1
|
Yoder HA, Mulholland AM, MacDonald HV, Wingo JE. Work rate adjustments needed to maintain heart rate and RPE during high-intensity interval training in the heat. Front Physiol 2025; 16:1506325. [PMID: 39981303 PMCID: PMC11839774 DOI: 10.3389/fphys.2025.1506325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 01/16/2025] [Indexed: 02/22/2025] Open
Abstract
Introduction Higher work rates may be sustainable when maintaining target rating of perceived exertion (RPE) compared to maintaining target heart rate (THR) during high-intensity interval training (HIIT) exercise in hot conditions, but may also result in greater thermal strain and cardiovascular drift, as well as greater decrements in maximal oxygen uptake (V ˙ O2max). Purpose To test the hypotheses that maintaining target RPE compared to THR during HIIT in the heat results in 1) smaller work rate adjustments, 2) greater thermal and cardiovascular strain, and 3) larger decreases inV ˙ O2max. Methods Eight adults (4 women) completed a graded exercise test on a cycle ergometer in 22°C and then 4 cycling trials in 35°C, consisting of an 8-min warm-up at 70% maximal heart rate (HRmax) or 12 RPE followed by 1 (15HR and 15RPE) or 5 (43HR and 43RPE) rounds of HIIT (1 round = 4 min work at 90% HRmax or 17 RPE and 3 min recovery at 70% HRmax or 12 RPE) totaling 15 min or 43 min of exercise, respectively. Each trial ended with a GXT to measureV ˙ O2max. Results In the 43-min trials work rate decreased from the first to the fifth work interval in both conditions, but by a non-significant, yet moderately larger (ES = 0.53) amount during 43HR (46 ± 29 W) compared to 43RPE (30 ± 28 W). From the first to fifth work interval HR increased over time by 12 b⋅min-1 in 43RPE (p < 0.001), but did not increase during 43HR (p = 0.36). Rectal temperature increases were not different between conditions (43HR = 0.7°C, p < 0.001; 43RPE = 0.8°C, p < 0.001).V ˙ O2max decreased 15.6% (ES = 0.41) between 15RPE and 43RPE (p = 0.005), but it was not different over time during the HR-based trials [6.5%, ES = 0.16 (α adjusted for multiple comparisons = 0.0125) p = 0.03]. Conclusion Maintaining target RPE and THR require considerable declines in work rate during HIIT in the heat, with ∼53% larger declines needed to maintain THR. The mitigation of cardiovascular drift in the THR trial may have contributed to the preservation ofV ˙ O2max.
Collapse
Affiliation(s)
- Hillary A. Yoder
- Department of Kinesiology, The University of Alabama, Tuscaloosa, AL, United States
- Department of Kinesiology, New Mexico State University, Las Cruces, NM, United States
| | - Anne M. Mulholland
- Department of Kinesiology, The University of Alabama, Tuscaloosa, AL, United States
- Department of Exercise Science, Mercer University, Macon, GA, United States
| | - Hayley V. MacDonald
- Department of Kinesiology, The University of Alabama, Tuscaloosa, AL, United States
| | - Jonathan E. Wingo
- Department of Kinesiology, The University of Alabama, Tuscaloosa, AL, United States
| |
Collapse
|
2
|
Deshayes TA, Hsouna H, Braham MAA, Arvisais D, Pageaux B, Ouellet C, Jay O, Maso FD, Begon M, Saidi A, Gendron P, Gagnon D. Work-rest regimens for work in hot environments: A scoping review. Am J Ind Med 2024; 67:304-320. [PMID: 38345435 DOI: 10.1002/ajim.23569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/08/2024] [Accepted: 01/23/2024] [Indexed: 03/16/2024]
Abstract
BACKGROUND To limit exposures to occupational heat stress, leading occupational health and safety organizations recommend work-rest regimens to prevent core temperature from exceeding 38°C or increasing by ≥1°C. This scoping review aims to map existing knowledge of the effects of work-rest regimens in hot environments and to propose recommendations for future research based on identified gaps. METHODS We performed a search of 10 databases to retrieve studies focused on work-rest regimens under hot conditions. RESULTS Forty-nine articles were included, of which 35 were experimental studies. Most studies were conducted in laboratory settings, in North America (71%), on healthy young adults, with 94% of the 642 participants being males. Most studies (66%) employed a protocol duration ≤240 min (222 ± 162 min, range: 37-660) and the time-weighted average wet-bulb globe temperature was 27 ± 4°C (range: 18-34). The work-rest regimens implemented were those proposed by the American Conference of Governmental and Industrial Hygiene (20%), National Institute of Occupational Safety and Health (11%), or the Australian Army (3%). The remaining studies (66%) did not mention how the work-rest regimens were derived. Most studies (89%) focused on physical tasks only. Most studies (94%) reported core temperature, whereas only 22% reported physical and/or mental performance outcomes, respectively. Of the 35 experimental studies included, 77% indicated that core temperature exceeded 38°C. CONCLUSIONS Although work-rest regimens are widely used, few studies have investigated their physiological effectiveness. These studies were mainly short in duration, involved mostly healthy young males, and rarely considered the effect of work-rest regimens beyond heat strain during physical exertion.
Collapse
Affiliation(s)
- Thomas A Deshayes
- Montreal Heart Institute, Montréal, Québec, Canada
- École de kinésiologie et des sciences de l'activité physique (EKSAP), Faculté de médecine, Université de Montréal, Montréal, Québec, Canada
| | - Hsen Hsouna
- Montreal Heart Institute, Montréal, Québec, Canada
- École de kinésiologie et des sciences de l'activité physique (EKSAP), Faculté de médecine, Université de Montréal, Montréal, Québec, Canada
| | - Mounir A A Braham
- Département des sciences de l'activité physique, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
- Département d'anatomie, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
| | - Denis Arvisais
- Bibliothèque des sciences de la santé, Université de Montréal, Montréal, Québec, Canada
| | - Benjamin Pageaux
- École de kinésiologie et des sciences de l'activité physique (EKSAP), Faculté de médecine, Université de Montréal, Montréal, Québec, Canada
- Centre de recherche de l'Institut universitaire de gériatrie de Montréal (CRIUGM), Montréal, Québec, Canada
- Centre interdisciplinaire de recherche sur le cerveau et l'apprentissage (CIRCA), Montréal, Québec, Canada
| | - Capucine Ouellet
- Institut de recherche Robert-Sauvé en santé et en sécurité du travail (IRSST), Montréal, Québec, Canada
| | - Ollie Jay
- Heat and Health Research Incubator, University of Sydney, Sydney, New South Wales, Australia
| | - Fabien D Maso
- École de kinésiologie et des sciences de l'activité physique (EKSAP), Faculté de médecine, Université de Montréal, Montréal, Québec, Canada
- Centre interdisciplinaire de recherche sur le cerveau et l'apprentissage (CIRCA), Montréal, Québec, Canada
| | - Mickael Begon
- École de kinésiologie et des sciences de l'activité physique (EKSAP), Faculté de médecine, Université de Montréal, Montréal, Québec, Canada
- Centre de recherche du CHU Sainte-Justine, Montréal, Québec, Canada
| | - Alireza Saidi
- Institut de recherche Robert-Sauvé en santé et en sécurité du travail (IRSST), Montréal, Québec, Canada
| | - Philippe Gendron
- Département des sciences de l'activité physique, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
| | - Daniel Gagnon
- Montreal Heart Institute, Montréal, Québec, Canada
- École de kinésiologie et des sciences de l'activité physique (EKSAP), Faculté de médecine, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
3
|
Bachraty JP, Qiao J, Powers ES, Vandermark LW, Pryor JL, Pryor RR. Plateau in Core Temperature during Shorter but Not Longer Work/Rest Cycles in Heat. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:371. [PMID: 38541370 PMCID: PMC10970706 DOI: 10.3390/ijerph21030371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/12/2024] [Accepted: 03/18/2024] [Indexed: 04/09/2024]
Abstract
This study compared physiological responses to two work/rest cycles of a 2:1 work-to-rest ratio in a hot environment. In a randomized crossover design, fourteen participants completed 120 min of walking and rest in the heat (36.3 ± 0.6 °C, 30.2 ± 4.0% relative humidity). Work/rest cycles were (1) 40 min work/20 min rest [40/20], or (2) 20 min work/10 min rest [20/10], both completing identical work. Core temperature (Tc), skin temperature (Tsk), heart rate (HR), nude body mass, and perception of work were collected. Comparisons were made between trials at equal durations of work using three-way mixed model ANOVA. Tc plateaued in [20/10] during the second hour of work (p = 0.93), while Tc increased in [40/20] (p < 0.01). There was no difference in maximum Tc ([40/20]: 38.08 ± 0.35 °C, [20/10]: 37.99 ± 0.27 °C, p = 0.22) or end-of-work Tsk ([40/20]: 36.1 ± 0.8 °C, [20/10]: 36.0 ± 0.7 °C, p = 0.45). End-of-work HR was greater in [40/20] (145 ± 25 b·min-1) compared to [20/10] (141 ± 27 b·min-1, p = 0.04). Shorter work/rest cycles caused a plateau in Tc while longer work/rest cycles resulted in a continued increase in Tc throughout the work, indicating that either work structure could be used during shorter work tasks, while work greater than 2 h in duration may benefit from shorter work/rest cycles to mitigate hyperthermia.
Collapse
Affiliation(s)
| | | | | | | | | | - Riana R. Pryor
- Center for Research and Education in Special Environments, Department of Exercise and Nutrition Sciences, University at Buffalo, Buffalo, NY 14214, USA (J.Q.); (E.S.P.)
| |
Collapse
|