1
|
Samathoti P, Kumarachari RK, Bukke SPN, Rajasekhar ESK, Jaiswal AA, Eftekhari Z. The role of nanomedicine and artificial intelligence in cancer health care: individual applications and emerging integrations-a narrative review. Discov Oncol 2025; 16:697. [PMID: 40338421 PMCID: PMC12061837 DOI: 10.1007/s12672-025-02469-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Accepted: 04/23/2025] [Indexed: 05/09/2025] Open
Abstract
Cancer remains one of the deadliest diseases globally, significantly impacting patients' quality of life. Addressing the rising incidence of cancer deaths necessitates innovative approaches such as nanomedicine and artificial intelligence (AI). The convergence of nanomedicine and AI represents a transformative frontier in cancer healthcare, promising unprecedented advancements in diagnosis, treatment, and patient management. This narrative review explores the distinct applications of nanomedicine and AI in oncology, alongside their synergistic potential. Nanomedicine leverages nanoparticles for targeted drug delivery, enhancing therapeutic efficacy while minimizing adverse effects. Concurrently, AI algorithms facilitate early cancer detection, personalized treatment planning, and predictive analytics, thereby optimizing clinical outcomes. Emerging integrations of these technologies could transform cancer care by facilitating precise, personalized, and adaptive treatment strategies. This review synthesizes current research, highlights innovative individual applications, and discusses the emerging integrations of nanomedicine and AI in oncology. The goal is to provide a comprehensive understanding of how these cutting-edge technologies can collaboratively improve cancer diagnosis, treatment, and patient prognosis.
Collapse
Affiliation(s)
- Prasanthi Samathoti
- Department of Pharmaceutics, MB School of Pharmaceutical Sciences (Earst While Sree Vidyanikethan College of Pharmacy), Mohan Babu University, Tirupati, 517102, Andhra Pradesh, India
| | - Rajasekhar Komarla Kumarachari
- Department of Pharmaceutical Chemistry, Meenakshi Faculty of Pharmacy, MAHER University, Thandalam, MevalurKuppam, 602105, Tamil Nadu, India
| | - Sarad Pawar Naik Bukke
- Department of Pharmaceutics and Pharmaceutical Technology, Kampala International University, Western Campus, P.O. Box 71, Ishaka, Bushenyi, Uganda.
| | - Eashwar Sai Komarla Rajasekhar
- Department of Data Science and Artificial Intelligence, Indian Institute of Technology, Bhilai, Kutela Bhata, 491001, Chattisgarh, India
| | | | - Zohre Eftekhari
- Department of Biotechnology, Pasteur Institute of Iran, District 11, Rajabi, M9RW+M55, Tehran, Tehran Province, Iran
| |
Collapse
|
2
|
Huanbutta K, Burapapadh K, Kraisit P, Sriamornsak P, Ganokratanaa T, Suwanpitak K, Sangnim T. Artificial intelligence-driven pharmaceutical industry: A paradigm shift in drug discovery, formulation development, manufacturing, quality control, and post-market surveillance. Eur J Pharm Sci 2024; 203:106938. [PMID: 39419129 DOI: 10.1016/j.ejps.2024.106938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/01/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024]
Abstract
The advent of artificial intelligence (AI) has catalyzed a profound transformation in the pharmaceutical industry, ushering in a paradigm shift across various domains, including drug discovery, formulation development, manufacturing, quality control, and post-market surveillance. This comprehensive review examines the multifaceted impact of AI-driven technologies on all stages of the pharmaceutical life cycle. It discusses the application of machine learning algorithms, data analytics, and predictive modeling to accelerate drug discovery processes, optimize formulation development, enhance manufacturing efficiency, ensure stringent quality control measures, and revolutionize post-market surveillance methodologies. By describing the advancements, challenges, and future prospects of harnessing AI in the pharmaceutical landscape, this review offers valuable insights into the evolving dynamics of drug development and regulatory practices in the era of AI-driven innovation.
Collapse
Affiliation(s)
- Kampanart Huanbutta
- Department of Manufacturing Pharmacy, College of Pharmacy, Rangsit University, Pathum Thani 12000, Thailand
| | - Kanokporn Burapapadh
- Department of Manufacturing Pharmacy, College of Pharmacy, Rangsit University, Pathum Thani 12000, Thailand
| | - Pakorn Kraisit
- Thammasat University Research Unit in Smart Materials and Innovative Technology for Pharmaceutical Applications (SMIT-Pharm), Faculty of Pharmacy, Thammasat University, Pathumthani 12120, Thailand
| | - Pornsak Sriamornsak
- Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, 73000, Thailand; Academy of Science, The Royal Society of Thailand, Bangkok, 10300, Thailand
| | - Thittaporn Ganokratanaa
- Applied Computer Science Program, King Mongkut's University of Technology Thonburi, Bangkok, 10140, Thailand
| | - Kittipat Suwanpitak
- Faculty of Pharmaceutical Sciences, Burapha University, 169, Seansook, Muang, Chonburi, 20131, Thailand
| | - Tanikan Sangnim
- Faculty of Pharmaceutical Sciences, Burapha University, 169, Seansook, Muang, Chonburi, 20131, Thailand.
| |
Collapse
|
3
|
Nikitovic D, Kukovyakina E, Berdiaki A, Tzanakakis A, Luss A, Vlaskina E, Yagolovich A, Tsatsakis A, Kuskov A. Enhancing Tumor Targeted Therapy: The Role of iRGD Peptide in Advanced Drug Delivery Systems. Cancers (Basel) 2024; 16:3768. [PMID: 39594723 PMCID: PMC11592346 DOI: 10.3390/cancers16223768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/01/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
Chemotherapy remains the primary therapeutic approach in treating cancer. The tumor microenvironment (TME) is the complex network surrounding tumor cells, comprising various cell types, such as immune cells, fibroblasts, and endothelial cells, as well as ECM components, blood vessels, and signaling molecules. The often stiff and dense network of the TME interacts dynamically with tumor cells, influencing cancer growth, immune response, metastasis, and resistance to therapy. The effectiveness of the treatment of solid tumors is frequently reduced due to the poor penetration of the drug, which leads to attaining concentrations below the therapeutic levels at the site. Cell-penetrating peptides (CPPs) present a promising approach that improves the internalization of therapeutic agents. CPPs, which are short amino acid sequences, exhibit a high ability to pass cell membranes, enabling them to deliver drugs efficiently with minimal toxicity. Specifically, the iRGD peptide, a member of CPPs, is notable for its capacity to deeply penetrate tumor tissues by binding simultaneously integrins ανβ3/ανβ5 and neuropilin receptors. Indeed, ανβ3/ανβ5 integrins are characteristically expressed by tumor cells, which allows the iRGD peptide to home onto tumor cells. Notably, the respective dual-receptor targeting mechanism considerably increases the permeability of blood vessels in tumors, enabling an efficient delivery of co-administered drugs or nanoparticles into the tumor mass. Therefore, the iRGD peptide facilitates deeper drug penetration and improves the efficacy of co-administered therapies. Distinctively, we will focus on the iRGD mechanism of action, drug delivery systems and their application, and deliberate future perspectives in developing iRGD-conjugated therapeutics. In summary, this review discusses the potential of iRGD in overcoming barriers to drug delivery in cancer to maximize treatment efficiency while minimizing side effects.
Collapse
Affiliation(s)
- Dragana Nikitovic
- Department of Histology-Embryology, Medical School, University of Crete, 71003 Heraklion, Greece;
| | - Ekaterina Kukovyakina
- Department of Technology of Chemical Pharmaceutical and Cosmetic Products, D. Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia; (E.K.); (A.L.); (E.V.); (A.K.)
| | - Aikaterini Berdiaki
- Department of Histology-Embryology, Medical School, University of Crete, 71003 Heraklion, Greece;
| | - Alexandros Tzanakakis
- School of Electrical and Computer Engineering, National Technical University of Athens, 15780 Athens, Greece;
| | - Anna Luss
- Department of Technology of Chemical Pharmaceutical and Cosmetic Products, D. Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia; (E.K.); (A.L.); (E.V.); (A.K.)
| | - Elizaveta Vlaskina
- Department of Technology of Chemical Pharmaceutical and Cosmetic Products, D. Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia; (E.K.); (A.L.); (E.V.); (A.K.)
| | - Anne Yagolovich
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia;
| | - Aristides Tsatsakis
- Forensic Medicine Department, Medical School, University of Crete, 71003 Heraklion, Greece;
| | - Andrey Kuskov
- Department of Technology of Chemical Pharmaceutical and Cosmetic Products, D. Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia; (E.K.); (A.L.); (E.V.); (A.K.)
| |
Collapse
|
4
|
Klooster IT, Kip H, van Gemert-Pijnen L, Crutzen R, Kelders S. A systematic review on eHealth technology personalization approaches. iScience 2024; 27:110771. [PMID: 39290843 PMCID: PMC11406103 DOI: 10.1016/j.isci.2024.110771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/05/2024] [Accepted: 08/15/2024] [Indexed: 09/19/2024] Open
Abstract
Despite the widespread use of personalization of eHealth technologies, there is a lack of comprehensive understanding regarding its application. This systematic review aims to bridge this gap by identifying and clustering different personalization approaches based on the type of variables used for user segmentation and the adaptations to the eHealth technology and examining the role of computational methods in the literature. From the 412 included reports, we identified 13 clusters of personalization approaches, such as behavior + channeling and environment + recommendations. Within these clusters, 10 computational methods were utilized to match segments with technology adaptations, such as classification-based methods and reinforcement learning. Several gaps were identified in the literature, such as the limited exploration of technology-related variables, the limited focus on user interaction reminders, and a frequent reliance on a single type of variable for personalization. Future research should explore leveraging technology-specific features to attain individualistic segmentation approaches.
Collapse
Affiliation(s)
- Iris Ten Klooster
- Centre for eHealth and Wellbeing Research, Department of Psychology, Health, and Technology, University of Twente, Enschede, The Netherlands
| | - Hanneke Kip
- Centre for eHealth and Wellbeing Research, Department of Psychology, Health, and Technology, University of Twente, Enschede, The Netherlands
- Department of Research, Stichting Transfore, Deventer, the Netherlands
| | - Lisette van Gemert-Pijnen
- Centre for eHealth and Wellbeing Research, Department of Psychology, Health, and Technology, University of Twente, Enschede, The Netherlands
| | - Rik Crutzen
- Department of Health Promotion, Care and Public Health Research Institute, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands
| | - Saskia Kelders
- Centre for eHealth and Wellbeing Research, Department of Psychology, Health, and Technology, University of Twente, Enschede, The Netherlands
- Optentia Research Focus Area, North-West University, Vaal Triangle Campus, Vanderbijlpark, South Africa
| |
Collapse
|
5
|
Amiri M, Kaviari MA, Rostaminasab G, Barimani A, Rezakhani L. A novel cell-free therapy using exosomes in the inner ear regeneration. Tissue Cell 2024; 88:102373. [PMID: 38640600 DOI: 10.1016/j.tice.2024.102373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/01/2024] [Accepted: 04/03/2024] [Indexed: 04/21/2024]
Abstract
Cellular and molecular alterations associated with hearing loss are now better understood with advances in molecular biology. These changes indicate the participation of distinct damage and stress pathways that are unlikely to be fully addressed by conventional pharmaceutical treatment. Sensorineural hearing loss is a common and debilitating condition for which comprehensive pharmacologic intervention is not available. The complex and diverse molecular pathology that underlies hearing loss currently limits our ability to intervene with small molecules. The present review focuses on the potential for the use of extracellular vesicles in otology. It examines a variety of inner ear diseases and hearing loss that may be treatable using exosomes (EXOs). The role of EXOs as carriers for the treatment of diseases related to the inner ear as well as EXOs as biomarkers for the recognition of diseases related to the ear is discussed.
Collapse
Affiliation(s)
- Masoumeh Amiri
- Faculty of Medicine, Kermanshah University of Medical Science, Kermanshah, Iran
| | - Mohammad Amin Kaviari
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran; Universal Scientific Education and Research Network (USERN) Office, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Gelavizh Rostaminasab
- Clinical Research Development Center, Imam Khomeini and Mohammad Kermanshahi and Farabi Hospitals, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Amir Barimani
- Clinical Research Development Center, Imam Khomeini and Mohammad Kermanshahi and Farabi Hospitals, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Leila Rezakhani
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
6
|
Nicora G, Catalano M, Bortolotto C, Achilli MF, Messana G, Lo Tito A, Consonni A, Cutti S, Comotto F, Stella GM, Corsico A, Perlini S, Bellazzi R, Bruno R, Preda L. Bayesian Networks in the Management of Hospital Admissions: A Comparison between Explainable AI and Black Box AI during the Pandemic. J Imaging 2024; 10:117. [PMID: 38786571 PMCID: PMC11122655 DOI: 10.3390/jimaging10050117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/24/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024] Open
Abstract
Artificial Intelligence (AI) and Machine Learning (ML) approaches that could learn from large data sources have been identified as useful tools to support clinicians in their decisional process; AI and ML implementations have had a rapid acceleration during the recent COVID-19 pandemic. However, many ML classifiers are "black box" to the final user, since their underlying reasoning process is often obscure. Additionally, the performance of such models suffers from poor generalization ability in the presence of dataset shifts. Here, we present a comparison between an explainable-by-design ("white box") model (Bayesian Network (BN)) versus a black box model (Random Forest), both studied with the aim of supporting clinicians of Policlinico San Matteo University Hospital in Pavia (Italy) during the triage of COVID-19 patients. Our aim is to evaluate whether the BN predictive performances are comparable with those of a widely used but less explainable ML model such as Random Forest and to test the generalization ability of the ML models across different waves of the pandemic.
Collapse
Affiliation(s)
- Giovanna Nicora
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, 27100 Pavia, Italy; (G.N.); (R.B.)
| | - Michele Catalano
- Diagnostic Imaging and Radiotherapy Unit, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy; (M.C.); (M.F.A.); (G.M.); (A.L.T.); (A.C.); (L.P.)
| | - Chandra Bortolotto
- Diagnostic Imaging and Radiotherapy Unit, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy; (M.C.); (M.F.A.); (G.M.); (A.L.T.); (A.C.); (L.P.)
- Radiology Institute, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Marina Francesca Achilli
- Diagnostic Imaging and Radiotherapy Unit, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy; (M.C.); (M.F.A.); (G.M.); (A.L.T.); (A.C.); (L.P.)
| | - Gaia Messana
- Diagnostic Imaging and Radiotherapy Unit, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy; (M.C.); (M.F.A.); (G.M.); (A.L.T.); (A.C.); (L.P.)
| | - Antonio Lo Tito
- Diagnostic Imaging and Radiotherapy Unit, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy; (M.C.); (M.F.A.); (G.M.); (A.L.T.); (A.C.); (L.P.)
| | - Alessio Consonni
- Diagnostic Imaging and Radiotherapy Unit, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy; (M.C.); (M.F.A.); (G.M.); (A.L.T.); (A.C.); (L.P.)
| | - Sara Cutti
- Medical Direction, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy;
| | | | - Giulia Maria Stella
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy; (G.M.S.); (A.C.); (S.P.)
- Unit of Respiratory Diseases, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Angelo Corsico
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy; (G.M.S.); (A.C.); (S.P.)
- Unit of Respiratory Diseases, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Stefano Perlini
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy; (G.M.S.); (A.C.); (S.P.)
- Department of Emergency, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Riccardo Bellazzi
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, 27100 Pavia, Italy; (G.N.); (R.B.)
| | - Raffaele Bruno
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy;
- Unit of Infectious Diseases, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Lorenzo Preda
- Diagnostic Imaging and Radiotherapy Unit, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy; (M.C.); (M.F.A.); (G.M.); (A.L.T.); (A.C.); (L.P.)
- Radiology Institute, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| |
Collapse
|
7
|
Singh H, Nim DK, Randhawa AS, Ahluwalia S. Integrating clinical pharmacology and artificial intelligence: potential benefits, challenges, and role of clinical pharmacologists. Expert Rev Clin Pharmacol 2024; 17:381-391. [PMID: 38340012 DOI: 10.1080/17512433.2024.2317963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 02/08/2024] [Indexed: 02/12/2024]
Abstract
INTRODUCTION The integration of artificial intelligence (AI) into clinical pharmacology could be a potential approach for accelerating drug discovery and development, improving patient care, and streamlining medical research processes. AREAS COVERED We reviewed the current state of AI applications in clinical pharmacology, focusing on drug discovery and development, precision medicine, pharmacovigilance, and other ventures. Key AI applications in clinical pharmacology are examined, including machine learning, natural language processing, deep learning, and reinforcement learning etc. Additionally, the evolving role of clinical pharmacologists, ethical considerations, and challenges in implementing AI in clinical pharmacology are discussed. EXPERT OPINION The AI could be instrumental in accelerating drug discovery, predicting drug safety and efficacy, and optimizing clinical trial designs. It can play a vital role in precision medicine by helping in personalized drug dosing, treatment selection, and predicting drug response based on genetic, clinical, and environmental factors. The role of AI in pharmacovigilance, such as signal detection and adverse event prediction, is also promising. The collaboration between clinical pharmacologists and AI experts also poses certain ethical and practical challenges. Clinical pharmacologists can be instrumental in shaping the future of AI-driven clinical pharmacology and contribute to the improvement of healthcare systems.
Collapse
Affiliation(s)
- Harmanjit Singh
- Department of Pharmacology, Government Medical College & Hospital, Chandigarh, India
| | | | | | | |
Collapse
|
8
|
Wang P, Leong QY, Lau NY, Ng WY, Kwek SP, Tan L, Song SW, You K, Chong LM, Zhuang I, Ong YH, Foo N, Tadeo X, Kumar KS, Vijayakumar S, Sapanel Y, Raczkowska MN, Remus A, Blasiak A, Ho D. N-of-1 medicine. Singapore Med J 2024; 65:167-175. [PMID: 38527301 PMCID: PMC11060644 DOI: 10.4103/singaporemedj.smj-2023-243] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/19/2024] [Indexed: 03/27/2024]
Abstract
ABSTRACT The fields of precision and personalised medicine have led to promising advances in tailoring treatment to individual patients. Examples include genome/molecular alteration-guided drug selection, single-patient gene therapy design and synergy-based drug combination development, and these approaches can yield substantially diverse recommendations. Therefore, it is important to define each domain and delineate their commonalities and differences in an effort to develop novel clinical trial designs, streamline workflow development, rethink regulatory considerations, create value in healthcare and economics assessments, and other factors. These and other segments are essential to recognise the diversity within these domains to accelerate their respective workflows towards practice-changing healthcare. To emphasise these points, this article elaborates on the concept of digital health and digital medicine-enabled N-of-1 medicine, which individualises combination regimen and dosing using a patient's own data. We will conclude with recommendations for consideration when developing novel workflows based on emerging digital-based platforms.
Collapse
Affiliation(s)
- Peter Wang
- Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- The N.1 Institute for Health (N.1), National University of Singapore, Singapore
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore
| | - Qiao Ying Leong
- Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- The N.1 Institute for Health (N.1), National University of Singapore, Singapore
| | - Ni Yin Lau
- Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- The N.1 Institute for Health (N.1), National University of Singapore, Singapore
| | - Wei Ying Ng
- Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- The N.1 Institute for Health (N.1), National University of Singapore, Singapore
| | - Siong Peng Kwek
- Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- The N.1 Institute for Health (N.1), National University of Singapore, Singapore
| | - Lester Tan
- Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- The N.1 Institute for Health (N.1), National University of Singapore, Singapore
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore
| | - Shang-Wei Song
- Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- The N.1 Institute for Health (N.1), National University of Singapore, Singapore
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore
| | - Kui You
- Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- The N.1 Institute for Health (N.1), National University of Singapore, Singapore
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore
| | - Li Ming Chong
- Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- The N.1 Institute for Health (N.1), National University of Singapore, Singapore
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore
| | - Isaiah Zhuang
- Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- The N.1 Institute for Health (N.1), National University of Singapore, Singapore
| | - Yoong Hun Ong
- Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- The N.1 Institute for Health (N.1), National University of Singapore, Singapore
| | - Nigel Foo
- Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- The N.1 Institute for Health (N.1), National University of Singapore, Singapore
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore
| | - Xavier Tadeo
- Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- The N.1 Institute for Health (N.1), National University of Singapore, Singapore
| | - Kirthika Senthil Kumar
- Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- The N.1 Institute for Health (N.1), National University of Singapore, Singapore
| | - Smrithi Vijayakumar
- Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- The N.1 Institute for Health (N.1), National University of Singapore, Singapore
| | - Yoann Sapanel
- Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- The N.1 Institute for Health (N.1), National University of Singapore, Singapore
- Singapore’s Health District @ Queenstown, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Marlena Natalia Raczkowska
- Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- The N.1 Institute for Health (N.1), National University of Singapore, Singapore
| | - Alexandria Remus
- Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- The N.1 Institute for Health (N.1), National University of Singapore, Singapore
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore
- Heat Resilience Performance Centre (HRPC), Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Agata Blasiak
- Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- The N.1 Institute for Health (N.1), National University of Singapore, Singapore
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Dean Ho
- Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- The N.1 Institute for Health (N.1), National University of Singapore, Singapore
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore
- Singapore’s Health District @ Queenstown, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- The Bia-Echo Asia Centre for Reproductive Longevity and Equality, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
9
|
Hussain W, Mabrok M, Gao H, Rabhi FA, Rashed EA. Revolutionising healthcare with artificial intelligence: A bibliometric analysis of 40 years of progress in health systems. Digit Health 2024; 10:20552076241258757. [PMID: 38817839 PMCID: PMC11138196 DOI: 10.1177/20552076241258757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/14/2024] [Indexed: 06/01/2024] Open
Abstract
The development of artificial intelligence (AI) has revolutionised the medical system, empowering healthcare professionals to analyse complex nonlinear big data and identify hidden patterns, facilitating well-informed decisions. Over the last decade, there has been a notable trend of research in AI, machine learning (ML), and their associated algorithms in health and medical systems. These approaches have transformed the healthcare system, enhancing efficiency, accuracy, personalised treatment, and decision-making. Recognising the importance and growing trend of research in the topic area, this paper presents a bibliometric analysis of AI in health and medical systems. The paper utilises the Web of Science (WoS) Core Collection database, considering documents published in the topic area for the last four decades. A total of 64,063 papers were identified from 1983 to 2022. The paper evaluates the bibliometric data from various perspectives, such as annual papers published, annual citations, highly cited papers, and most productive institutions, and countries. The paper visualises the relationship among various scientific actors by presenting bibliographic coupling and co-occurrences of the author's keywords. The analysis indicates that the field began its significant growth in the late 1970s and early 1980s, with significant growth since 2019. The most influential institutions are in the USA and China. The study also reveals that the scientific community's top keywords include 'ML', 'Deep Learning', and 'Artificial Intelligence'.
Collapse
Affiliation(s)
- Walayat Hussain
- Peter Faber Business School, Australian Catholic University, North Sydney, Australia
| | - Mohamed Mabrok
- Department of Mathematics and Statistics, Qatar University, Doha, Qatar
| | - Honghao Gao
- School of Computer Engineering and Science, Shanghai University, Shanghai, China
| | - Fethi A. Rabhi
- School of Computer Science and Engineering, University of New South Wales (UNSW), Sydney, Australia
| | - Essam A. Rashed
- Graduate School of Information Science, University of Hyogo, Kobe, Japan
| |
Collapse
|
10
|
Huang Y, Zheng Y, Lu X, Zhao Y, Zhou D, Zhang Y, Liu G. Simulation and Optimization: A New Direction in Supercritical Technology Based Nanomedicine. Bioengineering (Basel) 2023; 10:1404. [PMID: 38135995 PMCID: PMC10741229 DOI: 10.3390/bioengineering10121404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/04/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
In recent years, nanomedicines prepared using supercritical technology have garnered widespread research attention due to their inherent attributes, including structural stability, high bioavailability, and commendable safety profiles. The preparation of these nanomedicines relies upon drug solubility and mixing efficiency within supercritical fluids (SCFs). Solubility is closely intertwined with operational parameters such as temperature and pressure while mixing efficiency is influenced not only by operational conditions but also by the shape and dimensions of the nozzle. Due to the special conditions of supercriticality, these parameters are difficult to measure directly, thus presenting significant challenges for the preparation and optimization of nanomedicines. Mathematical models can, to a certain extent, prognosticate solubility, while simulation models can visualize mixing efficiency during experimental procedures, offering novel avenues for advancing supercritical nanomedicines. Consequently, within the framework of this endeavor, we embark on an extensive review encompassing the application of mathematical models, artificial intelligence (AI) methodologies, and computational fluid dynamics (CFD) techniques within the medical domain of supercritical technology. We undertake the synthesis and discourse of methodologies for calculating drug solubility in SCFs, as well as the influence of operational conditions and experimental apparatus upon the outcomes of nanomedicine preparation using supercritical technology. Through this comprehensive review, we elucidate the implementation procedures and commonly employed models of diverse methodologies, juxtaposing the merits and demerits of these models. Furthermore, we assert the dependability of employing models to compute drug solubility in SCFs and simulate the experimental processes, with the capability to serve as valuable tools for aiding and optimizing experiments, as well as providing guidance in the selection of appropriate operational conditions. This, in turn, fosters innovative avenues for the development of supercritical pharmaceuticals.
Collapse
Affiliation(s)
- Yulan Huang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China; (Y.H.); (Y.Z.); (G.L.)
| | - Yating Zheng
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China; (Y.H.); (Y.Z.); (G.L.)
| | - Xiaowei Lu
- Institute of Artificial Intelligence, Xiamen University, Xiamen 361002, China;
| | - Yang Zhao
- Shenzhen Research Institute, Xiamen University, Shenzhen 518000, China;
| | - Da Zhou
- School of Mathematical Sciences, Xiamen University, Xiamen 361005, China
| | - Yang Zhang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China; (Y.H.); (Y.Z.); (G.L.)
| | - Gang Liu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China; (Y.H.); (Y.Z.); (G.L.)
| |
Collapse
|
11
|
Shajari S, Kuruvinashetti K, Komeili A, Sundararaj U. The Emergence of AI-Based Wearable Sensors for Digital Health Technology: A Review. SENSORS (BASEL, SWITZERLAND) 2023; 23:9498. [PMID: 38067871 PMCID: PMC10708748 DOI: 10.3390/s23239498] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/20/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023]
Abstract
Disease diagnosis and monitoring using conventional healthcare services is typically expensive and has limited accuracy. Wearable health technology based on flexible electronics has gained tremendous attention in recent years for monitoring patient health owing to attractive features, such as lower medical costs, quick access to patient health data, ability to operate and transmit data in harsh environments, storage at room temperature, non-invasive implementation, mass scaling, etc. This technology provides an opportunity for disease pre-diagnosis and immediate therapy. Wearable sensors have opened a new area of personalized health monitoring by accurately measuring physical states and biochemical signals. Despite the progress to date in the development of wearable sensors, there are still several limitations in the accuracy of the data collected, precise disease diagnosis, and early treatment. This necessitates advances in applied materials and structures and using artificial intelligence (AI)-enabled wearable sensors to extract target signals for accurate clinical decision-making and efficient medical care. In this paper, we review two significant aspects of smart wearable sensors. First, we offer an overview of the most recent progress in improving wearable sensor performance for physical, chemical, and biosensors, focusing on materials, structural configurations, and transduction mechanisms. Next, we review the use of AI technology in combination with wearable technology for big data processing, self-learning, power-efficiency, real-time data acquisition and processing, and personalized health for an intelligent sensing platform. Finally, we present the challenges and future opportunities associated with smart wearable sensors.
Collapse
Affiliation(s)
- Shaghayegh Shajari
- Center for Applied Polymers and Nanotechnology (CAPNA), Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, AB T2N1 N4, Canada;
- Center for Bio-Integrated Electronics (CBIE), Querrey Simpson Institute for Bioelectronics (QSIB), Northwestern University, Evanston, IL 60208, USA
| | - Kirankumar Kuruvinashetti
- Intelligent Human and Animal Assistive Devices, Department of Biomedical Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada; (K.K.); (A.K.)
- Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Amin Komeili
- Intelligent Human and Animal Assistive Devices, Department of Biomedical Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada; (K.K.); (A.K.)
- Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Uttandaraman Sundararaj
- Center for Applied Polymers and Nanotechnology (CAPNA), Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, AB T2N1 N4, Canada;
| |
Collapse
|
12
|
Vijayakumar S, Lee VV, Leong QY, Hong SJ, Blasiak A, Ho D. Physicians' Perspectives on AI in Clinical Decision Support Systems: Interview Study of the CURATE.AI Personalized Dose Optimization Platform. JMIR Hum Factors 2023; 10:e48476. [PMID: 37902825 PMCID: PMC10644191 DOI: 10.2196/48476] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/24/2023] [Accepted: 09/10/2023] [Indexed: 10/31/2023] Open
Abstract
BACKGROUND Physicians play a key role in integrating new clinical technology into care practices through user feedback and growth propositions to developers of the technology. As physicians are stakeholders involved through the technology iteration process, understanding their roles as users can provide nuanced insights into the workings of these technologies that are being explored. Therefore, understanding physicians' perceptions can be critical toward clinical validation, implementation, and downstream adoption. Given the increasing prevalence of clinical decision support systems (CDSSs), there remains a need to gain an in-depth understanding of physicians' perceptions and expectations toward their downstream implementation. This paper explores physicians' perceptions of integrating CURATE.AI, a novel artificial intelligence (AI)-based and clinical stage personalized dosing CDSSs, into clinical practice. OBJECTIVE This study aims to understand physicians' perspectives of integrating CURATE.AI for clinical work and to gather insights on considerations of the implementation of AI-based CDSS tools. METHODS A total of 12 participants completed semistructured interviews examining their knowledge, experience, attitudes, risks, and future course of the personalized combination therapy dosing platform, CURATE.AI. Interviews were audio recorded, transcribed verbatim, and coded manually. The data were thematically analyzed. RESULTS Overall, 3 broad themes and 9 subthemes were identified through thematic analysis. The themes covered considerations that physicians perceived as significant across various stages of new technology development, including trial, clinical implementation, and mass adoption. CONCLUSIONS The study laid out the various ways physicians interpreted an AI-based personalized dosing CDSS, CURATE.AI, for their clinical practice. The research pointed out that physicians' expectations during the different stages of technology exploration can be nuanced and layered with expectations of implementation that are relevant for technology developers and researchers.
Collapse
Affiliation(s)
- Smrithi Vijayakumar
- The N.1 Institute for Health, National University of Singapore, Singapore, Singapore
| | - V Vien Lee
- The N.1 Institute for Health, National University of Singapore, Singapore, Singapore
| | - Qiao Ying Leong
- The N.1 Institute for Health, National University of Singapore, Singapore, Singapore
| | - Soo Jung Hong
- Department of Communications and New Media, National University of Singapore, Singapore, Singapore
| | - Agata Blasiak
- The N.1 Institute for Health, National University of Singapore, Singapore, Singapore
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
- The Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Dean Ho
- The N.1 Institute for Health, National University of Singapore, Singapore, Singapore
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
- The Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
13
|
Singh S, Kumar R, Payra S, Singh SK. Artificial Intelligence and Machine Learning in Pharmacological Research: Bridging the Gap Between Data and Drug Discovery. Cureus 2023; 15:e44359. [PMID: 37779744 PMCID: PMC10539991 DOI: 10.7759/cureus.44359] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2023] [Indexed: 10/03/2023] Open
Abstract
Artificial intelligence (AI) has transformed pharmacological research through machine learning, deep learning, and natural language processing. These advancements have greatly influenced drug discovery, development, and precision medicine. AI algorithms analyze vast biomedical data identifying potential drug targets, predicting efficacy, and optimizing lead compounds. AI has diverse applications in pharmacological research, including target identification, drug repurposing, virtual screening, de novo drug design, toxicity prediction, and personalized medicine. AI improves patient selection, trial design, and real-time data analysis in clinical trials, leading to enhanced safety and efficacy outcomes. Post-marketing surveillance utilizes AI-based systems to monitor adverse events, detect drug interactions, and support pharmacovigilance efforts. Machine learning models extract patterns from complex datasets, enabling accurate predictions and informed decision-making, thus accelerating drug discovery. Deep learning, specifically convolutional neural networks (CNN), excels in image analysis, aiding biomarker identification and optimizing drug formulation. Natural language processing facilitates the mining and analysis of scientific literature, unlocking valuable insights and information. However, the adoption of AI in pharmacological research raises ethical considerations. Ensuring data privacy and security, addressing algorithm bias and transparency, obtaining informed consent, and maintaining human oversight in decision-making are crucial ethical concerns. The responsible deployment of AI necessitates robust frameworks and regulations. The future of AI in pharmacological research is promising, with integration with emerging technologies like genomics, proteomics, and metabolomics offering the potential for personalized medicine and targeted therapies. Collaboration among academia, industry, and regulatory bodies is essential for the ethical implementation of AI in drug discovery and development. Continuous research and development in AI techniques and comprehensive training programs will empower scientists and healthcare professionals to fully exploit AI's potential, leading to improved patient outcomes and innovative pharmacological interventions.
Collapse
Affiliation(s)
- Shruti Singh
- Department of Pharmacology, All India Institute of Medical Sciences, Patna, IND
| | - Rajesh Kumar
- Department of Pharmacology, All India Institute of Medical Sciences, Patna, IND
| | - Shuvasree Payra
- Department of Pharmacology, All India Institute of Medical Sciences, Patna, IND
| | - Sunil K Singh
- Department of Pharmacology, All India Institute of Medical Sciences, Patna, IND
| |
Collapse
|
14
|
Pang J, Xiu W, Ma X. Application of Artificial Intelligence in the Diagnosis, Treatment, and Prognostic Evaluation of Mediastinal Malignant Tumors. J Clin Med 2023; 12:jcm12082818. [PMID: 37109155 PMCID: PMC10144939 DOI: 10.3390/jcm12082818] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/01/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Artificial intelligence (AI), also known as machine intelligence, is widely utilized in the medical field, promoting medical advances. Malignant tumors are the critical focus of medical research and improvement of clinical diagnosis and treatment. Mediastinal malignancy is an important tumor that attracts increasing attention today due to the difficulties in treatment. Combined with artificial intelligence, challenges from drug discovery to survival improvement are constantly being overcome. This article reviews the progress of the use of AI in the diagnosis, treatment, and prognostic prospects of mediastinal malignant tumors based on current literature findings.
Collapse
Affiliation(s)
- Jiyun Pang
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
- State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
- West China School of Medicine, Sichuan University, Chengdu 610041, China
| | - Weigang Xiu
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
- State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
- West China School of Medicine, Sichuan University, Chengdu 610041, China
| | - Xuelei Ma
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
15
|
Govindan B, Sabri MA, Hai A, Banat F, Haija MA. A Review of Advanced Multifunctional Magnetic Nanostructures for Cancer Diagnosis and Therapy Integrated into an Artificial Intelligence Approach. Pharmaceutics 2023; 15:868. [PMID: 36986729 PMCID: PMC10058002 DOI: 10.3390/pharmaceutics15030868] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/10/2023] Open
Abstract
The new era of nanomedicine offers significant opportunities for cancer diagnostics and treatment. Magnetic nanoplatforms could be highly effective tools for cancer diagnosis and treatment in the future. Due to their tunable morphologies and superior properties, multifunctional magnetic nanomaterials and their hybrid nanostructures can be designed as specific carriers of drugs, imaging agents, and magnetic theranostics. Multifunctional magnetic nanostructures are promising theranostic agents due to their ability to diagnose and combine therapies. This review provides a comprehensive overview of the development of advanced multifunctional magnetic nanostructures combining magnetic and optical properties, providing photoresponsive magnetic platforms for promising medical applications. Moreover, this review discusses various innovative developments using multifunctional magnetic nanostructures, including drug delivery, cancer treatment, tumor-specific ligands that deliver chemotherapeutics or hormonal agents, magnetic resonance imaging, and tissue engineering. Additionally, artificial intelligence (AI) can be used to optimize material properties in cancer diagnosis and treatment, based on predicted interactions with drugs, cell membranes, vasculature, biological fluid, and the immune system to enhance the effectiveness of therapeutic agents. Furthermore, this review provides an overview of AI approaches used to assess the practical utility of multifunctional magnetic nanostructures for cancer diagnosis and treatment. Finally, the review presents the current knowledge and perspectives on hybrid magnetic systems as cancer treatment tools with AI models.
Collapse
Affiliation(s)
- Bharath Govindan
- Department of Chemical Engineering, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
- Department of Chemistry, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
| | - Muhammad Ashraf Sabri
- Department of Chemical Engineering, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
| | - Abdul Hai
- Department of Chemical Engineering, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
| | - Fawzi Banat
- Department of Chemical Engineering, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
| | - Mohammad Abu Haija
- Department of Chemical Engineering, Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
- Advanced Materials Chemistry Center (AMCC), Khalifa University of Science and Technology, Abu Dhabi P.O. Box 127788, United Arab Emirates
| |
Collapse
|