1
|
Cheng J, An Y, Wang Q, Chen Z, Tong Y. Visual detection of Mycobacterium tuberculosis in exhaled breath using N95 enrichment respirator, RPA, and lateral flow assay. Talanta 2025; 286:127490. [PMID: 39755079 DOI: 10.1016/j.talanta.2024.127490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/22/2024] [Accepted: 12/27/2024] [Indexed: 01/06/2025]
Abstract
Tuberculosis (TB) is the second deadliest infectious disease worldwide. Current TB diagnostics utilize sputum samples, which are difficult to obtain, and sample processing is time-consuming and difficult. This study developed an integrated diagnostic platform for the rapid visual detection of Mycobacterium tuberculosis (Mtb) in breath samples at the point-of-care (POC), especially in resource-limited settings. The less pathogenic Mycobacterium smegmatis containing same gene fragment of Mtb served as the model bacterium. A novel respirator was designed to collect airborne mycobacteria in breath samples, with an efficiency of 38.7-61.5 % (102-109 CFU/mL). In our vision, patients only needed to wear a respirator for 1 h, and the collected pathogens were loaded into a microfluidic chip with direct-current electric field for lysis and nucleic acid extraction (20 μL, 3 s), then recombinase polymerase amplification (36 °C, 8 min) and lateral flow strip assay (5 min) were proceeded to enable visual test for the POC. Our platform completed the entire sample collection and diagnosis within 90 min, and the bacterial DNA amplification can be completed in 8 min by handheld, showing great patient compliance and eliminating the need for large equipment. Diagnostic systems involving signal detection with the naked eye are more suitable for the large-scale screening of TB. The proposed method detected low concentrations of bacterial DNA (5.0 aM, 18 copies/μL) with high reproducibility and specificity. Moreover, the system accurately detected low bacterial concentrations (102 CFU/mL). This platform provides the potential to improve the screening of TB and other airborne infectious diseases.
Collapse
Affiliation(s)
- Jie Cheng
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yiwei An
- The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, China; School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China
| | - Qiyou Wang
- Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, China
| | - Zuanguang Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China; School of Health Medicine, Guangzhou Huashang College, Guangzhou, 511300, China.
| | - Yanli Tong
- The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, China.
| |
Collapse
|
2
|
Wang S, Fan P, Liu W, Hu B, Guo J, Wang Z, Zhu S, Zhao Y, Fan J, Li G, Xu L. Research Progress of Flexible Electronic Devices Based on Electrospun Nanofibers. ACS NANO 2024; 18:31737-31772. [PMID: 39499656 DOI: 10.1021/acsnano.4c13106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
Electrospun nanofibers have become an important component in fabricating flexible electronic devices because of their permeability, flexibility, stretchability, and conformability to three-dimensional curved surfaces. This review delves into the advancements in adaptable and flexible electronic devices using electrospun nanofibers as the substrates and explores their diverse and innovative applications. The primary development of key substrates for flexible devices is summarized. After briefly discussing the principle of electrospinning, process parameters that affect electrospinning, and two major electrospinning techniques (i.e., single-fluid electrospinning and multifluid electrospinning), the review shines a spotlight on the recent breakthroughs in multifunctional and stretchable electronic devices that are based on electrospun substrates. These advancements include flexible sensors, flexible energy harvesting and storage devices, flexible accessories for electronic devices, and flexible environmental monitoring devices. In particular, the review outlines the challenges and potential solutions of developing electrospun nanofibers for flexible electronic devices, including overcoming the incompatibility of multiple interfaces, developing 3D microstructure sensor arrays with gradient geometry for various imperceptible on-skin devices, etc. This review may provide a comprehensive understanding of the rational design of application-oriented flexible electronic devices based on electrospun nanofibers.
Collapse
Affiliation(s)
- Shige Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, P. R. China
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR 999077, P. R. China
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong SAR 999077, P. R. China
| | - Peng Fan
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, P. R. China
| | - Wenbo Liu
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR 999077, P. R. China
| | - Bin Hu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, P. R. China
| | - Jiaxuan Guo
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, P. R. China
| | - Zizhao Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, P. R. China
| | - Shengke Zhu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, P. R. China
| | - Yipu Zhao
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR 999077, P. R. China
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong SAR 999077, P. R. China
| | - Jinchen Fan
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, P. R. China
| | - Guisheng Li
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, P. R. China
| | - Lizhi Xu
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR 999077, P. R. China
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong SAR 999077, P. R. China
- Materials Innovation Institute for Life Sciences and Energy (MILES), The University of Hong Kong Shenzhen Institute of Research and Innovation (HKU-SIRI), Shenzhen 518057, P. R. China
| |
Collapse
|
3
|
Wang J, You C, Xu Y, Xie T, Wang Y. Research Advances in Electrospun Nanofiber Membranes for Non-Invasive Medical Applications. MICROMACHINES 2024; 15:1226. [PMID: 39459100 PMCID: PMC11509555 DOI: 10.3390/mi15101226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 09/27/2024] [Accepted: 09/29/2024] [Indexed: 10/28/2024]
Abstract
Non-invasive medical nanofiber technology, characterized by its high specific surface area, biocompatibility, and porosity, holds significant potential in various medical domains, including tissue repair and biosensing. It is increasingly becoming central to healthcare by offering safer and more efficient treatment options for contemporary medicine. Numerous studies have explored non-invasive medical nanofibers in recent years, yet a comprehensive overview of the field remains lacking. In this paper, we provide a comprehensive summary of the applications of electrospun nanofibers in non-invasive medical fields, considering multiple aspects and perspectives. Initially, we introduce electrospinning nanofibers. Subsequently, we detail their applications in non-invasive health, including health monitoring, personal protection, thermal regulation, and wound care, highlighting their critical role in improving human health. Lastly, this paper discusses the current challenges associated with electrospun nanofibers and offers insights into potential future development trajectories.
Collapse
Affiliation(s)
- Junhua Wang
- College of Mechanical and Electrical Engineering, Henan University of Science and Technology, Luoyang 471003, China; (J.W.); (C.Y.); (Y.X.)
- Henan Intelligent Manufacturing Equipment Engineering Technology Research Center, Luoyang 471003, China
- Henan Engineering Laboratory of Intelligent Numerical Control Equipment, Luoyang 471003, China
| | - Chongyang You
- College of Mechanical and Electrical Engineering, Henan University of Science and Technology, Luoyang 471003, China; (J.W.); (C.Y.); (Y.X.)
| | - Yanwei Xu
- College of Mechanical and Electrical Engineering, Henan University of Science and Technology, Luoyang 471003, China; (J.W.); (C.Y.); (Y.X.)
- Henan Intelligent Manufacturing Equipment Engineering Technology Research Center, Luoyang 471003, China
- Henan Engineering Laboratory of Intelligent Numerical Control Equipment, Luoyang 471003, China
| | - Tancheng Xie
- College of Mechanical and Electrical Engineering, Henan University of Science and Technology, Luoyang 471003, China; (J.W.); (C.Y.); (Y.X.)
- Henan Intelligent Manufacturing Equipment Engineering Technology Research Center, Luoyang 471003, China
- Henan Engineering Laboratory of Intelligent Numerical Control Equipment, Luoyang 471003, China
| | - Yi Wang
- Department of Mechanical Engineering, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
4
|
Lin M, Shen J, Qian Q, Li T, Zhang C, Qi H. Fabrication of Poly(Lactic Acid)@TiO 2 Electrospun Membrane Decorated with Metal-Organic Frameworks for Efficient Air Filtration and Bacteriostasis. Polymers (Basel) 2024; 16:889. [PMID: 38611147 PMCID: PMC11013116 DOI: 10.3390/polym16070889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/16/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024] Open
Abstract
The development of high-performance filtration materials is essential for the effective removal of airborne particles, and metal-organic frameworks (MOFs) anchored to organic polymer matrices are considered to be one of the most promising porous adsorbents for air pollutants. Nowadays, most air filters are generally based on synthetic fiber polymers derived from petroleum residues and have limited functionality, so the use of MOFs in combination with nanofiber air filters has received a lot of attention. Here, a conjugated electrostatic spinning method is demonstrated for the one-step preparation of poly(lactic acid) (PLA) nanofibrous membranes with a bimodal diameter distribution and the anchoring of Zeolitic Imidazolate Framework-8 (ZIF-8) by the introduction of TiO2 and in situ generation to construct favorable multiscale fibers and rough structures. The prepared PLA/TZ maintained a good PM2.5 capture efficiency of 99.97%, a filtration efficiency of 96.43% for PM0.3, and a pressure drop of 96.0 Pa, with the highest quality factor being 0.08449 Pa-1. Additionally, ZIF-8 was uniformly generated on the surface of PLA and TiO2 nanofibers, obtaining a roughened structure and a larger specific surface area. An enhanced filtration retention effect and electrostatic interactions, as well as active free radicals, can be generated for the deep inactivation of bacteria. Compared with the unmodified membrane, PLA/TZ prepared antibacterial characteristics induced by photocatalysis and Zn2+ release, with excellent bactericidal effects against S. aureus and E. coli. Overall, this work may provide a promising approach for the development of efficient biomass-based filtration materials with antimicrobial properties.
Collapse
Affiliation(s)
- Minggang Lin
- Institute of Smart & Ecological Textile, Quanzhou Normal University, Quanzhou 362002, China; (M.L.); (C.Z.)
- College of Textile and Apparel, Xinjiang University, Urumqi 830046, China
| | - Jinlin Shen
- Institute of Smart & Ecological Textile, Quanzhou Normal University, Quanzhou 362002, China; (M.L.); (C.Z.)
- College of Textile and Apparel, Quanzhou Normal University, Quanzhou 362002, China
| | - Qiaonan Qian
- Institute of Smart & Ecological Textile, Quanzhou Normal University, Quanzhou 362002, China; (M.L.); (C.Z.)
- College of Textile and Apparel, Quanzhou Normal University, Quanzhou 362002, China
| | - Tan Li
- Institute of Smart & Ecological Textile, Quanzhou Normal University, Quanzhou 362002, China; (M.L.); (C.Z.)
- College of Textile and Apparel, Xinjiang University, Urumqi 830046, China
| | - Chuyang Zhang
- Institute of Smart & Ecological Textile, Quanzhou Normal University, Quanzhou 362002, China; (M.L.); (C.Z.)
- College of Textile and Apparel, Xinjiang University, Urumqi 830046, China
| | - Huan Qi
- Institute of Smart & Ecological Textile, Quanzhou Normal University, Quanzhou 362002, China; (M.L.); (C.Z.)
- College of Textile and Apparel, Quanzhou Normal University, Quanzhou 362002, China
| |
Collapse
|
5
|
Yue Z, Zhou J, Du X, Wu L, Wang J, Wang X. Incorporating charged Ag@MOFs to boost the antibacterial and filtration properties of porous electrospinning polylactide films. Int J Biol Macromol 2023; 250:126223. [PMID: 37558020 DOI: 10.1016/j.ijbiomac.2023.126223] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/06/2023] [Accepted: 08/06/2023] [Indexed: 08/11/2023]
Abstract
Faced with the pollution caused by particulate matter (PM) in the air, the prevalence of infectious diseases, and the environmental burden by use of nondegradable polymers, the existing filter materials such as meltblown cloth of polypropylene cannot satisfactorily meet people's requirements. In this study, Ag nanoparticles were loaded onto ZIF-8 particles by impregnation reduction to prepare the positively charged Ag@ZIF-8. The porous fibrous membranes of Ag@ZIF-8 with polylactide (PLA) were manufactured by electrostatic spinning technology. Due to the inherently charged feature of Ag@ZIF-8 particles and the presence of pores on fibers, the prepared membranes showed a stable good filtration efficiency of over 97 % at different humidity (30-90%RH, relative humidity). Meanwhile, the presence of charge on Ag@ZIF-8 and the synergistic effects of Ag and ZIF-8 particles made the membranes exhibit good antibacterial effects. The width of the inhibition zone of 3 wt%Ag@ZIF-8/PLA membrane reached 1.33 mm for E. coli and 1.35 mm for S. aureus, respectively.
Collapse
Affiliation(s)
- Zhenqing Yue
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Jingheng Zhou
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Xuye Du
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Lanlan Wu
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Junrui Wang
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Xinlong Wang
- School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, China.
| |
Collapse
|
6
|
Wang C, Song X, Li T, Zhu X, Yang S, Zhu J, He X, Gao J, Xu H. Biodegradable Electroactive Nanofibrous Air Filters for Long-Term Respiratory Healthcare and Self-Powered Monitoring. ACS APPLIED MATERIALS & INTERFACES 2023; 15:37580-37592. [PMID: 37490285 DOI: 10.1021/acsami.3c08490] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
The concept of triboelectric nanogenerator (TENG)-based fibrous air filters, in which the electroactive fibers are ready to enhance the electrostatic adsorption by sustainable energy harvesting, is appealing for long-term respiratory protection and in vivo real-time monitoring. This effort discloses a self-reinforcing electroactivity strategy to confer extreme alignment and refinement of the electrospun poly(lactic acid) (PLA) nanofibers, significantly facilitating formation of electroactive phases (i.e., β-phase and highly aligned chains and dipoles) and promotion of polarization and electret properties. It endowed the PLA nanofibrous membranes (NFMs) with largely increased surface potential and filtration performance, as exemplified by efficient removal of PM0.3 and PM2.5 (90.68 and 99.82%, respectively) even at the highest airflow capacity of 85 L/min. With high electroactivity and a well-controlled morphology, the PLA NFMs exhibited superior TENG properties triggered by regular respiratory vibrations, enabling 9.21-fold increase of surface potential (-1.43 kV) and nearly 68% increase of PM0.3 capturing (94.3%) compared to those of conventional PLA membranes. The remarkable TENG mechanisms were examined to elaborately monitor the personal respiration characteristics, particularly those triggered large and rapid variations of output voltages like coughing and tachypnea. Featuring desirable biocompatibility and degradability, the self-powered PLA NFMs permit promising applications in the fabrication of ecofriendly air filters toward high-performance purification and intelligent monitoring.
Collapse
Affiliation(s)
- Cunmin Wang
- School of Safety Engineering, China University of Mining and Technology, Xuzhou 221116, China
| | - Xinyi Song
- School of Safety Engineering, China University of Mining and Technology, Xuzhou 221116, China
| | - Tian Li
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Xuanjin Zhu
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Shugui Yang
- Shaanxi International Research Center for Soft Matter, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jintuo Zhu
- School of Safety Engineering, China University of Mining and Technology, Xuzhou 221116, China
| | - Xinjian He
- School of Safety Engineering, China University of Mining and Technology, Xuzhou 221116, China
- Jiangsu Engineering Research Center of Dust Control and Occupational Protection, Xuzhou 221008, China
| | - Jiefeng Gao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 272100, China
| | - Huan Xu
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
- Jiangsu Engineering Research Center of Dust Control and Occupational Protection, Xuzhou 221008, China
| |
Collapse
|