1
|
Zhao H, Zeng JM, Li Y, Ao CY, Liu D, Zhuo JP, Yu C, Ban JQ, Li J. Elemental Imbalances After Manganese Exposure and the Regulatory Potential of Curcumin. Biol Trace Elem Res 2025:10.1007/s12011-025-04586-1. [PMID: 40133721 DOI: 10.1007/s12011-025-04586-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 03/14/2025] [Indexed: 03/27/2025]
Abstract
Long-term exposure to excess manganese can lead to a condition known as manganism, which is characterized by irreversible neuropsychiatric and extrapyramidal dysfunction resembling Parkinson's disease. Excessive exposure to manganese not only increases manganese levels in the body, but can also disrupt the homeostasis of other trace elements. Elemental imbalance has been reported as a risk factor for several neurodegenerative diseases, and restoring elemental homeostasis may be a potential strategy to combat these conditions. We investigated the relationship between trace element dysregulation and cognitive function following different doses of manganese exposure in multiple tissues. Our results indicated that manganese exposure resulted in decreased learning and memory abilities, as well as impaired balance in rats. Manganese imbalance disrupted elemental homeostasis in several tissues. Hippocampal elemental dysregulation was associated with cognitive performance, and changes in aluminum levels in tissues also appeared to be closely related to cognitive function. Curcumin intervention ameliorated manganese-induced behavioural abnormalities and partially reversed manganese-induced elemental dysregulation, demonstrating its potential as a regulator of elemental homeostasis.
Collapse
Affiliation(s)
- Hua Zhao
- School of Public Heath, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Educationa, Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Jia-Min Zeng
- School of Public Heath, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Educationa, Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Yao Li
- School of Public Heath, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Educationa, Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Chun-Yan Ao
- School of Public Heath, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Educationa, Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Duo Liu
- School of Public Heath, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Educationa, Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Jing-Peng Zhuo
- School of Public Heath, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Educationa, Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Chun Yu
- School of Public Heath, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Educationa, Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Jia-Qi Ban
- School of Public Heath, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Educationa, Guizhou Medical University, Guiyang, 550025, Guizhou, China.
| | - Jun Li
- School of Public Heath, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Educationa, Guizhou Medical University, Guiyang, 550025, Guizhou, China.
| |
Collapse
|
2
|
Guevara-Ramírez P, Tamayo-Trujillo R, Cadena-Ullauri S, Ruiz-Pozo V, Paz-Cruz E, Annunziata G, Verde L, Frias-Toral E, Simancas-Racines D, Zambrano AK. Heavy metals in the diet: unraveling the molecular pathways linked to neurodegenerative disease risk. FOOD AGR IMMUNOL 2024; 35. [DOI: 10.1080/09540105.2024.2434457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 11/21/2024] [Indexed: 01/03/2025] Open
Affiliation(s)
- Patricia Guevara-Ramírez
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | - Rafael Tamayo-Trujillo
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | - Santiago Cadena-Ullauri
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | - Viviana Ruiz-Pozo
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | - Elius Paz-Cruz
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | - Giuseppe Annunziata
- Facoltà di Scienze Umane, della Formazione e dello Sport, Università Telematica Pegaso, Naples, Italy
| | - Ludovica Verde
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | | | - Daniel Simancas-Racines
- Centro de Investigación de Salud Pública y Epidemiología Clínica (CISPEC), Universidad UTE, Quito, Ecuador
| | - Ana Karina Zambrano
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| |
Collapse
|
3
|
Stoccoro A, Coppedè F. Exposure to Metals, Pesticides, and Air Pollutants: Focus on Resulting DNA Methylation Changes in Neurodegenerative Diseases. Biomolecules 2024; 14:1366. [PMID: 39595543 PMCID: PMC11591912 DOI: 10.3390/biom14111366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/15/2024] [Accepted: 10/25/2024] [Indexed: 11/28/2024] Open
Abstract
Individuals affected by neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS), are dramatically increasing worldwide. Thus, several efforts are being made to develop strategies for stopping or slowing the spread of these illnesses. Although causative genetic variants linked to the onset of these diseases are known, they can explain only a small portion of cases. The etiopathology underlying the neurodegenerative process in most of the patients is likely due to the interplay between predisposing genetic variants and environmental factors. Epigenetic mechanisms, including DNA methylation, are central candidates in translating the effects of environmental factors in genome modulation, and they play a critical role in the etiology of AD, PD, and ALS. Among the main environmental exposures that have been linked to an increased risk for these diseases, accumulating evidence points to the role of heavy metals, pesticides, and air pollutants. These compounds could trigger neurodegeneration through different mechanisms, mainly neuroinflammation and the induction of oxidative stress. However, increasing evidence suggests that they are also capable of inducing epigenetic alterations in neurons. In this article, we review the available literature linking exposure to metals, pesticides, and air pollutants to DNA methylation changes relevant to neurodegeneration.
Collapse
Affiliation(s)
- Andrea Stoccoro
- Laboratory of Medical Genetics, Department of Translational Research and of New Surgical and Medical Technologies, Medical School, University of Pisa, Via Roma 55, 56126 Pisa, Italy;
| | - Fabio Coppedè
- Laboratory of Medical Genetics, Department of Translational Research and of New Surgical and Medical Technologies, Medical School, University of Pisa, Via Roma 55, 56126 Pisa, Italy;
- Interdepartmental Research Center of Biology and Pathology of Aging, University of Pisa, 56126 Pisa, Italy
| |
Collapse
|
4
|
Vielee ST, Buchanan WJ, Roof SH, Kahloon R, Evans E, Isibor J, Patel M, Meaza I, Lu H, Williams AR, Kouokam JC, Wise SS, Guo L, Wise RM, Wise JL, Cai L, Cai J, Wise JP. Chromium Selectively Accumulates in the Rat Hippocampus after 90 Days of Exposure to Cr(VI) in Drinking Water and Induces Age- and Sex-Dependent Metal Dyshomeostasis. TOXICS 2024; 12:722. [PMID: 39453142 PMCID: PMC11510846 DOI: 10.3390/toxics12100722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/20/2024] [Accepted: 09/26/2024] [Indexed: 10/26/2024]
Abstract
Hexavalent chromium (Cr[VI]) is a widespread environmental pollutant in air and water that is primarily attributed to industrial pollution. The current maximum contaminant levels (MCLs) for drinking water from the World Health Organization and the U.S. Environmental Protection Agency (0.05 and 0.1 mg/L, respectively) were set based on contact dermatitis and warrant further toxicological investigation. While Cr(VI) is neurotoxic and accumulates in the brain, most animal studies only report whole-brain Cr, leaving large knowledge gaps. Few studies consider differences between ages or sexes, and fewer consider essential metal dyshomeostasis. We sought to investigate where Cr accumulates in the brain, considering sex and age differences, following a 90-day drinking water exposure to current MCLs. Here, we report Cr levels in six brain regions of rats exposed to drinking water Cr(VI). We observed Cr only accumulated in the hippocampus, and only in older females. We further assessed changes to essential metals in the hippocampus, observing opposite effects across sexes and between young rats compared to older rats. In sum, our data indicate drinking water Cr(VI) selectively targeted the hippocampus, with geriatric females accumulating the most Cr, and induced significant essential metal dyshomeostasis even in tissues lacking evident Cr accumulation.
Collapse
Affiliation(s)
- Samuel T. Vielee
- Pediatrics Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY 40292, USA; (S.T.V.); (S.H.R.); (R.K.); (L.C.)
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40292, USA; (I.M.); (S.S.W.)
| | - William J. Buchanan
- Pediatrics Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY 40292, USA; (S.T.V.); (S.H.R.); (R.K.); (L.C.)
| | - Spencer H. Roof
- Pediatrics Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY 40292, USA; (S.T.V.); (S.H.R.); (R.K.); (L.C.)
| | - Rehan Kahloon
- Pediatrics Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY 40292, USA; (S.T.V.); (S.H.R.); (R.K.); (L.C.)
| | - Elizabeth Evans
- Pediatrics Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY 40292, USA; (S.T.V.); (S.H.R.); (R.K.); (L.C.)
| | - Jessica Isibor
- Pediatrics Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY 40292, USA; (S.T.V.); (S.H.R.); (R.K.); (L.C.)
| | - Maitri Patel
- Pediatrics Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY 40292, USA; (S.T.V.); (S.H.R.); (R.K.); (L.C.)
| | - Idoia Meaza
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40292, USA; (I.M.); (S.S.W.)
| | - Haiyan Lu
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40292, USA; (I.M.); (S.S.W.)
| | - Aggie R. Williams
- Pediatrics Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY 40292, USA; (S.T.V.); (S.H.R.); (R.K.); (L.C.)
| | - J. Calvin Kouokam
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40292, USA; (I.M.); (S.S.W.)
| | - Sandra S. Wise
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40292, USA; (I.M.); (S.S.W.)
| | - Luping Guo
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40292, USA; (I.M.); (S.S.W.)
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM 87131, USA
| | - Rachel M. Wise
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM 87131, USA
| | - Jamie L. Wise
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40292, USA; (I.M.); (S.S.W.)
| | - Lu Cai
- Pediatrics Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY 40292, USA; (S.T.V.); (S.H.R.); (R.K.); (L.C.)
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40292, USA; (I.M.); (S.S.W.)
| | - Jun Cai
- Pediatrics Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY 40292, USA; (S.T.V.); (S.H.R.); (R.K.); (L.C.)
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40292, USA; (I.M.); (S.S.W.)
| | - John P. Wise
- Pediatrics Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY 40292, USA; (S.T.V.); (S.H.R.); (R.K.); (L.C.)
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40292, USA; (I.M.); (S.S.W.)
| |
Collapse
|
5
|
Yadav AK, Singh NK, Singh A, Ashish A, Singh S, Rai SN, Singh SK, Singh R. Investigation of Serum Pro-Inflammatory Markers and Trace Elements Among Short Stature in Eastern Uttar Pradesh and Bihar Populations. J Inflamm Res 2024; 17:6063-6073. [PMID: 39253565 PMCID: PMC11382800 DOI: 10.2147/jir.s473895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/27/2024] [Indexed: 09/11/2024] Open
Abstract
Purpose Short stature is prevalent among children worldwide, particularly in developing countries. Various trace elements, including zinc, magnesium, iron, copper, chromium and selenium, are crucial for proper body development. The aim of this study is to explore the relationship between trace elements and TNF-α and IL-6 to elicit and possible pathway responsible for short stature. Methods Two hundred and twenty samples were recruited for this study, 100 short statures and 120 controls were randomly selected. Six trace elements were measured using graphite furnace atomic absorption spectrometry. The concentrations of IL-6 and TNF-α in serum were assessed utilizing the Enzyme-Linked-Immunosorbent Assay (ELISA). Superoxide dismutase was also analysed to determine the oxidative stress response. Results The study revealed notable distinctions in serum trace element levels of short stature. They exhibited significant lower levels of zinc and magnesium, alongside higher levels of copper. The altered Cu/Zn ratio seemed to have a positive correlation with short stature. Conversely, no significant disparities were observed in iron, chromium, and selenium levels. Furthermore, a significant rise was noted in proinflammatory marker TNF-α and cytokine IL-6. Additionally, superoxide dismutase was low in the short statures In silico study shows a high affinity of Zinc with TNF alpha. It may be suggested that inflammation at any time during childhood, with the rise in TNF alpha tightly binds with zinc and may have led to a decrease in zinc serum levels, altered redox homeostasis and resulted in short stature. Conclusion The altered Cu/Zn ratio along with high TNF alpha and IL6 may be used as a marker for short stature in the initial years of growth in children before they reach maturity at the age of 18. Thereafter, introducing zinc supplementation could potentially enhance stature by mitigating TNF-alpha level. Further experimental studies will help to establish the exact role of zinc with TNF alpha in short stature.
Collapse
Affiliation(s)
- Abhay Kumar Yadav
- Department of Anatomy, Institute of Medical Science, Banaras Hindu University, Varanasi, UP, 221005, India
| | - Nitish Kumar Singh
- Department of Anatomy, Institute of Medical Science, Banaras Hindu University, Varanasi, UP, 221005, India
| | - Ankur Singh
- Department of Pediatrics, Institute of Medical Science, Banaras Hindu University, Varanasi, UP, 221005, India
| | - Ashish Ashish
- Multidisciplinary Research Unit, Institute of Medical Science, Banaras Hindu University, Varanasi, UP, 221005, India
| | - Suchitra Singh
- Department of Anatomy, Institute of Medical Science, Banaras Hindu University, Varanasi, UP, 221005, India
| | - Sachchida Nand Rai
- Centre of Experimental Medicine and Surgery, Institute of Medical Science, Banaras Hindu University, Varanasi, UP, 221005, India
| | - Santosh Kumar Singh
- Centre of Experimental Medicine and Surgery, Institute of Medical Science, Banaras Hindu University, Varanasi, UP, 221005, India
| | - Royana Singh
- Department of Anatomy, Institute of Medical Science, Banaras Hindu University, Varanasi, UP, 221005, India
| |
Collapse
|
6
|
Ajibo DN, Orish CN, Ruggieri F, Bocca B, Battistini B, Frazzoli C, Orish FC, Orisakwe OE. An Update Overview on Mechanistic Data and Biomarker Levels in Cobalt and Chromium-Induced Neurodegenerative Diseases. Biol Trace Elem Res 2024; 202:3538-3564. [PMID: 38017235 DOI: 10.1007/s12011-023-03965-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 11/12/2023] [Indexed: 11/30/2023]
Abstract
There is increasing evidence that the imbalance of metals as cobalt (Co) and chromium (Cr) may increase the risk of development and progression of neurodegenerative diseases (NDDs). The human exposure to Co and Cr is derived mostly from industry, orthopedic implants, and polluted environments. Neurological effects of Co and Cr include memory deficit, olfactory dysfunction, spatial disorientation, motor neuron disease, and brain cancer. Mechanisms of Co and Cr neurotoxicity included DNA damage and genomic instability, epigenetic changes, mitochondrial disturbance, lipid peroxidation, oxidative stress, inflammation, and apoptosis. This paper seeks to overview the Co and Cr sources, the mechanisms by which these metals induce NDDs, and their levels in fluids of the general population and patients affected by NDDs. To this end, evidence of Co and Cr unbalance in the human body, mechanistic data, and neurological symptoms were collected using in vivo mammalian studies and human samples.
Collapse
Affiliation(s)
- Doris Nnena Ajibo
- Department of Experimental Pharmacology & Toxicology, Faculty of Pharmacy, University of Port Harcourt, PMB, 5323, Port Harcourt, Rivers State, Nigeria
| | - Chinna Nneka Orish
- Department of Anatomy, College of Health Sciences University of Port Harcourt, PMB, 5323, Port Harcourt, Rivers State, Nigeria
| | - Flavia Ruggieri
- Department of Environment and Health, Istituto Superiore Di Sanità, Rome, Italy
| | - Beatrice Bocca
- Department of Environment and Health, Istituto Superiore Di Sanità, Rome, Italy
| | - Beatrice Battistini
- Department of Environment and Health, Istituto Superiore Di Sanità, Rome, Italy
| | - Chiara Frazzoli
- Department for Cardiovascular, Endocrine-Metabolic Diseases, and Aging, Istituto Superiore Di Sanità, Rome Viale Regina Elena, 29900161, Rome, Italy
| | | | - Orish E Orisakwe
- Department of Experimental Pharmacology & Toxicology, Faculty of Pharmacy, University of Port Harcourt, PMB, 5323, Port Harcourt, Rivers State, Nigeria.
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, PMB, 5323, Port Harcourt, Rivers State, Nigeria.
| |
Collapse
|
7
|
Gorini F, Tonacci A. Metal Toxicity and Dementia Including Frontotemporal Dementia: Current State of Knowledge. Antioxidants (Basel) 2024; 13:938. [PMID: 39199184 PMCID: PMC11351151 DOI: 10.3390/antiox13080938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 07/28/2024] [Accepted: 07/30/2024] [Indexed: 09/01/2024] Open
Abstract
Frontotemporal dementia (FTD) includes a number of neurodegenerative diseases, often with early onset (before 65 years old), characterized by progressive, irreversible deficits in behavioral, linguistic, and executive functions, which are often difficult to diagnose due to their similar phenotypic characteristics to other dementias and psychiatric disorders. The genetic contribution is of utmost importance, although environmental risk factors also play a role in its pathophysiology. In fact, some metals are known to produce free radicals, which, accumulating in the brain over time, can induce oxidative stress, inflammation, and protein misfolding, all of these being key features of FTD and similar conditions. Therefore, the present review aims to summarize the current evidence about the environmental contribution to FTD-mainly dealing with toxic metal exposure-since the identification of such potential environmental risk factors can lead to its early diagnosis and the promotion of policies and interventions. This would allow us, by reducing exposure to these pollutants, to potentially affect society at large in a positive manner, decreasing the burden of FTD and similar conditions on affected individuals and society overall. Future perspectives, including the application of Artificial Intelligence principles to the field, with related evidence found so far, are also introduced.
Collapse
Affiliation(s)
| | - Alessandro Tonacci
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy;
| |
Collapse
|
8
|
Vielee ST, Isibor J, Buchanan WJ, Roof SH, Patel M, Meaza I, Williams A, Toyoda JH, Lu H, Wise SS, Kouokam JC, Young Wise J, Aboueissa AM, Cai J, Cai L, Wise JP. Female Rat Behavior Effects from Low Levels of Hexavalent Chromium (Cr[VI]) in Drinking Water Evaluated with a Toxic Aging Coin Approach. APPLIED SCIENCES 2024; 14:6206. [DOI: 10.3390/app14146206] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2024]
Abstract
We are facing a critical aging crisis, with geriatric populations (65+) growing to unprecedented proportions and ~4 million people (a 6.5-fold increase) expected to become centenarians by 2050. This is compounded by environmental pollution, which affects individuals of all ages and contributes to age-related diseases. As we have a limited understanding of how environmental pollutants affect older populations distinctly from younger populations, these longer-lived geriatric populations present a key knowledge gap. To address this knowledge gap, we employ a “Toxic Aging Coin” approach: heads consider how age impacts chemical toxicity, and tails consider how chemicals act as gerontogens—or how they accelerate biological aging. We employed this approach to investigate hexavalent chromium (Cr[VI]) impacts on female rats exposed to 0.05 or 0.1 mg Cr(VI)/L in drinking water for 90 days; these are the maximum contaminant levels (i.e., the highest levels permitted) from the World Health Organization and U.S. Environmental Protection Agency, respectively. During exposure, rats performed a battery of behavior assays to assess grip strength, locomotor coordination, anxiety, spatial memory, sociability, and social novelty preference. We observed age differences in Cr(VI) neurotoxicity, with grip strength, locomotor function, and spatial memory in middle-aged females being particularly affected. We further compared these results in females to results in males, noting many sex differences, especially in middle-aged rats. These data emphasize the need to consider age and sex as variables in toxicology and to revisit drinking water regulations for Cr(VI).
Collapse
Affiliation(s)
- Samuel T. Vielee
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Jessica Isibor
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - William J. Buchanan
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Spencer H. Roof
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Maitri Patel
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Idoia Meaza
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Aggie Williams
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Jennifer H. Toyoda
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Haiyan Lu
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Sandra S. Wise
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - J. Calvin Kouokam
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Jamie Young Wise
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | | | - Jun Cai
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Lu Cai
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - John P. Wise
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40292, USA
| |
Collapse
|
9
|
Milanković V, Tasić T, Leskovac A, Petrović S, Mitić M, Lazarević-Pašti T, Novković M, Potkonjak N. Metals on the Menu-Analyzing the Presence, Importance, and Consequences. Foods 2024; 13:1890. [PMID: 38928831 PMCID: PMC11203375 DOI: 10.3390/foods13121890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/11/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Metals are integral components of the natural environment, and their presence in the food supply is inevitable and complex. While essential metals such as sodium, potassium, magnesium, calcium, iron, zinc, and copper are crucial for various physiological functions and must be consumed through the diet, others, like lead, mercury, and cadmium, are toxic even at low concentrations and pose serious health risks. This study comprehensively analyzes the presence, importance, and consequences of metals in the food chain. We explore the pathways through which metals enter the food supply, their distribution across different food types, and the associated health implications. By examining current regulatory standards for maximum allowable levels of various metals, we highlight the importance of ensuring food safety and protecting public health. Furthermore, this research underscores the need for continuous monitoring and management of metal content in food, especially as global agricultural and food production practices evolve. Our findings aim to inform dietary recommendations, food fortification strategies, and regulatory policies, ultimately contributing to safer and more nutritionally balanced diets.
Collapse
Affiliation(s)
- Vedran Milanković
- VINČA Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovica Alasa 12-14, 11000 Belgrade, Serbia; (V.M.); (T.T.); (A.L.); (S.P.); (M.M.); (T.L.-P.)
| | - Tamara Tasić
- VINČA Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovica Alasa 12-14, 11000 Belgrade, Serbia; (V.M.); (T.T.); (A.L.); (S.P.); (M.M.); (T.L.-P.)
| | - Andreja Leskovac
- VINČA Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovica Alasa 12-14, 11000 Belgrade, Serbia; (V.M.); (T.T.); (A.L.); (S.P.); (M.M.); (T.L.-P.)
| | - Sandra Petrović
- VINČA Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovica Alasa 12-14, 11000 Belgrade, Serbia; (V.M.); (T.T.); (A.L.); (S.P.); (M.M.); (T.L.-P.)
| | - Miloš Mitić
- VINČA Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovica Alasa 12-14, 11000 Belgrade, Serbia; (V.M.); (T.T.); (A.L.); (S.P.); (M.M.); (T.L.-P.)
| | - Tamara Lazarević-Pašti
- VINČA Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovica Alasa 12-14, 11000 Belgrade, Serbia; (V.M.); (T.T.); (A.L.); (S.P.); (M.M.); (T.L.-P.)
| | - Mirjana Novković
- Group for Muscle Cellular and Molecular Biology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11000 Belgrade, Serbia;
| | - Nebojša Potkonjak
- VINČA Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovica Alasa 12-14, 11000 Belgrade, Serbia; (V.M.); (T.T.); (A.L.); (S.P.); (M.M.); (T.L.-P.)
| |
Collapse
|
10
|
Adelusi OA, Oladeji OM, Gbashi S, Njobeh PB. Influence of geographical location on the distribution of heavy metals in dairy cattle feeds sourced from two South African provinces. Food Sci Nutr 2024; 12:4223-4232. [PMID: 38873466 PMCID: PMC11167146 DOI: 10.1002/fsn3.4082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/20/2024] [Accepted: 02/27/2024] [Indexed: 06/15/2024] Open
Abstract
The contamination of feed and food by heavy metals represents a significant concern for the health of both animals and humans. This study investigates the impact of geographical location on heavy metal distribution in dairy cattle feeds sourced from Free State and Limpopo, South Africa (SA). A total of 70 feed samples (40 from Free State and 30 from Limpopo) were collected from 2018 to 2019 and analyzed for heavy metals, including cadmium (Cd), arsenic (As), copper (Cu), zinc (Zn), lead (Pb), and chromium (Cr), using inductively coupled plasma mass spectrometry (ICP-MS). Our findings revealed the presence of Cr, Cu, and Zn in the feeds, but at levels below the FAO/WHO permissible limits. Additionally, As, Cd, and Pb concentrations in the feeds were below the Limit of Detections (LODs). Generally, Cr concentrations (0.032-0.454 mg/kg) identified in the Free State samples were lower than those found in Limpopo (0.038-1.459 mg/kg), while the levels of Cu (0.092-4.898 mg/kg) and Zn (0.39-13.871 mg/kg) recorded in the Free State samples were higher than those from Limpopo [(0.126-3.467 mg/kg) and (0.244-13.767 mg/kg), respectively]. According to independent sample t-tests, Cu and Zn levels were substantially higher (p ≤ .05) in Free State feeds compared to Limpopo, while Limpopo feeds exhibited significantly higher (p ≤ .05) Cr concentrations than Free State feeds. Despite the low recorded heavy metal levels, regular monitoring of these elements in cow diets across all SA provinces is essential for ensuring the well-being of animals and humans.
Collapse
Affiliation(s)
- Oluwasola Abayomi Adelusi
- Department of Biotechnology and Food Technology, Faculty of ScienceUniversity of JohannesburgJohannesburgSouth Africa
| | - Oluwaseun Mary Oladeji
- Department of Biology and Environmental Science, Faculty of ScienceSefako Makgatho Health Sciences UniversityPretoriaSouth Africa
| | - Sefater Gbashi
- Department of Biotechnology and Food Technology, Faculty of ScienceUniversity of JohannesburgJohannesburgSouth Africa
| | - Patrick Berka Njobeh
- Department of Biotechnology and Food Technology, Faculty of ScienceUniversity of JohannesburgJohannesburgSouth Africa
| |
Collapse
|
11
|
Tyczyńska M, Gędek M, Brachet A, Stręk W, Flieger J, Teresiński G, Baj J. Trace Elements in Alzheimer's Disease and Dementia: The Current State of Knowledge. J Clin Med 2024; 13:2381. [PMID: 38673657 PMCID: PMC11050856 DOI: 10.3390/jcm13082381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/06/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Changes in trace element concentrations are being wildly considered when it comes to neurodegenerative disorders, such as Alzheimer's disease and Parkinson's disease. This study aims to present the role that trace elements play in the central nervous system. Moreover, we reviewed the mechanisms involved in their neurotoxicity. Low zinc concentrations, as well as high levels of copper, manganese, and iron, activate the signalling pathways of the inflammatory, oxidative and nitrosative stress response. Neurodegeneration occurs due to the association between metals and proteins, which is then followed by aggregate formation, mitochondrial disorder, and, ultimately, cell death. In Alzheimer's disease, low Zn levels suppress the neurotoxicity induced by β-amyloid through the selective precipitation of aggregation intermediates. High concentrations of copper, iron and manganese cause the aggregation of intracellular α-synuclein, which results in synaptic dysfunction and axonal transport disruption. Parkinson's disease is caused by the accumulation of Fe in the midbrain dopaminergic nucleus, and the pathogenesis of multiple sclerosis derives from Zn deficiency, leading to an imbalance between T cell functions. Aluminium disturbs the homeostasis of other metals through a rise in the production of oxygen reactive forms, which then leads to cellular death. Selenium, in association with iron, plays a distinct role in the process of ferroptosis. Outlining the influence that metals have on oxidoreduction processes is crucial to recognising the pathophysiology of neurodegenerative diseases and may provide possible new methods for both their avoidance and therapy.
Collapse
Affiliation(s)
- Magdalena Tyczyńska
- Department of Correct, Clinical and Imaging Anatomy, Medical University of Lublin, ul. Jaczewskiego 4, 20-090 Lublin, Poland; (M.T.); (W.S.)
| | - Marta Gędek
- Department of Forensic Medicine, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland; (M.G.); (A.B.); (G.T.)
| | - Adam Brachet
- Department of Forensic Medicine, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland; (M.G.); (A.B.); (G.T.)
| | - Wojciech Stręk
- Department of Correct, Clinical and Imaging Anatomy, Medical University of Lublin, ul. Jaczewskiego 4, 20-090 Lublin, Poland; (M.T.); (W.S.)
| | - Jolanta Flieger
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4A, 20-093 Lublin, Poland;
| | - Grzegorz Teresiński
- Department of Forensic Medicine, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland; (M.G.); (A.B.); (G.T.)
| | - Jacek Baj
- Department of Correct, Clinical and Imaging Anatomy, Medical University of Lublin, ul. Jaczewskiego 4, 20-090 Lublin, Poland; (M.T.); (W.S.)
| |
Collapse
|
12
|
Sun Q, Gao J, An R, Wang M, Wang Y. Probing molecular pathways: Illuminating the connection between COVID-19 and Alzheimer's disease through the endocannabinoid system dynamics. J Med Virol 2024; 96:e29590. [PMID: 38619024 DOI: 10.1002/jmv.29590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 01/29/2024] [Accepted: 03/26/2024] [Indexed: 04/16/2024]
Abstract
Our study investigates the molecular link between COVID-19 and Alzheimer's disease (AD). We aim to elucidate the mechanisms by which COVID-19 may influence the onset or progression of AD. Using bioinformatic tools, we analyzed gene expression datasets from the Gene Expression Omnibus (GEO) database, including GSE147507, GSE12685, and GSE26927. Intersection analysis was utilized to identify common differentially expressed genes (CDEGs) and their shared biological pathways. Consensus clustering was conducted to group AD patients based on gene expression, followed by an analysis of the immune microenvironment and variations in shared pathway activities between clusters. Additionally, we identified transcription factor-binding sites shared by CDEGs and genes in the common pathway. The activity of the pathway and the expression levels of the CDEGs were validated using GSE164805 and GSE48350 datasets. Six CDEGs (MAL2, NECAB1, SH3GL2, EPB41L3, MEF2C, and NRGN) were identified, along with a downregulated pathway, the endocannabinoid (ECS) signaling pathway, common to both AD and COVID-19. These CDEGs showed a significant correlation with ECS activity (p < 0.05) and immune functions. The ECS pathway was enriched in healthy individuals' brains and downregulated in AD patients. Validation using GSE164805 and GSE48350 datasets confirmed the differential expression of these genes in COVID-19 and AD tissues. Our findings reveal a potential pathogenetic link between COVID-19 and AD, mediated by CDEGs and the ECS pathway. However, further research and multicenter evidence are needed to translate these findings into clinical applications.
Collapse
Affiliation(s)
- Qingyuan Sun
- The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Jinyang Gao
- School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Ran An
- The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Menggeer Wang
- The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yanqing Wang
- The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| |
Collapse
|
13
|
Sakowski SA, Koubek EJ, Chen KS, Goutman SA, Feldman EL. Role of the Exposome in Neurodegenerative Disease: Recent Insights and Future Directions. Ann Neurol 2024; 95:635-652. [PMID: 38411261 PMCID: PMC11023772 DOI: 10.1002/ana.26897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 02/28/2024]
Abstract
Neurodegenerative diseases are increasing in prevalence and place a significant burden on society. The causes are multifactorial and complex, and increasing evidence suggests a dynamic interplay between genes and the environment, emphasizing the importance of identifying and understanding the role of lifelong exposures, known as the exposome, on the nervous system. This review provides an overview of recent advances toward defining neurodegenerative disease exposomes, focusing on Parkinson's disease, amyotrophic lateral sclerosis, and Alzheimer's disease. We present the current state of the field based on emerging data, elaborate on key themes and potential mechanisms, and conclude with limitations and future directions. ANN NEUROL 2024;95:635-652.
Collapse
Affiliation(s)
- Stacey A. Sakowski
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA
| | - Emily J. Koubek
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kevin S. Chen
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Stephen A. Goutman
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA
| | - Eva L. Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
14
|
Soriano-Ursúa MA, Farfán-García ED. The Cracked Potential of Boron-containing Compounds in Alzheimer's Disease. Cent Nerv Syst Agents Med Chem 2023; 23:CNSAMC-EPUB-134693. [PMID: 37779400 DOI: 10.2174/0118715249264888230920060941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/18/2023] [Accepted: 07/31/2023] [Indexed: 10/03/2023]
Abstract
Alzheimer's disease (AD) is a relevant neurodegenerative disease worldwide. Its relevancy is mainly due to its high prevalence and high global burden. Metalloids have attracted attention as their serum levels seem to differ between affected patients and healthy individuals. On the other hand, atoms of some metalloids have been included in bioactive molecules, exerting some interesting effects, mainly due to their ameliorative effects in neurodegeneration. In this sense, boron-containing compounds (BCC) have been explored to regulate or prevent neurodegeneration. As an example, boric acid has been reported as a compound with antioxidant, anti-inflammatory and neurotrophic effects. Other natural BCCs have also shown amelioration of metabolic conditions often related to increased risk of neurodegenerative maladies. However, in recent years, additional organoboron compounds have been reported as active in several processes linked to neurodegeneration and especially attractive as regulators of the origin and progression of AD. In this mini-review, some data are collected suggesting that some natural BCC could be used as preventive agents, but also the potential of some BODIPYs as tools for diagnosis and some other BCC (particularly boronic acids and pinacol boronic esters) for acting as promising therapeutic agents for AD.
Collapse
Affiliation(s)
- Marvin Antonio Soriano-Ursúa
- Sección de Estudios de Posgrado e Investigación. Escuela Superior de Medicina, Instituto Politécnico Nacional Plan de San Luis y Diaz Mirón s/n, Col. Casco de Santo Tomás, Alcaldía Miguel Hidalgo, Mexico City, 11340, Mexico
| | - Eunice Dalet Farfán-García
- Sección de Estudios de Posgrado e Investigación. Escuela Superior de Medicina, Instituto Politécnico Nacional Plan de San Luis y Diaz Mirón s/n, Col. Casco de Santo Tomás, Alcaldía Miguel Hidalgo, Mexico City, 11340, Mexico
| |
Collapse
|
15
|
Zhou J, Zhang W, Cao Z, Lian S, Li J, Nie J, Huang Y, Zhao K, He J, Liu C. Association of Selenium Levels with Neurodegenerative Disease: A Systemic Review and Meta-Analysis. Nutrients 2023; 15:3706. [PMID: 37686737 PMCID: PMC10490073 DOI: 10.3390/nu15173706] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/20/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
BACKGROUND Neurodegenerative diseases (NDs) have posed significant challenges to public health, and it is crucial to understand their mechanisms in order to develop effective therapeutic strategies. Recent studies have highlighted the potential role of selenium in ND pathogenesis, as it plays a vital role in maintaining cellular homeostasis and preventing oxidative damage. However, a comprehensive analysis of the association between selenium and NDs is still lacking. METHOD Five public databases, namely PubMed, Web of Science, EMBASE, Cochrane and Clinical Trials, were searched in our research. Random model effects were chosen, and Higgins inconsistency analyses (I2), Cochrane's Q test and Tau2 were calculated to evaluate the heterogeneity. RESULT The association of selenium in ND patients with Alzheimer's disease (AD), Parkinson's disease (PD), multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS) and Huntington's disease (HD) was studied. A statistically significant relationship was only found for AD patients (SMD = -0.41, 95% CI (-0.64, -0.17), p < 0.001), especially for erythrocytes. However, no significant relationship was observed in the analysis of the other four diseases. CONCLUSION Generally, this meta-analysis indicated that AD patients are strongly associated with lower selenium concentrations compared with healthy people, which may provide a clinical reference in the future. However, more studies are urgently needed for further study and treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Jiaxin Zhou
- International School, Jinan University, Guangzhou 510080, China;
| | - Wenfen Zhang
- School of Basic Medicine and Public Health, Jinan University, Guangzhou 510632, China;
| | - Zhiwen Cao
- Center for Data Science, New York University, New York, NY 10011, USA;
| | - Shaoyan Lian
- Department of Nutrition, School of Medicine, Jinan University, Guangzhou 510632, China; (S.L.); (J.L.); (J.N.); (Y.H.); (K.Z.)
| | - Jieying Li
- Department of Nutrition, School of Medicine, Jinan University, Guangzhou 510632, China; (S.L.); (J.L.); (J.N.); (Y.H.); (K.Z.)
| | - Jiaying Nie
- Department of Nutrition, School of Medicine, Jinan University, Guangzhou 510632, China; (S.L.); (J.L.); (J.N.); (Y.H.); (K.Z.)
| | - Ying Huang
- Department of Nutrition, School of Medicine, Jinan University, Guangzhou 510632, China; (S.L.); (J.L.); (J.N.); (Y.H.); (K.Z.)
| | - Ke Zhao
- Department of Nutrition, School of Medicine, Jinan University, Guangzhou 510632, China; (S.L.); (J.L.); (J.N.); (Y.H.); (K.Z.)
| | - Jiang He
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
| | - Chaoqun Liu
- Department of Nutrition, School of Medicine, Jinan University, Guangzhou 510632, China; (S.L.); (J.L.); (J.N.); (Y.H.); (K.Z.)
- Disease Control and Prevention Institute, Jinan University, Guangzhou 510632, China
| |
Collapse
|
16
|
Babić Leko M, Langer Horvat L, Španić Popovački E, Zubčić K, Hof PR, Šimić G. Metals in Alzheimer's Disease. Biomedicines 2023; 11:1161. [PMID: 37189779 PMCID: PMC10136077 DOI: 10.3390/biomedicines11041161] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/07/2023] [Accepted: 04/11/2023] [Indexed: 05/17/2023] Open
Abstract
The role of metals in the pathogenesis of Alzheimer's disease (AD) is still debated. Although previous research has linked changes in essential metal homeostasis and exposure to environmental heavy metals to the pathogenesis of AD, more research is needed to determine the relationship between metals and AD. In this review, we included human studies that (1) compared the metal concentrations between AD patients and healthy controls, (2) correlated concentrations of AD cerebrospinal fluid (CSF) biomarkers with metal concentrations, and (3) used Mendelian randomization (MR) to assess the potential metal contributions to AD risk. Although many studies have examined various metals in dementia patients, understanding the dynamics of metals in these patients remains difficult due to considerable inconsistencies among the results of individual studies. The most consistent findings were for Zn and Cu, with most studies observing a decrease in Zn levels and an increase in Cu levels in AD patients. However, several studies found no such relation. Because few studies have compared metal levels with biomarker levels in the CSF of AD patients, more research of this type is required. Given that MR is revolutionizing epidemiologic research, additional MR studies that include participants from diverse ethnic backgrounds to assess the causal relationship between metals and AD risk are critical.
Collapse
Affiliation(s)
- Mirjana Babić Leko
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| | - Lea Langer Horvat
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| | - Ena Španić Popovački
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| | - Klara Zubčić
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| | - Patrick R. Hof
- Nash Family Department of Neuroscience, Friedman Brain Institute and Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Goran Šimić
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| |
Collapse
|
17
|
Vielee ST, Wise JP. Among Gerontogens, Heavy Metals Are a Class of Their Own: A Review of the Evidence for Cellular Senescence. Brain Sci 2023; 13:500. [PMID: 36979310 PMCID: PMC10046019 DOI: 10.3390/brainsci13030500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023] Open
Abstract
Advancements in modern medicine have improved the quality of life across the globe and increased the average lifespan of our population by multiple decades. Current estimates predict by 2030, 12% of the global population will reach a geriatric age and live another 3-4 decades. This swelling geriatric population will place critical stress on healthcare infrastructures due to accompanying increases in age-related diseases and comorbidities. While much research focused on long-lived individuals seeks to answer questions regarding how to age healthier, there is a deficit in research investigating what aspects of our lives accelerate or exacerbate aging. In particular, heavy metals are recognized as a significant threat to human health with links to a plethora of age-related diseases, and have widespread human exposures from occupational, medical, or environmental settings. We believe heavy metals ought to be classified as a class of gerontogens (i.e., chemicals that accelerate biological aging in cells and tissues). Gerontogens may be best studied through their effects on the "Hallmarks of Aging", nine physiological hallmarks demonstrated to occur in aged cells, tissues, and bodies. Evidence suggests that cellular senescence-a permanent growth arrest in cells-is one of the most pertinent hallmarks of aging and is a useful indicator of aging in tissues. Here, we discuss the roles of heavy metals in brain aging. We briefly discuss brain aging in general, then expand upon observations for heavy metals contributing to age-related neurodegenerative disorders. We particularly emphasize the roles and observations of cellular senescence in neurodegenerative diseases. Finally, we discuss the observations for heavy metals inducing cellular senescence. The glaring lack of knowledge about gerontogens and gerontogenic mechanisms necessitates greater research in the field, especially in the context of the global aging crisis.
Collapse
Affiliation(s)
- Samuel T. Vielee
- Pediatrics Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY 40202, USA
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA
| | - John P. Wise
- Pediatrics Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY 40202, USA
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA
| |
Collapse
|
18
|
Revisiting the Role of Vitamins and Minerals in Alzheimer's Disease. Antioxidants (Basel) 2023; 12:antiox12020415. [PMID: 36829974 PMCID: PMC9952129 DOI: 10.3390/antiox12020415] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
Alzheimer's disease (AD) is the most common type of dementia that affects millions of individuals worldwide. It is an irreversible neurodegenerative disorder that is characterized by memory loss, impaired learning and thinking, and difficulty in performing regular daily activities. Despite nearly two decades of collective efforts to develop novel medications that can prevent or halt the disease progression, we remain faced with only a few options with limited effectiveness. There has been a recent growth of interest in the role of nutrition in brain health as we begin to gain a better understanding of what and how nutrients affect hormonal and neural actions that not only can lead to typical cardiovascular or metabolic diseases but also an array of neurological and psychiatric disorders. Vitamins and minerals, also known as micronutrients, are elements that are indispensable for functions including nutrient metabolism, immune surveillance, cell development, neurotransmission, and antioxidant and anti-inflammatory properties. In this review, we provide an overview on some of the most common vitamins and minerals and discuss what current studies have revealed on the link between these essential micronutrients and cognitive performance or AD.
Collapse
|
19
|
Iban-Arias R, Trageser KJ, Yang EJ, Griggs E, Radu A, Naughton S, Al Rahim M, Tatsunori O, Raval U, Palmieri J, Huang Z, Chen LC, Pasinetti GM. Exposure to World Trade Center Dust Exacerbates Cognitive Impairment and Evokes a Central and Peripheral Pro-Inflammatory Transcriptional Profile in an Animal Model of Alzheimer's Disease. J Alzheimers Dis 2023; 91:779-794. [PMID: 36502334 PMCID: PMC9912736 DOI: 10.3233/jad-221046] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND The terrorist attacks on September 11, 2001, on the World Trade Center (WTC) led to intense fires and a massive dense cloud of toxic gases and suspended pulverized debris. In the subsequent years, following the attack and cleanup efforts, a cluster of chronic health conditions emerged among First Responders (FR) who were at Ground Zero for prolonged periods and were repeatedly exposed to high levels of WTC particulate matter (WTCPM). Among those are neurological complications which may increase the risk for the development of Alzheimer's disease (AD) later in life. OBJECTIVE We hypothesize that WTCPM dust exposure affects the immune cross-talking between the periphery and central nervous systems that may induce brain permeability ultimately promoting AD-type phenotype. METHODS 5XFAD and wild-type mice were intranasally administered with WTCPM dust collected at Ground Zero within 72 h after the attacks. Y-maze assay and novel object recognition behavioral tests were performed for working memory deficits and learning and recognition memory, respectively. Transcriptomic analysis in the blood and hippocampus was performed and confirmed by RT qPCR. RESULTS Mice exposed to WTCPM dust exhibited a significant impairment in spatial and recognition short and long-term memory. Furthermore, the transcriptomic analysis in the hippocampal formation and blood revealed significant changes in genes related to immune-inflammatory responses, and blood-brain barrier disruption. CONCLUSION These studies suggest a putative peripheral-brain immune inflammatory cross-talking that may potentiate cognitive decline, identifying for the first time key steps which may be therapeutically targetable in future studies in WTC FR.
Collapse
Affiliation(s)
- Ruth Iban-Arias
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kyle J. Trageser
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Eun-Jeong Yang
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Elizabeth Griggs
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Aurelian Radu
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sean Naughton
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Md Al Rahim
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Oguchi Tatsunori
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Urdhva Raval
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Joshua Palmieri
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Zerlina Huang
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lung-Chi Chen
- Department of Environmental Medicine, NYU Langone School of Medicine, New York, NY, USA
| | - Giulio Maria Pasinetti
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA,Geriatrics Research, Education and Clinical Center, JJ Peters VA Medical Center, Bronx, NY, USA,Correspondence to: Giulio Maria Pasinetti, MD, PhD, Department of Neurology, Mount Sinai School of Medicine, 1 Gustave L. Levy Place, Box 1137, New York, NY 10029, USA. Tel.: +1 212 241 7938; Fax: +1 212 876 9042; E-mail:
| |
Collapse
|