1
|
Foran D, Antoniades C, Akoumianakis I. Emerging Roles for Sphingolipids in Cardiometabolic Disease: A Rational Therapeutic Target? Nutrients 2024; 16:3296. [PMID: 39408263 PMCID: PMC11478599 DOI: 10.3390/nu16193296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/19/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Cardiovascular disease is a leading cause of morbidity and mortality. New research elucidates increasingly complex relationships between cardiac and metabolic health, giving rise to new possible therapeutic targets. Sphingolipids are a heterogeneous class of bioactive lipids with critical roles in normal human physiology. They have also been shown to play both protective and deleterious roles in the pathogenesis of cardiovascular disease. Ceramides are implicated in dysregulating insulin signalling, vascular endothelial function, inflammation, oxidative stress, and lipoprotein aggregation, thereby promoting atherosclerosis and vascular disease. Ceramides also advance myocardial disease by enhancing pathological cardiac remodelling and cardiomyocyte death. Glucosylceramides similarly contribute to insulin resistance and vascular inflammation, thus playing a role in atherogenesis and cardiometabolic dysfunction. Sphingosing-1-phosphate, on the other hand, may ameliorate some of the pathological functions of ceramide by protecting endothelial barrier integrity and promoting cell survival. Sphingosine-1-phosphate is, however, implicated in the development of cardiac fibrosis. This review will explore the roles of sphingolipids in vascular, cardiac, and metabolic pathologies and will evaluate the therapeutic potential in targeting sphingolipids with the aim of prevention and reversal of cardiovascular disease in order to improve long-term cardiovascular outcomes.
Collapse
Affiliation(s)
| | | | - Ioannis Akoumianakis
- Cardiovascular Medicine Division, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK; (D.F.); (C.A.)
| |
Collapse
|
2
|
Xu X, Ye A, Zhang T, Pan Y, Jiang H, Deng L, Qin Y, Li J, Han J, Liu W. The novel lactoferrin and DHA-codelivered liposomes with different membrane structures: Fabrication, in vitro infant digestion, and suckling pig intestinal organoid absorption. Food Chem 2024; 441:138346. [PMID: 38241927 DOI: 10.1016/j.foodchem.2023.138346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/27/2023] [Accepted: 12/30/2023] [Indexed: 01/21/2024]
Abstract
Inspired by membrane structure of breast milk and infant formula fat globules, four liposomes with different particle size (large and small) and compositions (Single phospholipids contained phosphatidylcholine, complex phospholipids contained phosphatidylcholine, phosphatidylethanolamine and sphingomyelin) were fabricated to deliver lactoferrin and DHA. In vitro infant semi-dynamic digestive behavior and absorption in intestinal organoids of liposomes were investigated. Liposomal structures were negligible changed during semi-dynamic gastric digestion while damaged in intestine. Liposomal degradation rate was primarily influenced by particle size, and complex phospholipids accelerated DHA hydrolysis. The release rate of DHA (91.7 ± 1.3 %) in small-sized liposomes (0.181 ± 0.001 μm) was higher than free DHA (unencapsulated, 64.6 ± 3.4 %). Complex phospholipids liposomal digesta exhibited higher transport efficiency (3.4-fold for fatty acids and 2.0-fold for amino acids) and better organoid growth than digesta of bare nutrients. This study provided new insights into membrane structure-functionality relationship of liposomes and may aid in the development of novel infant nutrient carriers.
Collapse
Affiliation(s)
- Xiankang Xu
- Food Nutrition Science Center, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China.
| | - Aiqian Ye
- Riddet Institute, Massey University, Private Bag 11 222, Palmerston North 4442, New Zealand.
| | - Tingting Zhang
- Food Nutrition Science Center, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China.
| | - Yujie Pan
- Food Nutrition Science Center, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China.
| | - Hanyun Jiang
- Food Nutrition Science Center, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China.
| | - Leiyu Deng
- Food Nutrition Science Center, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China.
| | - Yumei Qin
- Food Nutrition Science Center, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China.
| | - Jessie Li
- Alliance Nutrition Group, Shanghai-Mira Commercial Centre, Suite C206, No.2633, West Yanan Road, 200336 Shanghai, China.
| | - Jianzhong Han
- Food Nutrition Science Center, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China.
| | - Weilin Liu
- Food Nutrition Science Center, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China.
| |
Collapse
|
3
|
Nojima H, Shimizu H, Murakami T, Shuto K, Koda K. Critical Roles of the Sphingolipid Metabolic Pathway in Liver Regeneration, Hepatocellular Carcinoma Progression and Therapy. Cancers (Basel) 2024; 16:850. [PMID: 38473211 DOI: 10.3390/cancers16050850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/14/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
The sphingolipid metabolic pathway, an important signaling pathway, plays a crucial role in various physiological processes including cell proliferation, survival, apoptosis, and immune regulation. The liver has the unique ability to regenerate using bioactive lipid mediators involving multiple sphingolipids, including ceramide and sphingosine 1-phosphate (S1P). Dysregulation of the balance between sphingomyelin, ceramide, and S1P has been implicated in the regulation of liver regeneration and diseases, including liver fibrosis and hepatocellular carcinoma (HCC). Understanding and modulating this balance may have therapeutic implications for tumor proliferation, progression, and metastasis in HCC. For cancer therapy, several inhibitors and activators of sphingolipid signaling, including ABC294640, SKI-II, and FTY720, have been discussed. Here, we elucidate the critical roles of the sphingolipid pathway in the regulation of liver regeneration, fibrosis, and HCC. Regulation of sphingolipids and their corresponding enzymes may considerably influence new insights into therapies for various liver disorders and diseases.
Collapse
Affiliation(s)
- Hiroyuki Nojima
- Department of Surgery, Teikyo University Chiba Medical Center, 3426-3, Anesaki, Ichihara, Chiba 299-0011, Japan
| | - Hiroaki Shimizu
- Department of Surgery, Teikyo University Chiba Medical Center, 3426-3, Anesaki, Ichihara, Chiba 299-0011, Japan
| | - Takashi Murakami
- Department of Surgery, Teikyo University Chiba Medical Center, 3426-3, Anesaki, Ichihara, Chiba 299-0011, Japan
| | - Kiyohiko Shuto
- Department of Surgery, Teikyo University Chiba Medical Center, 3426-3, Anesaki, Ichihara, Chiba 299-0011, Japan
| | - Keiji Koda
- Department of Surgery, Teikyo University Chiba Medical Center, 3426-3, Anesaki, Ichihara, Chiba 299-0011, Japan
| |
Collapse
|
4
|
Maier AG, van Ooij C. The role of cholesterol in invasion and growth of malaria parasites. Front Cell Infect Microbiol 2022; 12:984049. [PMID: 36189362 PMCID: PMC9522969 DOI: 10.3389/fcimb.2022.984049] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/15/2022] [Indexed: 11/24/2022] Open
Abstract
Malaria parasites are unicellular eukaryotic pathogens that develop through a complex lifecycle involving two hosts, an anopheline mosquito and a vertebrate host. Throughout this lifecycle, the parasite encounters widely differing conditions and survives in distinct ways, from an intracellular lifestyle in the vertebrate host to exclusively extracellular stages in the mosquito. Although the parasite relies on cholesterol for its growth, the parasite has an ambiguous relationship with cholesterol: cholesterol is required for invasion of host cells by the parasite, including hepatocytes and erythrocytes, and for the development of the parasites in those cells. However, the parasite is unable to produce cholesterol itself and appears to remove cholesterol actively from its own plasma membrane, thereby setting up a cholesterol gradient inside the infected host erythrocyte. Overall a picture emerges in which the parasite relies on host cholesterol and carefully controls its transport. Here, we describe the role of cholesterol at the different lifecycle stages of the parasites.
Collapse
Affiliation(s)
- Alexander G. Maier
- Research School of Biology, The Australian National University, Canberra ACT, Australia
- *Correspondence: Alexander G. Maier, ; Christiaan van Ooij,
| | - Christiaan van Ooij
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, United Kingdom
- *Correspondence: Alexander G. Maier, ; Christiaan van Ooij,
| |
Collapse
|
5
|
Acid and Neutral Sphingomyelinase Behavior in Radiation-Induced Liver Pyroptosis and in the Protective/Preventive Role of rMnSOD. Int J Mol Sci 2020; 21:ijms21093281. [PMID: 32384654 PMCID: PMC7247354 DOI: 10.3390/ijms21093281] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/02/2020] [Accepted: 05/04/2020] [Indexed: 02/08/2023] Open
Abstract
Sphingomyelins (SMs) are a class of relevant bioactive molecules that act as key modulators of different cellular processes, such as growth arrest, exosome formation, and the inflammatory response influenced by many environmental conditions, leading to pyroptosis, a form of programmed cell death due to Caspase-1 involvement. To study liver pyroptosis and hepatic SM metabolism via both lysosomal acid SMase (aSMase) and endoplasmic reticulum/nucleus neutral SMase (nSMase) during the exposure of mice to radiation and to ascertain if this process can be modulated by protective molecules, we used an experimental design (previously used by us) to evaluate the effects of both ionizing radiation and a specific protective molecule (rMnSOD) in the brain in collaboration with the Joint Institute for Nuclear Research, Dubna (Russia). As shown by the Caspase-1 immunostaining of the liver sections, the radiation resulted in the loss of the normal cell structure alongside a progressive and dose-dependent increase of the labelling, treatment, and pretreatment with rMnSOD, which had a significant protective effect on the livers. SM metabolic analyses, performed on aSMase and nSMase gene expression, as well as protein content and activity, proved that rMnSOD was able to significantly reduce radiation-induced damage by playing both a protective role via aSMase and a preventive role via nSMase.
Collapse
|
6
|
A Role for Neutral Sphingomyelinase in Wound Healing Induced by Keratinocyte Proliferation upon 1 α, 25-Dihydroxyvitamin D 3 Treatment. Int J Mol Sci 2019; 20:ijms20153634. [PMID: 31349547 PMCID: PMC6695647 DOI: 10.3390/ijms20153634] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 07/22/2019] [Accepted: 07/22/2019] [Indexed: 12/14/2022] Open
Abstract
The skin has many functions, such as providing a barrier against injury and pathogens, protecting from ultraviolet light, and regulating body temperature. Mechanical causes and many different pathologies can lead to skin damage. Therefore, it is important for the skin to be always adaptable and renewable and for cells to undergo proliferation. Here, we demonstrate that 1α, 25-dihydroxyvitamin D3 (VD3) stimulates keratinocyte proliferation, leading to wound closure in a simulation model of injury. Functionally, our results show that VD3 acts by stimulating cyclin D1, a cyclin that promotes the G1/S transition of the cell cycle. The study on the mechanism underlying cyclin D1 expression upon VD3 stimulation clearly demonstrates a key role of neutral sphingomyelinase. The enzyme, whose gene and protein expression is stimulated by VD3, is itself able to induce effects on cyclin D1 and wound healing similar to those obtained with VD3. These results could be very useful in the future to better understand wound mechanisms and improve therapeutic interventions.
Collapse
|
7
|
Alvarado-Kristensson M, Rosselló CA. The Biology of the Nuclear Envelope and Its Implications in Cancer Biology. Int J Mol Sci 2019; 20:E2586. [PMID: 31137762 PMCID: PMC6566445 DOI: 10.3390/ijms20102586] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 05/07/2019] [Accepted: 05/25/2019] [Indexed: 12/18/2022] Open
Abstract
The formation of the nuclear envelope and the subsequent compartmentalization of the genome is a defining feature of eukaryotes. Traditionally, the nuclear envelope was purely viewed as a physical barrier to preserve genetic material in eukaryotic cells. However, in the last few decades, it has been revealed to be a critical cellular component in controlling gene expression and has been implicated in several human diseases. In cancer, the relevance of the cell nucleus was first reported in the mid-1800s when an altered nuclear morphology was observed in tumor cells. This review aims to give a current and comprehensive view of the role of the nuclear envelope on cancer first by recapitulating the changes of the nuclear envelope during cell division, second, by reviewing the role of the nuclear envelope in cell cycle regulation, signaling, and the regulation of the genome, and finally, by addressing the nuclear envelope link to cell migration and metastasis and its use in cancer prognosis.
Collapse
Affiliation(s)
- Maria Alvarado-Kristensson
- Molecular Pathology, Department of Translational Medicine, Lund University, Skåne University Hospital, 20502 Malmö, Sweden.
| | - Catalina Ana Rosselló
- Laboratory of Molecular Cell Biomedicine, University of the Balearic Islands, 07121 Palma de Mallorca, Spain.
- Lipopharma Therapeutics, Isaac Newton, 07121 Palma de Mallorca, Spain.
| |
Collapse
|
8
|
Codini M, Conte C, Cataldi S, Arcuri C, Lazzarini A, Ceccarini MR, Patria F, Floridi A, Mecca C, Ambesi-Impiombato FS, Beccari T, Curcio F, Albi E. Nuclear Lipid Microdomains Regulate Daunorubicin Resistance in Hepatoma Cells. Int J Mol Sci 2018; 19:ijms19113424. [PMID: 30388783 PMCID: PMC6274808 DOI: 10.3390/ijms19113424] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 10/26/2018] [Accepted: 10/29/2018] [Indexed: 12/26/2022] Open
Abstract
Daunorubicin is an anticancer drug, and cholesterol is involved in cancer progression, but their relationship has not been defined. In this study, we developed a novel experimental model that utilizes daunorubicin, cholesterol, and daunorubicin plus cholesterol in the same cells (H35) to search for the role of nuclear lipid microdomains, rich in cholesterol and sphingomyelin, in drug resistance. We find that the daunorubicin induces perturbation of nuclear lipid microdomains, localized in the inner nuclear membrane, where active chromatin is anchored. As changes of sphingomyelin species in nuclear lipid microdomains depend on neutral sphingomyelinase activity, we extended our studies to investigate whether the enzyme is modulated by daunorubicin. Indeed the drug stimulated the sphingomyelinase activity that induced reduction of saturated long chain fatty acid sphingomyelin species in nuclear lipid microdomains. Incubation of untreated-drug cells with high levels of cholesterol resulted in the inhibition of sphingomyelinase activity with increased saturated fatty acid sphingomyelin species. In daunodubicin-treated cells, incubation with cholesterol reversed the action of the drug by acting via neutral sphingomyelinase. In conclusion, we suggest that cholesterol and sphingomyelin-forming nuclear lipid microdomains are involved in the drug resistance.
Collapse
Affiliation(s)
- Michela Codini
- Department of Pharmaceutical Sciences, University of Perugia, 06126 Perugia, Italy.
| | - Carmela Conte
- Department of Pharmaceutical Sciences, University of Perugia, 06126 Perugia, Italy.
| | - Samuela Cataldi
- Department of Pharmaceutical Sciences, University of Perugia, 06126 Perugia, Italy.
| | - Cataldo Arcuri
- Department of Experimental Medicine, University of Perugia, 06126 Perugia, Italy.
| | - Andrea Lazzarini
- Laboratory of Nuclear Lipid BioPathology, CRABiON, 06122 Perugia, Italy.
| | | | - Federica Patria
- Department of Pharmaceutical Sciences, University of Perugia, 06126 Perugia, Italy.
| | - Alessandro Floridi
- Laboratory of Nuclear Lipid BioPathology, CRABiON, 06122 Perugia, Italy.
| | - Carmen Mecca
- Department of Experimental Medicine, University of Perugia, 06126 Perugia, Italy.
| | | | - Tommaso Beccari
- Department of Pharmaceutical Sciences, University of Perugia, 06126 Perugia, Italy.
| | - Francesco Curcio
- Dipartimento di Area Medica, University of Udine, 33100 Udine, Italy.
| | - Elisabetta Albi
- Department of Experimental Medicine, University of Perugia, 06126 Perugia, Italy.
| |
Collapse
|
9
|
Ramamurthy B, Cohen S, Canales M, Coffman FD. Three-Dimensional Cellular Raman Analysis: Evidence of Highly Ordered Lipids Within Cell Nuclei. J Histochem Cytochem 2018; 66:889-902. [PMID: 30138043 DOI: 10.1369/0022155418794125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Striking levels of spatial organization exist among and within interphase cell chromosomes, raising the possibility that other nuclear molecular components may also be organized in ways that facilitate nuclear function. To further examine molecular distributions and organization within cell nuclei, we utilized Raman spectroscopy to map distributions of molecular components, with a focus on cellular lipids. Although the vast majority of cellular lipids are associated with membranes, mapping the 2870/2850 cm-1 lipid peak ratios revealed that the most highly ordered lipids within interphase cells are found within cell nuclei. This finding was seen in cells from multiple tissue types, noncancerous cells, and in cancer cell lines of different metastatic potential. These highly ordered lipids colocalize with nuclear chromatin, are present throughout the nuclear volume, and remain colocalized with chromatin through mitosis, when the nuclear envelope has dissociated. Phosphatidylinositol is a major component of the highly ordered lipids. The presence of phosphatidylinositol and other lipids in the nuclear interior is well established, but their highly ordered packing has not been reported and represents a unique finding. The molecular interactions involved in the formation and maintenance of these highly ordered lipids, and their potential effects on nuclear activities, remain to be discovered.
Collapse
Affiliation(s)
- Bhagavathi Ramamurthy
- Center for Biophysical Pathology, Newark, New Jersey.,Department of Biology, Delaware State University, Dover, Delaware
| | - Stanley Cohen
- Center for Biophysical Pathology, Newark, New Jersey.,Department of Pathology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | | | - Frederick D Coffman
- Center for Biophysical Pathology, Newark, New Jersey.,Department of Health Informatics and Department of Primary Care, Rutgers, The State University of New Jersey, Newark, New Jersey
| |
Collapse
|
10
|
Santos AL, Preta G. Lipids in the cell: organisation regulates function. Cell Mol Life Sci 2018; 75:1909-1927. [PMID: 29427074 PMCID: PMC11105414 DOI: 10.1007/s00018-018-2765-4] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 01/04/2018] [Accepted: 01/29/2018] [Indexed: 12/19/2022]
Abstract
Lipids are fundamental building blocks of all cells and play important roles in the pathogenesis of different diseases, including inflammation, autoimmune disease, cancer, and neurodegeneration. The lipid composition of different organelles can vary substantially from cell to cell, but increasing evidence demonstrates that lipids become organised specifically in each compartment, and this organisation is essential for regulating cell function. For example, lipid microdomains in the plasma membrane, known as lipid rafts, are platforms for concentrating protein receptors and can influence intra-cellular signalling. Lipid organisation is tightly regulated and can be observed across different model organisms, including bacteria, yeast, Drosophila, and Caenorhabditis elegans, suggesting that lipid organisation is evolutionarily conserved. In this review, we summarise the importance and function of specific lipid domains in main cellular organelles and discuss recent advances that investigate how these specific and highly regulated structures contribute to diverse biological processes.
Collapse
Affiliation(s)
- Ana L Santos
- Institut National de la Santé et de la Recherche Médicale, U1001 and Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Giulio Preta
- Institute of Biochemistry, Vilnius University, Sauletekio 7, LT-10257, Vilnius, Lithuania.
| |
Collapse
|
11
|
Neutral Sphingomyelinase Behaviour in Hippocampus Neuroinflammation of MPTP-Induced Mouse Model of Parkinson's Disease and in Embryonic Hippocampal Cells. Mediators Inflamm 2017; 2017:2470950. [PMID: 29343884 PMCID: PMC5733979 DOI: 10.1155/2017/2470950] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 09/16/2017] [Accepted: 09/26/2017] [Indexed: 01/31/2023] Open
Abstract
Neutral sphingomyelinase is known to be implicated in growth arrest, differentiation, proliferation, and apoptosis. Although previous studies have reported the involvement of neutral sphingomyelinase in hippocampus physiopathology, its behavior in the hippocampus during Parkinson's disease remains undetected. In this study, we show an upregulation of inducible nitric oxide synthase and a downregulation of neutral sphingomyelinase in the hippocampus of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine- (MPTP-) induced mouse model of Parkinson's disease. Moreover, the stimulation of neutral sphingomyelinase activity with vitamin 1,25-dihydroxyvitamin D3 reduces specifically saturated fatty acid sphingomyelin by making sphingomyelin a less rigid molecule that might influence neurite plasticity. The possible biological relevance of the increase of neutral sphingomyelinase in Parkinson's disease is discussed.
Collapse
|
12
|
The Role of Sphingosine-1-Phosphate and Ceramide-1-Phosphate in Inflammation and Cancer. Mediators Inflamm 2017; 2017:4806541. [PMID: 29269995 PMCID: PMC5705877 DOI: 10.1155/2017/4806541] [Citation(s) in RCA: 140] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/01/2017] [Accepted: 08/30/2017] [Indexed: 01/02/2023] Open
Abstract
Inflammation is part of our body's response to tissue injury and pathogens. It helps to recruit various immune cells to the site of inflammation and activates the production of mediators to mobilize systemic protective processes. However, chronic inflammation can increase the risk of diseases like cancer. Apart from cytokines and chemokines, lipid mediators, particularly sphingosine-1-phosphate (S1P) and ceramide-1-phosphate (C1P), contribute to inflammation and cancer. S1P is an important player in inflammation-associated colon cancer progression. On the other hand, C1P has been recognized to be involved in cancer cell growth, migration, survival, and inflammation. However, whether C1P is involved in inflammation-associated cancer is not yet established. In contrast, few studies have also suggested that S1P and C1P are involved in anti-inflammatory pathways regulated in certain cell types. Ceramide is the substrate for ceramide kinase (CERK) to yield C1P, and sphingosine is phosphorylated to S1P by sphingosine kinases (SphKs). Biological functions of sphingolipid metabolites have been studied extensively. Ceramide is associated with cell growth inhibition and enhancement of apoptosis while S1P and C1P are associated with enhancement of cell growth and survival. Altogether, S1P and C1P are important regulators of ceramide level and cell fate. This review focuses on S1P and C1P involvement in inflammation and cancer with emphasis on recent progress in the field.
Collapse
|
13
|
Fratini F, Raggi C, Sferra G, Birago C, Sansone A, Grasso F, Currà C, Olivieri A, Pace T, Mochi S, Picci L, Ferreri C, Di Biase A, Pizzi E, Ponzi M. An Integrated Approach to Explore Composition and Dynamics of Cholesterol-rich Membrane Microdomains in Sexual Stages of Malaria Parasite. Mol Cell Proteomics 2017; 16:1801-1814. [PMID: 28798222 DOI: 10.1074/mcp.m117.067041] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 08/04/2017] [Indexed: 12/26/2022] Open
Abstract
Membrane microdomains that include lipid rafts, are involved in key physiological and pathological processes and participate in the entry of endocellular pathogens. These assemblies, enriched in cholesterol and sphingolipids, form highly dynamic, liquid-ordered phases that can be separated from the bulk membranes thanks to their resistance to solubilization by nonionic detergents. To characterize complexity and dynamics of detergent-resistant membranes of sexual stages of the rodent malaria parasite Plasmodium berghei, here we propose an integrated study of raft components based on proteomics, lipid analysis and bioinformatics. This analysis revealed unexpected heterogeneity and unexplored pathways associated with these specialized assemblies. Protein-protein relationships and protein-lipid co-occurrence were described through multi-component networks. The proposed approach can be widely applied to virtually every cell type in different contexts and perturbations, under physiological and/or pathological conditions.
Collapse
Affiliation(s)
- Federica Fratini
- From the ‡Istituto Superiore di Sanità, Dipartimento di Malattie Infettive, Parassitarie ed Immunomediate
| | - Carla Raggi
- §Istituto Superiore di Sanità, Dipartimento di Biologia Cellulare e Neuroscienze
| | - Gabriella Sferra
- From the ‡Istituto Superiore di Sanità, Dipartimento di Malattie Infettive, Parassitarie ed Immunomediate
| | - Cecilia Birago
- From the ‡Istituto Superiore di Sanità, Dipartimento di Malattie Infettive, Parassitarie ed Immunomediate
| | - Anna Sansone
- ¶Consiglio Nazionale delle Ricerche, I.S.O.F. - Bio Free Radicals
| | - Felicia Grasso
- From the ‡Istituto Superiore di Sanità, Dipartimento di Malattie Infettive, Parassitarie ed Immunomediate
| | - Chiara Currà
- From the ‡Istituto Superiore di Sanità, Dipartimento di Malattie Infettive, Parassitarie ed Immunomediate.,From the ‡Istituto Superiore di Sanità, Dipartimento di Malattie Infettive, Parassitarie ed Immunomediate
| | - Anna Olivieri
- From the ‡Istituto Superiore di Sanità, Dipartimento di Malattie Infettive, Parassitarie ed Immunomediate
| | - Tomasino Pace
- From the ‡Istituto Superiore di Sanità, Dipartimento di Malattie Infettive, Parassitarie ed Immunomediate
| | - Stefania Mochi
- From the ‡Istituto Superiore di Sanità, Dipartimento di Malattie Infettive, Parassitarie ed Immunomediate
| | - Leonardo Picci
- From the ‡Istituto Superiore di Sanità, Dipartimento di Malattie Infettive, Parassitarie ed Immunomediate
| | - Carla Ferreri
- ¶Consiglio Nazionale delle Ricerche, I.S.O.F. - Bio Free Radicals
| | - Antonella Di Biase
- ‖Istituto Superiore di Sanità, Dipartimento di Sanità Pubblica Veterinaria e Alimentare
| | - Elisabetta Pizzi
- From the ‡Istituto Superiore di Sanità, Dipartimento di Malattie Infettive, Parassitarie ed Immunomediate
| | - Marta Ponzi
- From the ‡Istituto Superiore di Sanità, Dipartimento di Malattie Infettive, Parassitarie ed Immunomediate;
| |
Collapse
|
14
|
Cataldi S, Lazzarini A, Codini M, Cascianelli G, Floridi A, Bartoccini E, Ceccarini MR, Ambesi-Impiombato FS, Beccari T, Curcio F, Albi E. Localization of nuclear actin in nuclear lipid microdomains of liver and hepatoma cells: Possible involvement of sphingomyelin metabolism. THE EUROBIOTECH JOURNAL 2017. [DOI: 10.24190/issn2564-615x/2017/02.07] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Abstract
Nuclear actin has been implicated in different nuclear functions. In this work, its localization in nuclear membrane, chromatin and nuclear lipid microdomains was investigated. The implication of sphingomyelin metabolism was studied. Nuclear membrane, chromatin and nuclear lipid microdomains were purified from hepatocyte nuclei and H35 human hepatoma cell nuclei. The presence of β-actin was analyzed with immunoblotting by using specific antibodies. Sphingomyelinase, sphingomyelin-synthase, and phosphatidylcholine-specific phospholipase C activities were assayed by using radioactivity sphingomyelin and phosphatidylcholine as substrate. The results showed that β-actin is localized in nuclear lipid microdomains and it increases in cancer cells. Evidence is provided to the difference of phosphatidylcholine and sphingomyelin metabolism in various subnuclear fractions of cancer cell nuclei compared with normal cells. Our findings show increase of sphingomyelin-synthase and inhibition of sphingomyelinase activity only in nuclear lipid microdomains. Nuclear lipid microdomains, constituted by phosphatidylcholine, sphingomyelin and cholesterol, play a role as platform for β-actin anchoring. Possible role of sphingomyelin metabolism in cancer cells is discussed.
Collapse
Affiliation(s)
- Samuela Cataldi
- Department of Pharmaceutical Science, University of Perugia, 06100 Perugia , Italy
| | | | - Michela Codini
- Department of Pharmaceutical Science, University of Perugia, 06100 Perugia , Italy
| | | | | | | | | | | | - Tommaso Beccari
- Department of Pharmaceutical Science, University of Perugia, 06100 Perugia , Italy
| | - Francesco Curcio
- Department of Clinical and Biological Sciences, University of Udine, 33100 Udine , Italy
| | - Elisabetta Albi
- Department of Pharmaceutical Science, University of Perugia, 06100 Perugia , Italy
| |
Collapse
|
15
|
Albi E, Krüger M, Hemmersbach R, Lazzarini A, Cataldi S, Codini M, Beccari T, Ambesi-Impiombato FS, Curcio F. Impact of Gravity on Thyroid Cells. Int J Mol Sci 2017; 18:E972. [PMID: 28471415 PMCID: PMC5454885 DOI: 10.3390/ijms18050972] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 04/27/2017] [Accepted: 04/28/2017] [Indexed: 12/15/2022] Open
Abstract
Physical and mental health requires a correct functioning of the thyroid gland, which controls cardiovascular, musculoskeletal, nervous, and immune systems, and affects behavior and cognitive functions. Microgravity, as occurs during space missions, induces morphological and functional changes within the thyroid gland. Here, we review relevant experiments exposing cell cultures (normal and cancer thyroid cells) to simulated and real microgravity, as well as wild-type and transgenic mice to hypergravity and spaceflight conditions. Well-known mechanisms of damage are presented and new ones, such as changes of gene expression for extracellular matrix and cytoskeleton proteins, thyrocyte phenotype, sensitivity of thyrocytes to thyrotropin due to thyrotropin receptor modification, parafollicular cells and calcitonin production, sphingomyelin metabolism, and the expression and movement of cancer molecules from thyrocytes to colloids are highlighted. The identification of new mechanisms of thyroid injury is essential for the development of countermeasures, both on the ground and in space, against thyroid cancer. We also address the question whether normal and cancer cells show a different sensitivity concerning changes of environmental conditions.
Collapse
Affiliation(s)
- Elisabetta Albi
- Department of Pharmaceutical Science, University of Perugia, San Costanzo, via Romana, 06121 Perugia, Italy.
| | - Marcus Krüger
- Clinic and Policlinic for Plastic, Aesthetic and Hand Surgery, Otto-von-Guericke-University, Leipziger Str. 44, 39120 Magdeburg, Germany.
| | - Ruth Hemmersbach
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Gravitational Biology, Linder Höhe, 51147 Cologne, Germany.
| | - Andrea Lazzarini
- Laboratory of Nuclear Lipid BioPathology, CRABiON, Perugia, via Ponchielli 4, 06073 Perugia, Italy.
| | - Samuela Cataldi
- Department of Pharmaceutical Science, University of Perugia, San Costanzo, via Romana, 06121 Perugia, Italy.
| | - Michela Codini
- Department of Pharmaceutical Science, University of Perugia, San Costanzo, via Romana, 06121 Perugia, Italy.
| | - Tommaso Beccari
- Department of Pharmaceutical Science, University of Perugia, San Costanzo, via Romana, 06121 Perugia, Italy.
| | | | - Francesco Curcio
- Dipartimento di Area Medica (DAME), University of Udine, p.le M. Kolbe 4, 33100 Udine, Italy.
| |
Collapse
|
16
|
Kolomiytseva IK, Lakhina AA, Markevich LN, Ignat’ev DA. Phospholipids and cholesterol of liver nuclei during artificial hypobiosis of rats. Biophysics (Nagoya-shi) 2017. [DOI: 10.1134/s0006350917030083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
17
|
Radiation and Thyroid Cancer. Int J Mol Sci 2017; 18:ijms18050911. [PMID: 28445397 PMCID: PMC5454824 DOI: 10.3390/ijms18050911] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 04/11/2017] [Accepted: 04/24/2017] [Indexed: 01/18/2023] Open
Abstract
Radiation-induced damage is a complex network of interlinked signaling pathways, which may result in apoptosis, cell cycle arrest, DNA repair, and cancer. The development of thyroid cancer in response to radiation, from nuclear catastrophes to chemotherapy, has long been an object of study. A basic overview of the ionizing and non-ionizing radiation effects of the sensitivity of the thyroid gland on radiation and cancer development has been provided. In this review, we focus our attention on experiments in cell cultures exposed to ionizing radiation, ultraviolet light, and proton beams. Studies on the involvement of specific genes, proteins, and lipids are also reported. This review also describes how lipids are regulated in response to the radiation-induced damage and how they are involved in thyroid cancer etiology, invasion, and migration and how they can be used as both diagnostic markers and drug targets.
Collapse
|
18
|
Garcia‐Gil M, Pierucci F, Vestri A, Meacci E. Crosstalk between sphingolipids and vitamin D3: potential role in the nervous system. Br J Pharmacol 2017; 174:605-627. [PMID: 28127747 PMCID: PMC6398521 DOI: 10.1111/bph.13726] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 12/16/2016] [Accepted: 01/18/2017] [Indexed: 12/14/2022] Open
Abstract
Sphingolipids are both structural and bioactive compounds. In particular, ceramide and sphingosine 1-phosphate regulate cell fate, inflammation and excitability. 1-α,25-dihydroxyvitamin D3 (1,25(OH)2 D3 ) is known to play an important physiological role in growth and differentiation in a variety of cell types, including neural cells, through genomic actions mediated by its specific receptor, and non-genomic effects that result in the activation of specific signalling pathways. 1,25(OH)2 D3 and sphingolipids, in particular sphingosine 1-phosphate, share many common effectors, including calcium regulation, growth factors and inflammatory cytokines, but it is still not known whether they can act synergistically. Alterations in the signalling and concentrations of sphingolipids and 1,25(OH)2 D3 have been found in neurodegenerative diseases and fingolimod, a structural analogue of sphingosine, has been approved for the treatment of multiple sclerosis. This review, after a brief description of the role of sphingolipids and 1,25(OH)2 D3 , will focus on the potential crosstalk between sphingolipids and 1,25(OH)2 D3 in neural cells.
Collapse
Affiliation(s)
- Mercedes Garcia‐Gil
- Department of BiologyUniversity of PisaPisaItaly
- Interdepartmental Research Center Nutrafood ‘Nutraceuticals and Food for Health’University of PisaPisaItaly
| | - Federica Pierucci
- Department of Experimental and Clinical Biomedical Sciences ‘Mario Serio’, Molecular and Applied Biology Research UnitUniversity of FlorenceFlorenceItaly
- Interuniversitary Miology InstitutesItaly
| | - Ambra Vestri
- Department of Experimental and Clinical Biomedical Sciences ‘Mario Serio’, Molecular and Applied Biology Research UnitUniversity of FlorenceFlorenceItaly
- Interuniversitary Miology InstitutesItaly
| | - Elisabetta Meacci
- Department of Experimental and Clinical Biomedical Sciences ‘Mario Serio’, Molecular and Applied Biology Research UnitUniversity of FlorenceFlorenceItaly
- Interuniversitary Miology InstitutesItaly
| |
Collapse
|
19
|
Gao D, Pang JY, Zhang CE, Li CY, Tu C, Zhang HZ, Niu M, Xiong Y, Xiao XH, Zhao KJ, Gao WW, Wang JB. Poria Attenuates Idiosyncratic Liver Injury Induced by Polygoni Multiflori Radix Praeparata. Front Pharmacol 2016; 7:386. [PMID: 27803670 PMCID: PMC5067826 DOI: 10.3389/fphar.2016.00386] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 10/03/2016] [Indexed: 12/31/2022] Open
Abstract
The hepatotoxicity induced by Polygoni Multiflori Radix Praeparata (PM) has aroused great concern throughout the world. Hence, it is worthwhile to perform studies on the detoxification with the combined use of medicinal herbs based on the compatibility theory of traditional Chinese medicine. In this work, the rat model of PM/LPS-induced idiosyncratic liver injury was used. The effects of Poria, Licorice, and Panax notoginseng on rats of PM/LPS-induced liver injury were investigated respectively, hoping to find the most effective herbal medicine to reduce the hepatotoxicity. According to results of biochemical and histological tests, PM could induce the idiosyncratic hepatotoxicity of rats which presented modest inflammation triggered by non-injurious dose of lipopolysaccharide (LPS). We also found that the combined use of Poria and PM in the ratio of 1:2 could significantly ameliorate the PM/LPS-induced liver injury and systemic inflammation. Furthermore, UPLC/QTOF-MS-based metabolomics was performed to identify possible biomarkers and underlying biological pathways. Ten metabolites were expressed differentially among LPS, PM/LPS, and detoxification-treated groups in terms of PCA and OPLS-DA analysis, which could be potential biomarkers. MetaboAnalyst and pathway enrichment analysis revealed that alterations of these metabolites were primarily involved in three pathways: arginine and proline metabolism, primary bile acid biosynthesis and sphingolipid metabolism. This research provides systematic experimental evidences for the hepatoprotective effect of Poria against PM/LPS-induced liver injury for the first time. And these findings may help better understand the underlying mechanisms of pathophysiologic changes in PM/LPS-induced liver injury.
Collapse
Affiliation(s)
- Dan Gao
- Institute of Medicinal Plant Development, Chinese Academy of Medical SciencesBeijing, China; China Military Institute of Chinese Medicine, 302 Military HospitalBeijing, China
| | - Jing-Yao Pang
- Pharmacy Department, Beijing Luhe Hospital Affiliated to Capital Medical UniversityBeijing, China; Department of Traditional Chinese Medicine, Beijing Friendship Hospital Affiliated to Capital Medical UniversityBeijing, China
| | - Cong-En Zhang
- China Military Institute of Chinese Medicine, 302 Military Hospital Beijing, China
| | - Chun-Yu Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical SciencesBeijing, China; China Military Institute of Chinese Medicine, 302 Military HospitalBeijing, China
| | - Can Tu
- China Military Institute of Chinese Medicine, 302 Military Hospital Beijing, China
| | - Hai-Zhu Zhang
- China Military Institute of Chinese Medicine, 302 Military Hospital Beijing, China
| | - Ming Niu
- China Military Institute of Chinese Medicine, 302 Military Hospital Beijing, China
| | - Yin Xiong
- Kunming University of Science and Technology Kunming, China
| | - Xiao-He Xiao
- Integrative Medicine Center, 302 Military Hospital Beijing, China
| | - Kui-Jun Zhao
- Department of Traditional Chinese Medicine, Beijing Friendship Hospital Affiliated to Capital Medical University Beijing, China
| | - Wei-Wei Gao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences Beijing, China
| | - Jia-Bo Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical SciencesBeijing, China; China Military Institute of Chinese Medicine, 302 Military HospitalBeijing, China
| |
Collapse
|
20
|
Zhdanov R, Schirmer E, Venkatasubramani AV, Kerr A, Mandrou E, Rodriguez Blanco G, Kagansky A. Lipids contribute to epigenetic control via chromatin structure and functions. SCIENCEOPEN RESEARCH 2016. [DOI: 10.14293/s2199-1006.1.sor-life.auxytr.v2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Abstract
Isolated cases of experimental evidence over the last few decades have shown that, where specifically tested, both prokaryotes and eukaryotes have specific lipid species bound to nucleoproteins of the genome. In vitro, some of these lipid species exhibit stoichiometric association with DNA polynucleotides with differential affinities toward certain secondary and tertiary structures. Hydrophobic interactions with inner nuclear membrane could provide attractive anchor points for lipid-modified nucleoproteins in organizing the dynamic genome and accordingly there are precedents for covalent bonds between lipids and core histones and, under certain conditions, even DNA. Advances in biophysics, functional genomics, and proteomics in recent years brought about the first sparks of light that promises to uncover some coherent new level of the epigenetic code governed by certain types of lipid–lipid, DNA–lipid, and DNA-protein–lipid interactions among other biochemical lipid transactions in the nucleus. Here, we review some of the older and more recent findings and speculate on how critical nuclear lipid transactions are for individual cells, tissues, and organisms.
Collapse
|
21
|
Cabral WF, Machado AH, Santos GM. Exogenous nucleosome-binding molecules: a potential new class of therapeutic drugs. Drug Discov Today 2016; 21:707-11. [DOI: 10.1016/j.drudis.2016.01.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 01/22/2016] [Accepted: 01/29/2016] [Indexed: 12/15/2022]
|
22
|
Lazzarini A, Macchiarulo A, Floridi A, Coletti A, Cataldi S, Codini M, Lazzarini R, Bartoccini E, Cascianelli G, Ambesi-Impiombato FS, Beccari T, Curcio F, Albi E. Very-long-chain fatty acid sphingomyelin in nuclear lipid microdomains of hepatocytes and hepatoma cells: can the exchange from C24:0 to C16:0 affect signal proteins and vitamin D receptor? Mol Biol Cell 2016; 26:2418-25. [PMID: 26124436 PMCID: PMC4571297 DOI: 10.1091/mbc.e15-04-0229] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Lipid microdomains localized in the inner nuclear membrane are considered platforms for active chromatin anchoring. Stimuli such as surgery, vitamin D, or glucocorticoid drugs influence their gene expression, DNA duplication, and RNA synthesis. In this study, we used ultrafast liquid chromatography-tandem mass spectrometry to identify sphingomyelin (SM) species coupled with immunoblot analysis to comprehensively map differences in nuclear lipid microdomains (NLMs) purified from hepatocytes and hepatoma cells. We showed that NLMs lost saturated very-long-chain fatty acid (FA; C24:0) SM in cancer cells and became enriched in long-chain FA (C16:0) SM. We also found that signaling proteins, such as STAT3, Raf1, and PKCζ, were increased and vitamin D receptor was reduced in cancer cells. Because recent researches showed a shift in sphingolipid composition from C24:0 to C16:0 in relation to cell life, we performed a comparative analysis of properties among C16:0 SM, C24:0 SM, and cholesterol. Our results led us to hypothesize that the enrichment of C16:0 SM could determine enhanced dynamic properties of NLMs in cancer cells with an increased shuttling of protein signaling molecules.
Collapse
Affiliation(s)
- Andrea Lazzarini
- Laboratory of Nuclear Lipid BioPathology, CRABiON, 06100 Perugia, Italy
| | - Antonio Macchiarulo
- Department of Pharmaceutical Science, University of Perugia, 06123 Perugia, Italy
| | | | - Alice Coletti
- Department of Pharmaceutical Science, University of Perugia, 06123 Perugia, Italy
| | - Samuela Cataldi
- Department of Pharmaceutical Science, University of Perugia, 06123 Perugia, Italy
| | - Michela Codini
- Department of Pharmaceutical Science, University of Perugia, 06123 Perugia, Italy
| | - Remo Lazzarini
- Laboratory of Nuclear Lipid BioPathology, CRABiON, 06100 Perugia, Italy
| | - Elisa Bartoccini
- Laboratory of Nuclear Lipid BioPathology, CRABiON, 06100 Perugia, Italy
| | | | | | - Tommaso Beccari
- Department of Pharmaceutical Science, University of Perugia, 06123 Perugia, Italy
| | - Francesco Curcio
- Department of Clinical and Biological Sciences, University of Udine, 33100 Udine, Italy
| | - Elisabetta Albi
- Laboratory of Nuclear Lipid BioPathology, CRABiON, 06100 Perugia, Italy
| |
Collapse
|
23
|
Codini M, Cataldi S, Lazzarini A, Tasegian A, Ceccarini MR, Floridi A, Lazzarini R, Ambesi-Impiombato FS, Curcio F, Beccari T, Albi E. Why high cholesterol levels help hematological malignancies: role of nuclear lipid microdomains. Lipids Health Dis 2016; 15:4. [PMID: 26754536 PMCID: PMC4709975 DOI: 10.1186/s12944-015-0175-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Accepted: 12/24/2015] [Indexed: 12/11/2022] Open
Abstract
Background Diet and obesity are recognized in the scientific literature as important risk factors for cancer development and progression. Hypercholesterolemia facilitates lymphoma lymphoblastic cell growth and in time turns in hypocholesterolemia that is a sign of tumour progression. The present study examined how and where the cholesterol acts in cancer cells when you reproduce in vitro an in vivo hypercholesterolemia condition. Methods We used non-Hodgkin’s T cell human lymphoblastic lymphoma (SUP-T1 cell line) and we studied cell morphology, aggressiveness, gene expression for antioxidant proteins, polynucleotide kinase/phosphatase and actin, cholesterol and sphingomyelin content and finally sphingomyelinase activity in whole cells, nuclei and nuclear lipid microdomains. Results We found that cholesterol changes cancer cell morphology with the appearance of protrusions together to the down expression of β-actin gene and reduction of β-actin protein. The lipid influences SUP-T1 cell aggressiveness since stimulates DNA and RNA synthesis for cell proliferation and increases raf1 and E-cadherin, molecules involved in invasion and migration of cancer cells. Cholesterol does not change GRX2 expression but it overexpresses SOD1, SOD2, CCS, PRDX1, GSR, GSS, CAT and PNKP. We suggest that cholesterol reaches the nucleus and increases the nuclear lipid microdomains known to act as platform for chromatin anchoring and gene expression. Conclusion The results imply that, in hypercholesterolemia conditions, cholesterol reaches the nuclear lipid microdomains where activates gene expression coding for antioxidant proteins. We propose the cholesterolemia as useful parameter to monitor in patients with cancer.
Collapse
Affiliation(s)
- Michela Codini
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Samuela Cataldi
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Andrea Lazzarini
- Laboratory of Nuclear Lipid BioPathology, CRABiON, Perugia, Italy
| | - Anna Tasegian
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | | | | | - Remo Lazzarini
- Laboratory of Nuclear Lipid BioPathology, CRABiON, Perugia, Italy
| | | | - Francesco Curcio
- Department of Clinical and Biological Sciences, University of Udine, Udine, Italy
| | - Tommaso Beccari
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Elisabetta Albi
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy.
| |
Collapse
|
24
|
Zhdanov R, Schirmer E, Venkatasubramani AV, Kerr A, Mandrou E, Rodriguez Blanco G, Kagansky A. Lipids contribute to epigenetic control via chromatin structure and functions. SCIENCEOPEN RESEARCH 2015. [DOI: 10.14293/s2199-1006.1.sor-life.auxytr.v1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Abstract
Isolated cases of experimental evidence over the last few decades have shown that, where specifically tested, both prokaryotes and eukaryotes have specific lipid molecules bound to nucleoproteins of the genome. In vitro, some of these lipids exhibit stoichiometric association with DNA polynucleotides with differential affinities toward certain secondary and tertiary structures. Hydrophobic interactions with inner nuclear membrane could provide attractive anchor points for lipid-modified nucleoproteins in organizing the dynamic genome and accordingly there are precedents for covalent bonds between lipids and core histones and, under certain conditions, even DNA. Advances in biophysics, functional genomics, and proteomics in recent years brought about the first sparks of light that promises to uncover some coherent new level of the epigenetic code governed by certain types of lipid–lipid, DNA–lipid, and protein–lipid interactions among other biochemical lipid transactions in the nucleus. Here, we review some of the older and more recent findings and speculate on how critical nuclear lipid transactions are for individual cells, tissues, and organisms.
Collapse
|
25
|
Ong WY, Herr DR, Farooqui T, Ling EA, Farooqui AA. Role of sphingomyelinases in neurological disorders. Expert Opin Ther Targets 2015; 19:1725-42. [DOI: 10.1517/14728222.2015.1071794] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
26
|
Nojima H, Freeman CM, Gulbins E, Lentsch AB. Sphingolipids in liver injury, repair and regeneration. Biol Chem 2015; 396:633-643. [PMID: 25781682 DOI: 10.1515/hsz-2014-0296] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 03/09/2015] [Indexed: 02/05/2023]
Abstract
Sphingolipids are not only essential components of cellular membranes but also function as intracellular and extracellular mediators that regulate important physiological cellular processes including cell survival, proliferation, apoptosis, differentiation, migration and immune responses. The liver possesses the unique ability to regenerate after injury in a complex manner that involves numerous mediators, including sphingolipids such as ceramide and sphingosine 1-phosphate. Here we present the current understanding of the involvement of the sphingolipid pathway and the role this pathway plays in regulating liver injury, repair and regeneration. The regulation of sphingolipids and their enzymes may have a great impact in the development of novel therapeutic modalities for a variety of liver injuries and diseases.
Collapse
|
27
|
Escribá PV, Busquets X, Inokuchi JI, Balogh G, Török Z, Horváth I, Harwood JL, Vígh L. Membrane lipid therapy: Modulation of the cell membrane composition and structure as a molecular base for drug discovery and new disease treatment. Prog Lipid Res 2015; 59:38-53. [PMID: 25969421 DOI: 10.1016/j.plipres.2015.04.003] [Citation(s) in RCA: 179] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 04/10/2015] [Accepted: 04/29/2015] [Indexed: 01/17/2023]
Abstract
Nowadays we understand cell membranes not as a simple double lipid layer but as a collection of complex and dynamic protein-lipid structures and microdomains that serve as functional platforms for interacting signaling lipids and proteins. Membrane lipids and lipid structures participate directly as messengers or regulators of signal transduction. In addition, protein-lipid interactions participate in the localization of signaling protein partners to specific membrane microdomains. Thus, lipid alterations change cell signaling that are associated with a variety of diseases including cancer, obesity, neurodegenerative disorders, cardiovascular pathologies, etc. This article reviews the newly emerging field of membrane lipid therapy which involves the pharmacological regulation of membrane lipid composition and structure for the treatment of diseases. Membrane lipid therapy proposes the use of new molecules specifically designed to modify membrane lipid structures and microdomains as pharmaceutical disease-modifying agents by reversing the malfunction or altering the expression of disease-specific protein or lipid signal cascades. Here, we provide an in-depth analysis of this emerging field, especially its molecular bases and its relevance to the development of innovative therapeutic approaches.
Collapse
Affiliation(s)
- Pablo V Escribá
- Department of Biology, University of the Balearic Islands, E-07122 Palma de Mallorca, Spain
| | - Xavier Busquets
- Department of Biology, University of the Balearic Islands, E-07122 Palma de Mallorca, Spain
| | - Jin-ichi Inokuchi
- Division of Glycopathology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Pharmaceutical University, Sendai, Japan
| | - Gábor Balogh
- Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, Szeged, Hungary
| | - Zsolt Török
- Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, Szeged, Hungary
| | - Ibolya Horváth
- Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, Szeged, Hungary
| | - John L Harwood
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, Wales, UK.
| | - László Vígh
- Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, Szeged, Hungary.
| |
Collapse
|
28
|
Razin SV, Borunova VV, Iarovaia OV, Vassetzky YS. Nuclear matrix and structural and functional compartmentalization of the eucaryotic cell nucleus. BIOCHEMISTRY (MOSCOW) 2015; 79:608-18. [PMID: 25108324 DOI: 10.1134/s0006297914070037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Becoming popular at the end of the 20th century, the concept of the nuclear matrix implies the existence of a nuclear skeleton that organizes functional elements in the cell nucleus. This review presents a critical analysis of the results obtained in the study of nuclear matrix in the light of current views on the organization of the cell nucleus. Numerous studies of nuclear matrix have failed to provide evidence of the existence of such a structure. Moreover, the existence of a filamentous structure that supports the nuclear compartmentalization appears to be unnecessary, since this function is performed by the folded genome itself.
Collapse
Affiliation(s)
- S V Razin
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia.
| | | | | | | |
Collapse
|
29
|
Gentamicin arrests cancer cell growth: the intriguing involvement of nuclear sphingomyelin metabolism. Int J Mol Sci 2015; 16:2307-19. [PMID: 25622250 PMCID: PMC4346838 DOI: 10.3390/ijms16022307] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 12/29/2014] [Accepted: 01/13/2015] [Indexed: 12/30/2022] Open
Abstract
The use of gentamicin for the treatment of bacterial infection has always been an interesting and highly speculated issue for the scientific community. Conversely, its effect on cancer cells has been very little investigated. We studied the effect of high doses of gentamicin on non-Hodgkin’s T-cell human lymphoblastic lymphoma (SUP-T1). We showed that gentamicin delayed cell growth and induced cell death in lymphoma cells with a rather mild effect on lymphocytes. In SUP-T1 cells, GAPDH, B2M, CDKN1A and CDKN1B were down-expressed in comparison with lymphocytes. Gentamicin treatment in SUP-T1 cells restored the expression of GAPDH, B2M and CDKN1A to values similar to those of lymphocytes and caused overexpression of CDKN1B. The drug acted via sphingomyelin metabolism; in whole cells, sphingomyelinase activity was stimulated, whereas in purified nuclei, sphingomyelinase activity was inhibited and that of sphingomyelin-synthase was stimulated, with a consequent high level of nuclear sphingomyelin content. We suggest that the increase of nuclear sphingomyelin might enrich the nucleus of lipid microdomains that act as a platform for active chromatin and, thus, might be responsible for gene expression. It is possible that in lymphoblastic lymphoma, high doses of gentamicin induce a beneficial therapeutic outcome.
Collapse
|
30
|
Cataldi S, Codini M, Cascianelli G, Tringali S, Tringali AR, Lazzarini A, Floridi A, Bartoccini E, Garcia-Gil M, Lazzarini R, Ambesi-Impiombato FS, Curcio F, Beccari T, Albi E. Nuclear lipid microdomain as resting place of dexamethasone to impair cell proliferation. Int J Mol Sci 2014; 15:19832-46. [PMID: 25365174 PMCID: PMC4264141 DOI: 10.3390/ijms151119832] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Revised: 10/24/2014] [Accepted: 10/27/2014] [Indexed: 12/21/2022] Open
Abstract
The action of dexamethasone is initiated by, and strictly dependent upon, the interaction of the drug with its receptor followed by its translocation into the nucleus where modulates gene expression. Where the drug localizes at the intranuclear level is not yet known. We aimed to study the localization of the drug in nuclear lipid microdomains rich in sphingomyelin content that anchor active chromatin and act as platform for transcription modulation. The study was performed in non-Hodgkin’s T cell human lymphoblastic lymphoma (SUP-T1 cell line). We found that when dexamethasone enters into the nucleus it localizes in nuclear lipid microdomains where influences sphingomyelin metabolism. This is followed after 24 h by a cell cycle block accompanied by the up-regulation of cyclin-dependent kinase inhibitor 1A (CDKN1A), cyclin-dependent kinase inhibitor 1B (CDKN1B), growth arrest and DNA-damage 45A (GADD45A), and glyceraldehyde 3-phosphate dehydrogenase (GAPDH) genes and by the reduction of signal transducer and activator of transcription 3 (STAT3) and phospho signal transducer and activator of transcription 3 (phoshoSTAT3) proteins. After 48 h some cells show morphological changes characteristic of apoptosis while the number of the cells that undergo cell division and express B-cell lymphoma-2 (Bcl-2) is very low. We suggest that the integrity of nuclear lipid microdomains is important for the response to glucocorticoids of cancer cells.
Collapse
Affiliation(s)
- Samuela Cataldi
- Laboratory of Nuclear Lipid BioPathology, Crabion, 06074 Perugia, Italy.
| | - Michela Codini
- Department of Pharmaceutical Science, University of Perugia, 06100 Perugia, Italy.
| | | | - Sabina Tringali
- Laboratory of Clinical Pathology, 96011 Augusta-Siracusa, Italy.
| | | | - Andrea Lazzarini
- Laboratory of Nuclear Lipid BioPathology, Crabion, 06074 Perugia, Italy.
| | - Alessandro Floridi
- Laboratory of Nuclear Lipid BioPathology, Crabion, 06074 Perugia, Italy.
| | - Elisa Bartoccini
- Laboratory of Nuclear Lipid BioPathology, Crabion, 06074 Perugia, Italy.
| | | | - Remo Lazzarini
- Laboratory of Nuclear Lipid BioPathology, Crabion, 06074 Perugia, Italy.
| | | | - Francesco Curcio
- Department of Clinical and Biological Sciences, University of Udine, 33100 Udine, Italy.
| | - Tommaso Beccari
- Department of Pharmaceutical Science, University of Perugia, 06100 Perugia, Italy.
| | - Elisabetta Albi
- Laboratory of Nuclear Lipid BioPathology, Crabion, 06074 Perugia, Italy.
| |
Collapse
|
31
|
Critical role for the protons in FRTL-5 thyroid cells: nuclear sphingomyelinase induced-damage. Int J Mol Sci 2014; 15:11555-65. [PMID: 24979136 PMCID: PMC4139799 DOI: 10.3390/ijms150711555] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 06/20/2014] [Accepted: 06/24/2014] [Indexed: 11/23/2022] Open
Abstract
Proliferating thyroid cells are more sensitive to UV-C radiations than quiescent cells. The effect is mediated by nuclear phosphatidylcholine and sphingomyelin metabolism. It was demonstrated that proton beams arrest cell growth and stimulate apoptosis but until now there have been no indications in the literature about their possible mechanism of action. Here we studied the effect of protons on FRTL-5 cells in culture. We showed that proton beams stimulate slightly nuclear neutral sphingomyelinase activity and inhibit nuclear sphingomyelin-synthase activity in quiescent cells whereas stimulate strongly nuclear neutral sphingomyelinase activity and do not change nuclear sphingomyelin-synthase activity in proliferating cells. The study of neutral sphingomyelinase/sphingomyelin-synthase ratio, a marker of functional state of the cells, indicated that proton beams induce FRTL-5 cells in a proapoptotic state if the cells are quiescent and in an initial apoptotic state if the cells are proliferating. The changes of cell life are accompanied by a decrease of nuclear sphingomyelin and increase of bax protein.
Collapse
|
32
|
Taniguchi M, Okazaki T. The role of sphingomyelin and sphingomyelin synthases in cell death, proliferation and migration—from cell and animal models to human disorders. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1841:692-703. [DOI: 10.1016/j.bbalip.2013.12.003] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 12/06/2013] [Accepted: 12/09/2013] [Indexed: 12/16/2022]
|