobic digestion and the inherent fundamentals behind their effects. Based on the literature review, critical research gaps and challenges are summarized to guide the prospects for future studies.
Collapse
Affiliation(s)
- Nervana Haffiez
- Civil and Environmental Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Tae Hyun Chung
- Civil and Environmental Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Basem S Zakaria
- Civil and Environmental Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Manjila Shahidi
- 4S Analytics & Modelling Ltd., Edmonton, AB, T6W 3V6, Canada
| | | | - Faisal I Hai
- Strategic Water Infrastructure Laboratory, School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Bipro Ranjan Dhar
- Civil and Environmental Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada.
| |
Collapse
|
13
|
Kinhoun JJR, Li A, Lv M, Shi Y, Fan B, Qian T. Human Excreta and Food Waste of a Typical Rural Area in China: Characteristics and Co-Fermentation. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19084731. [PMID: 35457598 PMCID: PMC9028711 DOI: 10.3390/ijerph19084731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/04/2022] [Accepted: 04/08/2022] [Indexed: 02/04/2023]
Abstract
Human excreta (HE) and food waste (FW) are the primary contaminants in rural regions. Prior to treating these contaminants, mastering their properties is required. In this study, the characteristics of the HE leaving the body and FW leaving the kitchen to the subsequent respective fermentation were studied. Moreover, two kinds of co-fermentation processes for HE and FW were also investigated on the basis of mastering the properties. The results showed that, for a healthy adult, fresh feces, urine, and FW produced were about 163 g/cap/d (57.3 gCOD/cap/d), 1.6 L/cap/d (6.7 gN/cap/d), and 250 g/cap/d (35.0 gCOD/cap/d), respectively. In HE, about 75% of nitrogen and phosphorus were contained in urine. It takes at least three days for crushed FW discharged via water flushing to settle completely, and the COD removal efficiency after precipitation was around 75%. Mixing HE with FW after discharge, i.e., the initial unit of the process was 20% more efficient in fermentation than mixing after the respective pre-fermentation. This paper presents the characteristics of HE and FW and provides the optimized co-fermentation process, which provides technical support for the realization of environmental sanitation in rural areas.
Collapse
Affiliation(s)
- Jean Joël Roland Kinhoun
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (J.J.R.K.); (A.L.); (M.L.); (Y.S.); (B.F.)
- Water Pollution and Control Department, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ao Li
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (J.J.R.K.); (A.L.); (M.L.); (Y.S.); (B.F.)
- Water Pollution and Control Department, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Minghuan Lv
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (J.J.R.K.); (A.L.); (M.L.); (Y.S.); (B.F.)
- Water Pollution and Control Department, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunpeng Shi
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (J.J.R.K.); (A.L.); (M.L.); (Y.S.); (B.F.)
- Water Pollution and Control Department, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bin Fan
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (J.J.R.K.); (A.L.); (M.L.); (Y.S.); (B.F.)
- Water Pollution and Control Department, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tingting Qian
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; (J.J.R.K.); (A.L.); (M.L.); (Y.S.); (B.F.)
- Water Pollution and Control Department, University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence:
| |
Collapse
|
14
|
Kaniapan S, Pasupuleti J, Patma Nesan K, Abubackar HN, Umar HA, Oladosu TL, Bello SR, Rene ER. A Review of the Sustainable Utilization of Rice Residues for Bioenergy Conversion Using Different Valorization Techniques, Their Challenges, and Techno-Economic Assessment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:3427. [PMID: 35329114 PMCID: PMC8953080 DOI: 10.3390/ijerph19063427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/06/2022] [Accepted: 03/08/2022] [Indexed: 11/24/2022]
Abstract
The impetus to predicting future biomass consumption focuses on sustainable energy, which concerns the non-renewable nature of fossil fuels and the environmental challenges associated with fossil fuel burning. However, the production of rice residue in the form of rice husk (RH) and rice straw (RS) has brought an array of benefits, including its utilization as biofuel to augment or replace fossil fuel. Rice residue characterization, valorization, and techno-economic analysis require a comprehensive review to maximize its inherent energy conversion potential. Therefore, the focus of this review is on the assessment of rice residue characterization, valorization approaches, pre-treatment limitations, and techno-economic analyses that yield a better biofuel to adapt to current and future energy demand. The pre-treatment methods are also discussed through torrefaction, briquetting, pelletization and hydrothermal carbonization. The review also covers the limitations of rice residue utilization, as well as the phase structure of thermochemical and biochemical processes. The paper concludes that rice residue is a preferable sustainable biomass option for both economic and environmental growth.
Collapse
Affiliation(s)
- Sivabalan Kaniapan
- Institute of Sustainable Energy, Universiti Tenaga Nasional, Kajang 43000, Malaysia;
| | - Jagadeesh Pasupuleti
- Institute of Sustainable Energy, Universiti Tenaga Nasional, Kajang 43000, Malaysia;
| | - Kartikeyan Patma Nesan
- Chemical Engineering Department, Universiti Teknologi Petronas, Seri Iskandar 32610, Malaysia
| | | | - Hadiza Aminu Umar
- Mechanical Engineering Department, Bayero University Kano, Kano PMB 3011, Nigeria;
- Mechanical Engineering Department, Universiti Teknologi Petronas, Seri Iskandar 32610, Malaysia;
| | - Temidayo Lekan Oladosu
- Mechanical Engineering Department, Universiti Teknologi Petronas, Seri Iskandar 32610, Malaysia;
| | - Segun R. Bello
- Department of Agricultural and Bioenvironmental Engineering Technology, Federal College of Agriculture Ishiagu, Ishiagu 402143, Nigeria;
| | - Eldon R. Rene
- Department of Environmental Engineering and Water Technology, IHE Delft Institute for Water Education, P.O. Box 3015, 2601 DA Delft, The Netherlands;
| |
Collapse
|
15
|
Awasthi SK, Kumar M, Sarsaiya S, Ahluwalia V, Chen H, Kaur G, Sirohi R, Sindhu R, Binod P, Pandey A, Rathour R, Kumar S, Singh L, Zhang Z, Taherzadeh MJ, Awasthi MK. Multi-criteria research lines on livestock manure biorefinery development towards a circular economy: From the perspective of a life cycle assessment and business models strategies. JOURNAL OF CLEANER PRODUCTION 2022; 341:130862. [DOI: 10.1016/j.jclepro.2022.130862] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/20/2023]
|
16
|
Peng W, Zhang H, Lü F, Shao L, He P. From food waste and its digestate to nitrogen self-doped char and methane-rich syngas: Evolution of pyrolysis products during autogenic pressure carbonization. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127249. [PMID: 34600375 DOI: 10.1016/j.jhazmat.2021.127249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/04/2021] [Accepted: 09/14/2021] [Indexed: 06/13/2023]
Abstract
Thermal conversion of solid digestate following anaerobic digestion (AD) can be a solution for producing value-added products and closing the material loop. The products of the novel autogenic pressure carbonization (APC) of food waste and two digestates were characterized to evaluate the temperature effect, product distribution and physicochemical composition. As the temperature increased from 300 to 700 ℃, char yields slightly decreased from 60.0% to 53.3% for the solid digestate from high-solid AD (SDH) while those of the solid digestate from low-solid AD (SDL) varied from 78.7% to 73.2%. X-ray photoelectron spectroscopy (XPS) results indicated that pyridinic N accounts for 40.0% of total N in char of SDL at 700 ℃ that can be upgraded to functional N-doped carbon materials. Maximum yield (39.8%) of syngas was obtained at 700 ℃ with SDH as a feedstock. After APC at 700 ℃, syngas, mainly consisted of CH4 and CO2, had heating values ranging from 22.4 to 24.6MJm-3, which can be jointly utilized with biogas from AD as fuel. Overall, results from this study demonstrate that APC could be used as a potential thermal conversion process for producing value-added products (N-doped biochar) and biofuel (syngas).
Collapse
Affiliation(s)
- Wei Peng
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China; Shanghai Engineering Research Center of Multi-source Solid Wastes Co-processing and Energy Utilization, Shanghai 200092, PR China
| | - Hua Zhang
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China; Shanghai Engineering Research Center of Multi-source Solid Wastes Co-processing and Energy Utilization, Shanghai 200092, PR China
| | - Fan Lü
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China; Shanghai Engineering Research Center of Multi-source Solid Wastes Co-processing and Energy Utilization, Shanghai 200092, PR China
| | - Liming Shao
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China; Shanghai Engineering Research Center of Multi-source Solid Wastes Co-processing and Energy Utilization, Shanghai 200092, PR China
| | - Pinjing He
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China; Shanghai Engineering Research Center of Multi-source Solid Wastes Co-processing and Energy Utilization, Shanghai 200092, PR China.
| |
Collapse
|
17
|
Feasibility of Coupling Anaerobic Digestion and Hydrothermal Carbonization: Analyzing Thermal Demand. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app112411660] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Anaerobic digestion is a biological process with wide application for the treatment of high organic-containing streams. The production of biogas and the lack of oxygen requirements are the main energetic advantages of this process. However, the digested stream may not readily find a final disposal outlet under certain circumstances. The present manuscript analyzed the feasibility of valorizing digestate by the hydrothermal carbonization (HTC) process. A hypothetical plant treating cattle manure and cheese whey as co-substrate (25% v/w, wet weight) was studied. The global performance was evaluated using available data reported in the literature. The best configuration was digestion as a first stage with the subsequent treatment of digestate in an HTC unit. The treatment of manure as sole substrate reported a value of 752 m3/d of biogas which could be increased to 1076 m3/d (43% increase) when coupling an HTC unit for digestate post-treatment and the introduction of the co-substrate. However, the high energy demand of the combined configurations indicated, as the best alternative, the valorization of just a fraction (15%) of digestate to provide the benefits of enhancing biogas production. This configuration presented a much better energy performance than the thermal hydrolysis pre-treatment of manure. The increase in biogas production does not compensate for the high energy demand of the pre-treatment unit. However, several technical factors still need further research to make this alternative a reality, as it is the handling and pumping of high solid slurries that significantly affects the energy demand of the thermal treatment units and the possible toxicity of hydrochar when used in a biological process.
Collapse
|
18
|
Anaerobic Co-Digestion of Sheep Manure and Waste from a Potato Processing Factory: Techno-Economic Analysis. FERMENTATION 2021. [DOI: 10.3390/fermentation7040235] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Anaerobic co-digestion of sheep manure and potato waste was studied under batch and semi-continuous conditions. Biochemical methane potential tests were carried out for the different substrates before evaluating co-digestion at high-solid content. The reactors presented stable performance under mesophilic conditions, at an organic loading rate (OLR) of 3.5–4.0 kg VS/m3 and a hydraulic retention time (HRT) of approximately 20 days. Increasing the OLR of semi-continuous reactors decreased the methane yield and degradation efficiency of the digestion. Methane-specific production was in the range of 196 and 467 mL CH4/g vs. (sheep manure system and co-digestion, respectively). Based on the experimental data obtained, a techno-economic study was performed for wet and solid-state fermentation systems, with the first configuration presenting better results. The economic feasibility of the hypothetical plant was analyzed considering the variability in electricity and compost selling prices. The economic feasibility of the plant was determined with an electricity selling price of EUR 0.25/kWh, and assuming a centralized plant serving several farmers. Still, this price was considered excessive, given the current electricity market values.
Collapse
|
19
|
Jo Y, Rhee C, Choi H, Shin J, Shin SG, Lee C. Long-term effectiveness of bioaugmentation with rumen culture in continuous anaerobic digestion of food and vegetable wastes under feed composition fluctuations. BIORESOURCE TECHNOLOGY 2021; 338:125500. [PMID: 34265595 DOI: 10.1016/j.biortech.2021.125500] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/26/2021] [Accepted: 06/29/2021] [Indexed: 06/13/2023]
Abstract
Biogas plants treating food waste (FW) often experience feed load and composition fluctuations. In Korea, vegetable waste from the preparation of kimchi comprises over 20% of the total FW production during the Kimjang season. The large production of Kimjang waste (KW) can cause mechanical and operational problems in FW digesters. This study investigated the long-term effectiveness of bioaugmentation with rumen culture (38 months) in an anaerobic reactor co-digesting FW with varying amounts of KW. The bioaugmented reactor maintained better and stabler performance under recurrent fluctuations in feed characteristics than a non-bioaugmented control reactor, particularly under high ammonia conditions. Bioaugmentation increased microbial diversity, thereby improving the resilience of the microbial community. Some augmented microorganisms, especially Methanosarcina, likely played an important role in it. The results suggest that the proposed bioaugmentation strategy may provide a means to effectively treat and valorize KW-and potentially other seasonal lignocellulosic wastes-by co-digestion with FW.
Collapse
Affiliation(s)
- Yeadam Jo
- Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 44919, Republic of Korea; Hyundai Engineering & Construction Co., Ltd., Hyundai Bldg. 75 Yulgok-ro, Jongno-gu, Seoul 03058, Republic of Korea
| | - Chaeyoung Rhee
- Department of Energy Engineering, Future Convergence Technology Research Institute, Gyeongsang National University, 501 Jinju-daero, Jinju, Gyeongnam 52828, Republic of Korea
| | - Hyungmin Choi
- Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 44919, Republic of Korea
| | - Juhee Shin
- Department of Energy Engineering, Future Convergence Technology Research Institute, Gyeongsang National University, 501 Jinju-daero, Jinju, Gyeongnam 52828, Republic of Korea
| | - Seung Gu Shin
- Department of Energy Engineering, Future Convergence Technology Research Institute, Gyeongsang National University, 501 Jinju-daero, Jinju, Gyeongnam 52828, Republic of Korea
| | - Changsoo Lee
- Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 44919, Republic of Korea.
| |
Collapse
|
20
|
Batch and Semi-Continuous Anaerobic Digestion of Industrial Solid Citrus Waste for the Production of Bioenergy. Processes (Basel) 2021. [DOI: 10.3390/pr9040648] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The aim of this paper is to describe a study of the anaerobic digestion of industrial citrus solid waste (ISCW) in both batch and semi-continuous modes for the production of bioenergy without the elimination of D-limonene. The study was conducted at the pilot plant level in an anaerobic reactor with a working volume of 220 L under mesophilic conditions of 35 ± 2 °C. Cattle manure (CM) was used as the inoculum. Three batches were studied. The first batch had a CM/ISCW ratio of 90/10, and Batches 2 and 3 had CM/ISCW ratios of 80/20 and 70/30, respectively. In the semi-continuous mode an OLR of approximately 8 g total chemical oxygen demand (COD)/Ld (4.43 gVS/Ld) was used. The results showed that 49%, 44%, and 60% of volatile solids were removed in the batch mode, and 35% was removed in the semi-continuous mode. In the batch mode, 0.322, 0.382, and 0.316 LCH4 were obtained at STP/gVSremoved. A total of 24.4 L/d (34% methane) was measured in the semi-continuous mode. Bioenergy potentials of 3.97, 5.66, and 8.79 kWh were obtained for the respective batches, and 0.09 kWh was calculated in the semi-continuous mode. The citrus industry could produce 37 GWh per season. A ton of processed oranges has a bioenergy potential of 162 kWh, which is equivalent to 49 kWh of available electricity ($3.90).
Collapse
|
21
|
Anaerobic Digestion for Producing Renewable Energy-The Evolution of This Technology in a New Uncertain Scenario. ENTROPY 2021; 23:e23020145. [PMID: 33503933 PMCID: PMC7912667 DOI: 10.3390/e23020145] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 12/28/2022]
Abstract
Anaerobic digestion is a well-known technology with wide application in the treatment of high-strength organic wastes. The economic feasibility of this type of installation is usually attained thanks to the availability of fiscal incentives. In this review, an analysis of the different factors associated with this biological treatment and a description of alternatives available in literature for increasing performance of the process were provided. The possible integration of this process into a biorefinery as a way for producing energy and chemical products from the conversion of wastes and biomass also analyzed. The future outlook of anaerobic digestion will be closely linked to circular economy principles. Therefore, this technology should be properly integrated into any production system where energy can be recovered from organics. Digestion can play a major role in any transformation process where by-products need further stabilization or it can be the central core of any waste treatment process, modifying the current scheme by a concatenation of several activities with the aim of increasing the efficiency of the conversion. Thus, current plants dedicated to the treatment of wastewaters, animal manures, or food wastes can become specialized centers for producing bio-energy and green chemicals. However, high installation costs, feedstock dispersion and market distortions were recognized as the main parameters negatively affecting these alternatives.
Collapse
|
22
|
Dearing JW, Lapinski M. Multisolving Innovations For Climate And Health: Message Framing To Achieve Broad Public Support. Health Aff (Millwood) 2020; 39:2175-2181. [PMID: 33284709 DOI: 10.1377/hlthaff.2020.01170] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Rapid diffusion of solutions to a changing climate is paramount if the US is to mitigate carbon emissions. A timely response depends on how people perceive and understand innovations such as new practices, programs, policies, and technologies that promise to reduce emissions. This article explores multisolving innovations in the context of interventions that can be targeted to community leaders and decision makers. We focus on examples led by policy staff; directors of municipal offices and departments of transportation, housing, sustainability, urban planning, and public health; and elected county and city officials where there may be mixed support for efforts to reduce carbon emissions, to show that some innovations can be accurately framed solely in terms of community health benefits. When communicating with stakeholders who are dismissive or skeptical of climate change, we suggest using messages that describe the benefits of mitigation innovations in terms of human health, rather than climate, to achieve broader acceptability.
Collapse
Affiliation(s)
- James W Dearing
- James W. Dearing is the Brandt Endowed Professor in the Department of Communication at Michigan State University, in East Lansing, Michigan
| | - Maria Lapinski
- Maria Lapinski is the director of the Health and Risk Communication Center and a professor in the Department of Communication at Michigan State University
| |
Collapse
|
23
|
Effect of Pasteurisation on Methane Yield from Food Waste and Other Substrates in Anaerobic Digestion. Processes (Basel) 2020. [DOI: 10.3390/pr8111351] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The effect of pasteurisation and co-pasteurisation on biochemical methane potential values in anaerobic digestion (AD) was studied. Pasteurisation prior to digestion in a biogas plant is a common hygienisation method for organic materials which contain or have been in contact with animal by-products. Tests were carried out on food waste, slaughterhouse waste, animal blood, cattle slurry, potato waste, card packaging and the organic fraction of municipal solid waste (OFMSW); pasteurisation at 70 °C for 1 h was applied. Pasteurisation had increased the methane yields of blood (+15%) and potato waste (+12%) only, which both had a low content of structural carbohydrates (hemi-cellulose and cellulose) but a particularly high content of either non-structural carbohydrates such as starch (potato waste) or proteins (blood). With food waste, card packaging and cattle slurry, pasteurisation had no observable impact on the methane yield. Slaughterhouse waste and OFMSW yielded less methane after pasteurisation in the experiments (but statistical significance of the difference between pasteurised and unpasteurised slaughterhouse waste or OFMSW was not confirmed in this work). It is concluded that pasteurisation can positively impact the methane yield of some specific substrates, such as potato waste, where heat-treatment may induce gelatinisation with release of the starch molecules. For most substrates, however, pasteurisation at 70 °C is unlikely to increase the methane yield. It is unlikely to improve biodegradability of lignified materials, and it may reduce the methane yield from substrates which contain high contents of volatile components. Furthermore, in this experimental study, the obtained methane yield was unaffected by whether the substrates were pasteurised individually and then co-digested or co-pasteurised as a mixture before batch digestion.
Collapse
|