1
|
Park JI, Jung SY, Song KH, Lee DH, Ahn J, Hwang SG, Jung IS, Lim DS, Song JY. Predictive DNA damage signaling for low‑dose ionizing radiation. Int J Mol Med 2024; 53:56. [PMID: 38695243 DOI: 10.3892/ijmm.2024.5380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 04/17/2024] [Indexed: 05/16/2024] Open
Abstract
Numerous studies have attempted to develop biological markers for the response to radiation for broad and straightforward application in the field of radiation. Based on a public database, the present study selected several molecules involved in the DNA damage repair response, cell cycle regulation and cytokine signaling as promising candidates for low‑dose radiation‑sensitive markers. The HuT 78 and IM‑9 cell lines were irradiated in a concentration‑dependent manner, and the expression of these molecules was analyzed using western blot analysis. Notably, the activation of ataxia telangiectasia mutated (ATM), checkpoint kinase 2 (CHK2), p53 and H2A histone family member X (H2AX) significantly increased in a concentration‑dependent manner, which was also observed in human peripheral blood mononuclear cells. To determine the radioprotective effects of cinobufagin, as an ATM and CHK2 activator, an in vivo model was employed using sub‑lethal and lethal doses in irradiated mice. Treatment with cinobufagin increased the number of bone marrow cells in sub‑lethal irradiated mice, and slightly elongated the survival of lethally irradiated mice, although the difference was not statistically significant. Therefore, KU60019, BML‑277, pifithrin‑α, and nutlin‑3a were evaluated for their ability to modulate radiation‑induced cell death. The use of BML‑277 led to a decrease in radiation‑induced p‑CHK2 and γH2AX levels and mitigated radiation‑induced apoptosis. On the whole, the present study provides a novel approach for developing drug candidates based on the profiling of biological radiation‑sensitive markers. These markers hold promise for predicting radiation exposure and assessing the associated human risk.
Collapse
Affiliation(s)
- Jeong-In Park
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea
| | - Seung-Youn Jung
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea
| | - Kyung-Hee Song
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea
| | - Dong-Hyeon Lee
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea
| | - Jiyeon Ahn
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea
| | - Sang-Gu Hwang
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea
| | - In-Su Jung
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea
| | - Dae-Seog Lim
- Department of Biotechnology, CHA University, Seongnam, Gyeonggi‑do 13488, Republic of Korea
| | - Jie-Young Song
- Division of Radiation Biomedical Research, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea
| |
Collapse
|
2
|
Maeda J, Nagai A, Aizawa Y, Kato TA. Palmitoyl ascorbic acid glucoside enhanced cell survival with post irradiation treatment. Biochem Biophys Res Commun 2024; 694:149386. [PMID: 38134476 DOI: 10.1016/j.bbrc.2023.149386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023]
Abstract
Radiation exposure poses a significant threat to cellular integrity by inducing DNA damage through the generation of free radicals and reactive oxygen species. Ascorbic acid, particularly its derivative Palmitoyl Ascorbic Acid 2-Glucoside (PA2G), has demonstrated remarkable radioprotective properties. While previous research focused on its pre-irradiation application, this study explores the post-irradiation radiomitigation potential of PA2G. Our findings reveal that post-irradiation treatment with PA2G enhances cell survival and accelerates DNA repair processes, particularly the non-homologous end-joining (NHEJ) repair pathway. Notably, PA2G treatment reduces the frequency of lethal chromosomal aberrations and micronuclei formation, indicating its ability to enhance the repair of complex DNA lesions. Furthermore, PA2G is shown to play a role in potentially lethal damage repair (PLDR). These radioprotective effects are specific to NHEJ and ATM pathways, as cells deficient in these mechanisms do not benefit from PA2G treatment. This study highlights PA2G as a versatile radioprotector, both pre- and post-irradiation, with significant potential for applications in radiation therapy and protection, offering new insights into its mechanism of action. Further research is required to elucidate the precise molecular mechanisms underlying PA2G's radiomitigation effects and its potential clinical applications.
Collapse
Affiliation(s)
- Junko Maeda
- Department of Environmental & Radiological Health Sciences, Colorado State University, USA
| | - Atsushi Nagai
- Research and Development Center, Carlit Holdings Co. Ltd, Japan
| | - Yasushi Aizawa
- Research and Development Center, Carlit Holdings Co. Ltd, Japan
| | - Takamitsu A Kato
- Department of Environmental & Radiological Health Sciences, Colorado State University, USA.
| |
Collapse
|
3
|
Bo T, Nohara H, Yamada KI, Miyata S, Fujii J. Ascorbic Acid Protects Bone Marrow from Oxidative Stress and Transient Elevation of Corticosterone Caused by X-ray Exposure in Akr1a-Knockout Mice. Antioxidants (Basel) 2024; 13:152. [PMID: 38397750 PMCID: PMC10886414 DOI: 10.3390/antiox13020152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
Bone marrow cells are the most sensitive to exposure to X-rays in the body and are selectively damaged even by doses that are generally considered permissive in other organs. Ascorbic acid (Asc) is a potent antioxidant that is reported to alleviate damages caused by X-ray exposure. However, rodents can synthesize Asc, which creates difficulties in rigorously assessing its effects in such laboratory animals. To address this issue, we employed mice with defects in their ability to synthesize Asc due to a genetic ablation of aldehyde reductase (Akr1a-KO). In this study, concentrations of white blood cells (WBCs) were decreased 3 days after exposure to X-rays at 2 Gy and then gradually recovered. At approximately one month, the recovery rate of WBCs was delayed in the Akr1a-KO mouse group, which was reversed via supplementation with Asc. Following exposure to X-rays, Asc levels decreased in plasma, bone marrow cells, and the liver during an early period, and then started to increase. X-ray exposure stimulated the pituitary gland to release adrenocorticotropic hormone (ACTH), which stimulated corticosterone secretion. Asc released from the liver, which was also stimulated by ACTH, appeared to be recruited to the bone marrow. Since corticosterone in high doses is injurious, these collective results imply that Asc protects bone marrow via its antioxidant capacity against ROS produced via exposure to X-rays and the cytotoxic action of transiently elevated corticosterone.
Collapse
Affiliation(s)
- Tomoki Bo
- Laboratory Animal Center, Institute for Promotion of Medical Science Research, Yamagata University Faculty of Medicine, 2-2-2 Iidanishi, Yamagata 990-9585, Japan
| | - Hidekazu Nohara
- Laboratory Animal Center, Institute for Promotion of Medical Science Research, Yamagata University Faculty of Medicine, 2-2-2 Iidanishi, Yamagata 990-9585, Japan
| | - Ken-ichi Yamada
- Physical Chemistry for Life Science Laboratory, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan;
| | - Satoshi Miyata
- Miyata Diabetes and Metabolism Clinic, 5-17-21 Fukushima, Fukushima-ku, Osaka 553-0003, Japan
| | - Junichi Fujii
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, 2-2-2 Iidanishi, Yamagata 990-9585, Japan
| |
Collapse
|
4
|
Basov NV, Rogachev AD, Aleshkova MA, Gaisler EV, Sotnikova YS, Patrushev YV, Tolstikova TG, Yarovaya OI, Pokrovsky AG, Salakhutdinov NF. Global LC-MS/MS targeted metabolomics using a combination of HILIC and RP LC separation modes on an organic monolithic column based on 1-vinyl-1,2,4-triazole. Talanta 2024; 267:125168. [PMID: 37708770 DOI: 10.1016/j.talanta.2023.125168] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/28/2023] [Accepted: 09/04/2023] [Indexed: 09/16/2023]
Abstract
The paper presents an LC-MS/MS-based approach to targeted screening of both polar and non-polar metabolites using a synthesized monolithic column which is a copolymer of styrene, divinylbenzene, and 1-vinyl-1,2,4-triazole. It was shown that this column in combination with eluents 20 mM (NH4)2CO3 + NH3 (pH = 9.8, eluent A) and ACN (eluent B) allows for separation of metabolites of different nature in two modes, HILIC and RP LC, and these methods are mutually complementary. A combination of analyses based on these two modes was proposed, allowing detection of about 400 metabolites in a total time of less than 30 min. Comparison of the developed method with those utilizing commercially available columns with sorbents of various types showed that it could provide a broader metabolite coverage. Using the developed approach, metabolomic screening of dried blood spots samples of mice exposed with X-ray was performed, and metabolites that could be considered as possible markers of irradiation exposure and organ tissue damage were detected. Analysis of marker metabolites revealed metabolic pathways that were altered by radiation exposure. Comparison of the results with literature data showed the effectiveness of the developed metabolomic screening approach.
Collapse
Affiliation(s)
- Nikita V Basov
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Acad. Lavrentiev Ave., 9, 630090, Novosibirsk, Russia; Novosibirsk State University, Pirogov Str., 2, 630090, Novosibirsk, Russia
| | - Artem D Rogachev
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Acad. Lavrentiev Ave., 9, 630090, Novosibirsk, Russia; Novosibirsk State University, Pirogov Str., 2, 630090, Novosibirsk, Russia.
| | - Maria A Aleshkova
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Acad. Lavrentiev Ave., 9, 630090, Novosibirsk, Russia; Novosibirsk State University, Pirogov Str., 2, 630090, Novosibirsk, Russia
| | - Evgeny V Gaisler
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Acad. Lavrentiev Ave., 9, 630090, Novosibirsk, Russia; Novosibirsk State University, Pirogov Str., 2, 630090, Novosibirsk, Russia
| | - Yulia S Sotnikova
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Acad. Lavrentiev Ave., 9, 630090, Novosibirsk, Russia; Novosibirsk State University, Pirogov Str., 2, 630090, Novosibirsk, Russia; Boreskov Institute of Catalysis, Acad. Lavrentiev Ave., 5, 630090, Novosibirsk, Russia
| | - Yuri V Patrushev
- Novosibirsk State University, Pirogov Str., 2, 630090, Novosibirsk, Russia; Boreskov Institute of Catalysis, Acad. Lavrentiev Ave., 5, 630090, Novosibirsk, Russia
| | - Tatiana G Tolstikova
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Acad. Lavrentiev Ave., 9, 630090, Novosibirsk, Russia; Novosibirsk State University, Pirogov Str., 2, 630090, Novosibirsk, Russia
| | - Olga I Yarovaya
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Acad. Lavrentiev Ave., 9, 630090, Novosibirsk, Russia; Novosibirsk State University, Pirogov Str., 2, 630090, Novosibirsk, Russia
| | - Andrey G Pokrovsky
- Novosibirsk State University, Pirogov Str., 2, 630090, Novosibirsk, Russia
| | - Nariman F Salakhutdinov
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Acad. Lavrentiev Ave., 9, 630090, Novosibirsk, Russia; Novosibirsk State University, Pirogov Str., 2, 630090, Novosibirsk, Russia
| |
Collapse
|
5
|
Raghu SV, Rao S, Kini V, Kudva AK, George T, Baliga MS. Fruits and their phytochemicals in mitigating the ill effects of ionizing radiation: review on the existing scientific evidence and way forward. Food Funct 2023; 14:1290-1319. [PMID: 36688345 DOI: 10.1039/d2fo01911f] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Although helpful in treating cancer, exposure to ionizing radiation can sometimes cause severe side effects, negating its benefit. In addition to its use in clinics, a nontoxic radioprotective agent can also be beneficial in occupational settings where humans are occupationally exposed for prolonged periods to low doses of radiation. Scientific studies using laboratory animals have shown that the fruits Aegle marmelos, Capsicum annuum, Citrus aurantium, Citrullus lanatus, Crataegus microphylla, Eugenia jambolana, Emblica officinalis, Garcinia kola, Grewia asiatica, Hippophae rhamnoides, Malus baccata, Malpighia glabra or Malpighia emarginata, Mangifera indica, Prunus domestica, Prunus avium, Prunus armeniaca, Psoralea corylifolia, Punica granatum, Solanum lycopersicum, Terminalia chebula, Vaccinium macrocarpon, Vitis vinifera and Xylopia aethiopica, and the phytochemicals gallic acid, ellagic acid, quercetin, geraniin, corilagin, ascorbic acid, hesperetin, ursolic acid, lycopene, naringin, hesperidin, rutin, resveratrol, β-sitosterol, apigenin, luteolin, chlorogenic acid, caffeic acid, mangiferin, diosmin, ferulic acid, and kaempferol are effective in preventing radiation-induced ill effects. Clinical studies with Emblica officinalis and Punica granatum have also shown that fruits help mitigate radiation-induced mucositis, dermatitis, and cystitis. For the first time, the current review summarizes the beneficial effects of fruits and phytochemicals in mitigating radiation-induced damage, the underlying mechanisms and the existing lacunae for future studies to be undertaken for the benefit of humans and the nutraceutical and agri-based industries.
Collapse
Affiliation(s)
- Shamprasad Varija Raghu
- Neurogenetics Laboratory, Department of Applied Zoology, Mangalore University, Mangalagangotri, 574199, Karnataka, India
| | - Suresh Rao
- Mangalore Institute of Oncology, Pumpwell, Mangalore-575002, Karnataka, India.
| | - Venkataramana Kini
- Mangalore Institute of Oncology, Pumpwell, Mangalore-575002, Karnataka, India.
| | - Avinash Kundadka Kudva
- Department of Biochemistry, Mangalore University, Mangalagangotri, 574199, Karnataka, India
| | - Thomas George
- Internal Medicine, Coney Island Hospital, 2601 Ocean Pkwy, Brooklyn, New York, 11235, USA
| | | |
Collapse
|
6
|
Ito Y, Yamamoto T, Miyai K, Take J, Scherthan H, Rommel A, Eder S, Steinestel K, Rump A, Port M, Shinomiya N, Kinoshita M. Ascorbic acid-2 glucoside mitigates intestinal damage during pelvic radiotherapy in a rat bladder tumor model. Int J Radiat Biol 2021; 98:942-957. [PMID: 34871138 DOI: 10.1080/09553002.2021.2009145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
PURPOSE Ascorbic acid is a strong antioxidant and has potent radioprotective effects on radiation injuries. Ascorbic acid 2-glucoside (AA2G) is a stabilized derivative of ascorbic acid and rapidly hydrolyzed into ascorbic acid and glucose. Since there is the possibility that AA2G treatment interferes with the antitumor activity of radiotherapy, we investigated the effect of AA2G treatment during radiotherapy on acute radiation enteritis and antitumor activity of radiotherapy in rats. MATERIALS AND METHODS AY-27 rat bladder tumor cells were used to induce bladder tumors in rats. Two weeks after inoculation rats received fractionated pelvic radiotherapy in eight fractions for 4 weeks totaling 40 Gy. During radiotherapy, one group of rats received per os AA2G (ascorbic acid: 250 mg/kg/day) and its bolus engulfment (ascorbic acid: 250 mg/kg) 8 h before each X-irradiation fraction. Seven days after the last X-irradiation, we studied histology, DNA double strand break (DSB) damage (by 53BP1 foci staining), and the M1/M2 macrophage response by immunohistochemistry of paraffin-fixed bladder and intestinal tissues. RESULTS AA2G treatment reduced the intestinal damage (shortening of villi) but did not reduce antitumor effectiveness of radiotherapy against bladder tumors. Like the controls, AA2G-treated rats showed no residual tumor lesions in the bladder after X-irradiation. Both AA2G-treated and control groups showed similar persistent DSB damage (53BP1 foci) both in bladders and ilea seven days after radiotherapy. Radiotherapy tended to reduce CD163+ M2 macrophages, which are considered as an anti-inflammatory subtype favoring tissue repair, in the bladders. X-irradiation also reduced the occurrence of M2 macrophages in the ilea. AA2G treatment significantly increased CD163+/CD68+ macrophage ratio in the ilea of rats after pelvic irradiation in comparison to the sham irradiated control rats. AA2G treatment increased, albeit not significantly, the CD163+/CD68+ macrophage ratio in the irradiated bladders relative to the control irradiated rats. On the other hand, bladders and ilea of the irradiated rats with and without AA2G treatment showed similar frequencies of CD68+ macrophages. CONCLUSIONS AA2G treatment mitigated radiation-induced intestinal damage without reducing antitumor activity after fractionated pelvic radiotherapy against bladder tumors in rats. The beneficial effect of AA2G treatment seems to promote a restoration of the M2 answer as well as tissue remodeling and wound healing. Similar residual DNA damage in bladders and ilea seven days post-irradiation is consistent with tumor control in both groups.
Collapse
Affiliation(s)
- Yasutoshi Ito
- Military Medicine Research Unit, Test and Evaluation Command, Ground Self-Defense Force, Setagaya, Japan
| | - Tetsuo Yamamoto
- Military Medicine Research Unit, Test and Evaluation Command, Ground Self-Defense Force, Setagaya, Japan.,NBC Counter Medical Unit, Ground Self-Defense Force, Setagaya, Japan
| | - Kosuke Miyai
- Military Medicine Research Unit, Test and Evaluation Command, Ground Self-Defense Force, Setagaya, Japan.,Department of Pathology, Self-Defense Forces Central Hospital, Setagaya, Japan
| | - Junya Take
- Department of Pediatrics, National Defense Medical College, Tokorozawa, Japan
| | | | - Anna Rommel
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | - Stefan Eder
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | | | - Alexis Rump
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | - Matthias Port
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | | | - Manabu Kinoshita
- Department of Immunology and Microbiology, National Defense Medical College, Tokorozawa, Japan
| |
Collapse
|
7
|
Utilization of Pharmacological Ascorbate to Enhance Hydrogen Peroxide-Mediated Radiosensitivity in Cancer Therapy. Int J Mol Sci 2021; 22:ijms221910880. [PMID: 34639220 PMCID: PMC8509557 DOI: 10.3390/ijms221910880] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/30/2021] [Accepted: 10/04/2021] [Indexed: 01/05/2023] Open
Abstract
Interest in the use of pharmacological ascorbate as a treatment for cancer has increased considerably since it was introduced by Cameron and Pauling in the 1970s. Recently, pharmacological ascorbate has been used in preclinical and early-phase clinical trials as a selective radiation sensitizer in cancer. The results of these studies are promising. This review summarizes data on pharmacological ascorbate (1) as a safe and efficacious adjuvant to cancer therapy; (2) as a selective radiosensitizer of cancer via a mechanism involving hydrogen peroxide; and (3) as a radioprotector in normal tissues. Additionally, we present new data demonstrating the ability of pharmacological ascorbate to enhance radiation-induced DNA damage in glioblastoma cells, facilitating cancer cell death. We propose that pharmacological ascorbate may be a general radiosensitizer in cancer therapy and simultaneously a radioprotector of normal tissue.
Collapse
|
8
|
Renner O, Burkard M, Michels H, Vollbracht C, Sinnberg T, Venturelli S. Parenteral high‑dose ascorbate - A possible approach for the treatment of glioblastoma (Review). Int J Oncol 2021; 58:35. [PMID: 33955499 PMCID: PMC8104923 DOI: 10.3892/ijo.2021.5215] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/05/2021] [Indexed: 12/14/2022] Open
Abstract
For glioblastoma, the treatment with standard of care therapy comprising resection, radiation, and temozolomide results in overall survival of approximately 14-18 months after initial diagnosis. Even though several new therapy approaches are under investigation, it is difficult to achieve life prolongation and/or improvement of patient's quality of life. The aggressiveness and progression of glioblastoma is initially orchestrated by the biological complexity of its genetic phenotype and ability to respond to cancer therapy via changing its molecular patterns, thereby developing resistance. Recent clinical studies of pharmacological ascorbate have demonstrated its safety and potential efficacy in different cancer entities regarding patient's quality of life and prolongation of survival. In this review article, the actual glioblastoma treatment possibilities are summarized, the evidence for pharmacological ascorbate in glioblastoma treatment is examined and questions are posed to identify current gaps of knowledge regarding accessibility of ascorbate to the tumor area. Experiments with glioblastoma cell lines and tumor xenografts have demonstrated that high-dose ascorbate induces cytotoxicity and oxidative stress largely selectively in malignant cells compared to normal cells suggesting ascorbate as a potential therapeutic agent. Further investigations in larger cohorts and randomized placebo-controlled trials should be performed to confirm these findings as well as to improve delivery strategies to the brain, through the inherent barriers and ultimately to the malignant cells.
Collapse
Affiliation(s)
- Olga Renner
- Department of Nutritional Biochemistry, University of Hohenheim, D‑70599 Stuttgart, Germany
| | - Markus Burkard
- Department of Nutritional Biochemistry, University of Hohenheim, D‑70599 Stuttgart, Germany
| | - Holger Michels
- Pascoe Pharmazeutische Praeparate GmbH, D‑35394 Giessen, Germany
| | | | - Tobias Sinnberg
- Department of Dermatology, University Hospital Tuebingen, D‑72076 Tuebingen, Germany
| | - Sascha Venturelli
- Department of Nutritional Biochemistry, University of Hohenheim, D‑70599 Stuttgart, Germany
| |
Collapse
|
9
|
Saga R, Uchida T, Takino Y, Kondo Y, Kobayashi H, Kinoshita M, Saitoh D, Ishigami A, Makishima M. Radiation-induced gastrointestinal syndrome is exacerbated in vitamin C-insufficient SMP30/GNL knockout mice. Nutrition 2020; 81:110931. [PMID: 32755744 DOI: 10.1016/j.nut.2020.110931] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/01/2020] [Accepted: 06/06/2020] [Indexed: 11/18/2022]
Abstract
OBJECTIVES Accidental exposure to high-dose radiation causes life-threatening acute radiation syndrome, features that include gastrointestinal syndrome (GIS) and hematopoietic syndrome (HS). Administration of vitamin C (VC), a free radical scavenger, has been reported to increase survival of mice in GIS and HS models. The effect of nutritional VC status on radiation injury remains unknown because, unlike humans, mice can synthesize VC. The aim of this study was to investigate the effect of VC insufficiency on acute radiation syndrome using senescence marker protein 30 (SMP30)/gluconolactonase knockout (SMP30-KO) mice. METHODS SMP30-KO mice, which cannot synthesize VC, were given water with or without sufficient VC supplementation, and were analyzed in GIS and HS models. RESULTS In the GIS model, in which bone marrow failure is rescued by bone marrow transplantation, VC-insufficient mice had a lower survival rate than VC-sufficient mice. The intestine of VC-insufficient GIS mice showed epithelial cell atrophy, inflammatory cell infiltration, and decreased crypt cell proliferation. We observed rapid VC oxidation after total body irradiation in the intestine of mice supplemented with VC-sufficient water. In the HS model, which was not combined with bone marrow transplantation, there was no difference in survival between VC-insufficient and -sufficient mice. CONCLUSION The results of this study demonstrated that nutritionally sufficient VC exerts a radioprotective effect against radiation-induced GIS.
Collapse
Affiliation(s)
- Reina Saga
- Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, Itabashi-ku, Tokyo, Japan; Department of Internal Medicine, Japan Self-Defense Forces Central Hospital, Setagaya-ku, Tokyo, Japan
| | - Takahiro Uchida
- Department of Nephrology, Tokyo Medical University Hachioji Medical Center, Hachioji, Tokyo, Japan
| | - Yuka Takino
- Molecular Regulation of Aging, Tokyo Metropolitan Institute of Gerontology, Itabashi-ku, Tokyo, Japan
| | - Yoshitaka Kondo
- Molecular Regulation of Aging, Tokyo Metropolitan Institute of Gerontology, Itabashi-ku, Tokyo, Japan
| | - Hiroaki Kobayashi
- Military Medicine Research Unit, Test and Evaluation Command, Ground Self-Defense Force, Setagaya-ku, Tokyo, Japan
| | - Manabu Kinoshita
- Department of Immunology and Microbiology, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Daizoh Saitoh
- Division of Traumatology, National Defense Medical College Research Institute, Tokorozawa, Saitama, Japan
| | - Akihito Ishigami
- Molecular Regulation of Aging, Tokyo Metropolitan Institute of Gerontology, Itabashi-ku, Tokyo, Japan
| | - Makoto Makishima
- Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, Itabashi-ku, Tokyo, Japan.
| |
Collapse
|
10
|
Oral ascorbic acid 2-glucoside prevents coordination disorder induced via laser-induced shock waves in rat brain. PLoS One 2020; 15:e0230774. [PMID: 32240226 PMCID: PMC7117653 DOI: 10.1371/journal.pone.0230774] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 02/13/2020] [Indexed: 12/17/2022] Open
Abstract
Oxidative stress is considered to be involved in the pathogenesis of primary blast-related traumatic brain injury (bTBI). We evaluated the effects of ascorbic acid 2-glucoside (AA2G), a well-known antioxidant, to control oxidative stress in rat brain exposed to laser-induced shock waves (LISWs). The design consisted of a controlled animal study using male 10-week-old Sprague-Dawley rats. The study was conducted at the University research laboratory. Low-impulse (54 Pa•s) LISWs were transcranially applied to rat brain. Rats were randomized to control group (anesthesia and head shaving, n = 10), LISW group (anesthesia, head shaving and LISW application, n = 10) or LISW + post AA2G group (AA2G administration after LISW application, n = 10) in the first study. In another study, rats were randomized to control group (n = 10), LISW group (n = 10) or LISW + pre and post AA2G group (AA2G administration before and after LISW application, n = 10). The measured outcomes were as follows: (i) motor function assessed by accelerating rotarod test; (ii) levels of 8-hydroxy-2'-deoxyguanosine (8-OHdG), an oxidative stress marker; (iii) ascorbic acid in each group of rats. Ascorbic acid levels were significantly decreased and 8-OHdG levels were significantly increased in the cerebellum of the LISW group. Motor coordination disorder was also observed in the group. Prophylactic AA2G administration significantly increased the ascorbic acid levels, reduced oxidative stress and mitigated the motor dysfunction. In contrast, the effects of therapeutic AA2G administration alone were limited. The results suggest that the prophylactic administration of ascorbic acid can reduce shock wave-related oxidative stress and prevented motor dysfunction in rats.
Collapse
|
11
|
Sun L, Igarashi T, Tetsuka R, Li YS, Kawasaki Y, Kawai K, Hirakawa H, Tsuboi K, Nakamura AJ, Moritake T. Pilot clinical study of ascorbic acid treatment in cardiac catheterization. JOURNAL OF RADIATION RESEARCH 2019; 60:573-578. [PMID: 31251351 PMCID: PMC6805981 DOI: 10.1093/jrr/rrz038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Indexed: 06/09/2023]
Abstract
Clinical radiodiagnosis and radiotherapy sometimes induce tissue damage and/or increase the risk of cancer in patients. However, in radiodiagnosis, a reduction in the exposure dose causes a blockier image that is not acceptable for diagnosis. Approximately 70% of DNA damage is induced via reactive oxygen species and/or radicals created during X-ray irradiation. Therefore, treatment with anti-oxidants and/or radical scavengers is considered to be effective in achieving a good balance between image quality and damage. However, few studies have examined the effect of using radical scavengers to reduce radiation damage in the clinical setting. In this study, we administrated 20 mg/kg ascorbic acid (AA) to patients before cardiac catheterization (CC) for diagnostic purposes. We analyzed changes in the number of phosphorylated H2AX (γH2AX) foci (a marker of DNA double-strand breaks) in lymphocytes, red blood cell glutathione levels, blood cell counts, and biochemical parameters. Unfortunately, we did not find satisfactory evidence to show that AA treatment reduces γH2AX foci formation immediately after CC. AA treatment did, however, cause a higher reduced/oxidized glutathione ratio than in the control arm immediately after CC. This is a preliminary study, but this result suggests that reducing radiation damage in clinical practice can be achieved using a biological approach.
Collapse
Affiliation(s)
- Lue Sun
- Health Research Institute, Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki, Japan
- Department of Radiation Biology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan
- Department of Radiological Health Science, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, Fukuoka, Japan
| | - Tomonori Igarashi
- Iwamoto Hospital, 1-2-8 Shimoishida, Kokuraminami-ku Kitakyushu, Fukuoka, Japan
- Department of Occupational Toxicology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, Fukuoka, Japan
| | - Ryoya Tetsuka
- Department of Biological Sciences, College of Science, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki, Japan
| | - Yun-Shan Li
- Department of Environmental Oncology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, Fukuoka, Japan
| | - Yuya Kawasaki
- Department of Environmental Oncology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, Fukuoka, Japan
| | - Kazuaki Kawai
- Department of Environmental Oncology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, Fukuoka, Japan
| | - Haruhisa Hirakawa
- Department of Cardiology, Social Insurance Nogata Hospital, 1-1 Susakimachi, Nogata, Fukuoka, Japan
| | - Koji Tsuboi
- Department of Radiation Biology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan
| | - Asako J Nakamura
- Department of Biological Sciences, College of Science, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki, Japan
| | - Takashi Moritake
- Department of Radiological Health Science, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu, Fukuoka, Japan
| |
Collapse
|
12
|
Shimura T, Koyama M, Aono D, Kunugita N. Epicatechin as a promising agent to countermeasure radiation exposure by mitigating mitochondrial damage in human fibroblasts and mouse hematopoietic cells. FASEB J 2019; 33:6867-6876. [PMID: 30840834 DOI: 10.1096/fj.201802246rr] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Accidental radiation exposure that is due to a nuclear accident or terrorism using radioactive materials has severe detrimental effects on human health, and it can manifest as acute radiation syndrome depending on the dose and distribution of the radiation. Therefore, the development of radiation countermeasure agents is urgently needed to protect humans against radiation injury. Besides nuclear DNA, the mitochondria are important targets of ionizing radiation (IR) because these organelles generate reactive oxygen species (ROS). Recently, we revealed that mitochondrial ROS-activated cell signaling is associated with IR-induced tumor formation. Here, we investigated the effectiveness of ascorbic acid and epicatechin (EC) in scavenging ROS as radiation countermeasure agents by using human cells and mouse. Preradiation and postradiation treatments with EC mitigate ROS-mediated mitochondrial damage, IR-induced oxidative stress responses including reduction of superoxide dismutase activity, and elevated nuclear factor erythroid 2-related factor 2 expression, and they improve human fibroblast survival. As well as in vitro, EC mitigated ROS-mediated mitochondrial damage after exposure to IR in vivo in mouse platelets. Furthermore, oral administration of EC significantly enhanced the recovery of mouse hematopoietic cells from radiation injury in vivo. In summary, EC is a potentially viable countermeasure agent that is immediately effective against accidental IR exposure by targeting mitochondria-mediated oxidative stress.-Shimura, T., Koyama, M., Aono, D., Kunugita, N. Epicatechin as a promising agent to countermeasure radiation exposure by mitigating mitochondrial damage in human fibroblasts and mouse hematopoietic cells.
Collapse
Affiliation(s)
- Tsutomu Shimura
- Department of Environmental Health, National Institute of Public Health, Saitama, Japan; and
| | - Mao Koyama
- Department of Environmental Health, National Institute of Public Health, Saitama, Japan; and.,Meiji Pharmaceutical University, Tokyo, Japan
| | - Daiki Aono
- Department of Environmental Health, National Institute of Public Health, Saitama, Japan; and.,Meiji Pharmaceutical University, Tokyo, Japan
| | - Naoki Kunugita
- Department of Environmental Health, National Institute of Public Health, Saitama, Japan; and
| |
Collapse
|
13
|
Pathak R, Shah SK, Hauer-Jensen M. Therapeutic potential of natural plant products and their metabolites in preventing radiation enteropathy resulting from abdominal or pelvic irradiation. Int J Radiat Biol 2019; 95:493-505. [PMID: 30526224 DOI: 10.1080/09553002.2018.1552374] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Radiation-induced gastrointestinal injury or radiation enteropathy is an imminent risk during radiation therapy of abdominal or pelvic tumors. Despite remarkable technological advancements in image-guided radiation delivery techniques, the risk of intestinal injury after radiotherapy for abdominal or pelvic cancers has not been completely eliminated. The irradiated intestine undergoes varying degrees of adverse structural and functional changes, which can result in transient or long-term complications. The risk of development of enteropathy depends on dose, fractionation, and quality of radiation. Moreover, the patients' medical condition, age, inter-individual sensitivity to radiation and size of the treatment area are also risk factors of radiation enteropathy. Therefore, strategies are needed to prevent radiotherapy-induced undesirable alteration in the gastrointestinal tract. Many natural plant products, by virtue of their plethora of biological activities, alleviate the adverse effects of radiation-induced injury. The current review discusses potential roles and possible mechanisms of natural plant products in suppressing radiation enteropathy. Natural plant products have the potential to suppress intestinal radiation toxicity.
Collapse
Affiliation(s)
- Rupak Pathak
- a Division of Radiation Health Department of Pharmaceutical Sciences College of Pharmacy , University of Arkansas for Medical Sciences , Little Rock , AR , USA
| | - Sumit K Shah
- b College of Medicine Department of Pathology , University of Arkansas for Medical Sciences , Little Rock , AR , USA
| | - Martin Hauer-Jensen
- a Division of Radiation Health Department of Pharmaceutical Sciences College of Pharmacy , University of Arkansas for Medical Sciences , Little Rock , AR , USA
| |
Collapse
|
14
|
Schoenfeld JD, Alexander MS, Waldron TJ, Sibenaller ZA, Spitz DR, Buettner GR, Allen BG, Cullen JJ. Pharmacological Ascorbate as a Means of Sensitizing Cancer Cells to Radio-Chemotherapy While Protecting Normal Tissue. Semin Radiat Oncol 2019; 29:25-32. [PMID: 30573181 PMCID: PMC6310038 DOI: 10.1016/j.semradonc.2018.10.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Chemoradiation has remained the standard of care treatment for many of the most aggressive cancers. However, despite effective toxicity to cancer cells, current chemoradiation regimens are limited in efficacy due to significant normal cell toxicity. Thus, efforts have been made to identify agents demonstrating selective toxicity, whereby treatments simultaneously sensitize cancer cells to protect normal cells from chemoradiation. Pharmacological ascorbate (intravenous infusions of vitamin C resulting in plasma ascorbate concentrations ≥20 mM; P-AscH-) has demonstrated selective toxicity in a variety of preclinical tumor models and is currently being assessed as an adjuvant to standard-of-care therapies in several early phase clinical trials. This review summarizes the most current preclinical and clinical data available demonstrating the multidimensional role of P-AscH- in cancer therapy including: selective toxicity to cancer cells via a hydrogen peroxide (H2O2)-mediated mechanism; action as a sensitizing agent of cancer cells to chemoradiation; a protectant of normal tissues exposed to chemoradiation; and its safety and tolerability in clinical trials.
Collapse
Affiliation(s)
- Joshua D Schoenfeld
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Iowa City, IA
| | - Matthew S Alexander
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Iowa City, IA; Department of Surgery, Iowa City, IA
| | - Timothy J Waldron
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Iowa City, IA; University of Iowa Carver College of Medicine, Iowa City, IA; The Holden Comprehensive Cancer Center, Iowa City, IA
| | - Zita A Sibenaller
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Iowa City, IA
| | - Douglas R Spitz
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Iowa City, IA; University of Iowa Carver College of Medicine, Iowa City, IA; The Holden Comprehensive Cancer Center, Iowa City, IA
| | - Garry R Buettner
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Iowa City, IA; University of Iowa Carver College of Medicine, Iowa City, IA; The Holden Comprehensive Cancer Center, Iowa City, IA
| | - Bryan G Allen
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Iowa City, IA; University of Iowa Carver College of Medicine, Iowa City, IA; The Holden Comprehensive Cancer Center, Iowa City, IA
| | - Joseph J Cullen
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Iowa City, IA; Department of Surgery, Iowa City, IA; University of Iowa Carver College of Medicine, Iowa City, IA; The Holden Comprehensive Cancer Center, Iowa City, IA; Veterans Affairs Medical Center, Iowa City, IA.
| |
Collapse
|
15
|
Najafi M, Motevaseli E, Shirazi A, Geraily G, Rezaeyan A, Norouzi F, Rezapoor S, Abdollahi H. Mechanisms of inflammatory responses to radiation and normal tissues toxicity: clinical implications. Int J Radiat Biol 2018; 94:335-356. [PMID: 29504497 DOI: 10.1080/09553002.2018.1440092] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 01/23/2018] [Accepted: 01/31/2018] [Indexed: 02/06/2023]
Abstract
PURPOSE Cancer treatment is one of the most challenging diseases in the present era. Among a few modalities for cancer therapy, radiotherapy plays a pivotal role in more than half of all treatments alone or combined with other cancer treatment modalities. Management of normal tissue toxicity induced by radiation is one of the most important limiting factors for an appropriate radiation treatment course. The evaluation of mechanisms of normal tissue toxicity has shown that immune responses especially inflammatory responses play a key role in both early and late side effects of exposure to ionizing radiation (IR). DNA damage and cell death, as well as damage to some organelles such as mitochondria initiate several signaling pathways that result in the response of immune cells. Massive cell damage which is a common phenomenon following exposure to a high dose of IR cause secretion of a lot of inflammatory mediators including cytokines and chemokines. These mediators initiate different changes in normal tissues that may continue for a long time after irradiation. In this study, we reviewed the mechanisms of inflammatory responses to IR that are involved in normal tissue toxicity and considered as the most important limiting factors in radiotherapy. Also, we introduced some agents that have been proposed for management of these responses. CONCLUSIONS The early inflammation during the radiation treatment is often a limiting factor in radiotherapy. In addition to the limiting factors, chronic inflammatory responses may increase the risk of second primary cancers through continuous free radical production, attenuation of tumor suppressor genes, and activation of oncogenes. Moreover, these effects may influence non-irradiated tissues through a mechanism named bystander effect.
Collapse
Affiliation(s)
- Masoud Najafi
- a Radiology and Nuclear Medicine Department, School of Paramedical Sciences , Kermanshah University of Medical Science , Kermanshah , Iran
| | - Elahe Motevaseli
- b Department of Molecular Medicine, School of Advanced Technologies in Medicine , Tehran University of Medical Sciences , Tehran , Iran
| | - Alireza Shirazi
- c Department of Medical Physics and Biomedical Engineering, Faculty of Medicine , Tehran University of Medical Sciences , Tehran , Iran
| | - Ghazale Geraily
- c Department of Medical Physics and Biomedical Engineering, Faculty of Medicine , Tehran University of Medical Sciences , Tehran , Iran
| | - Abolhasan Rezaeyan
- d Department of Medical Physics, School of Medicine , Iran University of Medical Sciences , Tehran , Iran
| | - Farzad Norouzi
- e Science and Research Branch , Azad University , Tehran , Iran
| | - Saeed Rezapoor
- f Department of Radiology, Faculty of Paramedical Sciences , Tehran University of Medical Sciences , Tehran , Iran
| | - Hamid Abdollahi
- d Department of Medical Physics, School of Medicine , Iran University of Medical Sciences , Tehran , Iran
| |
Collapse
|
16
|
Yavuz E, Ercan G, Karagulle OO, Bayrak BY, Biricik A, Ercetin C, Gokcek B, Yigitbas H, Kusaslan R, Celik A, Gulcicek OB. Evaluation of prophylactic and therapeutic effects of sildenafil on acute radiation proctitis in rats. Acta Cir Bras 2018; 33:362-374. [DOI: 10.1590/s0102-865020180040000008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 05/20/2018] [Indexed: 01/27/2023] Open
Affiliation(s)
- Erkan Yavuz
- University of Health Science Bagcilar Training and Research Hospital, Turkey
| | - Gulcin Ercan
- University of Health Science Bagcilar Training and Research Hospital, Turkey
| | | | | | - Aytac Biricik
- University of Health Science Bagcilar Training and Research Hospital, Turkey
| | - Candas Ercetin
- University of Health Science Bagcilar Training and Research Hospital, Turkey
| | - Berk Gokcek
- University of Health Science Okmeydanı Training and Research Hospital, Turkey
| | - Hakan Yigitbas
- University of Health Science Bagcilar Training and Research Hospital, Turkey
| | - Ramazan Kusaslan
- University of Health Science Bagcilar Training and Research Hospital, Turkey
| | - Atilla Celik
- University of Health Science Bagcilar Training and Research Hospital, Turkey
| | | |
Collapse
|
17
|
Yavuz E, Karagulle OO, Ercan G, Celik A, Yigitbas H, Bayrak BY, Tartar R, Kusaslan R, Altinel Y, Gulcicek OB. Evaluation of prophylactic and therapeutic effects of ruscogenin on acute radiation proctitis: an experimental rat model. Ann Surg Treat Res 2018; 94:174-182. [PMID: 29629351 PMCID: PMC5880974 DOI: 10.4174/astr.2018.94.4.174] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 08/22/2017] [Accepted: 08/26/2017] [Indexed: 01/27/2023] Open
Abstract
Purpose Radiation proctitis (RP) is inflammation and damage to the rectum, manifested secondary to ionizing radiation utilized for treatment. In this study, we evaluated the anti-inflammatory therapeutical and protective effects of ruscogenin in a model of acute RP. Methods Thirty-two Sprague-Dawley rats were divided into 4 groups (n = 8) as sham, control, treatment, and prophylaxis groups. Prophylaxis group and treatment group were dosed ruscogenin by oral gavage for 14 days pre- and postradiation. At the end of the 28th day, all subjects were sacrificed. Results Histopathological analysis showed a significant increase in cryptitis abscess, cryptitis and reactive atypia, and depth of lymphocytic infiltration of the control group, compared to the other groups (P < 0.05), while treatment and prophylaxis groups showed significant decreases (P < 0.05). Immunohistochemical analysis indicated that immunoreactivity were significantly higher in control group (P < 0.05, P < 0.001, and P < 0.01, respectively), but vice versa for treatment and prophylaxis groups. There was not any significant difference for fibroblast growth factor 2 immunoreactivity. The epithelium of control rectums indicated an increase in TNF-α immunoreactivity while other groups had significant decrease (P < 0.01). Electron microscopical findings were parallel to light microscopy. Conclusion In this study, ruscogenin was observed to be effective on prophylaxis or treatment of acute RP. Although there are various reports on the treatment of the rectum damaged by acute RP in the literature, this could be the first study since there is no research indicating the ultrastructural effect of ruscogenin.
Collapse
Affiliation(s)
- Erkan Yavuz
- Department of General Surgery, Istanbul Bagcilar Training and Research Hospital, Istanbul, Turkey
| | - Onur Olgac Karagulle
- Department of General Surgery, Istanbul Bagcilar Training and Research Hospital, Istanbul, Turkey
| | - Gulcin Ercan
- Department of General Surgery, Istanbul Bagcilar Training and Research Hospital, Istanbul, Turkey
| | - Atilla Celik
- Department of General Surgery, Istanbul Bagcilar Training and Research Hospital, Istanbul, Turkey
| | - Hakan Yigitbas
- Department of General Surgery, Istanbul Bagcilar Training and Research Hospital, Istanbul, Turkey
| | - Busra Yaprak Bayrak
- Department of Pathology, Kocaeli Derince Training and Research Hospital, Kocaeli, Turkey
| | - Rumeysa Tartar
- Department of General Surgery, Istanbul Bagcilar Training and Research Hospital, Istanbul, Turkey
| | - Ramazan Kusaslan
- Department of General Surgery, Istanbul Bagcilar Training and Research Hospital, Istanbul, Turkey
| | - Yuksel Altinel
- Department of General Surgery, Istanbul Bagcilar Training and Research Hospital, Istanbul, Turkey
| | - Osman Bilgin Gulcicek
- Department of General Surgery, Istanbul Bagcilar Training and Research Hospital, Istanbul, Turkey
| |
Collapse
|
18
|
Nagata K, Hashimoto C, Watanabe-Asaka T, Itoh K, Yasuda T, Ohta K, Oonishi H, Igarashi K, Suzuki M, Funayama T, Kobayashi Y, Nishimaki T, Katsumura T, Oota H, Ogawa M, Oga A, Ikemoto K, Itoh H, Kutsuna N, Oda S, Mitani H. In vivo 3D analysis of systemic effects after local heavy-ion beam irradiation in an animal model. Sci Rep 2016; 6:28691. [PMID: 27345436 PMCID: PMC4922018 DOI: 10.1038/srep28691] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 06/08/2016] [Indexed: 12/01/2022] Open
Abstract
Radiotherapy is widely used in cancer treatment. In addition to inducing effects in the irradiated area, irradiation may induce effects on tissues close to and distant from the irradiated area. Japanese medaka, Oryzias latipes, is a small teleost fish and a model organism for evaluating the environmental effects of radiation. In this study, we applied low-energy carbon-ion (26.7 MeV/u) irradiation to adult medaka to a depth of approximately 2.2 mm from the body surface using an irradiation system at the National Institutes for Quantum and Radiological Science and Technology. We histologically evaluated the systemic alterations induced by irradiation using serial sections of the whole body, and conducted a heart rate analysis. Tissues from the irradiated side showed signs of serious injury that corresponded with the radiation dose. A 3D reconstruction analysis of the kidney sections showed reductions in the kidney volume and blood cell mass along the irradiated area, reflecting the precise localization of the injuries caused by carbon-beam irradiation. Capillary aneurysms were observed in the gill in both ventrally and dorsally irradiated fish, suggesting systemic irradiation effects. The present study provides an in vivo model for further investigation of the effects of irradiation beyond the locally irradiated area.
Collapse
Affiliation(s)
- Kento Nagata
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Chika Hashimoto
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Tomomi Watanabe-Asaka
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Kazusa Itoh
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Takako Yasuda
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Kousaku Ohta
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Hisako Oonishi
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Kento Igarashi
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Michiyo Suzuki
- Takasaki Advanced Radiation Research Institute, Quantum Beam Science Research Directorate, National Institutes for Quantum and Radiological Science and Technology, Gunma, Japan
| | - Tomoo Funayama
- Takasaki Advanced Radiation Research Institute, Quantum Beam Science Research Directorate, National Institutes for Quantum and Radiological Science and Technology, Gunma, Japan
| | - Yasuhiko Kobayashi
- Takasaki Advanced Radiation Research Institute, Quantum Beam Science Research Directorate, National Institutes for Quantum and Radiological Science and Technology, Gunma, Japan
| | - Toshiyuki Nishimaki
- Department of Anatomy, Kitasato University School of Medicine, Kanagawa, Japan
| | - Takafumi Katsumura
- Department of Anatomy, Kitasato University School of Medicine, Kanagawa, Japan
| | - Hiroki Oota
- Department of Anatomy, Kitasato University School of Medicine, Kanagawa, Japan
| | - Motoyuki Ogawa
- Department of Anatomy, Kitasato University School of Medicine, Kanagawa, Japan
| | - Atsunori Oga
- Department of Molecular Pathology, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - Kenzo Ikemoto
- Department of Molecular Pathology, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - Hiroshi Itoh
- Department of Molecular Pathology, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - Natsumaro Kutsuna
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan.,LPixel Inc., Tokyo, Japan
| | - Shoji Oda
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Hiroshi Mitani
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| |
Collapse
|
19
|
Khayyal MT, El-Hazek RM, El-Ghazaly MA. Propolis aqueous extract preserves functional integrity of murine intestinal mucosa after exposure to ionizing radiation. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2015; 40:901-906. [PMID: 26498266 DOI: 10.1016/j.etap.2015.09.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Revised: 09/07/2015] [Accepted: 09/08/2015] [Indexed: 06/05/2023]
Abstract
The ability of a specially prepared water propolis extract (PWE) to preserve the functional activity of the intestinal mucosa after radiation exposure was studied. PWE was given orally (650 mg/kg) to rats five days prior to irradiation by 6 Gy and continued for further two days. Rats were sacrificed 24h later, intestinal segments were examined histologically and homogenates were used to assess relevant biochemical parameters reflecting intestinal injury. Irradiation led to a rise in the histological damage score, a rise in tissue TNF-α and TBARS, and a decrease in sucrase, alkaline phosphatase, GSH and cholecystokinin as well as a decrease in plasma citrulline. The findings reflect a decrease in intestinal functional activity. PWE preserved the intestinal integrity and largely protected against the changes induced in the histology damage score and all parameters measured, possibly as a result of the antioxidant and anti-inflammatory action of its caffeic acid content.
Collapse
Affiliation(s)
- Mohamed T Khayyal
- Department of Pharmacology, Faculty of Pharmacy, Cairo University, Egypt.
| | - Rania M El-Hazek
- Department of Drug Radiation Research, National Centre for Radiation Research and Technology, Atomic Energy Authority, Cairo, Egypt
| | - Mona A El-Ghazaly
- Department of Drug Radiation Research, National Centre for Radiation Research and Technology, Atomic Energy Authority, Cairo, Egypt
| |
Collapse
|
20
|
Khalil SR, Hussein MMA. Neurotransmitters and neuronal apoptotic cell death of chronically aluminum intoxicated Nile catfish (Clarias gariepinus) in response to ascorbic acid supplementation. Neurotoxicology 2015; 51:184-91. [PMID: 26459186 DOI: 10.1016/j.neuro.2015.09.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 08/25/2015] [Accepted: 09/16/2015] [Indexed: 10/22/2022]
Abstract
Few studies have been carried out to assess the neurotoxic effect of aluminum (Al) on the aquatic creatures. This study aims to evaluate the neurotoxic effects of long term Al exposure on the Nile catfish (Clarias gariepinus) and the potential ameliorative influence of ascorbic acid (ASA) over a 180 days exposure period. Forty eight Nile catfish were divided into four groups: control group, placed in clean water, ASA exposed group (5mg/l), AlCl3 received group (28.96 μg/l; 1/20 LC50), and group received AlCl3 concomitantly with ASA. Brain tissue was examined by using flow cytometry to monitor the apoptotic cell population, HPLC analysis for the quantitative estimation of brain monoamine neurotransmitters [serotonin (5-HT), dopamine (DA), norepinephrine (NE)]. The amino acid neurotransmitters [serum taurine, glycine, aspartate and glutamine and brain gamma aminobutyric acid (GABA)] levels were assessed, plus changes in brain tissue structure using light microscopy. The concentration of Al in both brain tissue and serum was determined by using atomic absorption spectrophotometery. The Al content in serum and brain tissue were both elevated and Al exposure induced an increase in the number of apoptotic cells, a marked reduction of the monoamine and amino acids neurotransmitters levels and changes in tissue morphology. ASA supplementation partially abolished the effects of AL on the reduced neurotransmitter, the degree of apoptosis and restored the morphological changes to the brain. Overall, our results indicate that, ASA is a promising neuroprotective agent against for Al-induced neurotoxicity in the Nile catfish.
Collapse
Affiliation(s)
- Samah R Khalil
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, Zagazig University, Egypt.
| | - Mohamed M A Hussein
- Biochemistry Department, Faculty of Veterinary Medicine, Zagazig University, Egypt
| |
Collapse
|
21
|
Du J, Cieslak JA, Welsh JL, Sibenaller ZA, Allen BG, Wagner BA, Kalen AL, Doskey CM, Strother RK, Button AM, Mott SL, Smith B, Tsai S, Mezhir J, Goswami PC, Spitz DR, Buettner GR, Cullen JJ. Pharmacological Ascorbate Radiosensitizes Pancreatic Cancer. Cancer Res 2015; 75:3314-26. [PMID: 26081808 DOI: 10.1158/0008-5472.can-14-1707] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 05/20/2015] [Indexed: 02/03/2023]
Abstract
The toxicity of pharmacologic ascorbate is mediated by the generation of H2O2 via the oxidation of ascorbate. Because pancreatic cancer cells are sensitive to H2O2 generated by ascorbate, they would also be expected to become sensitized to agents that increase oxidative damage such as ionizing radiation. The current study demonstrates that pharmacologic ascorbate enhances the cytotoxic effects of ionizing radiation as seen by decreased cell viability and clonogenic survival in all pancreatic cancer cell lines examined, but not in nontumorigenic pancreatic ductal epithelial cells. Ascorbate radiosensitization was associated with an increase in oxidative stress-induced DNA damage, which was reversed by catalase. In mice with established heterotopic and orthotopic pancreatic tumor xenografts, pharmacologic ascorbate combined with ionizing radiation decreased tumor growth and increased survival, without damaging the gastrointestinal tract or increasing systemic changes in parameters indicative of oxidative stress. Our results demonstrate the potential clinical utility of pharmacologic ascorbate as a radiosensitizer in the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Juan Du
- Department of Surgery, University of Iowa College of Medicine, Iowa City, Iowa
| | - John A Cieslak
- Department of Radiation Oncology, University of Iowa College of Medicine, Iowa City, Iowa
| | - Jessemae L Welsh
- Department of Surgery, University of Iowa College of Medicine, Iowa City, Iowa
| | - Zita A Sibenaller
- Department of Radiation Oncology, University of Iowa College of Medicine, Iowa City, Iowa
| | - Bryan G Allen
- Department of Surgery, University of Iowa College of Medicine, Iowa City, Iowa. Holden Comprehensive Cancer Center, Iowa City, Iowa
| | - Brett A Wagner
- Department of Radiation Oncology, University of Iowa College of Medicine, Iowa City, Iowa
| | - Amanda L Kalen
- Department of Radiation Oncology, University of Iowa College of Medicine, Iowa City, Iowa
| | - Claire M Doskey
- Department of Radiation Oncology, University of Iowa College of Medicine, Iowa City, Iowa
| | - Robert K Strother
- Department of Radiation Oncology, University of Iowa College of Medicine, Iowa City, Iowa
| | | | - Sarah L Mott
- Holden Comprehensive Cancer Center, Iowa City, Iowa
| | - Brian Smith
- Holden Comprehensive Cancer Center, Iowa City, Iowa
| | - Susan Tsai
- Medical College of Wisconsin, Milwaukee, Wisconsin
| | - James Mezhir
- Department of Surgery, University of Iowa College of Medicine, Iowa City, Iowa. Holden Comprehensive Cancer Center, Iowa City, Iowa
| | - Prabhat C Goswami
- Department of Radiation Oncology, University of Iowa College of Medicine, Iowa City, Iowa. Holden Comprehensive Cancer Center, Iowa City, Iowa
| | - Douglas R Spitz
- Department of Radiation Oncology, University of Iowa College of Medicine, Iowa City, Iowa. Holden Comprehensive Cancer Center, Iowa City, Iowa
| | - Garry R Buettner
- Department of Radiation Oncology, University of Iowa College of Medicine, Iowa City, Iowa. Holden Comprehensive Cancer Center, Iowa City, Iowa
| | - Joseph J Cullen
- Department of Surgery, University of Iowa College of Medicine, Iowa City, Iowa. Department of Radiation Oncology, University of Iowa College of Medicine, Iowa City, Iowa. Holden Comprehensive Cancer Center, Iowa City, Iowa. Veterans Affairs Medical Center, Iowa City, Iowa.
| |
Collapse
|
22
|
Mortazavi SMJ, Rahimi S, Mosleh-Shirazi MA, Arjomandi M, Soleimani A, Koohi Hossein-abadi O, Haghani M, Alavi M. A Comparative Study on the Life-Saving Radioprotective Effects of Vitamins A, E, C and Over-the-Counter Multivitamins. J Biomed Phys Eng 2015; 5:59-66. [PMID: 26157731 PMCID: PMC4479387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 02/23/2015] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Oral intake of vitamins which present antioxidant characteristics can protect living organisms against oxidative damage caused by exposure to ionizing radiation. It was previously reported that administration of high levels of vitamin C can lead to increased DNA damage through production of hydroxyl radicals from hydrogen peroxide by the Fenton reaction. However, our early experiments did not confirm this hypothesis. The main goal of this study was to determine if high doses of Vit C can show life-saving radioprotective effects. MATERIALS AND METHODS Phase I: Seventy two male Balb/c mice weighing 20-25g were randomly divided into six groups of 12 animals each. Group I; Vit E for five days, Groups II and III; Vit C and Vit A. Group 4; all three vitamins. Group V; an over-the-counter multivitamin. Group VI; none of the above. Phase II: 120 male BALB/c mice weighing 20-25g were randomly divided into 12 groups of 10 each. Group I; Vit A for five days. Groups II-IV; Vit C 200 mg/kg, 400 mg/kg, 800 mg/kg, respectively. Group V-VII; Vit E at daily doses of 200 iu/kg, 400 iu/kg, 800 iu/kg, respectively. Group VIII and IX; all three vitamins at low and high doses, respectively. Group X; an over-the-counter multivitamin. Group XI; controls group and Group XII; received pure olive oil. All animals (Phases I and II) were exposed to a lethal dose of gamma rays and the survival rates of the animals were monitored and recorded continuously for 16 days after exposure. RESULTS Phase I: 14 days after irradiation the survival rate for control group was 33.33%, while the survival rates for the 1st to 5th groups were 45.45%, 81.81%, 50%, 57.14%, and 9.09% , respectively. Phase II: The survival rates in the control group and the group that only received pure olive oil, were 50% and 60%, respectively. Survival rate in the animals received Vit C at daily doses of 200 mg/kg, 400 mg/kg, 800 mg/kg, were 90%, 90% and 90%, respectively. Log rank (Mantel-Cox) test showed statistically significant differences between the survival rates in control irradiated mice (no vitamins) and mice received Vit C at daily doses of 200 mg/kg (P=0.042), 400 mg/kg (P=0.042) and 800 mg/kg (P=0.042). CONCLUSION Altogether, findings of this study showed that even high doses of Vit C can show life-saving radioprotective effects. The significant radioprotective effect of Vit C at doses used in this study, opens new horizons in developing non-toxic, cost effective, easily available radioprotectors in life-threatening situations such as exposure to lethal doses of ionizing radiation. The radioprotective effect of Vit A and Vit E seem to be less efficient compared to that of Vit C.
Collapse
Affiliation(s)
- S. M. J. Mortazavi
- Ionizing and Non-ionizing Radiation Protection Research Center (INIRPRC), Shiraz University of Medical Sciences, Shiraz, Iran
,Professor of Medical Physics, Medical Physics Department, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - S. Rahimi
- Master Student of Medical Physics, Medical Physics Department, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - M. A. Mosleh-Shirazi
- Head of Radiotherapy Physics Department, Assistant Professor of Medical Physics, Namazi Teaching Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - M. Arjomandi
- Radiologic Technology Student, Radiology Department, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - A. Soleimani
- Ph.D Student of Epidemiology, Epidemiology Department, School of Public Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - O. Koohi Hossein-abadi
- Center of comparative and experimental medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - M. Haghani
- Ionizing and Non-ionizing Radiation Protection Research Center (INIRPRC), Shiraz University of Medical Sciences, Shiraz, Iran
| | - M. Alavi
- Ionizing and Non-ionizing Radiation Protection Research Center (INIRPRC), Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
23
|
Sato T, Kinoshita M, Yamamoto T, Ito M, Nishida T, Takeuchi M, Saitoh D, Seki S, Mukai Y. Treatment of irradiated mice with high-dose ascorbic acid reduced lethality. PLoS One 2015; 10:e0117020. [PMID: 25651298 PMCID: PMC4317183 DOI: 10.1371/journal.pone.0117020] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 12/17/2014] [Indexed: 02/01/2023] Open
Abstract
Ascorbic acid is an effective antioxidant and free radical scavenger. Therefore, it is expected that ascorbic acid should act as a radioprotectant. We investigated the effects of post-radiation treatment with ascorbic acid on mouse survival. Mice received whole body irradiation (WBI) followed by intraperitoneal administration of ascorbic acid. Administration of 3 g/kg of ascorbic acid immediately after exposure significantly increased mouse survival after WBI at 7 to 8 Gy. However, administration of less than 3 g/kg of ascorbic acid was ineffective, and 4 or more g/kg was harmful to the mice. Post-exposure treatment with 3 g/kg of ascorbic acid reduced radiation-induced apoptosis in bone marrow cells and restored hematopoietic function. Treatment with ascorbic acid (3 g/kg) up to 24 h (1, 6, 12, or 24 h) after WBI at 7.5 Gy effectively improved mouse survival; however, treatments beyond 36 h were ineffective. Two treatments with ascorbic acid (1.5 g/kg × 2, immediately and 24 h after radiation, 3 g/kg in total) also improved mouse survival after WBI at 7.5 Gy, accompanied with suppression of radiation-induced free radical metabolites. In conclusion, administration of high-dose ascorbic acid might reduce radiation lethality in mice even after exposure.
Collapse
Affiliation(s)
- Tomohito Sato
- Military Medicine Research Unit, Test and Evaluation Command, Ground Self-Defense Force, Setagaya, Tokyo, Japan
| | - Manabu Kinoshita
- Department of Immunology and Microbiology, National Defense Medical College, Tokorozawa, Saitama, Japan
- * E-mail:
| | - Tetsuo Yamamoto
- Military Medicine Research Unit, Test and Evaluation Command, Ground Self-Defense Force, Setagaya, Tokyo, Japan
| | - Masataka Ito
- Department of Developmental Anatomy and Regenerative Biology, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Takafumi Nishida
- Military Medicine Research Unit, Test and Evaluation Command, Ground Self-Defense Force, Setagaya, Tokyo, Japan
| | - Masaru Takeuchi
- Department of Ophthalmology, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Daizoh Saitoh
- Division of Traumatology, Research Institute, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Shuhji Seki
- Department of Immunology and Microbiology, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Yasuo Mukai
- Military Medicine Research Unit, Test and Evaluation Command, Ground Self-Defense Force, Setagaya, Tokyo, Japan
| |
Collapse
|
24
|
Abstract
PURPOSE OF REVIEW To review recent developments in the field of gastroduodenal mucosal defense. RECENT FINDINGS Research in the field of gastroduodenal mucosal defense has focused on continued elucidation of molecular mechanisms that protect the mucosa and influence healing at the cellular level. Review of literature over the past year reveals that familiar proteins and mediators, such as nitric oxide, toll-like receptors, nucleotide-binding oligomerization domain-containing proteins (NOD2), β-defensins, macrophages, dendritic cells, mucins, autophagy, and the influence of aging and diet, are still subjects of study, but also brings into light new processes and mediators, such as dual oxidases, defense against radiation injuries, and novel proteins such as ZBP-89. SUMMARY These new published findings contribute to our overall understanding of gastroduodenal defense and suggest innovative avenues of future research and possible novel therapeutic targets.
Collapse
Affiliation(s)
- Thomas Kemmerly
- Cedars-Sinai Medical Residency Program, Los Angeles, CA 90048
| | - Jonathan D. Kaunitz
- Greater Los Angeles Veteran Affairs Healthcare System, WLAVA Medical Center, Los Angeles, CA, 90073,Department of Medicine, UCLA School of Medicine, Los Angeles, CA 90024,Department of Surgery, UCLA School of Medicine, Los Angeles, CA 90024,CURE: Digestive Diseases Research Center Department of Medicine, Los Angeles, CA, 90073 USA,Brentwood Biomedical Research Institute, Los Angeles, CA, 90073 USA
| |
Collapse
|