1
|
Schrenk D, Bignami M, Bodin L, Chipman JK, del Mazo J, Grasl‐Kraupp B, Hogstrand C, (Ron) Hoogenboom L, Leblanc J, Nebbia CS, Nielsen E, Ntzani E, Petersen A, Sand S, Schwerdtle T, Wallace H, Benford D, Fürst P, Hart A, Rose M, Schroeder H, Vrijheid M, Ioannidou S, Nikolič M, Bordajandi LR, Vleminckx C. Update of the risk assessment of polybrominated diphenyl ethers (PBDEs) in food. EFSA J 2024; 22:e8497. [PMID: 38269035 PMCID: PMC10807361 DOI: 10.2903/j.efsa.2024.8497] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024] Open
Abstract
The European Commission asked EFSA to update its 2011 risk assessment on polybrominated diphenyl ethers (PBDEs) in food, focusing on 10 congeners: BDE-28, -47, -49, -99, -100, -138, -153, -154, -183 and ‑209. The CONTAM Panel concluded that the neurodevelopmental effects on behaviour and reproductive/developmental effects are the critical effects in rodent studies. For four congeners (BDE-47, -99, -153, -209) the Panel derived Reference Points, i.e. benchmark doses and corresponding lower 95% confidence limits (BMDLs), for endpoint-specific benchmark responses. Since repeated exposure to PBDEs results in accumulation of these chemicals in the body, the Panel estimated the body burden at the BMDL in rodents, and the chronic intake that would lead to the same body burden in humans. For the remaining six congeners no studies were available to identify Reference Points. The Panel concluded that there is scientific basis for inclusion of all 10 congeners in a common assessment group and performed a combined risk assessment. The Panel concluded that the combined margin of exposure (MOET) approach was the most appropriate risk metric and applied a tiered approach to the risk characterisation. Over 84,000 analytical results for the 10 congeners in food were used to estimate the exposure across dietary surveys and age groups of the European population. The most important contributors to the chronic dietary Lower Bound exposure to PBDEs were meat and meat products and fish and seafood. Taking into account the uncertainties affecting the assessment, the Panel concluded that it is likely that current dietary exposure to PBDEs in the European population raises a health concern.
Collapse
|
2
|
Roila R, Piersanti A, Valiani A, Ranucci D, Tavoloni T, Stramenga A, Griffoni F, Pittura L, Gorbi S, Franceschini R, Agnetti F, Palma G, Branciari R. Carassius auratus as a bioindicator of the health status of Lake Trasimeno and risk assessment for consumers. Ital J Food Saf 2023; 12:11137. [PMID: 37680319 PMCID: PMC10480937 DOI: 10.4081/ijfs.2023.11137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 03/20/2023] [Indexed: 09/09/2023] Open
Abstract
Fish are good bio-indicators of the health status of the aquatic environment and can be used as biomarkers to assess the aquatic behavior of environmental pollutants, the exposure of aquatic organisms, and the health risk for consumers. Goldfish are a significant bioindicator in the Lake Trasimeno aquatic system (Umbria, Italy). This study aimed to characterize the health status and the chemical and biotic contamination of Lake Trasimeno to define its anthropogenic and natural pressures and the risk associated with consuming its fishery products. 114 determinations were performed on Carassius auratus samples from 2018 to 2020, and the occurrence of brominated flame retardants, non-dioxin-like polychlorinated biphenyls, heavy metals, and microplastics was analytically investigated. Dietary exposure assessment, risk characterization, and benefit-risk evaluation were performed for schoolchildren from 3 to 10 years old. Flame-retardants registered high levels of non-detects (99% for polybrominated diphenyl ether and 76% for hexabromocyclododecanes), while polychlorinated biphenyls were found in all samples with a maximum level of 56.3 ng/g. Traces of at least one heavy metal were found in all samples, though always below the regulatory limit. Microplastics were found with a 75% frequency of fish ingesting at least one particle. Dietary exposure and risk characterization reveal negligible contributions to the reference values of all contaminants, except for mercury, which reached up to 25% of admissible daily intake. The benefit- risk assessment highlighted that the benefits of freshwater fish intake outweigh the associated risks. The examination of goldfish as indicator fish reveals the quality of Lake Trasimeno's aquatic environment and the safety of its products.
Collapse
Affiliation(s)
- Rossana Roila
- Department of Veterinary Medicine, University of Perugia
| | - Arianna Piersanti
- Experimental Zooprophylactic Institute of Umbria and Marche Togo Rosati, Perugia
| | - Andrea Valiani
- Experimental Zooprophylactic Institute of Umbria and Marche Togo Rosati, Perugia
| | - David Ranucci
- Department of Veterinary Medicine, University of Perugia
| | - Tamara Tavoloni
- Experimental Zooprophylactic Institute of Umbria and Marche Togo Rosati, Perugia
| | - Arianna Stramenga
- Experimental Zooprophylactic Institute of Umbria and Marche Togo Rosati, Perugia
| | - Francesco Griffoni
- Experimental Zooprophylactic Institute of Umbria and Marche Togo Rosati, Perugia
| | - Lucia Pittura
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona
| | - Stefania Gorbi
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona
| | | | - Francesco Agnetti
- Experimental Zooprophylactic Institute of Umbria and Marche Togo Rosati, Perugia
| | | | | |
Collapse
|
3
|
De Cock A, Forio MAE, Croubels S, Dominguez-Granda L, Jacxsens L, Lachat C, Roa-López H, Ruales J, Scheyvaerts V, Solis Hidalgo MC, Spanoghe P, Tack FMG, Goethals PLM. Health risk-benefit assessment of the commercial red mangrove crab: Implications for a cultural delicacy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160737. [PMID: 36502983 DOI: 10.1016/j.scitotenv.2022.160737] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/02/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
Mangrove forests, provide vital food resources and are an endangered ecosystem worldwide due to pollution and habitat destruction. A risk-benefit assessment (RBA) was performed on the red mangrove crab (Ucides occidentalis) from the threatened Guayas mangroves in Ecuador. It was aimed to assess the combined potential adverse and beneficial health impact associated with crab consumption and define a recommended safe intake (SI) to improve the diet of the Ecuadoran population while ensuring safe food intake. Target hazard quotients (THQs), benefit quotients (Qs), and benefit-risk quotients (BRQs) were calculated based on the concentrations of the analyzed contaminants (121 pesticide residues, 11 metal(loid)s, antimicrobial drugs from 3 classes) and nutrients (fatty acids, amino acids, and essential nutrients). Except for inorganic arsenic (iAs), the THQ was below 100 for all investigated contaminants, suggesting that the average crab consumer is exposed to levels that do not impose negative non-carcinogenic or carcinogenic health effects in the long and/or short term. Concentrations of iAs (average AsIII: 25.64 and AsV: 6.28 μg/kg fw) were of the highest concern because of the potential to cause negative health effects on long-term consumption. Despite the thriving aquaculture in the Guayas estuary, concentrations of residues of the antimicrobial drugs oxytetracycline (OTC), florfenicol, and nitrofurans still were low. Based on the fact that different risk reference values exist, related to different safety levels, four SI values (0.002, 0.04, 4, and 18 crabs/day) were obtained. The strictest intake values indicate a concern for current consumption habits. In conclusion, the red mangrove crab contains various important nutrients and can be part of a balanced diet for the Ecuadorian population when consumed in limited portions. The present study emphasizes the importance of safeguarding the quality of the environment as a prerequisite for procuring nutritious and safe food.
Collapse
Affiliation(s)
- Andrée De Cock
- Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium.
| | - Marie Anne Eurie Forio
- Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Siska Croubels
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Luis Dominguez-Granda
- Centro del Agua y Desarrollo Sustentable, Facultad de Ciencias Naturales y Matemáticas, Escuela Superior Politécnica del Litoral ESPOL, Avenida principal de la ESPOL, Campus Gustavo Galindo, Km 30.5 Vía Perimetral, ECO90211 Guayaquil, Ecuador
| | - Liesbeth Jacxsens
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Carl Lachat
- Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Heydi Roa-López
- Facultad de Ciencias Naturales y Matemáticas, Escuela Superior Politécnica del Litoral, ESPOL, Campus Gustavo Galindo, Km. 30.5 Vía Perimetral, P.O. Box 09-01-5863, ECO90211 Guayaquil, Ecuador
| | - Jenny Ruales
- Departamento de Ciencia de los Alimentos y Biotecnología, Escuela Politécnica Nacional, José Rubén Orellana Ricaurte, Ladrón de Guevara E11-253 y Andalucía, 170517 Quito, Ecuador
| | - Victoria Scheyvaerts
- Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Michelle Carolina Solis Hidalgo
- Facultad de Ciencias Naturales y Matemáticas, Escuela Superior Politécnica del Litoral, ESPOL, Campus Gustavo Galindo, Km. 30.5 Vía Perimetral, P.O. Box 09-01-5863, ECO90211 Guayaquil, Ecuador
| | - Pieter Spanoghe
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Ghent, Belgium
| | - Filip M G Tack
- Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Frieda Saeysstraat 1, B-9052 Gent, Belgium
| | - Peter L M Goethals
- Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| |
Collapse
|
4
|
Tavoloni T, Stramenga A, Stecconi T, Gavaudan S, Moscati L, Sagratini G, Siracusa M, Ciriaci M, Dubbini A, Piersanti A. Brominated flame retardants (PBDEs and HBCDs) and perfluoroalkyl substances (PFASs) in wild boars (Sus scrofa) from Central Italy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159745. [PMID: 36349633 DOI: 10.1016/j.scitotenv.2022.159745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/21/2022] [Accepted: 10/22/2022] [Indexed: 06/16/2023]
Abstract
Twenty-six samples of wild boar liver and muscle from the Central Apennine Mountain (Italy) were analysed for 19 perfluoro-alkyl substances (PFASs), 10 polybrominated diphenylethers (PBDEs) and 3 hexabromocyclododecanes (HBCDs). All samples were analysed by gas chromatography-tandem mass spectrometry for PBDEs and liquid chromatography-tandem mass spectrometry for PFASs and HBCDs, using an in-house developed analytical procedure. The brominated flame retardants (BFR) levels in livers were negligible: Σ10PBDEs reached a maximum value of 0.079 μg/kg, whereas HBCDs were not quantified in almost all of the samples analysed. BFR concentrations in muscles were higher, but not significantly therefore, for Σ10PBDEs lower bound, a mean value of 0.045 μg/kg (0.005-0.155 μg/kg range) was measured, while α-HBCD was quantified with a maximum of 0.084 μg/kg in 9 of the samples. Only two muscles contained all 3 HBCD isomers at concentrations of approximately 0.200 μg/kg. Σ19PFAS in the 26 wild boar livers was in the range 31.9-228 μg/kg, with a mean value of 87.7 μg/kg, reaching levels significantly higher than in muscles, which exhibited a mean concentration of 3.08 μg/kg (0.59-9.12 μg/kg range). Perfluorooctanesulfonic acid (PFOS) was the most prevalent compound in all liver samples, accounting for more than half of the total PFASs contamination, confirming that the liver is the primary target organ for PFOS exposure Perfluorotridecanoic acid (PFTrDA), which accounts for 25-30-% of the total contamination, was the most abundant compound in the muscle, followed by PFOS. The estimated daily intake (EDIs) of BFRs remained below the estimated chronic human daily dietary intake (Dr,h) defined from European Food Safety Authority (EFSA). Furthermore, the exposure to PFASs in muscle was 7.7 times lower than the EFSA's tolerable daily intake (TDI). In contrast, exposure due to liver consumption was significant: the EDI exceeded the EFSA's 2020 TDI by approximately 7 times.
Collapse
Affiliation(s)
- Tamara Tavoloni
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche "Togo Rosati", Via Cupa di Posatora 3, 60131 Ancona, Italy.
| | - Arianna Stramenga
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche "Togo Rosati", Via Cupa di Posatora 3, 60131 Ancona, Italy.
| | - Tommaso Stecconi
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche "Togo Rosati", Via G. Salvemini 1, 06126 Perugia, Italy; University of Camerino, School of Pharmacy, 62032 Camerino, Italy.
| | - Stefano Gavaudan
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche "Togo Rosati", Via Cupa di Posatora 3, 60131 Ancona, Italy.
| | - Livia Moscati
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche "Togo Rosati", Via G. Salvemini 1, 06126 Perugia, Italy.
| | - Gianni Sagratini
- University of Camerino, School of Pharmacy, 62032 Camerino, Italy.
| | - Melania Siracusa
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche "Togo Rosati", Via Cupa di Posatora 3, 60131 Ancona, Italy.
| | - Martina Ciriaci
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche "Togo Rosati", Via Cupa di Posatora 3, 60131 Ancona, Italy.
| | - Alessandra Dubbini
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche "Togo Rosati", Via Cupa di Posatora 3, 60131 Ancona, Italy.
| | - Arianna Piersanti
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche "Togo Rosati", Via Cupa di Posatora 3, 60131 Ancona, Italy.
| |
Collapse
|
5
|
Marquès M, Nadal M, Domingo JL. Human exposure to polybrominated diphenyl ethers (PBDEs) through the diet: An update of the scientific literature. Food Chem Toxicol 2022; 167:113322. [PMID: 35872254 DOI: 10.1016/j.fct.2022.113322] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 07/15/2022] [Indexed: 11/27/2022]
Abstract
Polybrominated diphenyl ethers (PBDEs) are a class of brominated flame-retardants (BFRs). As for other persistent organic pollutants, dietary intake (followed by dust inhalation) is the main route of human exposure to PBDEs. In 2012, we reviewed the scientific literature on the concentrations of PBDEs in foodstuffs and their dietary exposure. The current review is aimed at updating the results of recent studies (2012-2022) focused on determining the levels of PBDEs in food samples, as well as the dietary intake of these compounds. We have revised studies conducted over the world. The current information on the concentrations of PBDEs in food and their dietary intake is now much more notable than that available in our previous review, being China the country contributing with the highest number of studies. Because of the important differences in materials and methods used in the available studies, the comparison of results is certainly complicated. However, there seems to be a general trend towards a decrease in the levels of PBDEs in foods, and consequently, in the dietary intake of these contaminants. The lack of tolerable daily intakes of PBDEs is an issue that needs to be solved for assessing human health risks of these BFRs.
Collapse
Affiliation(s)
- Montse Marquès
- Universitat Rovira I Virgili, Laboratory of Toxicology and Environmental Health, School of Medicine, Sant Llorens 21, 43201, Reus, Catalonia, Spain
| | - Martí Nadal
- Universitat Rovira I Virgili, Laboratory of Toxicology and Environmental Health, School of Medicine, Sant Llorens 21, 43201, Reus, Catalonia, Spain
| | - José L Domingo
- Universitat Rovira I Virgili, Laboratory of Toxicology and Environmental Health, School of Medicine, Sant Llorens 21, 43201, Reus, Catalonia, Spain.
| |
Collapse
|
6
|
Franceschini R, Guardone L, Armani A, Ranucci D, Roila R, Valiani A, Susini F, Branciari R. Five-years management of an emerging parasite risk (Eustrongylides sp., Nematoda) in a fishery supply chain located on Trasimeno Lake (Italy). Food Control 2022. [DOI: 10.1016/j.foodcont.2022.108858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
7
|
Recycling Plastics from WEEE: A Review of the Environmental and Human Health Challenges Associated with Brominated Flame Retardants. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19020766. [PMID: 35055588 PMCID: PMC8775953 DOI: 10.3390/ijerph19020766] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/05/2022] [Accepted: 01/07/2022] [Indexed: 01/27/2023]
Abstract
Waste electrical and electronic equipment (WEEE) presents the dual characteristic of containing both hazardous substances and valuable recoverable materials. Mainly found in WEEE plastics, brominated flame retardants (BFRs) are a component of particular interest. Several actions have been taken worldwide to regulate their use and disposal, however, in countries where no regulation is in place, the recovery of highly valuable materials has promoted the development of informal treatment facilities, with serious consequences for the environment and the health of the workers and communities involved. Hence, in this review we examine a wide spectrum of aspects related to WEEE plastic management. A search of legislation and the literature was made to determine the current legal framework by region/country. Additionally, we focused on identifying the most relevant methods of existing industrial processes for determining BFRs and their challenges. BFR occurrence and substitution by novel BFRs (NBFRs) was reviewed. An emphasis was given to review the health and environmental impacts associated with BFR/NBFR presence in waste, consumer products, and WEEE recycling facilities. Knowledge and research gaps of this topic were highlighted. Finally, the discussion on current trends and proposals to attend to this relevant issue were outlined.
Collapse
|