1
|
Mvundura M, Ngwira LG, Shrestha KB, Tuladhar R, Gauld J, Kerr C, Barnes K, Anscombe C, Sharma B, Feasey N. Cost-effectiveness of wastewater-based environmental surveillance for SARS-CoV-2 in Blantyre, Malawi and Kathmandu, Nepal: A model-based study. PLOS GLOBAL PUBLIC HEALTH 2025; 5:e0004439. [PMID: 40273116 PMCID: PMC12021199 DOI: 10.1371/journal.pgph.0004439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 04/01/2025] [Indexed: 04/26/2025]
Abstract
Wastewater-based environmental surveillance (ES) has been demonstrated to provide an early warning signal to predict variant-driven waves of pathogens such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Our study evaluated the potential cost-effectiveness of ES for SARS-CoV-2 compared with clinical testing alone. We used the Covasim agent-based model of COVID-19 to simulate disease transmission for hypothetical populations in Blantyre, Malawi, and Kathmandu, Nepal. We simulated the introduction of a new immune-escaping variant over 6 months and estimated health outcomes (cases, deaths, and disability-adjusted life years [DALYs]) and economic impact when using ES to trigger a moderate proactive behavioral intervention (e.g., increased use of masks, social distancing) by policymakers versus no ES and hence a delayed reactive intervention. Costs considered included for ES, clinical testing, treatment, and productivity loss for the entire population due to implementation of the behavioral intervention. We calculated the incremental cost-effectiveness ratios and compared these with local willingness-to-pay thresholds: $61 for Malawi and $249 for Nepal. We performed sensitivity analyses to evaluate the impact of key assumptions on the results. Costs are reported in 2022 US dollars. We estimate that if ES were implemented, approximately 600 DALYs would be averted in Blantyre and approximately 300 DALYs averted in Kathmandu, over the six-month period. Considering health system costs, ES was cost-effective in Blantyre and cost-saving in Kathmandu. Cost-effectiveness of ES was highest in settings with low clinical surveillance, high disease severity, and high intervention effectiveness. However, from the societal perspective, ES may not be cost-effective depending on the magnitude of population-wide productivity losses associated with the proactive behavioral intervention and the cost-effectiveness threshold. SARS-CoV-2 ES has the potential to be a cost-saving or cost-effective tool from the health system perspective when linked to an effective public health response. From the societal perspective, however, the length of the behavioral intervention and its consequences for productivity losses of the entire population may make ES not cost-effective. Implementing ES for multiple pathogens may improve its cost-effectiveness.
Collapse
Affiliation(s)
- Mercy Mvundura
- Medical Devices and Health Technologies, PATH, Seattle, Washington, United States of America
| | - Lucky G. Ngwira
- Malawi-Liverpool Wellcome Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
- Health Economics and Policy Unit, Kamuzu University of Health Sciences, Blantyre, Malawi
| | | | - Reshma Tuladhar
- Central Department of Microbiology, Tribhuvan University, Kathmandu, Nepal
| | - Jillian Gauld
- Institute for Disease Modeling, Bill & Melinda Gates Foundation, Seattle, Washington, United States of America
| | - Cliff Kerr
- Institute for Disease Modeling, Bill & Melinda Gates Foundation, Seattle, Washington, United States of America
| | - Kayla Barnes
- Malawi-Liverpool Wellcome Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
- Broad Institute, Boston, Massachusetts, United States of America
- Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Catherine Anscombe
- Malawi-Liverpool Wellcome Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Bhawana Sharma
- Environment and Public Health Organisation, Kathmandu, Nepal
| | - Nicholas Feasey
- Malawi-Liverpool Wellcome Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
- Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- School of Medicine, University of St. Andrews, St. Andrews, United Kingdom
| |
Collapse
|
2
|
Kevill JL, Farkas K, Herridge K, Malham SK, Jones DL. Evaluation of Three Viral Capsid Integrity qPCR Methods for Wastewater-Based Viral Surveillance. FOOD AND ENVIRONMENTAL VIROLOGY 2025; 17:12. [PMID: 39760935 PMCID: PMC11703991 DOI: 10.1007/s12560-024-09627-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 12/04/2024] [Indexed: 01/07/2025]
Abstract
Capsid Integrity qPCR (CI-qPCR) assays offer a promising alternative to cell culture-based infectivity assays for assessing pathogenic human virus viability in wastewater. This study compared three CI-qPCR methods: two novel (Crosslinker, TruTiter) and one established (PMAxx dye). These methods were evaluated on heat-inactivated and non-heat-inactivated 'live' viruses spiked into phosphate-buffered saline (PBS) and wastewater, as well as on viruses naturally present in wastewater samples. The viral panel included Human adenovirus 5 (HAdV), enterovirus A71 (EV), hepatitis-A virus (HAV), influenza-A H3N2 (IAV), respiratory syncytial virus A2 (RSV), norovirus GI, norovirus GII, and SARS-CoV-2. All three methods successfully differentiated between degraded, heat-inactivated, and live viruses in PBS. While all three methods were comparable for HAdV and norovirus GI, PMAxx detected significantly lower gene copies for EV and IAV. In spiked wastewater, PMAxx yielded significantly lower gene copies for all heat-inactivated viruses (HAdV, EV, HAV, IAV, and RSV) compared to the Crosslinker and TruTiter methods. For viruses naturally present in wastewater (un-spiked), no significant difference was observed between PMAxx and TruTiter methods. Intact, potentially infectious viruses were detected using both PMAxx and TruTiter on untreated and treated wastewater samples. A comparative analysis of qPCR data and TEM images revealed that viral flocculation of IAV may interfere with capsid integrity assays using intercalating dyes. In summary, our findings not only advance the development of more effective methods for assessing viral viability in wastewater, but also highlight the potential of CI-qPCR techniques to enhance early warning systems for emerging pathogens, thereby strengthening public health preparedness and response strategies.
Collapse
Affiliation(s)
- Jessica L Kevill
- School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd, LL57 2UW, UK.
| | - Kata Farkas
- School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd, LL57 2UW, UK
| | - Kate Herridge
- School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd, LL57 2UW, UK
| | - Shelagh K Malham
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey, LL59 5AB, UK
| | - Davey L Jones
- School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd, LL57 2UW, UK
| |
Collapse
|
3
|
Kanyerezi S, Guerfali FZ, Anzaku AA, Babaleye OA, Calvert-Joshua T, Nguinkal JA, Amoo OP, Atri C, Khan W, Saleh I, Nisar MI, Kasambula AS, Morapedi K, Mboowa G. Wastewater metagenomics in Africa: Opportunities and challenges. PLOS GLOBAL PUBLIC HEALTH 2024; 4:e0004044. [PMID: 39705278 DOI: 10.1371/journal.pgph.0004044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2024]
Abstract
The advent of metagenomics has dramatically expanded our understanding of microbial communities, particularly through the study of wastewater, which serves as a rich source of microbial data. In Africa, wastewater metagenomics presents unparalleled opportunities for public health monitoring, antimicrobial resistance (AMR) tracking, and the discovery of new microbial species and functions. Utilizing high-throughput sequencing (HTS) technologies, this method allows for direct analysis of nucleic acids from wastewater samples, providing a cost-effective and comprehensive approach for pathogen surveillance. The potential of wastewater metagenomics in Africa is vast. It can revolutionize public health monitoring by acting as an early warning system for infectious disease outbreaks, offering near real-time data to shape effective responses. This is especially critical in densely populated urban areas with poor sanitation, where the risk of disease spread is high. Moreover, this approach enables the detection of emerging pathogens and insights into environmental health. However, the implementation of wastewater metagenomics in Africa faces several challenges. These include variability in wastewater composition due to differing local customs, limited infrastructure for sequencing and data analysis, and a shortage of bioinformatics expertise. Socio-political and ethical issues also complicate data sharing and the equitable distribution of benefits. To overcome these challenges, there is a need to enhance capacity through collaborative training, infrastructural development, and international partnerships. Investing and sustaining local genomics and bioinformatics infrastructure and expertise is crucial. Moreover, establishing robust data governance frameworks and engaging communities are essential for leveraging metagenomics to advance scientific knowledge and deliver tangible health and economic benefits. With strategic planning and collaboration, Africa can harness the transformative potential of wastewater metagenomics to improve disease surveillance, combat AMR, and foster scientific innovation, contributing significantly to sustainable development and improved quality of life.
Collapse
Affiliation(s)
- Stephen Kanyerezi
- The African Center of Excellence in Bioinformatics and Data-Intensive Sciences, the Infectious Diseases Institute, College of Health Sciences, Makerere University, Kampala, Uganda
- National Health Laboratories and Diagnostics Services, Central Public Health Laboratories, Ministry of Health, Kampala, Uganda
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Fatma Zahra Guerfali
- Laboratory of Transmission, Control and Immunobiology of Infections, Institut Pasteur de Tunis, University Tunis-El Manar, Tunis, Tunisia
| | - Abbas Abel Anzaku
- Department of Clinical Laboratory Services, Institute of Human Virology, Abuja, Nigeria
- Global Health and Infectious Diseases Control Institute, Nasarawa State University Keffi, Keffi, Nigeria
| | - Oluwasegun Adesina Babaleye
- Microbiology Department, The Center for Human Virology and Genomics, Nigerian Institute of Medical Research, Lagos, Nigeria
| | - Tracey Calvert-Joshua
- Public Health Alliance for Genomic Epidemiology (PHA4GE), University of the Western Cape, Bellville, South Africa
| | - Julien Alban Nguinkal
- Department of Infectious Disease Epidemiology, Bernhard-Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Oluwaseun Paul Amoo
- African Center of Excellence for Genomics of Infectious Diseases, Redeemers University, Ede, Nigeria
- Pneuma Research Institute (PRI), Nigeria
| | - Chiraz Atri
- Laboratory of Transmission, Control and Immunobiology of Infections, Institut Pasteur de Tunis, University Tunis-El Manar, Tunis, Tunisia
| | - Waqasuddin Khan
- Department of Pediatrics and Child Health, CITRIC Center for Bioinformatics and Computational Biology, Aga Khan University, Karachi, Pakistan
| | - Iqra Saleh
- Department of Pediatrics and Child Health, CITRIC Center for Bioinformatics and Computational Biology, Aga Khan University, Karachi, Pakistan
| | - M Imran Nisar
- Department of Pediatrics and Child Health, CITRIC Center for Bioinformatics and Computational Biology, Aga Khan University, Karachi, Pakistan
| | | | - Koketso Morapedi
- Department of Natural Sciences, Institute of Health Sciences-Gaborone, Gaborone, Botswana
- Genformatics Centre of Excellence, Gaborone, Botswana
| | - Gerald Mboowa
- The African Center of Excellence in Bioinformatics and Data-Intensive Sciences, the Infectious Diseases Institute, College of Health Sciences, Makerere University, Kampala, Uganda
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, College of Health Sciences, Makerere University, Kampala, Uganda
- Africa Centres for Disease Control and Prevention, African Union Commission, Addis Ababa, Ethiopia
| |
Collapse
|
4
|
Mashau F, Dada AC, Msolo L, Ebomah KE, Ekundayo TC, Iwu CD, Nontongana N, Okoh AI. Factors affecting detection and estimation of SARS-CoV-2 RNA concentration of COVID-19 positive cases in wastewater influent: A systematic review. Public Health 2024; 237:167-175. [PMID: 39418699 DOI: 10.1016/j.puhe.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/09/2024] [Accepted: 10/08/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND Wastewater Based Surveillance (WBS) has emerged as a novel monitoring tool for tracking and estimating the dissemination of the Novel Coronavirus Disease 2019 (COVID-19) within communities. OBJECTIVE The goal of this review is to assess the factors that influence estimations of SARS-CoV-2 RNA concentration estimations in wastewater. METHODS A literature search was conducted using the Preferred Reporting Items for Systematic Reviews and Meta-Analysis for Scoping Reviews (PRISMA-ScR) criteria in the electronic databases Scopus, PubMed, Google Scholar, and Medline. The overall quality, sample methodologies, quantification methods, and estimating approaches of selected papers were assessed. RESULTS Our findings reveal that 16 out of 24 articles (67 %) focused on physiochemical analyses. This review showed that sampling strategies and laboratory methodologies play a crucial role in the detection of SARS-CoV-2 RNA in wastewater samples. Moreover, we found that WBS-based estimation of COVID-19 is influenced by several factors such as wastewater temperature, shedding rate, and population size. CONCLUSION This review reveals that the identified parameters require adjustments to achieve optimum conditions that accurately predict community infections. Including these factors that influence the estimation of SARS-CoV-2 RNA concentration in wastewater is essential for developing effective public health strategies to combat the spread of COVID-19.
Collapse
Affiliation(s)
- Funanani Mashau
- Department of Public Health, Faculty of Health Sciences, University of Fort Hare, East London, South Africa; SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, 5700, South Africa; Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice, 5700, South Africa.
| | - Ayokunle C Dada
- QMRA Data Experts, P. O. Box 37 Waikato Mail Centre, Hamilton, New Zealand
| | - Luyanda Msolo
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, 5700, South Africa; Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice, 5700, South Africa
| | - Kingsley E Ebomah
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, 5700, South Africa; Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice, 5700, South Africa
| | - Temitope C Ekundayo
- Department of Biotechnology and Food Science, Durban University of Technology, Steve Biko Campus, Health Services, 121 Steve Biko Rd, Musgrave, Berea, 4001, Durban, South Africa; Department of Biological Sciences, University of Medical Sciences, Ondo City, Ondo State, Nigeria
| | - Chidozie D Iwu
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, 5700, South Africa
| | - Nolonwabo Nontongana
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, 5700, South Africa; Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice, 5700, South Africa
| | - Anthony I Okoh
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, 5700, South Africa; Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice, 5700, South Africa
| |
Collapse
|
5
|
Kipterer JK, Touray K, Godwin AU, Cisse A, Aimee BNM, Busisiwe N, Derrick CYD, Henry GH, Modjirom N, Seaman V, Ahmed J. Geographic information system and information visualization capacity building: Successful polio eradication and current and future challenges in the COVID-19 era for the World Health Organization's African region. PLoS One 2024; 19:e0307001. [PMID: 39146252 PMCID: PMC11326561 DOI: 10.1371/journal.pone.0307001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 06/26/2024] [Indexed: 08/17/2024] Open
Abstract
Despite a half-century-long global eradication effort, polio continues to have a devastating impact on individuals and communities worldwide, especially in low-income countries affected by conflict or geographic barriers to immunization programs. In response, the World Health Organization (WHO) Global Polio Eradication Initiative (GPEI) employs disease surveillance and vaccination campaigns coordinated through the WHO Regional Office for Africa (AFRO) Geographic Information System (GIS) Centre. Established in 2017, the AFRO GIS Centre played a key role in the eradication of wild-type polioviruses (WPVs) in 2020, but the COVID-19 pandemic, emergence of circulating vaccine-derived polioviruses, and transmission of WPV1 from Central Asia have led to a resurgence of polio in Sub-Saharan Africa. The AFRO GIS comprises a set of mobile device or cloud-based tools for geospatial data collection, analysis, and visualization. Using tools such as Auto-Visual Acute Flaccid Paralysis Detection and Reporting, electronic surveillance, and Integrated Supportive Supervision, GIS personnel collect polio case numbers and locations, track field worker activities, follow the movements of nomadic populations vulnerable to polio and other diseases, and determine needs for further healthcare deployments. The system is location specific and operates in real time, enabling the AFRO GIS to promptly target its responses to polio, COVID-19, Ebola virus disease, and other public health crises and natural disasters. The present review describes the components of the AFRO GIS and how the AFRO GIS Centre coordinated on-the-ground polio eradication efforts to help secure Africa's certification as WPV free. It also examines current and prospective challenges regarding other disease outbreaks in the COVID-19 era and how the AFRO GIS Centre is addressing these ongoing public health needs.
Collapse
Affiliation(s)
- John Kapoi Kipterer
- World Health Organization—Regional Office for Africa, Cité du Djoué, Brazzaville, Republic of the Congo
| | - Kebba Touray
- World Health Organization—Regional Office for Africa, Cité du Djoué, Brazzaville, Republic of the Congo
| | - Akpan Ubong Godwin
- World Health Organization—Regional Office for Africa, Cité du Djoué, Brazzaville, Republic of the Congo
| | - Aboubakar Cisse
- World Health Organization—Regional Office for Africa, Cité du Djoué, Brazzaville, Republic of the Congo
| | - Babona Nshuti Marie Aimee
- World Health Organization—Regional Office for Africa, Cité du Djoué, Brazzaville, Republic of the Congo
| | - Ngobe Busisiwe
- World Health Organization—Regional Office for Africa, Cité du Djoué, Brazzaville, Republic of the Congo
| | | | - Green Hugh Henry
- World Health Organization—Regional Office for Africa, Cité du Djoué, Brazzaville, Republic of the Congo
| | - Ndoutabe Modjirom
- World Health Organization—Regional Office for Africa, Cité du Djoué, Brazzaville, Republic of the Congo
| | - Vince Seaman
- Bill & Melinda Gates Foundation, Seattle, Washington, United States of America
| | - Jamal Ahmed
- World Health Organization—Regional Office for Africa, Cité du Djoué, Brazzaville, Republic of the Congo
| |
Collapse
|
6
|
Scaccia N, da Silva Fonseca JV, Megueya AL, de Aragão GL, Rasolofoarison T, de Paula AV, de Vinci Kanda Kupa L, Tchatchueng J, Makuetche K, Rasolojaona TZ, Rasamoelina T, Razzolini MTP, Duarte NJC, Mendes-Correa MC, Samison LH, Guimaraes T, Sabino EC, Komurian-Pradel F, Nzouankeu A, Costa SF. Analysis of chlorhexidine, antibiotics and bacterial community composition in water environments from Brazil, Cameroon and Madagascar during the COVID-19 pandemic. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 932:173016. [PMID: 38723967 DOI: 10.1016/j.scitotenv.2024.173016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/03/2024] [Accepted: 05/04/2024] [Indexed: 05/14/2024]
Abstract
The widespread of chlorhexidine and antibiotics in the water bodies, which grew during the global COVID-19 pandemic, can increase the dispersion of antibiotic resistance. We assessed the occurrence of these pharmaceutical compounds as well as SARS-CoV-2 and analysed the bacterial community structure of hospital and urban wastewaters from Brazil, Cameroon, and Madagascar. Water and wastewater samples (n = 59) were collected between January-June 2022. Chlorhexidine, azithromycin, levofloxacin, ceftriaxone, gentamicin and meropenem were screened by Ultra-High-Performance Liquid Chromatography coupled with mass spectrometer. SARS-CoV-2 was detected based on the nucleocapsid gene (in Cameroon and Madagascar), and envelope and spike protein-encoding genes (in Brazil). The total community-DNA was extracted and used for bacterial community analysis based on the 16S rRNA gene. To unravel likely interaction between pharmaceutical compounds and/or SARS-CoV-2 with the water bacterial community, multivariate statistics were performed. Chlorhexidine was found in hospital wastewater effluent from Brazil with a maximum concentration value of 89.28 μg/L. Additionally, antibiotic residues such as azithromycin and levofloxacin were also present at concentrations between 0.32-7.37 μg/L and 0.11-118.91 μg/L, respectively. In Cameroon, azithromycin was the most found antibiotic present at concentrations from 1.14 to 1.21 μg/L. In Madagascar instead, ceftriaxone (0.68-11.53 μg/L) and levofloxacin (0.15-0.30 μg/L) were commonly found. The bacterial phyla statistically significant different (P < 0,05) among participating countries were Proteobacteria, Patescibacteria and Dependentiae which were mainly abundant in waters sampled in Africa and, other phyla such as Firmicutes, Campylobacterota and Fusobacteriota were more abundant in Brazil. The phylum Caldisericota was only found in raw hospital wastewater samples from Madagascar. The canonical correspondence analysis results suggest significant correlation of azithromycin, meropenem and levofloxacin with bacteria families such as Enterococcaceae, Flavobacteriaceae, Deinococcaceae, Thermacetogeniaceae and Desulfomonilaceae, Spirochaetaceae, Methanosaetaceae, Synergistaceae, respectively. Water samples were also positive for SARS-CoV-2 with the lowest number of hospitalized COVID-19 patients in Madagascar (n = 7) and Brazil (n = 30). Our work provides new data about the bacterial community profile and the presence of pharmaceutical compounds in the hospital effluents from Brazil, Cameroon, and Madagascar, whose limited information is available. These compounds can exacerbate the spreading of antibiotic resistance and therefore pose a risk to public health.
Collapse
Affiliation(s)
- Nazareno Scaccia
- Department of Infectious Diseases and Institute of Tropical Medicine, Faculty of Medicine, University of São Paulo, Av. Dr. Enéas de Carvalho Aguiar, 470, 05403-000 Cerqueira César, São Paulo, Brazil.
| | - Joyce Vanessa da Silva Fonseca
- Department of Infectious Diseases and Institute of Tropical Medicine, Faculty of Medicine, University of São Paulo, Av. Dr. Enéas de Carvalho Aguiar, 470, 05403-000 Cerqueira César, São Paulo, Brazil
| | - Armelle Leslie Megueya
- Department of Hygiene and Environment Microbiology Section, Centre Pasteur of Cameroon, PO Box 1274, Yaounde, 451, Rue 2005, Yaounde 2, Yaounde, Cameroon
| | - Gabrielly Lacerda de Aragão
- Department of Infectious Diseases and Institute of Tropical Medicine, Faculty of Medicine, University of São Paulo, Av. Dr. Enéas de Carvalho Aguiar, 470, 05403-000 Cerqueira César, São Paulo, Brazil
| | - Tiavina Rasolofoarison
- Charles Merieux Center of Infectious Disease, University of Antananarivo, Ankatso University Campus, BP 4299, 101 Antananarivo, Madagascar
| | - Anderson Vicente de Paula
- Department of Infectious Diseases and Institute of Tropical Medicine, Faculty of Medicine, University of São Paulo, Av. Dr. Enéas de Carvalho Aguiar, 470, 05403-000 Cerqueira César, São Paulo, Brazil
| | - Léonard de Vinci Kanda Kupa
- Central Laboratory Division, Hospital das Clinicas HCFMUSP, Faculty of Medicine, University of São Paulo, Av. Dr. Enéas Carvalho de Aguiar, 155, 01246-100 Cerqueira César, São Paulo, Brazil
| | - Jules Tchatchueng
- Department of Epidemiology, Centre Pasteur of Cameroon, PO Box 1274, Yaounde, 451, Rue 2005, Yaounde 2, Yaounde, Cameroon
| | - Kévine Makuetche
- Department of Hygiene and Environment Microbiology Section, Centre Pasteur of Cameroon, PO Box 1274, Yaounde, 451, Rue 2005, Yaounde 2, Yaounde, Cameroon
| | - Tahiry Z Rasolojaona
- Charles Merieux Center of Infectious Disease, University of Antananarivo, Ankatso University Campus, BP 4299, 101 Antananarivo, Madagascar
| | - Tahinamandranto Rasamoelina
- Charles Merieux Center of Infectious Disease, University of Antananarivo, Ankatso University Campus, BP 4299, 101 Antananarivo, Madagascar
| | - Maria Tereza Pepe Razzolini
- School of Public Health of University of São Paulo, Av. Dr. Arnaldo, 715, 01246-904 Cerqueira César, São Paulo, Brazil
| | - Nilo José Coelho Duarte
- Central Laboratory Division, Hospital das Clinicas HCFMUSP, Faculty of Medicine, University of São Paulo, Av. Dr. Enéas Carvalho de Aguiar, 155, 01246-100 Cerqueira César, São Paulo, Brazil
| | - Maria Cássia Mendes-Correa
- Department of Infectious Diseases and Institute of Tropical Medicine, Faculty of Medicine, University of São Paulo, Av. Dr. Enéas de Carvalho Aguiar, 470, 05403-000 Cerqueira César, São Paulo, Brazil
| | - Luc Hervé Samison
- Charles Merieux Center of Infectious Disease, University of Antananarivo, Ankatso University Campus, BP 4299, 101 Antananarivo, Madagascar
| | - Thais Guimaraes
- Infection Control Committee Hospital das clínicas, Faculty of Medicine, University of São Paulo, Brazil
| | - Ester Cerdeira Sabino
- Department of Infectious Diseases and Institute of Tropical Medicine, Faculty of Medicine, University of São Paulo, Av. Dr. Enéas de Carvalho Aguiar, 470, 05403-000 Cerqueira César, São Paulo, Brazil
| | | | - Ariane Nzouankeu
- Department of Hygiene and Environment Microbiology Section, Centre Pasteur of Cameroon, PO Box 1274, Yaounde, 451, Rue 2005, Yaounde 2, Yaounde, Cameroon
| | - Silvia Figueiredo Costa
- Department of Infectious Diseases and Institute of Tropical Medicine, Faculty of Medicine, University of São Paulo, Av. Dr. Enéas de Carvalho Aguiar, 470, 05403-000 Cerqueira César, São Paulo, Brazil
| |
Collapse
|
7
|
Clark EC, Neumann S, Hopkins S, Kostopoulos A, Hagerman L, Dobbins M. Changes to Public Health Surveillance Methods Due to the COVID-19 Pandemic: Scoping Review. JMIR Public Health Surveill 2024; 10:e49185. [PMID: 38241067 PMCID: PMC10837764 DOI: 10.2196/49185] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/06/2023] [Accepted: 12/07/2023] [Indexed: 01/23/2024] Open
Abstract
BACKGROUND Public health surveillance plays a vital role in informing public health decision-making. The onset of the COVID-19 pandemic in early 2020 caused a widespread shift in public health priorities. Global efforts focused on COVID-19 monitoring and contact tracing. Existing public health programs were interrupted due to physical distancing measures and reallocation of resources. The onset of the COVID-19 pandemic intersected with advancements in technologies that have the potential to support public health surveillance efforts. OBJECTIVE This scoping review aims to explore emergent public health surveillance methods during the early COVID-19 pandemic to characterize the impact of the pandemic on surveillance methods. METHODS A scoping search was conducted in multiple databases and by scanning key government and public health organization websites from March 2020 to January 2022. Published papers and gray literature that described the application of new or revised approaches to public health surveillance were included. Papers that discussed the implications of novel public health surveillance approaches from ethical, legal, security, and equity perspectives were also included. The surveillance subject, method, location, and setting were extracted from each paper to identify trends in surveillance practices. Two public health epidemiologists were invited to provide their perspectives as peer reviewers. RESULTS Of the 14,238 unique papers, a total of 241 papers describing novel surveillance methods and changes to surveillance methods are included. Eighty papers were review papers and 161 were single studies. Overall, the literature heavily featured papers detailing surveillance of COVID-19 transmission (n=187). Surveillance of other infectious diseases was also described, including other pathogens (n=12). Other public health topics included vaccines (n=9), mental health (n=11), substance use (n=4), healthy nutrition (n=1), maternal and child health (n=3), antimicrobial resistance (n=2), and misinformation (n=6). The literature was dominated by applications of digital surveillance, for example, by using big data through mobility tracking and infodemiology (n=163). Wastewater surveillance was also heavily represented (n=48). Other papers described adaptations to programs or methods that existed prior to the COVID-19 pandemic (n=9). The scoping search also found 109 papers that discuss the ethical, legal, security, and equity implications of emerging surveillance methods. The peer reviewer public health epidemiologists noted that additional changes likely exist, beyond what has been reported and available for evidence syntheses. CONCLUSIONS The COVID-19 pandemic accelerated advancements in surveillance and the adoption of new technologies, especially for digital and wastewater surveillance methods. Given the investments in these systems, further applications for public health surveillance are likely. The literature for surveillance methods was dominated by surveillance of infectious diseases, particularly COVID-19. A substantial amount of literature on the ethical, legal, security, and equity implications of these emerging surveillance methods also points to a need for cautious consideration of potential harm.
Collapse
Affiliation(s)
- Emily C Clark
- National Collaborating Centre for Methods and Tools, Hamilton, ON, Canada
| | - Sophie Neumann
- National Collaborating Centre for Methods and Tools, Hamilton, ON, Canada
| | - Stephanie Hopkins
- National Collaborating Centre for Methods and Tools, Hamilton, ON, Canada
| | - Alyssa Kostopoulos
- National Collaborating Centre for Methods and Tools, Hamilton, ON, Canada
| | - Leah Hagerman
- National Collaborating Centre for Methods and Tools, Hamilton, ON, Canada
| | - Maureen Dobbins
- National Collaborating Centre for Methods and Tools, Hamilton, ON, Canada
- School of Nursing, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
8
|
Ansari N, Kabir F, Khan W, Khalid F, Malik AA, Warren JL, Mehmood U, Kazi AM, Yildirim I, Tanner W, Kalimuddin H, Kanwar S, Aziz F, Memon A, Alam MM, Ikram A, Meschke JS, Jehan F, Omer SB, Nisar MI. Environmental surveillance for COVID-19 using SARS-CoV-2 RNA concentration in wastewater - a study in District East, Karachi, Pakistan. THE LANCET REGIONAL HEALTH. SOUTHEAST ASIA 2024; 20:100299. [PMID: 38234701 PMCID: PMC10794106 DOI: 10.1016/j.lansea.2023.100299] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/18/2023] [Accepted: 09/28/2023] [Indexed: 01/19/2024]
Abstract
Background Wastewater-based surveillance is used to track the temporal patterns of the SARS-CoV-2 virus in communities. Viral RNA particle detection in wastewater samples can indicate an outbreak within a catchment area. We describe the feasibility of using a sewage network to monitor SARS-CoV-2 trend and use of genomic sequencing to describe the viral variant abundance in an urban district in Karachi, Pakistan. This was among the first studies from Pakistan to demonstrate the surveillance for SARS-CoV-2 from a semi-formal sewage system. Methods Four sites draining into the Lyari River in District East, Karachi, were identified and included in the current study. Raw sewage samples were collected early morning twice weekly from each site between June 10, 2021 and January 17, 2022, using Bag Mediated Filtration System (BMFS). Secondary concentration of filtered samples was achieved by ultracentrifugation and skim milk flocculation. SARS-CoV-2 RNA concentrations in the samples were estimated using PCR (Qiagen ProMega kits for N1 & N2 genes). A distributed-lag negative binomial regression model within a hierarchical Bayesian framework was used to describe the relationship between wastewater RNA concentration and COVID-19 cases from the catchment area. Genomic sequencing was performed using Illumina iSeq100. Findings Among the 151 raw sewage samples included in the study, 123 samples (81.5%) tested positive for N1 or N2 genes. The average SARS-CoV-2 RNA concentrations in the sewage samples at each lag (1-14 days prior) were associated with the cases reported for the respective days, with a peak association observed on lag day 10 (RR: 1.15; 95% Credible Interval: 1.10-1.21). Genomic sequencing showed that the delta variant dominated till September 2022, while the omicron variant was identified in November 2022. Interpretation Wastewater-based surveillance, together with genomic sequencing provides valuable information for monitoring the community temporal trend of SARS-CoV-2. Funding PATH, Bill & Melinda Gates Foundation, and Global Innovation Fund.
Collapse
Affiliation(s)
- Nadia Ansari
- Faculty of Health Sciences, Department of Paediatrics and Child Health, Medical College, The Aga Khan University, Stadium Road, Karachi 74800, Pakistan
| | - Furqan Kabir
- Faculty of Health Sciences, Department of Paediatrics and Child Health, Medical College, The Aga Khan University, Stadium Road, Karachi 74800, Pakistan
| | - Waqasuddin Khan
- CITRIC Centre for Bioinformatics and Computational Biology, Department of Paediatrics and Child Health, Faculty of Health Sciences, Medical College, The Aga Khan University, Stadium Road, Karachi 74800, Pakistan
| | - Farah Khalid
- Faculty of Health Sciences, Department of Paediatrics and Child Health, Medical College, The Aga Khan University, Stadium Road, Karachi 74800, Pakistan
| | - Amyn Abdul Malik
- Yale Institute for Global Health, Yale University, New Haven, CT, USA
- Section of Infectious Diseases and Global Health, Department of Paediatrics, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Joshua L. Warren
- Yale School of Public Health, Yale University, New Haven, CT, USA
| | - Usma Mehmood
- Faculty of Health Sciences, Department of Paediatrics and Child Health, Medical College, The Aga Khan University, Stadium Road, Karachi 74800, Pakistan
| | - Abdul Momin Kazi
- Faculty of Health Sciences, Department of Paediatrics and Child Health, Medical College, The Aga Khan University, Stadium Road, Karachi 74800, Pakistan
| | - Inci Yildirim
- Yale Institute for Global Health, Yale University, New Haven, CT, USA
- Section of Infectious Diseases and Global Health, Department of Paediatrics, Yale School of Medicine, Yale University, New Haven, CT, USA
- Yale School of Public Health, Yale University, New Haven, CT, USA
| | - Windy Tanner
- Yale School of Public Health, Yale University, New Haven, CT, USA
| | - Hussain Kalimuddin
- Faculty of Health Sciences, Department of Paediatrics and Child Health, Medical College, The Aga Khan University, Stadium Road, Karachi 74800, Pakistan
| | - Samiah Kanwar
- Faculty of Health Sciences, Department of Paediatrics and Child Health, Medical College, The Aga Khan University, Stadium Road, Karachi 74800, Pakistan
- CITRIC Centre for Bioinformatics and Computational Biology, Department of Paediatrics and Child Health, Faculty of Health Sciences, Medical College, The Aga Khan University, Stadium Road, Karachi 74800, Pakistan
| | - Fatima Aziz
- Faculty of Health Sciences, Department of Paediatrics and Child Health, Medical College, The Aga Khan University, Stadium Road, Karachi 74800, Pakistan
| | - Arslan Memon
- District Health Office (East), Karachi, Pakistan
| | | | - Aamer Ikram
- National Institutes of Health, Chak Shahzad, Islamabad, Pakistan
| | | | - Fyezah Jehan
- Faculty of Health Sciences, Department of Paediatrics and Child Health, Medical College, The Aga Khan University, Stadium Road, Karachi 74800, Pakistan
- CITRIC Centre for Bioinformatics and Computational Biology, Department of Paediatrics and Child Health, Faculty of Health Sciences, Medical College, The Aga Khan University, Stadium Road, Karachi 74800, Pakistan
| | - Saad B. Omer
- Yale Institute for Global Health, Yale University, New Haven, CT, USA
- Section of Infectious Diseases and Global Health, Department of Paediatrics, Yale School of Medicine, Yale University, New Haven, CT, USA
- Yale School of Public Health, Yale University, New Haven, CT, USA
- Yale School of Nursing, Orange, CT, USA
| | - Muhammad Imran Nisar
- Faculty of Health Sciences, Department of Paediatrics and Child Health, Medical College, The Aga Khan University, Stadium Road, Karachi 74800, Pakistan
- CITRIC Centre for Bioinformatics and Computational Biology, Department of Paediatrics and Child Health, Faculty of Health Sciences, Medical College, The Aga Khan University, Stadium Road, Karachi 74800, Pakistan
| |
Collapse
|
9
|
Baz Lomba JA, Pires J, Myrmel M, Arnø JK, Madslien EH, Langlete P, Amato E, Hyllestad S. Effectiveness of environmental surveillance of SARS-CoV-2 as an early-warning system: Update of a systematic review during the second year of the pandemic. JOURNAL OF WATER AND HEALTH 2024; 22:197-234. [PMID: 38295081 PMCID: wh_2023_279 DOI: 10.2166/wh.2023.279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
The aim of this updated systematic review was to offer an overview of the effectiveness of environmental surveillance (ES) of SARS-CoV-2 as a potential early-warning system (EWS) for COVID-19 and new variants of concerns (VOCs) during the second year of the pandemic. An updated literature search was conducted to evaluate the added value of ES of SARS-CoV-2 for public health decisions. The search for studies published between June 2021 and July 2022 resulted in 1,588 publications, identifying 331 articles for full-text screening. A total of 151 publications met our inclusion criteria for the assessment of the effectiveness of ES as an EWS and early detection of SARS-CoV-2 variants. We identified a further 30 publications among the grey literature. ES confirms its usefulness as an EWS for detecting new waves of SARS-CoV-2 infection with an average lead time of 1-2 weeks for most of the publication. ES could function as an EWS for new VOCs in areas with no registered cases or limited clinical capacity. Challenges in data harmonization and variant detection require standardized approaches and innovations for improved public health decision-making. ES confirms its potential to support public health decision-making and resource allocation in future outbreaks.
Collapse
Affiliation(s)
- Jose Antonio Baz Lomba
- Department of Infection Control and Preparedness, Norwegian Institute of Public Health, Oslo, Norway E-mail:
| | - João Pires
- Department of Infection Control and Preparedness, Norwegian Institute of Public Health, Oslo, Norway; ECDC fellowship Programme, Public Health Microbiology path (EUPHEM), European Centre for Disease Prevention and Control (ECDC), Solna, Sweden
| | - Mette Myrmel
- Faculty of Veterinary Medicine, Virology Unit, Norwegian University of Life Science (NMBU), Oslo, Norway
| | - Jorunn Karterud Arnø
- Department of Infection Control and Preparedness, Norwegian Institute of Public Health, Oslo, Norway
| | - Elisabeth Henie Madslien
- Department of Infection Control and Preparedness, Norwegian Institute of Public Health, Oslo, Norway
| | - Petter Langlete
- Department of Infection Control and Preparedness, Norwegian Institute of Public Health, Oslo, Norway
| | - Ettore Amato
- Department of Infection Control and Preparedness, Norwegian Institute of Public Health, Oslo, Norway
| | - Susanne Hyllestad
- Department of Infection Control and Preparedness, Norwegian Institute of Public Health, Oslo, Norway
| |
Collapse
|
10
|
Kevill JL, Farkas K, Ridding N, Woodhall N, Malham SK, Jones DL. Use of Capsid Integrity-qPCR for Detecting Viral Capsid Integrity in Wastewater. Viruses 2023; 16:40. [PMID: 38257740 PMCID: PMC10819219 DOI: 10.3390/v16010040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024] Open
Abstract
Quantifying viruses in wastewater via RT-qPCR provides total genomic data but does not indicate the virus capsid integrity or the potential risk for human infection. Assessing virus capsid integrity in sewage is important for wastewater-based surveillance, since discharged effluent may pose a public health hazard. While integrity assays using cell cultures can provide this information, they require specialised laboratories and expertise. One solution to overcome this limitation is the use of photo-reactive monoazide dyes (e.g., propidium monoazide [PMAxx]) in a capsid integrity-RT-qPCR assay (ci-RT-qPCR). In this study, we tested the efficiency of PMAxx dye at 50 μM and 100 μM concentrations on live and heat-inactivated model viruses commonly detected in wastewater, including adenovirus (AdV), hepatitis A (HAV), influenza A virus (IAV), and norovirus GI (NoV GI). The 100 μM PMAxx dye concentration effectively differentiated live from heat-inactivated viruses for all targets in buffer solution. This method was then applied to wastewater samples (n = 19) for the detection of encapsulated AdV, enterovirus (EV), HAV, IAV, influenza B virus (IBV), NoV GI, NoV GII, and SARS-CoV-2. Samples were negative for AdV, HAV, IAV, and IBV but positive for EV, NoV GI, NoV GII, and SARS-CoV-2. In the PMAxx-treated samples, EV, NoV GI, and NoV GII showed -0.52-1.15, 0.9-1.51, and 0.31-1.69 log reductions in capsid integrity, indicating a high degree of potentially infectious virus in wastewater. In contrast, SARS-CoV-2 was only detected using RT-qPCR but not after PMAxx treatment, indicating the absence of encapsulated and potentially infectious virus. In conclusion, this study demonstrates the utility of PMAxx dyes to evaluate capsid integrity across a diverse range of viruses commonly monitored in wastewater.
Collapse
Affiliation(s)
- Jessica L. Kevill
- School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK; (K.F.); (N.R.); (N.W.); or (D.L.J.)
| | - Kata Farkas
- School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK; (K.F.); (N.R.); (N.W.); or (D.L.J.)
| | - Nicola Ridding
- School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK; (K.F.); (N.R.); (N.W.); or (D.L.J.)
| | - Nicholas Woodhall
- School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK; (K.F.); (N.R.); (N.W.); or (D.L.J.)
| | - Shelagh K. Malham
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey LL59 5AB, UK;
| | - Davey L. Jones
- School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK; (K.F.); (N.R.); (N.W.); or (D.L.J.)
- Centre for Sustainable Farming Systems, Food Futures Institute, Murdoch University, Murdoch, WA 6150, Australia
| |
Collapse
|
11
|
Barnes KG, Levy JI, Gauld J, Rigby J, Kanjerwa O, Uzzell CB, Chilupsya C, Anscombe C, Tomkins-Tinch C, Mbeti O, Cairns E, Thole H, McSweeney S, Chibwana MG, Ashton PM, Jere KC, Meschke JS, Diggle P, Cornick J, Chilima B, Jambo K, Andersen KG, Kawalazira G, Paterson S, Nyirenda TS, Feasey N. Utilizing river and wastewater as a SARS-CoV-2 surveillance tool in settings with limited formal sewage systems. Nat Commun 2023; 14:7883. [PMID: 38036496 PMCID: PMC10689440 DOI: 10.1038/s41467-023-43047-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
The COVID-19 pandemic has profoundly impacted health systems globally and robust surveillance has been critical for pandemic control, however not all countries can currently sustain community pathogen surveillance programs. Wastewater surveillance has proven valuable in high-income settings, but less is known about the utility of water surveillance of pathogens in low-income countries. Here we show how wastewater surveillance of SAR-CoV-2 can be used to identify temporal changes and help determine circulating variants quickly. In Malawi, a country with limited community-based COVID-19 testing capacity, we explore the utility of rivers and wastewater for SARS-CoV-2 surveillance. From May 2020-May 2022, we collect water from up to 112 river or defunct wastewater treatment plant sites, detecting SARS-CoV-2 in 8.3% of samples. Peak SARS-CoV-2 detection in water samples predate peaks in clinical cases. Sequencing of water samples identified the Beta, Delta, and Omicron variants, with Delta and Omicron detected well in advance of detection in patients. Our work highlights how wastewater can be used to detect emerging waves, identify variants of concern, and provide an early warning system in settings with no formal sewage systems.
Collapse
Affiliation(s)
- Kayla G Barnes
- Malawi-Liverpool-Wellcome Clinical Research Programme, Kamuzu University of Health Sciences, Blantyre, Malawi.
- Department of Immunology and Infectious Diseases, Harvard TH Chan School of Public Health, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Vector Biology and Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, UK.
| | - Joshua I Levy
- Department of Vector Biology and Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Jillian Gauld
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Jonathan Rigby
- Malawi-Liverpool-Wellcome Clinical Research Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
- Institute for Disease Modeling, Bill & Melinda Gates Foundation, Seattle, WA, USA
| | - Oscar Kanjerwa
- Malawi-Liverpool-Wellcome Clinical Research Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Christopher B Uzzell
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Chisomo Chilupsya
- Malawi-Liverpool-Wellcome Clinical Research Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Catherine Anscombe
- Malawi-Liverpool-Wellcome Clinical Research Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
- Institute for Disease Modeling, Bill & Melinda Gates Foundation, Seattle, WA, USA
| | - Christopher Tomkins-Tinch
- Department of Immunology and Infectious Diseases, Harvard TH Chan School of Public Health, Boston, MA, USA
- Medical Research Council Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, UK
| | - Omar Mbeti
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | | | - Herbert Thole
- Malawi-Liverpool-Wellcome Clinical Research Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Shannon McSweeney
- Malawi-Liverpool-Wellcome Clinical Research Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
- Institute for Disease Modeling, Bill & Melinda Gates Foundation, Seattle, WA, USA
| | - Marah G Chibwana
- Malawi-Liverpool-Wellcome Clinical Research Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Philip M Ashton
- Malawi-Liverpool-Wellcome Clinical Research Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
- Blantyre District Health Office, Blantyre, Malawi
| | - Khuzwayo C Jere
- Malawi-Liverpool-Wellcome Clinical Research Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
- Blantyre District Health Office, Blantyre, Malawi
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - John Scott Meschke
- NIHR Health Protection Research Unit in Gastrointestinal Infections, University of Liverpool, Liverpool, UK
| | - Peter Diggle
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA
| | - Jennifer Cornick
- Malawi-Liverpool-Wellcome Clinical Research Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
- Blantyre District Health Office, Blantyre, Malawi
| | - Benjamin Chilima
- CHICAS, Lancaster Medical School, Lancaster University, Lancaster, UK
| | - Kondwani Jambo
- Malawi-Liverpool-Wellcome Clinical Research Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- Public Health Institute of Malawi, Lilongwe, Malawi
| | - Kristian G Andersen
- Department of Vector Biology and Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, UK
- Scripps Research Translational Institute, La Jolla, CA, USA
| | - Gift Kawalazira
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | | | - Tonney S Nyirenda
- Malawi-Liverpool-Wellcome Clinical Research Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
- Department of Pathology, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Nicholas Feasey
- Malawi-Liverpool-Wellcome Clinical Research Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
- Institute for Disease Modeling, Bill & Melinda Gates Foundation, Seattle, WA, USA
- School of Medicine, University of St Andrews, St Andrews, UK
| |
Collapse
|
12
|
Tambe LAM, Mathobo P, Munzhedzi M, Bessong PO, Mavhandu-Ramarumo LG. Prevalence and Molecular Epidemiology of Human Coronaviruses in Africa Prior to the SARS-CoV-2 Outbreak: A Systematic Review. Viruses 2023; 15:2146. [PMID: 38005824 PMCID: PMC10675249 DOI: 10.3390/v15112146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 11/26/2023] Open
Abstract
Coronaviruses, re-emerging in human populations, cause mild or severe acute respiratory diseases, and occasionally epidemics. This study systematically reviewed human coronavirus (HCoVs) infections in Africa prior to the SARS-CoV-2 outbreak. Forty studies on the prevalence or molecular epidemiology of HCoVs were available from 13/54 African countries (24%). The first published data on HCoV was from South Africa in 2008. Eight studies (20%) reported on HCoV molecular epidemiology. Endemic HCoV prevalence ranged from 0.0% to 18.2%. The prevalence of zoonotic MERS-CoV ranged from 0.0% to 83.5%. Two studies investigated SARS-CoV infection, for which a prevalence of 0.0% was reported. There was heterogeneity in the type of tests used in determining HCoV prevalence. Two studies reported that risk factors for HCoV include exposure to infected animals or humans. The quantity of virologic investigations on HCoV on the African continent was scant, and Africa was not prepared for SARS-CoV-2.
Collapse
Affiliation(s)
- Lisa Arrah Mbang Tambe
- HIV/AIDS & Global Health Research Programme, Faculty of Science, Engineering and Agriculture, University of Venda, Thohoyandou 0950, South Africa; (L.A.M.T.); (P.M.); (M.M.); (P.O.B.)
- Department of Biochemistry and Microbiology, Faculty of Science, Engineering and Agriculture, University of Venda, Thohoyandou 0950, South Africa
| | - Phindulo Mathobo
- HIV/AIDS & Global Health Research Programme, Faculty of Science, Engineering and Agriculture, University of Venda, Thohoyandou 0950, South Africa; (L.A.M.T.); (P.M.); (M.M.); (P.O.B.)
- Department of Biochemistry and Microbiology, Faculty of Science, Engineering and Agriculture, University of Venda, Thohoyandou 0950, South Africa
| | - Mukhethwa Munzhedzi
- HIV/AIDS & Global Health Research Programme, Faculty of Science, Engineering and Agriculture, University of Venda, Thohoyandou 0950, South Africa; (L.A.M.T.); (P.M.); (M.M.); (P.O.B.)
- Department of Biochemistry and Microbiology, Faculty of Science, Engineering and Agriculture, University of Venda, Thohoyandou 0950, South Africa
| | - Pascal Obong Bessong
- HIV/AIDS & Global Health Research Programme, Faculty of Science, Engineering and Agriculture, University of Venda, Thohoyandou 0950, South Africa; (L.A.M.T.); (P.M.); (M.M.); (P.O.B.)
- Centre for Global Health Equity, School of Medicine, 1400 University Ave, Charlottesville, VA 22903, USA
| | - Lufuno Grace Mavhandu-Ramarumo
- HIV/AIDS & Global Health Research Programme, Faculty of Science, Engineering and Agriculture, University of Venda, Thohoyandou 0950, South Africa; (L.A.M.T.); (P.M.); (M.M.); (P.O.B.)
| |
Collapse
|
13
|
Koirala P, Dhakal S, Malla B, Ghimire A, Siddiqui MA, Dawadi P. SARS-CoV-2 Burden in Wastewater and its Elimination Using Disinfection. Microbiol Insights 2023; 16:11786361231201598. [PMID: 37745090 PMCID: PMC10517603 DOI: 10.1177/11786361231201598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/30/2023] [Indexed: 09/26/2023] Open
Abstract
Background Pathogenic viruses have been abundant and diverse in wastewater, reflecting the pattern of infection in humans. Human feces, urine, and perhaps other washouts that frequently circulate in sewage systems may contaminate wastewater with SARS-CoV-2. It's crucial to effectively disinfect wastewater since poorly handled wastewater could put the population at risk of infection. Aims To emphasize the presence and spread of SARS-CoV-2 in sewage (wastewater) through viral shedding from the patients to detect the virus in the population using wastewater-based epidemiology. Also, to effectively manage the transmission of SARS-CoV-2 and reduce the spread of the virus in the population using disinfectants is highlighted. Methods We evaluated articles from December 2019 to August 2022 that addressed SARS-CoV-2 shedding in wastewater and surveillance through wastewater-based epidemiology. We included the papers on wastewater disinfection for the elimination of SARS-CoV-2. Google Scholar, PubMed, and Research4Life are the three electronic databases from which all of the papers were retrieved. Results It is possible for viral shedding to get into the wastewater. The enumeration of viral RNA from it can be used to monitor virus circulation in the human community. SARS-CoV-2 can be removed from wastewater by using modern disinfection techniques such as sodium hypochlorite, liquid chlorine, chlorine dioxide, peracetic acid, and ultraviolet light. Conclusion SARS-CoV-2 burden estimates at the population level can be obtained via longitudinal examination of wastewater, and SARS-CoV-2 can be removed from the wastewater through disinfection.
Collapse
Affiliation(s)
- Prashanna Koirala
- National Animal Breeding and Genetics Research Center, Nepal Agricultural Research Council, Lalitpur, Nepal
| | - Sandesh Dhakal
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Bikram Malla
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| | - Archana Ghimire
- Department of Development Education, School of Education, Kathmandu University, Hattiban, Lalitpur, Nepal
| | - Mohammad Ataullah Siddiqui
- Molecular Biotechnology Unit, Faculty of Science, Nepal Academy of Science and Technology, Khumaltar, Lalitpur, Nepal
| | - Prabin Dawadi
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Kathmandu, Nepal
| |
Collapse
|
14
|
Barnes K, Levy J, Andersen K, Gauld J, Rigby J, Kanjerwa O, Uzzell C, Chilupsya C, Anscombe C, Tomkins-Tinch C, Mbeti O, Cairns E, Thole H, McSweeney S, Chibwana M, Ashton P, Jere K, Meschke J, Diggle P, Cornick J, Jambo K, Kawalazira G, Paterson S, Nyirenda T, Feasey N, Chilima B. Utilizing river and wastewater as a SARS-CoV-2 surveillance tool to predict trends and identify variants of concern in settings with limited formal sewage systems. RESEARCH SQUARE 2023:rs.3.rs-2801767. [PMID: 37090541 PMCID: PMC10120776 DOI: 10.21203/rs.3.rs-2801767/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
The COVID-19 pandemic continues to impact health systems globally and robust surveillance is critical for pandemic control, however not all countries can sustain community surveillance programs. Wastewater surveillance has proven valuable in high-income settings, but little is known about how river and informal sewage in low-income countries can be used for environmental surveillance of SARS-CoV-2. In Malawi, a country with limited community-based COVID-19 testing capacity, we explored the utility of rivers and wastewater for SARS-CoV-2 surveillance. From May 2020 - January 2022, we collected water from up to 112 river or informal sewage sites/month, detecting SARS-CoV-2 in 8.3% of samples. Peak SARS-CoV-2 detection in water samples predated peaks in clinical cases. Sequencing of water samples identified the Beta, Delta, and Omicron variants, with Delta and Omicron detected well in advance of detection in patients. Our work highlights wastewater can be used for detecting emerging waves, identifying variants of concern and function as an early warning system in settings with no formal sewage systems.
Collapse
Affiliation(s)
| | | | - Kristian Andersen
- Department of Immunology and Microbiology The Scripps Research Institute La Jolla CA USA
| | - Jillian Gauld
- Institute for Disease Modeling, Bill & Melinda Gates Foundation
| | - Jonathan Rigby
- Department of Clinical Sciences, Liverpool School of Tropical Medicine
| | - Oscar Kanjerwa
- Malawi-Liverpool-Wellcome Clinical Research Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
| | | | - Chisomo Chilupsya
- Malawi-Liverpool-Wellcome Clinical Research Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
| | | | | | | | - Edward Cairns
- Department of Evolution, Ecology and Behaviour, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool
| | - Herbert Thole
- Malawi-Liverpool-Wellcome Clinical Research Programme, Kamuzu University of Health Sciences
| | - Shannon McSweeney
- Department of Clinical Sciences, Liverpool School of Tropical Medicine
| | - Marah Chibwana
- Malawi-Liverpool-Wellcome Clinical Research Programme, Kamuzu University of Health Sciences
| | | | | | | | | | - Jennifer Cornick
- Department of Evolution, Ecology and Behaviour, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool
| | | | | | | | - Tonney Nyirenda
- Department of Pathology, Kamuzu University of Health Sciences
| | | | | |
Collapse
|
15
|
Ngwira LG, Sharma B, Shrestha KB, Dahal S, Tuladhar R, Manthalu G, Chilima B, Ganizani A, Rigby J, Kanjerwa O, Barnes K, Anscombe C, Mfutso-Bengo J, Feasey N, Mvundura M. Cost of wastewater-based environmental surveillance for SARS-CoV-2: Evidence from pilot sites in Blantyre, Malawi and Kathmandu, Nepal. PLOS GLOBAL PUBLIC HEALTH 2022; 2:e0001377. [PMID: 36962924 PMCID: PMC10021894 DOI: 10.1371/journal.pgph.0001377] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 11/18/2022] [Indexed: 12/28/2022]
Abstract
Environmental surveillance of rivers and wastewater for SARS-CoV-2 detection has been explored as an innovative way to surveil the pandemic. This study estimated the economic costs of conducting wastewater-based environmental surveillance for SARS-CoV-2 to inform decision making if countries consider continuing these efforts. We estimated the cost of two SARS-CoV-2 environmental surveillance pilot studies conducted in Blantyre, Malawi, and Kathmandu, Nepal. The cost estimation accounted for the consumables, equipment, and human resource time costs used for environmental surveillance from sample selection until pathogen detection and overhead costs for the projects. Costs are reported in 2021 US$ and reported as costs per month, per sample and person per year. The estimated costs for environmental surveillance range from $6,175 to $8,272 per month (Blantyre site) and $16,756 to $30,050 (Kathmandu site). The number of samples processed per month ranged from 84 to 336 at the Blantyre site and 96 to 250 at the Kathmandu site. Consumables costs are variable costs influenced by the number of samples processed and are a large share of the monthly costs for ES (ranging from 39% to 72%). The relatively higher costs per month for the Kathmandu site were attributable to the higher allocation of dedicated human resources and equipment to environmental surveillance for SARS-CoV-2 compared to the Blantyre site where these resources were shared with other activities. The average cost per sample ranged from $25 to $74 (Blantyre) and $120 to $175 (Kathmandu). There were associated economies of scale for human resources and equipment costs with increased sample processing and sharing of resources with other activities. The cost per person in the catchment area per year ranged from $0.07 to $0.10 in Blantyre and $0.07 to $0.13 in Kathmandu. Environmental surveillance may be a low-cost early warning signal for SARS-CoV-2 that can complement other SARS-CoV2 monitoring efforts.
Collapse
Affiliation(s)
- Lucky G. Ngwira
- Malawi Liverpool Wellcome Research Programme, Blantyre, Malawi
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Bhawana Sharma
- Environment and Public Health Organization, Kathmandu, Nepal
| | | | - Sushil Dahal
- Environment and Public Health Organization, Kathmandu, Nepal
| | - Reshma Tuladhar
- Department of Microbiology, Tribhuvan University, Kathmandu, Nepal
| | - Gerald Manthalu
- Department of Planning and Policy, Ministry of Health, Lilongwe, Malawi
| | - Ben Chilima
- Public Health Institute of Malawi, Ministry of Health, Lilongwe, Malawi
| | - Allone Ganizani
- Environmental Department, Ministry of Health, Lilongwe, Malawi
| | - Jonathan Rigby
- Malawi Liverpool Wellcome Research Programme, Blantyre, Malawi
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Oscar Kanjerwa
- Malawi Liverpool Wellcome Research Programme, Blantyre, Malawi
| | - Kayla Barnes
- Malawi Liverpool Wellcome Research Programme, Blantyre, Malawi
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
- Harvard School of Public Health, Boston, Massachusetts, United States of America
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- University of Glasgow MRC Centre for Virus Research, Glasgow, United Kingdom
| | - Catherine Anscombe
- Malawi Liverpool Wellcome Research Programme, Blantyre, Malawi
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | | | - Nicholas Feasey
- Malawi Liverpool Wellcome Research Programme, Blantyre, Malawi
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Mercy Mvundura
- Medical Devices and Health Technologies, PATH, Seattle, Washington, United States of America
| |
Collapse
|
16
|
Corpuz MVA, Buonerba A, Zarra T, Hasan SW, Korshin GV, Belgiorno V, Naddeo V. Advances in virus detection methods for wastewater-based epidemiological applications. CASE STUDIES IN CHEMICAL AND ENVIRONMENTAL ENGINEERING 2022; 6:100238. [PMID: 37520925 PMCID: PMC9339091 DOI: 10.1016/j.cscee.2022.100238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 06/08/2023]
Abstract
Wastewater-based epidemiology (WBE) is a powerful tool that has the potential to reveal the extent of an ongoing disease outbreak or to predict an emerging one. Recent studies have shown that SARS-CoV-2 concentration in wastewater may be correlated with the number of COVID-19 cases in the corresponding population. Most of the recent studies and applications of wastewater-based surveillance of SARS-CoV-2 applied the "gold standard" real-time quantitative reverse transcription-polymerase chain reaction (RT-qPCR) detection method. However, this method also has its limitations. The paper aimed to present recent improvements and applications of the PCR-based methods for SARS-CoV-2 monitoring in wastewater. Furthermore, it aimed to review alternative methods utilized and/or proposed for the detection of the virus in wastewater matrices. From the review, it was found that several studies have investigated the use of reverse-transcription digital polymerase reaction (RT-dPCR), which was generally shown to have a lower limit of detection (LOD) over the RT-qPCR. Aside from this, non-PCR-based and non-RNA based methods have also been explored for the detection of SARS-CoV-2 in wastewater, with detailed attention given to the detection of SARS-CoV-2 proteins. The potential methods for protein detection include mass spectrometry, the use of immunosensors, and nanotechnological applications. In addition, the review of recent studies also revealed two types of emerging methods related to the detection of SARS-CoV-2 in wastewater: i) capsid-integrity assays to infer about the infectivity of SARS-CoV-2 present in wastewater, and ii) alternative methods for detection of SARS-CoV-2 variants of concern (VOCs) in wastewater. The recent studies on proposed methods of SARS-CoV-2 detection in wastewater have considered improving this approach in one or more of the following aspects: rapidity, simplicity, cost, sensitivity, and specificity. However, further studies are needed in order to realize the full application of these methods for WBE in the field.
Collapse
Affiliation(s)
- Mary Vermi Aizza Corpuz
- Environmental Engineering Program, National Graduate School of Engineering, University of the Philippines, 1101 Diliman, Quezon City, Philippines
| | - Antonio Buonerba
- Department of Chemistry and Biology "Adolfo Zambelli", University of Salerno, Via Giovanni Paolo II-132, 84084, Fisciano, Italy
| | - Tiziano Zarra
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II-132, 84084, Fisciano, Italy
| | - Shadi W Hasan
- Department of Chemical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Gregory V Korshin
- Department of Civil and Environmental Engineering, University of Washington, Box 352700, Seattle, WA, 98105-2700, United States
| | - Vincenzo Belgiorno
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II-132, 84084, Fisciano, Italy
| | - Vincenzo Naddeo
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II-132, 84084, Fisciano, Italy
| |
Collapse
|
17
|
Kilaru P, Hill D, Anderson K, Collins MB, Green H, Kmush BL, Larsen DA. Wastewater Surveillance for Infectious Disease: A Systematic Review. Am J Epidemiol 2022; 192:305-322. [PMID: 36227259 PMCID: PMC9620728 DOI: 10.1093/aje/kwac175] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 08/25/2022] [Accepted: 10/05/2022] [Indexed: 02/07/2023] Open
Abstract
Wastewater surveillance for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been shown to be a valuable source of information regarding SARS-CoV-2 transmission and coronavirus disease 2019 (COVID-19) cases. Although the method has been used for several decades to track other infectious diseases, there has not been a comprehensive review outlining all of the pathogens that have been surveilled through wastewater. Herein we identify the infectious diseases that have been previously studied via wastewater surveillance prior to the COVID-19 pandemic. Infectious diseases and pathogens were identified in 100 studies of wastewater surveillance across 38 countries, as were themes of how wastewater surveillance and other measures of disease transmission were linked. Twenty-five separate pathogen families were identified in the included studies, with the majority of studies examining pathogens from the family Picornaviridae, including polio and nonpolio enteroviruses. Most studies of wastewater surveillance did not link what was found in the wastewater to other measures of disease transmission. Among those studies that did, the value reported varied by study. Wastewater surveillance should be considered as a potential public health tool for many infectious diseases. Wastewater surveillance studies can be improved by incorporating other measures of disease transmission at the population-level including disease incidence and hospitalizations.
Collapse
Affiliation(s)
- Pruthvi Kilaru
- Department of Public Health, Syracuse University, Syracuse, New York, United States,Des Moines University College of Osteopathic Medicine, Des Moines, Iowa, United States
| | - Dustin Hill
- Department of Public Health, Syracuse University, Syracuse, New York, United States,Graduate Program in Environmental Science, State University of New York College of Environmental Science and Forestry, Syracuse, New York, United States
| | - Kathryn Anderson
- Department of Medicine, State University of New York Upstate Medical University, Syracuse, New York, United States
| | - Mary B Collins
- Department of Environmental Studies, State University of New York College of Environmental Science, Syracuse, New York, United States
| | - Hyatt Green
- Department of Environmental Biology, State University of New York College of Environmental Science, Syracuse, New York, United States
| | - Brittany L Kmush
- Department of Public Health, Syracuse University, Syracuse, New York, United States
| | - David A Larsen
- Correspondence to Dr. Dave Larsen, Department of Public Health, Syracuse University, 430C White Hall, Syracuse, NY 13244 ()
| |
Collapse
|
18
|
Bivins A, Kaya D, Ahmed W, Brown J, Butler C, Greaves J, Leal R, Maas K, Rao G, Sherchan S, Sills D, Sinclair R, Wheeler RT, Mansfeldt C. Passive sampling to scale wastewater surveillance of infectious disease: Lessons learned from COVID-19. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 835:155347. [PMID: 35460780 PMCID: PMC9020839 DOI: 10.1016/j.scitotenv.2022.155347] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/05/2022] [Accepted: 04/13/2022] [Indexed: 05/09/2023]
Abstract
Much of what is known and theorized concerning passive sampling techniques has been developed considering chemical analytes. Yet, historically, biological analytes, such as Salmonella typhi, have been collected from wastewater via passive sampling with Moore swabs. In response to the COVID-19 pandemic, passive sampling is re-emerging as a promising technique to monitor SARS-CoV-2 RNA in wastewater. Method comparisons and disease surveillance using composite, grab, and passive sampling for SARS-CoV-2 RNA detection have found passive sampling with a variety of materials routinely produced qualitative results superior to grab samples and useful for sub-sewershed surveillance of COVID-19. Among individual studies, SARS-CoV-2 RNA concentrations derived from passive samplers demonstrated heterogeneous correlation with concentrations from paired composite samples ranging from weak (R2 = 0.27, 0.31) to moderate (R2 = 0.59) to strong (R2 = 0.76). Among passive sampler materials, electronegative membranes have shown great promise with linear uptake of SARS-CoV-2 RNA observed for exposure durations of 24 to 48 h and in several cases RNA positivity on par with composite samples. Continuing development of passive sampling methods for the surveillance of infectious diseases via diverse forms of fecal waste should focus on optimizing sampler materials for the efficient uptake and recovery of biological analytes, kit-free extraction, and resource-efficient testing methods capable of rapidly producing qualitative or quantitative data. With such refinements passive sampling could prove to be a fundamental tool for scaling wastewater surveillance of infectious disease, especially among the 1.8 billion persons living in low-resource settings served by non-traditional wastewater collection infrastructure.
Collapse
Affiliation(s)
- Aaron Bivins
- Department of Civil & Environmental Engineering, Louisiana State University, 3255 Patrick F. Taylor Hall, Baton Rouge, LA 70803, USA.
| | - Devrim Kaya
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, OR 97331, USA
| | - Warish Ahmed
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, Dutton Park, QLD 4102, Australia
| | - Joe Brown
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599-7431, USA
| | - Caitlyn Butler
- Department of Civil and Environmental Engineering, University of Massachusetts Amherst, 130 Natural Resources Rd., Amherst, MA 01003, USA
| | - Justin Greaves
- School of Environmental Sustainability, Loyola University Chicago, 6364 N. Sheridan Rd, Chicago, IL 60660, USA
| | - Raeann Leal
- Loma Linda University, School of Public Health, 24951 North Circle Drive, Loma Linda, CA 92354, USA
| | - Kendra Maas
- Microbial Analyses, Resources, and Services Facility, University of Connecticut, Storrs, CT 06269, USA
| | - Gouthami Rao
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599-7431, USA
| | - Samendra Sherchan
- Department of Environmental Health Sciences, Tulane University, New Orleans, LA 70112, USA; Center for Climate and Health, Morgan State University, Baltimore, MD 21251, USA
| | - Deborah Sills
- Bucknell University, Department of Civil and Environmental Engineering, Lewisburg, PA 17837, USA
| | - Ryan Sinclair
- Loma Linda University, School of Public Health, 24951 North Circle Drive, Loma Linda, CA 92354, USA
| | - Robert T Wheeler
- Department of Molecular & Biomedical Sciences, University of Maine, 5735 Hitchner Hall, Orono, ME 04469, USA; Graduate School of Biomedical Sciences and Engineering, University of Maine, 5735 Hitchner Hall, Orono, ME 04469, USA
| | - Cresten Mansfeldt
- University of Colorado Boulder, Department of Civil, Environmental, and Architectural Engineering, 1111 Engineering Drive, Boulder, CO 80309, USA; University of Colorado Boulder, Environmental Engineering Program, 4001 Discovery Dr, Boulder, CO 80303, USA
| |
Collapse
|
19
|
Dzinamarira T, Pierre G, Iradukunda PG, Tungwarara N, Mukwenha S, Mpabuka E, Mataruka K, Chitungo I, Musuka G, Murewanhema G. Epidemiological surveillance of enteric viral diseases using wastewater in Africa - A rapid review. J Infect Public Health 2022; 15:703-707. [PMID: 35661916 DOI: 10.1016/j.jiph.2022.05.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/27/2022] [Accepted: 05/19/2022] [Indexed: 12/24/2022] Open
Abstract
Viral enteric pathogens remain an important cause of diarrhoeal outbreaks among children in sub-Saharan Africa (SSA). Consequently, diarrhoeal illness remains a significant cause of morbidity and mortality in the under-fives in SSA. These outbreaks associated with viral pathogens tend to be seasonal and early warning systems for impending outbreaks could be very crucial for triggering preventive public health response and building public health resilience to deal with increased demand for medical services. Wastewater surveillance for pathogens is an important epidemiological component that could inform early warning systems. The objective of this rapid review was to evaluate the use of wastewater for epidemiology surveillance of enteric viral pathogens. Nine studies met the inclusion criteria. Eight viral pathogens were reviewed and analysed from 6 countries that performed wastewater analysis. Six studies explored the epidemiologic significance of viral pathogens in wastewater. The findings of this review revealed that monitoring of wastewater can provide an additional tool to determine the epidemiology of viral pathogens circulating in the community thereby providing early warning of potential outbreaks using wastewater-based epidemiology methods. Five of the included studies revealed the occurrence of viral pathogens in raw sewage and treated wastewater as an indication of inefficient elimination of viruses leading to potential release into water sources which presents a public health risk, increasing the risk of inducing gastroenteritis in the population. Six studies revealed the need for public health authorities to realise the potential benefit of environmental surveillance (ES) as an additional tool to determine the epidemiology of viral pathogens circulating in each community. Despite the significant public health challenge associated with enteric viral pathogens in sub-Saharan Africa, there remains remarkable underinvestment in potentially epidemiologically beneficial research, including wastewater-based epidemiology for these infections.
Collapse
Affiliation(s)
- Tafadzwa Dzinamarira
- School of Health Systems & Public Health, University of Pretoria, Pretoria 0002, South Africa; ICAP at Columbia University, Kigali, Rwanda.
| | - Gashema Pierre
- College of Medicine and Veterinary Medicine, University of Edinburgh, UK
| | | | - Nigel Tungwarara
- Department of Health Studies, University of South Africa, South Africa
| | | | | | - Kidson Mataruka
- Biomedical Research and Training Institute, Harare, Zimbabwe
| | - Itai Chitungo
- College of Medicine and Health Sciences, Faculty of Medicine, University of Zimbabwe, Harare, Zimbabwe
| | | | - Grant Murewanhema
- College of Medicine and Health Sciences, Faculty of Medicine, University of Zimbabwe, Harare, Zimbabwe
| |
Collapse
|