1
|
Tsipinana S, Husseiny S, Alayande KA, Raslan M, Amoo S, Adeleke R. Contribution of endophytes towards improving plant bioactive metabolites: a rescue option against red-taping of medicinal plants. FRONTIERS IN PLANT SCIENCE 2023; 14:1248319. [PMID: 37771494 PMCID: PMC10522919 DOI: 10.3389/fpls.2023.1248319] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/11/2023] [Indexed: 09/30/2023]
Abstract
Medicinal plants remain a valuable source for natural drug bioprospecting owing to their multi-target spectrum. However, their use as raw materials for novel drug synthesis has been greatly limited by unsustainable harvesting leading to decimation of their wild populations coupled with inherent low concentrations of constituent secondary metabolites per unit mass. Thus, adding value to the medicinal plants research dynamics calls for adequate attention. In light of this, medicinal plants harbour endophytes which are believed to be contributing towards the host plant survival and bioactive metabolites through series of physiological interference. Stimulating secondary metabolite production in medicinal plants by using endophytes as plant growth regulators has been demonstrated to be one of the most effective methods for increasing metabolite syntheses. Use of endophytes as plant growth promotors could help to ensure continuous supply of medicinal plants, and mitigate issues with fear of extinction. Endophytes minimize heavy metal toxicity in medicinal plants. It has been hypothesized that when medicinal plants are exposed to harsh conditions, associated endophytes are the primary signalling channels that induce defensive reactions. Endophytes go through different biochemical processes which lead to activation of defence mechanisms in the host plants. Thus, through signal transduction pathways, endophytic microorganisms influence genes involved in the generation of secondary metabolites by plant cells. Additionally, elucidating the role of gene clusters in production of secondary metabolites could expose factors associated with low secondary metabolites by medicinal plants. Promising endophyte strains can be manipulated for enhanced production of metabolites, hence, better probability of novel bioactive metabolites through strain improvement, mutagenesis, co-cultivation, and media adjustment.
Collapse
Affiliation(s)
- Sinawo Tsipinana
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Samah Husseiny
- Department of Biotechnology and Life Sciences, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef, Egypt
| | - Kazeem A. Alayande
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Mai Raslan
- Department of Biotechnology and Life Sciences, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef, Egypt
| | - Stephen Amoo
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
- Agricultural Research Council – Vegetables, Industrial and Medicinal Plants, Roodeplaat, Pretoria, South Africa
| | - Rasheed Adeleke
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| |
Collapse
|
2
|
Xue M, Hou X, Fu J, Zhang J, Wang J, Zhao Z, Xu D, Lai D, Zhou L. Recent Advances in Search of Bioactive Secondary Metabolites from Fungi Triggered by Chemical Epigenetic Modifiers. J Fungi (Basel) 2023; 9:jof9020172. [PMID: 36836287 PMCID: PMC9961798 DOI: 10.3390/jof9020172] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/20/2023] [Accepted: 01/21/2023] [Indexed: 01/31/2023] Open
Abstract
Genomic analysis has demonstrated that many fungi possess essential gene clusters for the production of previously unobserved secondary metabolites; however, these genes are normally reduced or silenced under most conditions. These cryptic biosynthetic gene clusters have become treasures of new bioactive secondary metabolites. The induction of these biosynthetic gene clusters under stress or special conditions can improve the titers of known compounds or the production of novel compounds. Among the inducing strategies, chemical-epigenetic regulation is considered a powerful approach, and it uses small-molecule epigenetic modifiers, which mainly act as the inhibitors of DNA methyltransferase, histone deacetylase, and histone acetyltransferase, to promote changes in the structure of DNA, histones, and proteasomes and to further activate cryptic biosynthetic gene clusters for the production of a wide variety of bioactive secondary metabolites. These epigenetic modifiers mainly include 5-azacytidine, suberoylanilide hydroxamic acid, suberoyl bishydroxamic acid, sodium butyrate, and nicotinamide. This review gives an overview on the method of chemical epigenetic modifiers to trigger silent or low-expressed biosynthetic pathways to yield bioactive natural products through external cues of fungi, mainly based on the research progress in the period from 2007 to 2022. The production of about 540 fungal secondary metabolites was found to be induced or enhanced by chemical epigenetic modifiers. Some of them exhibited significant biological activities such as cytotoxic, antimicrobial, anti-inflammatory, and antioxidant activity.
Collapse
|
3
|
Zhang X, Xu D, Hou X, Wei P, Fu J, Zhao Z, Jing M, Lai D, Yin W, Zhou L. UvSorA and UvSorB Involved in Sorbicillinoid Biosynthesis Contribute to Fungal Development, Stress Response and Phytotoxicity in Ustilaginoidea virens. Int J Mol Sci 2022; 23:ijms231911056. [PMID: 36232357 PMCID: PMC9570055 DOI: 10.3390/ijms231911056] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 11/18/2022] Open
Abstract
Ustilaginoidea virens (teleomorph: Villosiclava virens) is an important fungal pathogen that causes a devastating rice disease. It can produce mycotoxins including sorbicillinoids. The biosynthesis and biological functions of sorbicillinoids have not been reported in U. virens. In this study, we identified a sorbicillinoid biosynthetic gene cluster in which two polyketide synthase genes UvSorA and UvSorB were responsible for sorbicillinoid biosynthesis in U. virens. In ∆UvSorA and ∆UvSorB mutants, the mycelial growth, sporulation and hyphal hydrophobicity were increased dramatically, while the resistances to osmotic pressure, metal cations, and fungicides were reduced. Both phytotoxic activity of rice germinated seeds and cell wall integrity were also reduced. Furthermore, mycelia and cell walls of ∆UvSorA and ∆UvSorB mutants showed alterations of microscopic and submicroscopic structures. In addition, feeding experiment showed that sorbicillinoids could restore mycelial growth, sporulation, and cell wall integrity in ∆UvSorA and ∆UvSorB mutants. The results demonstrated that both UvSorA and UvSorB were responsible for sorbicillinoid biosynthesis in U. virens, and contributed to development (mycelial growth, sporulation, and cell wall integrity), stress responses, and phytotoxicity through sorbicillinoid mediation. It provides an insight into further investigation of biological functions and biosynthesis of sorbicillinoids.
Collapse
Affiliation(s)
- Xuping Zhang
- State Key Laboratory of Agrobiotechnology, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Dan Xu
- State Key Laboratory of Agrobiotechnology, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Xuwen Hou
- State Key Laboratory of Agrobiotechnology, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Penglin Wei
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jiajin Fu
- State Key Laboratory of Agrobiotechnology, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Zhitong Zhao
- State Key Laboratory of Agrobiotechnology, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Mingpeng Jing
- State Key Laboratory of Agrobiotechnology, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Daowan Lai
- State Key Laboratory of Agrobiotechnology, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Wenbing Yin
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- Correspondence: (W.Y.); (L.Z.)
| | - Ligang Zhou
- State Key Laboratory of Agrobiotechnology, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China
- Correspondence: (W.Y.); (L.Z.)
| |
Collapse
|
4
|
Exploring the Antibacterial Activity of Pestalotiopsis spp. under Different Culture Conditions and Their Chemical Diversity Using LC-ESI-Q-TOF-MS. J Fungi (Basel) 2020; 6:jof6030140. [PMID: 32824944 PMCID: PMC7557868 DOI: 10.3390/jof6030140] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/14/2020] [Accepted: 08/17/2020] [Indexed: 12/12/2022] Open
Abstract
As a result of the capability of fungi to respond to culture conditions, we aimed to explore and compare the antibacterial activity and chemical diversity of two endophytic fungi isolated from Hyptis dilatata and cultured under different conditions by the addition of chemical elicitors, changes in the pH, and different incubation temperatures. Seventeen extracts were obtained from both Pestalotiopsis mangiferae (man-1 to man-17) and Pestalotiopsis microspora (mic-1 to mic-17) and were tested against a panel of pathogenic bacteria. Seven extracts from P. mangiferae and four extracts from P. microspora showed antibacterial activity; while some of these extracts displayed a high-level of selectivity and a broad-spectrum of activity, Pseudomonas aeruginosa was the most inhibited microorganism and was selected to determine the minimal inhibitory concentration (MIC). The MIC was determined for extracts man-6 (0.11 μg/mL) and mic-9 (0.56 μg/mL). Three active extracts obtained from P. mangiferae were analyzed by Liquid Chromatography-Electrospray Ionization-Quadrupole-Time of Flight-Mass Spectrometry (LC–ESI–Q–TOF–MS) to explore the chemical diversity and the variations in the composition. This allows us to propose structures for some of the determined molecular formulas, including the previously reported mangiferaelactone (1), an antibacterial compound.
Collapse
|
5
|
Wei X, Liu C, An F, Lu Y. Induced effect of Ca2+ on curvulamine synthesis by marine-derived fungus Curvularia sp. IFB-Z10 under submerged fermentation. Process Biochem 2019. [DOI: 10.1016/j.procbio.2019.03.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
6
|
Nguyen VH, Kikuchi H, Sasaki H, Iizumi K, Kubohara Y, Oshima Y. Production of novel bispyrone metabolites in the cellular slime mold Dictyostelium giganteum induced by zinc(II) ion. Tetrahedron 2017. [DOI: 10.1016/j.tet.2016.12.040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
7
|
Enhancement of botrallin and TMC-264 production in liquid culture of endophytic fungus Hyalodendriella sp. Ponipodef12 after treatments with metal ions. ELECTRON J BIOTECHN 2016. [DOI: 10.1016/j.ejbt.2016.09.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
8
|
Total Synthesis and Antifungal Activity of Palmarumycin CP17 and Its Methoxy Analogues. Molecules 2016; 21:molecules21050600. [PMID: 27164077 PMCID: PMC6274023 DOI: 10.3390/molecules21050600] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 05/03/2016] [Accepted: 05/04/2016] [Indexed: 12/03/2022] Open
Abstract
Total synthesis of naturally occurring spirobisnaphthalene palmarumycin CP17 and its methoxy analogues was first achieved through Friedel-Crafts acylation, Wolff-Kishner reduction, intramolecular cyclization, ketalization, benzylic oxidation, and demethylation using the inexpensive and readily available methoxybenzene, 1,2-dimethoxybenzene and 1,4-dimethoxybenzene and 1,8-dihydroxynaphthalene as raw materials. Demethylation with (CH3)3SiI at ambient temperature resulted in ring A aromatization and acetal cleavage to give rise to binaphthyl ethers. The antifungal activities of these spirobisnaphthalene derivatives were evaluated, and the results revealed that 5 and 9b exhibit EC50 values of 9.34 µg/mL and 12.35 µg/mL, respectively, against P. piricola.
Collapse
|
9
|
Mou Y, Xu D, Mao Z, Dong X, Lin F, Wang A, Lai D, Zhou L, Xie B. Enhancement of Palmarumycin C12 and C13 Production by the Endophytic Fungus Berkleasmium sp. Dzf12 in an Aqueous-Organic Solvent System. Molecules 2015; 20:20320-33. [PMID: 26569213 PMCID: PMC6331930 DOI: 10.3390/molecules201119700] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Revised: 11/04/2015] [Accepted: 11/05/2015] [Indexed: 12/30/2022] Open
Abstract
The endophytic fungus Berkleasmium sp. Dzf12, isolated from Dioscorea zingiberensis, was found to produce palmarumycins C12 and C13 which possess a great variety of biological activities. Seven biocompatible water-immiscible organic solvents including n-dodecane, n-hexadecane, 1-hexadecene, liquid paraffin, dibutyl phthalate, butyl oleate and oleic acid were evaluated to improve palmarumycins C12 and C13 production in suspension culture of Berkleasmium sp. Dzf12. Among the chosen solvents both butyl oleate and liquid paraffin were the most effective to improve palmarumycins C12 and C13 production. The addition of dibutyl phthalate, butyl oleate and oleic acid to the cultures of Berkleasmium sp. Dzf12 significantly enhanced palmarumycin C12 production by adsorbing palmarumycin C12 into the organic phase. When butyl oleate was fed at 5% (v/v) in medium at the beginning of fermentation (day 0), the highest palmarumycin C12 yield (191.6 mg/L) was achieved, about a 34.87-fold increase in comparison with the control (5.3 mg/L). n-Dodecane, 1-hexadecene and liquid paraffin had a great influence on the production of palmarumycin C13. When liquid paraffin was added at 10% (v/v) in medium on day 3 of fermentation, the palmarumycin C13 yield reached a maximum value (134.1 mg/L), which was 4.35-fold that of the control (30.8 mg/L). Application of the aqueous-organic solvent system should be a simple and efficient process strategy for enhancing palmarumycin C12 and C13 production in liquid cultures of the endophytic fungus Berkleasmium sp. Dzf12.
Collapse
Affiliation(s)
- Yan Mou
- Department of Plant Pathology, College of Agronomy and Biotechnology, China Agronomy and Biotechnology, Beijing 100193, China.
| | - Dan Xu
- Department of Plant Pathology, College of Agronomy and Biotechnology, China Agronomy and Biotechnology, Beijing 100193, China.
| | - Ziling Mao
- Department of Plant Pathology, College of Agronomy and Biotechnology, China Agronomy and Biotechnology, Beijing 100193, China.
| | - Xuejiao Dong
- Department of Plant Pathology, College of Agronomy and Biotechnology, China Agronomy and Biotechnology, Beijing 100193, China.
| | - Fengke Lin
- Department of Plant Pathology, College of Agronomy and Biotechnology, China Agronomy and Biotechnology, Beijing 100193, China.
| | - Ali Wang
- Department of Plant Pathology, College of Agronomy and Biotechnology, China Agronomy and Biotechnology, Beijing 100193, China.
| | - Daowan Lai
- Department of Plant Pathology, College of Agronomy and Biotechnology, China Agronomy and Biotechnology, Beijing 100193, China.
| | - Ligang Zhou
- Department of Plant Pathology, College of Agronomy and Biotechnology, China Agronomy and Biotechnology, Beijing 100193, China.
| | - Bingyan Xie
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
10
|
Kornienko A, Evidente A, Vurro M, Mathieu V, Cimmino A, Evidente M, van Otterlo WAL, Dasari R, Lefranc F, Kiss R. Toward a Cancer Drug of Fungal Origin. Med Res Rev 2015; 35:937-67. [PMID: 25850821 PMCID: PMC4529806 DOI: 10.1002/med.21348] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Although fungi produce highly structurally diverse metabolites, many of which have served as excellent sources of pharmaceuticals, no fungi-derived agent has been approved as a cancer drug so far. This is despite a tremendous amount of research being aimed at the identification of fungal metabolites with promising anticancer activities. This review discusses the results of clinical testing of fungal metabolites and their synthetic derivatives, with the goal to evaluate how far we are from an approved cancer drug of fungal origin. Also, because in vivo studies in animal models are predictive of the efficacy and toxicity of a given compound in a clinical situation, literature describing animal cancer testing of compounds of fungal origin is reviewed as well. Agents showing the potential to advance to clinical trials are also identified. Finally, the technological challenges involved in the exploitation of fungal biodiversity and procurement of sufficient quantities of clinical candidates are discussed, and potential solutions that could be pursued by researchers are highlighted.
Collapse
Affiliation(s)
- Alexander Kornienko
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, Texas 78666, USA
| | - Antonio Evidente
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Napoli, Italy
| | - Maurizio Vurro
- Institute of Sciences of Food Production, National Research Council, Via Amendola 122/0, 70126 Bari, Italy
| | - Véronique Mathieu
- Laboratorie de Cancérologie et de Toxicologie Expérimentale, Faculté de Pharmacie, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Alessio Cimmino
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Napoli, Italy
| | - Marco Evidente
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Napoli, Italy
| | - Willem A. L. van Otterlo
- Department of Chemistry and Polymer Science, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
| | - Ramesh Dasari
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, Texas 78666, USA
| | - Florence Lefranc
- Service de Neurochirurgie, Hôpital Erasme; Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Robert Kiss
- Laboratorie de Cancérologie et de Toxicologie Expérimentale, Faculté de Pharmacie, Université Libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
11
|
Venugopalan A, Srivastava S. Endophytes as in vitro production platforms of high value plant secondary metabolites. Biotechnol Adv 2015. [PMID: 26225453 DOI: 10.1016/j.biotechadv.2015.07.004] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Many reports have been published on bioprospecting of endophytic fungi capable of producing high value bioactive molecules like, paclitaxel, vincristine, vinblastine, camptothecin and podophyllotoxin. However, commercial exploitation of endophytes for high value-low volume plant secondary metabolites remains elusive due to widely reported genomic instability of endophytes in the axenic culture. While most of the endophyte research focuses on screening endophytes for novel or existing high value biomolecules, very few reports seek to explore the possible mechanisms of production of host-plant associated or novel secondary metabolites in these organisms. With an overview of host-endophyte relationship and its possible impact on the secondary metabolite production potential of endophytes, the review highlights the evidence reported for and against the presence of host-independent biosynthetic machinery in endophytes. The review aims to address the question, why should and how can endophytes be exploited for large scale in vitro production of high value phytochemicals? In this regard, various bioprocess optimization strategies that have been applied to sustain and enhance the product yield from the endophytes have also been described in detail. Further, techniques like mixed fermentation/co-cultivation and use of epigenetic modifiers have also been discussed as potential strategies to activate cryptic gene clusters in endophytes, thereby aiding in novel metabolite discovery and overcoming the limitations associated with axenic culture of endophytes.
Collapse
Affiliation(s)
- Aarthi Venugopalan
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600 036, India
| | - Smita Srivastava
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600 036, India.
| |
Collapse
|
12
|
Luo H, Liu H, Cao Y, Xu D, Mao Z, Mou Y, Meng J, Lai D, Liu Y, Zhou L. Enhanced production of botrallin and TMC-264 with in situ macroporous resin adsorption in mycelial liquid culture of the endophytic fungus Hyalodendriella sp. Ponipodef12. Molecules 2014; 19:14221-34. [PMID: 25211003 PMCID: PMC6271592 DOI: 10.3390/molecules190914221] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 09/01/2014] [Accepted: 09/03/2014] [Indexed: 01/16/2023] Open
Abstract
Hyalodendriella sp. Ponipodef12, an endophytic fungus from the hybrid "Neva" of Populus deltoides × P. nigra, is a high producer of the bioactive dibenzo-α-pyrones botrallin and TMC-264. However, both the botrallin and TMC-264 produced by Hyalodendriella sp. Ponipodef12 were retained as both intracellular and extracellular products. The aim of this study was to evaluate an in situ macroporous resin adsorption for enhancement of botrallin and TMC-264 production in mycelial liquid culture of Hyalodendriella sp. Ponipodef12. Production of botrallin and TMC-264 was most effectively enhanced by macroporous resin DM-301 among the thirteen nonionic macroporous resins tested. The highest botrallin yield (51.47 mg/L, which was 2.29-fold higher than the control at 22.49 mg/L) was obtained by adding resin DM-301 at 4.38% (g/mL) to the culture broth on day 24 and allowing a period of 4 days for adsorption. The highest TMC-264 yield reached 47.74 mg/L, which was 11.76-fold higher than that of the control (4.06 mg/L), and was achieved by adding DM-301 resin at 4.38% (w/v) in the culture broth on day 24 and allowing a period of 6 days for adsorption. The results show that in situ resin adsorption is an effective strategy for enhancing production of botrallin and TMC-264, and also for facilitating their recovery from mycelial liquid culture of Hyalodendriella sp. Ponipodef12.
Collapse
Affiliation(s)
- Haiyu Luo
- MOA Key Laboratory of Plant Pathology, Department of Plant Pathology, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China.
| | - Hongwei Liu
- MOA Key Laboratory of Plant Pathology, Department of Plant Pathology, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China.
| | - Yuheng Cao
- MOA Key Laboratory of Plant Pathology, Department of Plant Pathology, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China.
| | - Dan Xu
- MOA Key Laboratory of Plant Pathology, Department of Plant Pathology, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China.
| | - Ziling Mao
- MOA Key Laboratory of Plant Pathology, Department of Plant Pathology, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China.
| | - Yan Mou
- MOA Key Laboratory of Plant Pathology, Department of Plant Pathology, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China.
| | - Jiajia Meng
- MOA Key Laboratory of Plant Pathology, Department of Plant Pathology, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China.
| | - Daowan Lai
- MOA Key Laboratory of Plant Pathology, Department of Plant Pathology, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China.
| | - Yang Liu
- Institute of Agro-products Processing Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Ligang Zhou
- MOA Key Laboratory of Plant Pathology, Department of Plant Pathology, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
13
|
Antimicrobial and antioxidant activities and effect of 1-hexadecene addition on palmarumycin C2 and C3 yields in liquid culture of endophytic fungus Berkleasmium sp. Dzf12. Molecules 2013; 18:15587-99. [PMID: 24352015 PMCID: PMC6270283 DOI: 10.3390/molecules181215587] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 12/03/2013] [Accepted: 12/09/2013] [Indexed: 11/21/2022] Open
Abstract
Two spirobisnaphthalenes, namely palmarumycins C2 and C3, were isolated from cultures of the endophytic fungus Berkleasmium sp. Dzf12 after treatment with 1-hexadecene. After addition of 1-hexadecene at 10% to the medium on day 6 of culture, the maximal yields of palmarumycins C2 and C3 were obtained as 0.40 g/L and 1.19 g/L, which were 40.00 fold and 59.50 fold higher, respectively, in comparison with those of the control (0.01 g/L and 0.02 g/L). The results indicated that addition of 1-hexadecene can be an effective strategy for enhancing the production of palmarumycins C2 and C3 in liquid culture of endophytic fungus Berkleasmium sp. Dzf12. Palmarumycin C3 exhibited stronger antimicrobial and antioxidant activities than palmarumycin C2.
Collapse
|
14
|
Shan T, Lu S, Luo C, Luo R, Mou Y, Wang M, Peng Y, Zhou L. Preparative separation of spirobisnaphthalenes from endophytic fungus Berkleasmium sp. Dzf12 by high-speed counter-current chromatography. Molecules 2013; 18:12896-908. [PMID: 24135943 PMCID: PMC6270015 DOI: 10.3390/molecules181012896] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 09/29/2013] [Accepted: 10/12/2013] [Indexed: 11/16/2022] Open
Abstract
High-speed counter-current chromatography (HSCCC) was applied for the first time for the preparative separation of spirobisnaphthalenes from a crude extract of the endophytic fungus Berkleasmium sp. Dzf12, associated with the medicinal plant Dioscorea zingiberensis. Six spirobisnaphthalenes were successfully separated by HSCCC with a two-phase solvent system composed of n-hexane-chloroform-methanol-water (1.5:3.0:2.5:2.0, v/v). About 18.0 mg of diepoxin κ (1), 245.7 mg of palmarumycin C13 (2), 42.4 mg of palmarumycin C16 (3), 42.2 mg of palmarumycin C15 (4), 32.6 mg of diepoxin δ (5), and 22.3 mg of diepoxin γ (6) with purities of 56.82, 71.39, 76.57, 75.86, 91.01 and 82.48%, respectively, as determined by high-performance liquid chromatography (HPLC), were obtained from 500 mg of the crude extract in a one-step elution within 7 h of separation procedure by HSCCC. The purified spirobisnaphthalenes were further structurally characterized by means of physicochemical and spectrometric analysis.
Collapse
Affiliation(s)
- Tijiang Shan
- MOA Key Laboratory of Plant Pathology, Department of Plant Pathology, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China.
| | | | | | | | | | | | | | | |
Collapse
|