1
|
Natali PG, Piantelli M, Sottini A, Eufemi M, Banfi C, Imberti L. A step forward in enhancing the health-promoting properties of whole tomato as a functional food to lower the impact of non-communicable diseases. Front Nutr 2025; 12:1519905. [PMID: 39980679 PMCID: PMC11841393 DOI: 10.3389/fnut.2025.1519905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 01/13/2025] [Indexed: 02/22/2025] Open
Abstract
Nutritional interventions facilitating the consumption of natural, affordable, and environment-compatible health-promoting functional foods are a promising strategy for controlling non-communicable diseases. Given that the complex of tomato micronutrients produces healthier outcomes than lycopene, its major antioxidant component, new strategies to improve the health-supporting properties of the berry are ongoing. In this context, a whole tomato food supplement (WTFS), enriched by 2% olive wastewater containing a complex of healthy nutrients with converging biologic activities, has recently been developed, which is superior to those present in tomato commodities or obtained with whole tomato conventional processing methods. WTFS equals the antioxidant activity of N-acetyl-cysteine and interferes with multiple inflammation and cellular transformation-sustaining metabolic pathways. In interventional studies, WTFS inhibits prostate experimental tumors and improves benign prostate hypertrophy-associated symptoms with no associated side-effects. Although WTFS may be susceptible to further improvements and clinical scrutiny, its composition embodies the features of advanced functional foods to ease adherence to dietary patterns, that is, the Mediterranean diet, aimed at contrasting and mitigating the low-grade inflammation, thus being interceptive or preventive of non-communicable diseases.
Collapse
Affiliation(s)
- Pier Giorgio Natali
- Mediterranean Task Force for Cancer Control, Rome, Italy
- Department of Medicine and Aging Sciences, Center for Advanced Studies and Technology (CAST), G. D'Annunzio University, Chieti, Italy
| | - Mauro Piantelli
- Department of Medicine and Aging Sciences, Center for Advanced Studies and Technology (CAST), G. D'Annunzio University, Chieti, Italy
| | - Alessandra Sottini
- Service Department, Highly Specialized Laboratory, Diagnostic Department, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Margherita Eufemi
- Department of Biochemical Science "A. Rossi Fanelli", Faculty of Pharmacy and Medicine, "La Sapienza" University of Rome, Rome, Italy
| | - Cristina Banfi
- Centro Cardiologico Monzino IRCCS, Unit of Functional Proteomics, Metabolomics, and Network Analysis, Milan, Italy
| | - Luisa Imberti
- Section of Microbiology, University of Brescia, P. le Spedali Civili, Brescia, Italy
| |
Collapse
|
2
|
Marinaro C, Scarciello G, Bianchi AR, Berman B, Chianese T, Scudiero R, Rosati L, De Maio A, Lettieri G, Piscopo M. Toxicological effects and potential reproductive risk of microplastic-induced molecular changes in protamine-like proteins and their DNA binding. Chem Biol Interact 2025; 405:111309. [PMID: 39536893 DOI: 10.1016/j.cbi.2024.111309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 11/05/2024] [Accepted: 11/11/2024] [Indexed: 11/16/2024]
Abstract
Today, plastic pollution is a widespread problem in all ecosystems and has a particularly severe impact on marine ecosystems and external fertilisers such as the mussel Mytilus galloprovincialis. The present study aims to assess the toxicological reproductive health effects in this organism following exposure to two concentrations of polystyrene microplastics (PS-MPs) (0.5 and 1 μg/L), representative of conditions in the Mediterranean Sea. After exposure, the electrophoretic pattern of protamine-like (PL) proteins, the major basic protein component of Mytilus galloprovincialis sperm chromatin, was analysed. Compared to the unexposed condition, differences were observed by SDS-PAGE and an increased ability of PL to bind and protect DNA from oxidative damage was then measured, particularly for PL from mussels exposed to 1 μg/L PS-MPs. At this dose of PS-MPs, a reduced release of all PLs from the sperm nuclei was also observed, whereas the digestion by micrococcal nuclease did not show any significant differences between the exposed and the unexposed conditions. Finally, the possibility of poly(ADP)-ribosylation of the PLs was investigated. PL-II showed an increase in poly(ADP)-ribosylation after PS-MPs exposure, which may account for the difference in the ability of the PLs to bind DNA. In conclusion, while all the results might suggest a molecular mechanism of gametic plasticity occurring upon exposure of mussels to PS-MPs 1 μg/L, they also indicate that this dose of exposure could be extremely detrimental to the reproductive health of Mytilus galloprovincialis because it could prevent the release of basic nuclear proteins from the sperm DNA at fertilisation.
Collapse
Affiliation(s)
- Carmela Marinaro
- Department of Biology, University of Naples Federico II, Via Cinthia, 21, 80126, Naples, Italy
| | - Giulia Scarciello
- Department of Biology, University of Naples Federico II, Via Cinthia, 21, 80126, Naples, Italy
| | - Anna Rita Bianchi
- Department of Biology, University of Naples Federico II, Via Cinthia, 21, 80126, Naples, Italy
| | - Bruno Berman
- Department of Biology, University of Naples Federico II, Via Cinthia, 21, 80126, Naples, Italy
| | - Teresa Chianese
- Department of Biology, University of Naples Federico II, Via Cinthia, 21, 80126, Naples, Italy
| | - Rosaria Scudiero
- Department of Biology, University of Naples Federico II, Via Cinthia, 21, 80126, Naples, Italy
| | - Luigi Rosati
- Department of Biology, University of Naples Federico II, Via Cinthia, 21, 80126, Naples, Italy
| | - Anna De Maio
- Department of Biology, University of Naples Federico II, Via Cinthia, 21, 80126, Naples, Italy
| | - Gennaro Lettieri
- Department of Biology, University of Naples Federico II, Via Cinthia, 21, 80126, Naples, Italy.
| | - Marina Piscopo
- Department of Biology, University of Naples Federico II, Via Cinthia, 21, 80126, Naples, Italy.
| |
Collapse
|
3
|
Huang R, Xia H, Lin W, Wang Z, Li L, Deng J, Ye T, Li Z, Yang Y, Huang Y. Riluzole Reverses Blood-Testis Barrier Loss to Rescue Chemotherapy-Induced Male Infertility by Binding to TRPC. Cells 2024; 13:2016. [PMID: 39682764 PMCID: PMC11640501 DOI: 10.3390/cells13232016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/28/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024] Open
Abstract
Cancer treatments, including cytotoxic therapy, often result in male infertility, necessitating the development of safe and effective strategies to preserve male reproductive potential during chemotherapy. Notably, our study uncovers the potential of repurposing riluzole, an FDA-approved drug for amyotrophic lateral sclerosis (ALS), in enhancing spermatogenesis. Hence, this research aims to explore the feasibility of utilizing riluzole to alleviate male infertility induced by busulfan (BSF), a commonly used chemotherapy drug. We established a BSF-induced oligospermia model in 4-week-old male mice and found that riluzole could effectively counter the detrimental effects of BSF on sperm production in mice with oligospermia. By restoring blood-testis barrier (BTB) functionality, riluzole improves sperm quality and reduces testicular atrophy. Through transcriptomic and molecular docking analyses, we identify transient receptor potential canonical subfamily member 5 (TRPC5) as a potential target for riluzole-mediated regulation of blood-testis barrier function. These findings propose riluzole as a promising therapeutic option for chemotherapy-induced male infertility, thereby addressing the fertility challenges associated with cancer treatments. Moreover, repurposing riluzole could streamline the drug development process, providing a cost-effective approach with reduced risk compared to developing entirely new drugs.
Collapse
Affiliation(s)
- Rufei Huang
- Department of Cell Biology, Jinan University, Guangzhou 510632, China; (R.H.); (H.X.); (W.L.); (Z.W.); (L.L.); (J.D.); (T.Y.); (Z.L.)
| | - Huan Xia
- Department of Cell Biology, Jinan University, Guangzhou 510632, China; (R.H.); (H.X.); (W.L.); (Z.W.); (L.L.); (J.D.); (T.Y.); (Z.L.)
| | - Wanqing Lin
- Department of Cell Biology, Jinan University, Guangzhou 510632, China; (R.H.); (H.X.); (W.L.); (Z.W.); (L.L.); (J.D.); (T.Y.); (Z.L.)
| | - Zhaoyang Wang
- Department of Cell Biology, Jinan University, Guangzhou 510632, China; (R.H.); (H.X.); (W.L.); (Z.W.); (L.L.); (J.D.); (T.Y.); (Z.L.)
| | - Lu Li
- Department of Cell Biology, Jinan University, Guangzhou 510632, China; (R.H.); (H.X.); (W.L.); (Z.W.); (L.L.); (J.D.); (T.Y.); (Z.L.)
| | - Jingxian Deng
- Department of Cell Biology, Jinan University, Guangzhou 510632, China; (R.H.); (H.X.); (W.L.); (Z.W.); (L.L.); (J.D.); (T.Y.); (Z.L.)
| | - Tao Ye
- Department of Cell Biology, Jinan University, Guangzhou 510632, China; (R.H.); (H.X.); (W.L.); (Z.W.); (L.L.); (J.D.); (T.Y.); (Z.L.)
| | - Ziyi Li
- Department of Cell Biology, Jinan University, Guangzhou 510632, China; (R.H.); (H.X.); (W.L.); (Z.W.); (L.L.); (J.D.); (T.Y.); (Z.L.)
| | - Yan Yang
- Department of Cell Biology, Jinan University, Guangzhou 510632, China; (R.H.); (H.X.); (W.L.); (Z.W.); (L.L.); (J.D.); (T.Y.); (Z.L.)
- Guangdong Province Key Laboratory of Bioengineering Medicine, Guangzhou 510632, China
| | - Yadong Huang
- Department of Cell Biology, Jinan University, Guangzhou 510632, China; (R.H.); (H.X.); (W.L.); (Z.W.); (L.L.); (J.D.); (T.Y.); (Z.L.)
- Guangdong Province Key Laboratory of Bioengineering Medicine, Guangzhou 510632, China
| |
Collapse
|
4
|
Zhou Y, Yu S, Zhang W. The Molecular Basis of Multiple Morphological Abnormalities of Sperm Flagella and Its Impact on Clinical Practice. Genes (Basel) 2024; 15:1315. [PMID: 39457439 PMCID: PMC11506864 DOI: 10.3390/genes15101315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/06/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
Multiple morphological abnormalities of the sperm flagella (MMAF) is a specific form of severe flagellar or ciliary deficiency syndrome. MMAF is characterized by primary infertility with abnormal morphology in the flagella of spermatozoa, presenting with short, absent, bent, coiled, and irregular flagella. As a rare disease first named in 2014, studies in recent years have shed light on the molecular defects of MMAF that comprise the structure and biological function of the sperm flagella. Understanding the molecular genetics of MMAF may provide opportunities for the development of diagnostic and therapeutic strategies for this rare disease. This review aims to summarize current studies regarding the molecular pathogenesis of MMAF and describe strategies of genetic counseling, clinical diagnosis, and therapy for MMAF.
Collapse
Affiliation(s)
- Yujie Zhou
- School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China; (Y.Z.); (S.Y.)
| | - Songyan Yu
- School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China; (Y.Z.); (S.Y.)
| | - Wenyong Zhang
- Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
5
|
González-Díaz CA, Suárez-Souto MA, Pérez-Soto E, Gómez-López M, Munguía-Cervantes JE, Pérez-Vielma NM, Sánchez-Monroy V. The Human 8-oxoG DNA Glycosylase 1 ( OGG1) Ser326 Cys Polymorphism in Infertile Men. Biomedicines 2024; 12:2286. [PMID: 39457598 PMCID: PMC11505341 DOI: 10.3390/biomedicines12102286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/04/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES 8-hydroxy-2'-deoxyguanosine (8-OHdG) is a form of oxidative DNA damage caused by oxidative stress (OS), which is considered a major factor in male infertility. The cellular defense system against 8-OHdG involves base excision repair (BER) with the enzyme 8-Oxoguanine DNA glycosylase 1 (OGG1). However, studies on the single-nucleotide polymorphism (SNP) OGG1 Ser326Cys have demonstrated that the Cys326Cys genotype could be the cause of an increment in oxidative DNA damage. In this study, the OGG1 Ser326Cys polymorphism and its effect on DNA oxidation were evaluated in 118 infertile men. METHODS Polymorphic screening was performed using TaqMan allelic discrimination assays, and oxidative DNA damage was evaluated through the quantification of 8-OHdG and total antioxidant capacity (TAC); in addition, electrical bioimpedance spectroscopy (EBiS) measurements were used as a reference for different electrical properties associated with 8-OHdG concentrations. RESULTS The detected Cys (G) allele frequency (0.4) was higher compared to the allele frequency reported in the "Allele Frequency Aggregator" (ALFA) and "Haplotype Map" (HapMap) projects for American populations (0.21-0.29), suggesting that the Cys (G) allele carrier could be a factor associated with American infertile populations. The values of 8-OHdG were twofold higher in carriers of the Cys326Cys (GG) genotype than the other genotypes and, in concordance, the TAC levels were threefold lower in Cys326Cys (GG) genotype carriers compared to the other genotypes. Moreover, the EBiS magnitude exhibited potential for the detection of different oxidative damage in DNA samples between genotypes. CONCLUSIONS The Cys326Cys (GG) genotype is associated with oxidative DNA damage that could contribute to male infertility.
Collapse
Affiliation(s)
- César Antonio González-Díaz
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (C.A.G.-D.); (M.G.-L.)
| | | | - Elvia Pérez-Soto
- Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Mexico City 07320, Mexico;
| | - Modesto Gómez-López
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (C.A.G.-D.); (M.G.-L.)
| | | | - Nadia Mabel Pérez-Vielma
- Centro Interdisciplinario de Ciencias de la Salud Unidad Santo Tomás, Instituto Politécnico Nacional, Mexico City 11340, Mexico;
| | - Virginia Sánchez-Monroy
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (C.A.G.-D.); (M.G.-L.)
| |
Collapse
|
6
|
Raimondo S, Chiusano ML, Gentile M, Gentile T, Cuomo F, Gentile R, Danza D, Siani L, Crescenzo C, Palmieri M, Iaccarino S, Iaccarino M, Fortunato A, Liguori F, Esposito A, Zullo C, Sosa L, Sosa L, Ferrara I, Piscopo M, Notari T, Lacatena R, Gentile A, Montano L. Comparative analysis of the bioaccumulation of bisphenol A in the blood serum and follicular fluid of women living in two areas with different environmental impacts. Front Endocrinol (Lausanne) 2024; 15:1392550. [PMID: 39439569 PMCID: PMC11495266 DOI: 10.3389/fendo.2024.1392550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/22/2024] [Indexed: 10/25/2024] Open
Abstract
Introduction Bisphenol A (BPA) is a common contaminant widely used in many industrial sectors. Because of its wide use and dispersion, it can be accumulated in living human bodies through both oral assumption and nondietary routes. BPA exhibits hormone-like properties, falling under the class of endocrine disruptors; therefore, it can alter relevant physiological functions. In particular, in women, it can affect folliculogenesis and therefore reproduction, contributing not only to infertility, but also to endometriosis and premature puberty. Methods We conducted a multicenter study on 91 women undergoing a first in vitro fertilization (IVF) treatment in the Campania region (Southern Italy). We investigated the presence and concentration of BPA in serum and follicular fluids to assess the effects of airborne BPA contamination. The analysis was conducted on 32 women living in a low environmental impact (LEI) area, from the Sele Valley River and Cilento region, and 59 women living in a high environmental impact (HEI) area, the so-called "Land of Fires", a highly contaminated territory widely exposed to illegal waste practices. Results A higher average BPA content in both blood serum and follicular fluid was revealed in the HEI group when compared with the LEI group. In addition, we revealed higher average BPA content in blood serum than in folliclular fluid in the HEI area, with opposite average content in the two fluids in the LEI zone. In addition, our results also showed a lack of correlation between BPA content in follicular and serum fluids both in the overall population and in the HEI and LEI groups, with peculiar trends in different subsets of women. Conclusion From our results, we revealed a heterogeneity in the distribution of BPA content between serum and follicular fluid. Further studies are needed to unravel the bioaccumulation mechanisms of BPA in highly polluted and nonpolluted areas.
Collapse
Affiliation(s)
- Salvatore Raimondo
- Network for Environmental and Reproductive Health (Eco-FoodFertility Project), “Gentile S.A.S.” Research Center, Gragnano, Italy
| | - Maria Luisa Chiusano
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Mariacira Gentile
- Residential Program in laboratory Medicine, Department of Medicine and Surgery, University of Milan Bicocca, Milan, Italy
| | - Tommaso Gentile
- Network for Environmental and Reproductive Health (Eco-FoodFertility Project), “Gentile S.A.S.” Research Center, Gragnano, Italy
| | - Felice Cuomo
- Network for Environmental and Reproductive Health (Eco-FoodFertility Project), “Gentile S.A.S.” Research Center, Gragnano, Italy
| | - Raffaella Gentile
- Network for Environmental and Reproductive Health (Eco-FoodFertility Project), “Gentile S.A.S.” Research Center, Gragnano, Italy
| | - Domenico Danza
- Mediterraneo Medical Assisted Procreation (MAP), Salerno, Italy
| | - Laura Siani
- Mediterraneo Medical Assisted Procreation (MAP), Salerno, Italy
| | | | | | - Stefania Iaccarino
- Clinica Hera-Medical Assisted Procreation (MAP), Giugliano in Campania, NA, Italy
| | - Mirella Iaccarino
- Clinica Hera-Medical Assisted Procreation (MAP), Giugliano in Campania, NA, Italy
| | | | | | - Antonio Esposito
- Centro Medical Assisted Procreation (MAP), ASL Napoli 2 Nord, Napoli, Italy
| | - Clelia Zullo
- Centro Medical Assisted Procreation (MAP), ASL Napoli 2 Nord, Napoli, Italy
| | | | | | | | - Marina Piscopo
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Tiziana Notari
- Andrology Unit, Check-Up PolyDiagnostics and Research Laboratory, Salerno, Italy
| | - Raffaele Lacatena
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Alberto Gentile
- Network for Environmental and Reproductive Health (Eco-FoodFertility Project), “Gentile S.A.S.” Research Center, Gragnano, Italy
| | - Luigi Montano
- Andrology Unit and Service of Lifestyle Medicine in UroAndrology, Local Health Authority (ASL) Salerno, Coordination Unit of the Network for Environmental and Reproductive Health (Eco-FoodFertility Project), “St. Francis of Assisi Hospital”, Salerno, Italy
- PhD Program in Evolutionary Biology and Ecology, University of Rome “Tor Vergata”, Rome, Italy
| |
Collapse
|
7
|
Marinaro C, Marino A, Bianchi AR, Berman B, Trifuoggi M, Marano A, Palumbo G, Chianese T, Scudiero R, Rosati L, De Maio A, Lettieri G, Piscopo M. Molecular and toxicological mechanisms behind the effects of chromium (VI) on the male reproductive system of Mytilus galloprovincialis: First evidence for poly-ADP-ribosylation of protamine-like II. Chem Biol Interact 2024; 401:111186. [PMID: 39116916 DOI: 10.1016/j.cbi.2024.111186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 07/30/2024] [Accepted: 08/04/2024] [Indexed: 08/10/2024]
Abstract
Studies on the molecular mechanisms of heavy metal toxicity in invertebrate reproduction are limited. Given that PARP-catalysed ADP-ribosylation is also involved in counteracting heavy metal toxicity and maintaining genomic integrity, and that PARylation is implicated in chromatin remodelling but its role in sperm chromatin remains to be elucidated, we investigated the effects of chromium(VI) at 1, 10 and 100 nM on the reproductive health of Mytilus galloprovincialis. The damage to the gonads was assessed by morphological analyses and the damage indices PARP and ɣH2A.X were measured. Changes in the binding of protamine-like (PL) to DNA and the possibility of poly(ADP-ribosyl)ation of PL proteins were also investigated. Gonadal chromium accumulation and morphological damage were found, especially when the mussels were exposed to the highest dose of chromium(VI). In addition, the maximum expression of gonadal ɣH2A.X and PARP were obtained at 100 and 10 nM Cr(VI), respectively. Interestingly, for the first time in all exposed conditions, poly(ADP)-ribosylation was detected on PL-II, which, together with PL-III and PL-IV, are the major nuclear basic proteins of Mytilus galloprovincialis sperm chromatin. Since PL-II is involved in the final high level of sperm chromatin compaction, this post-translational modification altered the binding of the PL protein to DNA, favouring the action of micrococcal nuclease on sperm chromatin. This study provides new insights into the effects of chromium(VI) on Mytilus galloprovincialis reproductive system and proposes a molecular mechanism hypothesis describing the toxic effects of this metal on PL-DNA binding, sperm chromatin and gonads.
Collapse
Affiliation(s)
- Carmela Marinaro
- Department of Biology, University of Naples Federico II, Via Cinthia, 21, 80126, Naples, Italy
| | - Alberto Marino
- Department of Biology, University of Naples Federico II, Via Cinthia, 21, 80126, Naples, Italy
| | - Anna Rita Bianchi
- Department of Biology, University of Naples Federico II, Via Cinthia, 21, 80126, Naples, Italy
| | - Bruno Berman
- Department of Biology, University of Naples Federico II, Via Cinthia, 21, 80126, Naples, Italy
| | - Marco Trifuoggi
- Department of Chemical Sciences, University of Naples Federico II, 21,80126, Naples, Italy
| | - Alessandra Marano
- Department of Chemical Sciences, University of Naples Federico II, 21,80126, Naples, Italy
| | - Giancarlo Palumbo
- Commodity Science Laboratory, Department of Economics, Management and Institutions, University of Naples Federico II, 80126, Naples, Italy
| | - Teresa Chianese
- Department of Biology, University of Naples Federico II, Via Cinthia, 21, 80126, Naples, Italy
| | - Rosaria Scudiero
- Department of Biology, University of Naples Federico II, Via Cinthia, 21, 80126, Naples, Italy
| | - Luigi Rosati
- Department of Biology, University of Naples Federico II, Via Cinthia, 21, 80126, Naples, Italy; CIRAM, Centro Interdipartimentale di Ricerca "Ambiente", University Federico II, Via Mezzocannone 16, 80134, Napoli, Italy
| | - Anna De Maio
- Department of Biology, University of Naples Federico II, Via Cinthia, 21, 80126, Naples, Italy.
| | - Gennaro Lettieri
- Department of Biology, University of Naples Federico II, Via Cinthia, 21, 80126, Naples, Italy.
| | - Marina Piscopo
- Department of Biology, University of Naples Federico II, Via Cinthia, 21, 80126, Naples, Italy.
| |
Collapse
|
8
|
Remigante A, Spinelli S, Gambardella L, Straface E, Cafeo G, Russo M, Caruso D, Dugo P, Dossena S, Marino A, Morabito R. Anion exchanger1 (AE1/SLC4A1) function is impaired in red blood cells from prediabetic subjects: Potential benefits of finger lime (Citrus australasica, Faustrime cultivar) juice extract. Cell Biochem Funct 2024; 42:e4105. [PMID: 39096031 DOI: 10.1002/cbf.4105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/22/2024] [Accepted: 07/28/2024] [Indexed: 08/04/2024]
Abstract
Prediabetes is a risk state that defines a high chance of developing diabetes and cardiovascular disease. Oxidative stress mediated by hyperglycemia-induced production of reactive species could play a crucial role in this context. In the present study, we investigated whether the anion exchange capability mediated by AE1 (SLC4A1), which is sensitive to oxidative stress, was altered in human red blood cells (RBCs) obtained from prediabetic volunteers. In addition, we assessed the precise composition of bioactive compounds and the potential benefits of finger lime juice extract (Citrus australasica, Faustrime cultivar) in counteracting oxidative stress-related functional alterations. Human RBCs from normal and prediabetic volunteers were incubated with 50 µg/mL juice extract for 2 h at 25°C. Juice extract restored alterations of the anion exchange capability mediated by AE1 and prevented the structural rearrangements of AE1 and α/β-spectrin in prediabetic RBCs. AE1 functional and structural alterations were not associated with an increase in lipid peroxidation or protein oxidation at the level of the plasma membrane. An increased production of intracellular ROS, which provoked the oxidation of hemoglobin to methemoglobin, both reverted by juice extract, was instead observed. Importantly, juice extract also induced a reduction in glycated hemoglobin levels in prediabetic RBCs. Finally, juice extract blunted the overactivation of the endogenous antioxidant enzymes catalase and superoxide dismutase and prevented glutathione depletion in prediabetic RBCs. These findings contribute to clarifying cellular and molecular mechanisms related to oxidative stress and glycation events that may influence RBC and systemic homeostasis in prediabetes, identify AE1 as a sensitive biomarker of RBC structural and function alterations in prediabetes and propose finger lime juice extract as a natural antioxidant for the treatment and/or prevention of the complications associated with the prediabetic condition.
Collapse
Affiliation(s)
- Alessia Remigante
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Sara Spinelli
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Lucrezia Gambardella
- Biomarkers Unit, Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Elisabetta Straface
- Biomarkers Unit, Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Giovanna Cafeo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Marina Russo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Daniele Caruso
- Complex Operational Unit of Clinical Pathology of Papardo Hospital, Messina, Italy
| | - Paola Dugo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Silvia Dossena
- Institute of Pharmacology and Toxicology, Research and Innovation Center Regenerative Medicine & Novel Therapies, Paracelsus Medical University, Salzburg, Austria
| | - Angela Marino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Rossana Morabito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| |
Collapse
|
9
|
Capone S, Forleo A, Radogna AV, Longo V, My G, Genga A, Ferramosca A, Grassi G, Casino F, Siciliano P, Notari T, Pappalardo S, Piscopo M, Montano L. Innovative Approach for Human Semen Quality Assessment Based on Volatilomics. TOXICS 2024; 12:543. [PMID: 39195645 PMCID: PMC11360181 DOI: 10.3390/toxics12080543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/10/2024] [Accepted: 07/23/2024] [Indexed: 08/29/2024]
Abstract
The volatilome profile of some biofluids (blood, urine, and human semen) identified by Solid-Phase Microextraction-Gas Chromatography/Mass Spectrometry (SPME-GC/MS) and collected from young men living in two high-pollution areas in Italy, i.e., Land of Fires and Valley of Sacco River, have been coupled to sperm parameters obtained by spermiogram analysis to build general multiple regression models. Panels of volatile organic compounds (VOCs) have been selected to optimize the models and used as predictive variables to estimate the different sperm quality parameters (sperm cell concentration, total and progressive motility/immotile cells, total/head/neck/tail morphology anomalies, semen round cell concentration). The results of the multiple linear regression models based on the different subgroups of data joining VOCs from one/two or three biofluids have been compared. Surprisingly, the models based on blood and urine VOCs have allowed an excellent estimate of spermiogram values, paving the way towards a new method of indirect evaluation of semen quality and preventive screening. The significance of VOCs in terms of toxicity and dangerousness was discussed with the support of chemical databases available online.
Collapse
Affiliation(s)
- Simonetta Capone
- National Research Council, Institute for Microelectronics and Microsystems (CNR-IMM), 73100 Lecce, Italy; (A.F.); (A.V.R.); (V.L.); (G.M.); (F.C.); (P.S.)
| | - Angiola Forleo
- National Research Council, Institute for Microelectronics and Microsystems (CNR-IMM), 73100 Lecce, Italy; (A.F.); (A.V.R.); (V.L.); (G.M.); (F.C.); (P.S.)
| | - Antonio Vincenzo Radogna
- National Research Council, Institute for Microelectronics and Microsystems (CNR-IMM), 73100 Lecce, Italy; (A.F.); (A.V.R.); (V.L.); (G.M.); (F.C.); (P.S.)
- Department of Experimental Medicine, University of Salento, 73100 Lecce, Italy;
| | - Valentina Longo
- National Research Council, Institute for Microelectronics and Microsystems (CNR-IMM), 73100 Lecce, Italy; (A.F.); (A.V.R.); (V.L.); (G.M.); (F.C.); (P.S.)
| | - Giulia My
- National Research Council, Institute for Microelectronics and Microsystems (CNR-IMM), 73100 Lecce, Italy; (A.F.); (A.V.R.); (V.L.); (G.M.); (F.C.); (P.S.)
| | - Alessandra Genga
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy;
| | | | - Giuseppe Grassi
- Department of Engineering for Innovation, University of Salento, 73100 Lecce, Italy;
| | - Flavio Casino
- National Research Council, Institute for Microelectronics and Microsystems (CNR-IMM), 73100 Lecce, Italy; (A.F.); (A.V.R.); (V.L.); (G.M.); (F.C.); (P.S.)
| | - Pietro Siciliano
- National Research Council, Institute for Microelectronics and Microsystems (CNR-IMM), 73100 Lecce, Italy; (A.F.); (A.V.R.); (V.L.); (G.M.); (F.C.); (P.S.)
| | - Tiziana Notari
- Reproductive Medicine Unit of Check Up Polydiagnostic Center, 84131 Salerno, Italy;
| | | | - Marina Piscopo
- Department of Biology, University of Naples Federico II, 80138 Naples, Italy;
| | - Luigi Montano
- Andrology Unit and Service of Lifestyle Medicine in UroAndrology, “S. Francesco d’Assisi” Hospital, Oliveto Citra, 84020 Salerno, Italy
- Coordination Unit of the Network for Environmental and Reproductive Health (EcoFoodFertility Project), “S. Francesco d’Assisi” Hospital, Oliveto Citra, 84020 Salerno, Italy
- Department of Biology, Tor Vergata University of Rome, 00133 Rome, Italy
| |
Collapse
|
10
|
Ma Y, Hu C, Cai G, Xia Q, Fan D, Cao Y, Pan F. Associations of exposure to ambient fine particulate matter constituents from different pollution sources with semen quality: Evidence from a prospective cohort. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123200. [PMID: 38135136 DOI: 10.1016/j.envpol.2023.123200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/02/2023] [Accepted: 12/18/2023] [Indexed: 12/24/2023]
Abstract
The association between ambient fine particulate matter (PM2.5) exposure and semen quality remains inconclusive, possibly due to variations in pollution sources and PM2.5 compositions. Studies investigating the constituents of PM2.5 have been hindered by small sample sizes, and research exploring the relationships between PM2.5 pollution sources and semen quality is lacking. To address this gap, we conducted a comprehensive study based on the Anhui prospective assisted reproduction cohort to evaluate the associations between semen quality and the constituents and pollution sources of PM2.5. This study included 9013 semen samples from 4417 males in the urban districts of Hefei. The median concentrations of PM2.5 constituents, including eight metals and four water-soluble ions (WSIs), were measured for seven days per month at two monitoring stations during the 0-90-day exposure window. A linear mixed-effects model, weighted quantile sum regression, and positive matrix factorisation were used to evaluate the associations of the constituents and pollution sources of PM2.5 with semen quality. The results showed that exposure to PM2.5-bound metals (antimony, arsenic, cadmium, lead, and thallium) and WSIs (sulphate and chloride) were negatively associated with semen quality parameters. Moreover, mixtures of PM2.5-bound metals and WSIs were negatively associated with semen quality. Additionally, PM2.5 derived from traffic emissions was negatively associated with semen quality. In summary, our study revealed that ambient PM2.5 and its constituents, especially metals, were negatively associated with semen quality. Antimony, lead, and thallium emerged as the primary contributors to toxicity, and PM2.5 from traffic emissions was associated with decreased semen quality. These findings have important public health implications for the management of PM2.5 pollution in the context of male reproductive health.
Collapse
Affiliation(s)
- Yubo Ma
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China; The Key Laboratory of Major Autoimmune Diseases, 81 Meishan Road, Anhui Medical University, Hefei, Anhui, China
| | - Chengyang Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China; Department of Humanistic Medicine, School of Humanistic Medicine, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - Guoqi Cai
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China; The Key Laboratory of Major Autoimmune Diseases, 81 Meishan Road, Anhui Medical University, Hefei, Anhui, China
| | - Qing Xia
- Australian Centre for Health Services Innovation and Centre for Healthcare Transformation, School of Public Health and Social Work, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Dazhi Fan
- Foshan Institute of Fetal Medicine, Southern Medical University Affiliated Maternal and Child Health Hospital of Foshan, Foshan, Guangdong, China
| | - Yunxia Cao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China; Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Faming Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, China; The Key Laboratory of Major Autoimmune Diseases, 81 Meishan Road, Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
11
|
Ferrero G, Festa R, Follia L, Lettieri G, Tarallo S, Notari T, Giarra A, Marinaro C, Pardini B, Marano A, Piaggeschi G, Di Battista C, Trifuoggi M, Piscopo M, Montano L, Naccarati A. Small noncoding RNAs and sperm nuclear basic proteins reflect the environmental impact on germ cells. Mol Med 2024; 30:12. [PMID: 38243211 PMCID: PMC10799426 DOI: 10.1186/s10020-023-00776-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/26/2023] [Indexed: 01/21/2024] Open
Abstract
BACKGROUND Molecular techniques can complement conventional spermiogram analyses to provide new information on the fertilizing potential of spermatozoa and to identify early alterations due to environmental pollution. METHODS Here, we present a multilevel molecular profiling by small RNA sequencing and sperm nuclear basic protein analysis of male germ cells from 33 healthy young subjects residing in low and high-polluted areas. RESULTS Although sperm motility and sperm concentration were comparable between samples from the two sites, those from the high-pollution area had a higher concentration of immature/immune cells, a lower protamine/histone ratio, a reduced ability of sperm nuclear basic proteins to protect DNA from oxidative damage, and an altered copper/zinc ratio in sperm. Sperm levels of 32 microRNAs involved in intraflagellar transport, oxidative stress response, and spermatogenesis were different between the two areas. In parallel, a decrease of Piwi-interacting RNA levels was observed in samples from the high-polluted area. CONCLUSIONS This comprehensive analysis provides new insights into pollution-driven epigenetic alterations in sperm not detectable by spermiogram.
Collapse
Affiliation(s)
- Giulio Ferrero
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043, Orbassano, Turin, Italy
- Department of Computer Science, University of Turin, Corso Svizzera, 185, 10149, Turin, Italy
| | - Rosaria Festa
- Department of Biology, University of Naples Federico II, Via Cinthia, 21, 80126, Naples, Italy
| | - Laura Follia
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043, Orbassano, Turin, Italy
| | - Gennaro Lettieri
- Department of Biology, University of Naples Federico II, Via Cinthia, 21, 80126, Naples, Italy
| | - Sonia Tarallo
- Italian Institute for Genomic Medicine (IIGM), c/o IRCCS Candiolo, SP 142 Km. 3,95, 10060, Candiolo, Turin, Italy
| | - Tiziana Notari
- Check-Up PolyDiagnostic and Research Laboratory, Andrology Unit, Viale Andrea De Luca 5, 84131, Salerno, Italy
| | - Antonella Giarra
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia, 21, 80126, Naples, Italy
| | - Carmela Marinaro
- Department of Biology, University of Naples Federico II, Via Cinthia, 21, 80126, Naples, Italy
| | - Barbara Pardini
- Italian Institute for Genomic Medicine (IIGM), c/o IRCCS Candiolo, SP 142 Km. 3,95, 10060, Candiolo, Turin, Italy
| | - Alessandra Marano
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia, 21, 80126, Naples, Italy
| | - Giulia Piaggeschi
- Italian Institute for Genomic Medicine (IIGM), c/o IRCCS Candiolo, SP 142 Km. 3,95, 10060, Candiolo, Turin, Italy
| | - Carla Di Battista
- Italian Institute for Genomic Medicine (IIGM), c/o IRCCS Candiolo, SP 142 Km. 3,95, 10060, Candiolo, Turin, Italy
| | - Marco Trifuoggi
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia, 21, 80126, Naples, Italy
| | - Marina Piscopo
- Department of Biology, University of Naples Federico II, Via Cinthia, 21, 80126, Naples, Italy.
| | - Luigi Montano
- Andrology Unit and Service of Lifestyle Medicine in UroAndrology, Local Health Authority (ASL) Salerno, Coordination Unit of the Network for Environmental and Reproductive Health (Eco-FoodFertility Project), S. Francesco di Assisi Hospital, 84020, Oliveto Citra, Salerno, Italy.
- PhD Program in Evolutionary Biology and Ecology, University of Rome Tor Vergata, 00133, Rome, Italy.
| | - Alessio Naccarati
- Italian Institute for Genomic Medicine (IIGM), c/o IRCCS Candiolo, SP 142 Km. 3,95, 10060, Candiolo, Turin, Italy
| |
Collapse
|
12
|
Delorenzi Schons D, Leite GAA. Malathion or diazinon exposure and male reproductive toxicity: a systematic review of studies performed with rodents. Crit Rev Toxicol 2023; 53:506-520. [PMID: 37922518 DOI: 10.1080/10408444.2023.2270494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 10/03/2023] [Indexed: 11/05/2023]
Abstract
Malathion and diazinon are pesticides commonly used in agriculture to avoid insects that damage crops; however, they may cause impairment to the male genital system of exposed humans. The present work carried out a systematic review of the literature concerning the primary studies that assessed the reproductive effects resulting from male rats and mice exposed to malathion or diazinon. The search for articles was performed on the databases PubMed, LILACS, Scopus, and SciELO, using different combinations of the search terms "malathion," "diazinon," "mice," "rats," "male reproduction," "fertility," and "sperm," followed by the Boolean operators AND or OR. The results obtained indicate that both pesticides act as reproductive toxicants by reducing sperm quality, diminishing hormonal concentrations, inducing increased oxidative stress, and provoking histopathological damage in reproductive organs. Then, the exposure to malathion and diazinon may provoke diminished levels of testosterone by increasing acetylcholine stimulation in the testis through muscarinic receptors, thus, providing a reduction in steroidogenic activity in Leydig cells, whose effect is related to lower levels of testosterone in rodents, and consequently, it is associated with decreased fertility. Considering the toxic effects on the male genital system of rodents and the possible male reproductive toxicity in humans, it is recommended the decreased use of these pesticides and their replacement for others that show no or few toxic effects for non-target animals.
Collapse
Affiliation(s)
- Daniel Delorenzi Schons
- Laboratório de Reprodução e Toxicologia (Laretox), Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Gabriel Adan Araújo Leite
- Laboratório de Reprodução e Toxicologia (Laretox), Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
- Departamento de Biologia Celular, Embriologia e Genética, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| |
Collapse
|
13
|
Liu JC, Wang P, Zeng QX, Yang C, Lyu M, Li Y, Yeung WSB, Chiu PCN, Haidl G, Allam JP, Duan YG. Myd88 Signaling Is Involved in the Inflammatory Response in LPS-Induced Mouse Epididymitis and Bone-Marrow-Derived Dendritic Cells. Int J Mol Sci 2023; 24:ijms24097838. [PMID: 37175545 PMCID: PMC10178089 DOI: 10.3390/ijms24097838] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/30/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Epididymitis is an epididymal inflammation that may lead to male infertility. Dendritic cells (DCs) and myeloid differentiation primary response gene 88 (Myd88) were associated with epididymitis in rodents. However, the functions of Myd88 on epididymal DCs remain unclear. This study investigated the role of Myd88 in DCs for epididymitis. The Myd88 signaling pathway, phenotypes of DC subsets, and cytokines were investigated in lipopolysaccharide (LPS)-induced epididymitis in mice. CRISPR-Cas9 was used to knockout Myd88 in bone-marrow-derived dendritic cells (BMDCs) and immortalized mouse epididymal (DC2) cell line. In the vivo experiments, levels of the proinflammatory cytokines IL-1α, IL-6, IL-17A, TNF-α, IL-1β, MCP-1, and GM-CSF, mRNA for MyD88 related genes, and the percentages of monocyte-derived DCs (Mo-DCs) were significantly elevated in mice with epididymitis. In the vitro experiments, LPS significantly promoted the apoptosis of BMDCs. In addition, the concentration of inflammatory cytokines in BMDCs and DC2s were increased in the LPS group, while decreasing after the knockout of Myd88. These findings indicate that Myd88 on DCs is involved in the inflammation of epididymitis in mice, which may be a potential target for better strategies regarding the treatment of immunological male infertility.
Collapse
Affiliation(s)
- Jin-Chuan Liu
- Shenzhen Key Laboratory of Fertility Regulation, Center of Assisted Reproduction and Embryology, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518053, China
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Peng Wang
- Department of Urology, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Qun-Xiong Zeng
- Shenzhen Key Laboratory of Fertility Regulation, Center of Assisted Reproduction and Embryology, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518053, China
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Chen Yang
- Shenzhen Key Laboratory of Fertility Regulation, Center of Assisted Reproduction and Embryology, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518053, China
| | - Minmin Lyu
- Shenzhen Key Laboratory of Fertility Regulation, Center of Assisted Reproduction and Embryology, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518053, China
| | - Yanfeng Li
- Department of Urology, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - William Shu-Biu Yeung
- Shenzhen Key Laboratory of Fertility Regulation, Center of Assisted Reproduction and Embryology, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518053, China
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Philip Chi-Ngong Chiu
- Shenzhen Key Laboratory of Fertility Regulation, Center of Assisted Reproduction and Embryology, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518053, China
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Gerhard Haidl
- Department of Andrology, Bonn University Hospital, Campus-Venusberg 1, 53127 Bonn, Germany
| | - Jean-Pierre Allam
- Department of Andrology, Bonn University Hospital, Campus-Venusberg 1, 53127 Bonn, Germany
| | - Yong-Gang Duan
- Shenzhen Key Laboratory of Fertility Regulation, Center of Assisted Reproduction and Embryology, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518053, China
| |
Collapse
|
14
|
Dimitriadis F, Borgmann H, Struck JP, Salem J, Kuru TH. Antioxidant Supplementation on Male Fertility-A Systematic Review. Antioxidants (Basel) 2023; 12:antiox12040836. [PMID: 37107211 PMCID: PMC10135082 DOI: 10.3390/antiox12040836] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 04/29/2023] Open
Abstract
Our aim was to review the current literature regarding the effect of antioxidant supplementation (AS) on male fertility parameters, as AS is commonly used to treat male infertility due to the availability and affordability of antioxidants in many parts of the world. MATERIALS AND METHODS PubMed, Medline, and Cochrane electronic bibliographies were searched using the modified Preferred Reporting Items for Systemic Reviews and Meta-Analyses (PRISMA) guidelines to evaluate studies on the benefit of antioxidant therapy on infertile men. Results were analyzed regarding the following aspects: (a) ingredient and dose; (b) potential mechanism of action and rationale for use; and (c) effect on various reported outcomes. RESULTS Thus, 29 studies found a substantial positive effect of AS on outcomes of assisted reproductive therapy (ART), WHO semen parameters, and live-birth rate. Carnitines, Vitamin E and C, N-acetyl cysteine, coenzyme Q10, selenium, zinc, folic acid, and lycopene were beneficial ingredients. Nevertheless, some studies did not show a substantial change in one or more factors. CONCLUSION AS seems to have a positive effect on male fertility. Environmental factors may play an increasing role in fertility. Further studies are needed to determine the optimal AS combination and the influence of environmental factors.
Collapse
Affiliation(s)
- Fotios Dimitriadis
- Urology Department, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Hendrik Borgmann
- Department of Urology, Faculty of Health Sciences Brandenburg, Brandenburg Medical School Theodor Fontane, 14476 Potsdam, Germany
| | - Julian P Struck
- Department of Urology, Faculty of Health Sciences Brandenburg, Brandenburg Medical School Theodor Fontane, 14476 Potsdam, Germany
| | - Johannes Salem
- Department of Urology, Faculty of Health Sciences Brandenburg, Brandenburg Medical School Theodor Fontane, 14476 Potsdam, Germany
| | - Timur H Kuru
- Department of Urology, Faculty of Health Sciences Brandenburg, Brandenburg Medical School Theodor Fontane, 14476 Potsdam, Germany
| |
Collapse
|
15
|
Barbagallo F, Cannarella R, Crafa A, La Vignera S, Condorelli RA, Manna C, Calogero AE. The Impact of a Very Short Abstinence Period on Assisted Reproductive Technique Outcomes: A Systematic Review and Meta-Analysis. Antioxidants (Basel) 2023; 12:752. [PMID: 36979001 PMCID: PMC10045034 DOI: 10.3390/antiox12030752] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/13/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND Previous studies supported the beneficial effects of a very short abstinence period on sperm quality. This systematic review and meta-analysis aimed to evaluate the effects of a very short abstinence period (within 4 h) on assisted reproductive technique (ART) outcomes. METHODS A literature search was performed using the Pubmed, Scopus, Web of Science, and Cochrane databases. A meta-analysis was performed according to the Preferred Reporting Items for Systematic Review and Meta-Analysis Protocols (PRISMA-P) for randomized controlled trials (RCTs). All eligible studies were selected following the PICOS (Population, Intervention, Comparison/Comparator, Outcomes, Study type) model. The following pregnancy outcomes after ART were considered: fertilization rate (FR), implantation rate (IR), clinical pregnancy rate (CPR), live birth rate (LBR), and miscarriage rate (MR). This study was registered on PROSPERO (CRD42023396429). RESULTS We evaluated 414 records for eligibility, and 7 studies were ultimately included. Our analysis showed that a very short abstinence period significantly increased the IR, CPR, and LBR after ART. No significant differences were found for the FR and MR. CONCLUSIONS A second ejaculation collected very shortly after the first one could represent a simple strategy to improve the results of ART, especially in couples including patients with abnormal sperm parameters.
Collapse
Affiliation(s)
- Federica Barbagallo
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
| | - Rossella Cannarella
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
| | - Andrea Crafa
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
| | - Sandro La Vignera
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
| | - Rosita A Condorelli
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
| | - Claudio Manna
- Biofertility IVF and Infertility Center, 00198 Rome, Italy
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", 00133 Rome, Italy
| | - Aldo E Calogero
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy
| |
Collapse
|
16
|
A Molecular Mechanism to Explain the Nickel-Induced Changes in Protamine-like Proteins and Their DNA Binding Affecting Sperm Chromatin in Mytilus galloprovincialis: An In Vitro Study. Biomolecules 2023; 13:biom13030520. [PMID: 36979455 PMCID: PMC10046793 DOI: 10.3390/biom13030520] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/03/2023] [Accepted: 03/09/2023] [Indexed: 03/18/2023] Open
Abstract
Nickel is associated with reproductive toxicity, but little is known about the molecular mechanisms of nickel-induced effects on sperm chromatin and protamine-like proteins (PLs). In the present work, we analyzed PLs from Mytilus galloprovincialis by urea-acetic acid polyacrylamide gel electrophoresis (AU-PAGE) and SDS-PAGE and assessed their binding to DNA by Electrophoretic Mobility Shift Assay (EMSA) after exposing mussels to 5, 15, and 35 µM NiCl2 for 24 h. In addition, a time course of digestion with MNase and release of PLs from sperm nuclei by the NaCl gradient was performed. For all exposure doses, in AU-PAGE, there was an additional migrating band between PL-III and PL-IV, corresponding to a fraction of PLs in the form of peptides detected by SDS-PAGE. Alterations in DNA binding of PLs were observed by EMSA after exposure to 5 and 15 µM NiCl2, while, at all NiCl2 doses, increased accessibility of MNase to sperm chromatin was found. The latter was particularly relevant at 15 µM NiCl2, a dose at which increased release of PLII and PLIII from sperm nuclei and the highest value of nickel accumulated in the gonads were also found. Finally, at all exposure doses, there was also an increase in PARP expression, but especially at 5 µM NiCl2. A possible molecular mechanism for the toxic reproductive effects of nickel in Mytilus galloprovincialis is discussed.
Collapse
|
17
|
Mercury Chloride Affects Band 3 Protein-Mediated Anionic Transport in Red Blood Cells: Role of Oxidative Stress and Protective Effect of Olive Oil Polyphenols. Cells 2023; 12:cells12030424. [PMID: 36766766 PMCID: PMC9913727 DOI: 10.3390/cells12030424] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/19/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Mercury is a toxic heavy metal widely dispersed in the natural environment. Mercury exposure induces an increase in oxidative stress in red blood cells (RBCs) through the production of reactive species and alteration of the endogenous antioxidant defense system. Recently, among various natural antioxidants, the polyphenols from extra-virgin olive oil (EVOO), an important element of the Mediterranean diet, have generated growing interest. Here, we examined the potential protective effects of hydroxytyrosol (HT) and/or homovanillyl alcohol (HVA) on an oxidative stress model represented by human RBCs treated with HgCl2 (10 µM, 4 h of incubation). Morphological changes as well as markers of oxidative stress, including thiobarbituric acid reactive substance (TBARS) levels, the oxidation of protein sulfhydryl (-SH) groups, methemoglobin formation (% MetHb), apoptotic cells, a reduced glutathione/oxidized glutathione ratio, Band 3 protein (B3p) content, and anion exchange capability through B3p were analyzed in RBCs treated with HgCl2 with or without 10 μM HT and/or HVA pre-treatment for 15 min. Our data show that 10 µM HT and/or HVA pre-incubation impaired both acanthocytes formation, due to 10 µM HgCl2, and mercury-induced oxidative stress injury and, moreover, restored the endogenous antioxidant system. Interestingly, HgCl2 treatment was associated with a decrease in the rate constant for SO42- uptake through B3p as well as MetHb formation. Both alterations were attenuated by pre-treatment with HT and/or HVA. These findings provide mechanistic insights into benefits deriving from the use of naturally occurring polyphenols against oxidative stress induced by HgCl2 on RBCs. Thus, dietary supplementation with polyphenols might be useful in populations exposed to HgCl2 poisoning.
Collapse
|
18
|
Nunzio AD, Giarra A, Toscanesi M, Amoresano A, Piscopo M, Ceretti E, Zani C, Lorenzetti S, Trifuoggi M, Montano L. Comparison between Macro and Trace Element Concentrations in Human Semen and Blood Serum in Highly Polluted Areas in Italy. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:11635. [PMID: 36141930 PMCID: PMC9517217 DOI: 10.3390/ijerph191811635] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/05/2022] [Accepted: 09/12/2022] [Indexed: 06/06/2023]
Abstract
Macro and trace elements are important regulators of biological processes, including those ones linked to reproduction. Among them, Ca, Cu, Fe, K, Mg, Mn, Na, Se, and Zn ensure normal spermatic functions. Hence, the aim of this study was to evaluate the concentrations of 26 macro and trace elements (Al, As, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Hg, K, Li, Mg, Mn, Na, Ni, Pb, Rb, Sb, Se, Sn, Sr, U, V, and Zn) in blood serum and also in semen of healthy young men, homogeneous for age, anthropometric characteristics, and lifestyle, living in three highly polluted areas in Italy. Furthermore, a comparison among three geographical areas was performed to highlight any difference in the investigated parameters and, overall, to speculate any correlations between chemical elements and semen quality. Statistically significant differences (p < 0.05) among the three areas were found for each investigated element, in both semen and serum samples, where inter-area differences were more evident in semen than in blood serum, suggesting human semen as an early environmental marker. Considering the homogeneity of three cohorts, these differences could be due more to environmental conditions in the recruiting areas, suggesting that variations in those involved in reproductive-associated pathways can have an impact on male fertility. Nevertheless, more research is needed to evaluate threshold values for sperm dysfunction and male infertility. Actually, the role of different dietary intake and environmental exposure underlying the observed differences in the recruiting areas is under further investigation for the same cohort.
Collapse
Affiliation(s)
- Aldo Di Nunzio
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia, 21, 80126 Naples, Italy
| | - Antonella Giarra
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia, 21, 80126 Naples, Italy
| | - Maria Toscanesi
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia, 21, 80126 Naples, Italy
| | - Angela Amoresano
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia, 21, 80126 Naples, Italy
- Istituto Nazionale Biostrutture e Biosistemi-Consorzio Interuniversitario, Viale delle Medaglie d’Oro, 305, 00136 Rome, Italy
| | - Marina Piscopo
- Department of Biology, University of Naples Federico II, 80126 Napoli, Italy
| | - Elisabetta Ceretti
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, 25123 Brescia, Italy
| | - Claudia Zani
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, 25123 Brescia, Italy
| | - Stefano Lorenzetti
- Department of Food Safety, Nutrition and Veterinary Public Health, Italian National Institute of Health (ISS), 00161 Rome, Italy
| | - Marco Trifuoggi
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia, 21, 80126 Naples, Italy
| | - Luigi Montano
- Andrology Unit and Service of Lifestyle Medicine in UroAndrology, Local Health Authority (ASL) Salerno, Coordination Unit of the Network for Environmental and Reproductive Health (EcoFoodFertility Project), Italy “Oliveto Citra Hospital”, Oliveto Citra, 84020 Salerno, Italy
- PhD Program in Evolutionary Biology and Ecology, University of Rome Tor Vergata, 00133 Rome, Italy
| |
Collapse
|