1
|
Thotamune W, Ubeysinghe S, Rajarathna C, Kankanamge D, Olupothage K, Chandu A, Copits BA, Karunarathne A. AGS3-based optogenetic GDI induces GPCR-independent Gβγ signalling and macrophage migration. Open Biol 2025; 15:240181. [PMID: 39904370 PMCID: PMC11793977 DOI: 10.1098/rsob.240181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 11/14/2024] [Accepted: 01/09/2025] [Indexed: 02/06/2025] Open
Abstract
G-protein-coupled receptors (GPCRs) are efficient guanine nucleotide exchange factors (GEFs) and exchange GDP to GTP on the Gα subunit of G-protein heterotrimers in response to various extracellular stimuli, including neurotransmitters and light. GPCRs primarily broadcast signals through activated G proteins, GαGTP and free Gβγ and are major disease drivers. Evidence shows that the ambient low threshold signalling required for cells is likely supplemented by signalling regulators such as non-GPCR GEFs and guanine nucleotide dissociation inhibitors (GDIs). Activators of G-protein signalling 3 (AGS3) are recognized as a GDI involved in multiple health and disease-related processes. Nevertheless, understanding of AGS3 is limited, and no significant information is available on its structure-function relationship or signalling regulation in living cells. Here, we employed in silico structure-guided engineering of a novel optogenetic GDI, based on the AGS3's G-protein regulatory motif, to understand its GDI activity and induce standalone Gβγ signalling in living cells on optical command. Our results demonstrate that plasma membrane recruitment of OptoGDI efficiently releases Gβγ, and its subcellular targeting generated localized PIP3 and triggered macrophage migration. Therefore, we propose OptoGDI as a powerful tool for optically dissecting GDI-mediated signalling pathways and triggering GPCR-independent Gβγ signalling in cells and in vivo.
Collapse
Affiliation(s)
- Waruna Thotamune
- Department of Chemistry, Saint Louis University, Saint Louis, MO63103, USA
- Institute for Drug and Biotherapeutic Innovation, Saint Louis University, Saint Louis, MO63103, USA
| | - Sithurandi Ubeysinghe
- Department of Chemistry, Saint Louis University, Saint Louis, MO63103, USA
- Institute for Drug and Biotherapeutic Innovation, Saint Louis University, Saint Louis, MO63103, USA
| | - Chathuri Rajarathna
- Department of Chemistry, Saint Louis University, Saint Louis, MO63103, USA
- Institute for Drug and Biotherapeutic Innovation, Saint Louis University, Saint Louis, MO63103, USA
| | - Dinesh Kankanamge
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine, St. Louis, MO63110, USA
| | - Koshala Olupothage
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, OH43606, USA
| | - Aditya Chandu
- Department of Chemistry, Saint Louis University, Saint Louis, MO63103, USA
| | - Bryan A. Copits
- Department of Anesthesiology, Washington University Pain Center, Washington University School of Medicine, St. Louis, MO63110, USA
| | - Ajith Karunarathne
- Department of Chemistry, Saint Louis University, Saint Louis, MO63103, USA
- Institute for Drug and Biotherapeutic Innovation, Saint Louis University, Saint Louis, MO63103, USA
| |
Collapse
|
2
|
Thotamune W, Ubeysinghe S, Rajarathna C, Kankanamge D, Olupothage K, Chandu A, Copits BA, Karunarathne A. AGS3-based optogenetic GDI induces GPCR-independent Gβγ signaling and macrophage migration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.04.597473. [PMID: 38895415 PMCID: PMC11185739 DOI: 10.1101/2024.06.04.597473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
G protein-coupled receptors (GPCRs) are efficient Guanine nucleotide exchange factors (GEFs) and exchange GDP to GTP on the Gα subunit of G protein heterotrimers in response to various extracellular stimuli, including neurotransmitters and light. GPCRs primarily broadcast signals through activated G proteins, GαGTP, and free Gβγ, and are major disease drivers. Evidence shows that the ambient low threshold signaling required for cells is likely supplemented by signaling regulators such as non-GPCR GEFs and Guanine nucleotide Dissociation Inhibitors (GDIs). Activators of G protein Signaling 3 (AGS3) are recognized as a GDI involved in multiple health and disease-related processes. Nevertheless, understanding of AGS3 is limited, and no significant information is available on its structure-function relationship or signaling regulation in living cells. Here, we employed in silico structure-guided engineering of a novel optogenetic GDI, based on the AGS3's G protein regulatory (GPR) motif, to understand its GDI activity and induce standalone Gβγ signaling in living cells on optical command. Our results demonstrate that plasma membrane recruitment of OptoGDI efficiently releases Gβγ, and its subcellular targeting generated localized PIP3 and triggered macrophage migration. Therefore, we propose OptoGDI as a powerful tool for optically dissecting GDI-mediated signaling pathways and triggering GPCR-independent Gβγ signaling in cells and in vivo.
Collapse
Affiliation(s)
- Waruna Thotamune
- Department of Chemistry, Saint Louis University, Saint Louis, MO 63103, USA
- Institute for Drug and Biotherapeutic Innovation, Saint Louis University, Saint Louis, MO 63103, USA
| | - Sithurandi Ubeysinghe
- Department of Chemistry, Saint Louis University, Saint Louis, MO 63103, USA
- Institute for Drug and Biotherapeutic Innovation, Saint Louis University, Saint Louis, MO 63103, USA
| | - Chathuri Rajarathna
- Department of Chemistry, Saint Louis University, Saint Louis, MO 63103, USA
- Institute for Drug and Biotherapeutic Innovation, Saint Louis University, Saint Louis, MO 63103, USA
| | - Dinesh Kankanamge
- Washington University Pain Center, Department of Anesthesiology, Washington University School of Medicine; St. Louis, MO 63110 USA
| | - Koshala Olupothage
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, OH 43606, USA
| | - Aditya Chandu
- Department of Chemistry, Saint Louis University, Saint Louis, MO 63103, USA
| | - Bryan A. Copits
- Washington University Pain Center, Department of Anesthesiology, Washington University School of Medicine; St. Louis, MO 63110 USA
| | - Ajith Karunarathne
- Department of Chemistry, Saint Louis University, Saint Louis, MO 63103, USA
- Institute for Drug and Biotherapeutic Innovation, Saint Louis University, Saint Louis, MO 63103, USA
| |
Collapse
|
3
|
Mak A, Abramian A, Driessens SLW, Boers-Escuder C, van der Loo RJ, Smit AB, van den Oever MC, Verheijen MHG. Activation of G s Signaling in Cortical Astrocytes Does Not Influence Formation of a Persistent Contextual Memory Engram. eNeuro 2024; 11:ENEURO.0056-24.2024. [PMID: 38902023 PMCID: PMC11209656 DOI: 10.1523/eneuro.0056-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/19/2024] [Accepted: 05/04/2024] [Indexed: 06/22/2024] Open
Abstract
Formation and retrieval of remote contextual memory depends on cortical engram neurons that are defined during learning. Manipulation of astrocytic Gq and Gi associated G-protein coupled receptor (GPCR) signaling has been shown to affect memory processing, but little is known about the role of cortical astrocytic Gs-GPCR signaling in remote memory acquisition and the functioning of cortical engram neurons. We assessed this by chemogenetic manipulation of astrocytes in the medial prefrontal cortex (mPFC) of male mice, during either encoding or consolidation of a contextual fear memory, while simultaneously labeling cortical engram neurons. We found that stimulation of astrocytic Gs signaling during memory encoding and consolidation did not alter remote memory expression. In line with this, the size of the mPFC engram population and the recall-induced reactivation of these neurons was unaffected. Hence, our data indicate that activation of Gs-GPCR signaling in cortical astrocytes is not sufficient to alter memory performance and functioning of cortical engram neurons.
Collapse
Affiliation(s)
- Aline Mak
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, The Netherlands
| | - Adlin Abramian
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, The Netherlands
| | - Stan L W Driessens
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, The Netherlands
| | - Cristina Boers-Escuder
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, The Netherlands
| | - Rolinka J van der Loo
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, The Netherlands
| | - August B Smit
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, The Netherlands
| | - Michel C van den Oever
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, The Netherlands
| | - Mark H G Verheijen
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, The Netherlands
| |
Collapse
|
4
|
Lee SH, Mak A, Verheijen MHG. Comparative assessment of the effects of DREADDs and endogenously expressed GPCRs in hippocampal astrocytes on synaptic activity and memory. Front Cell Neurosci 2023; 17:1159756. [PMID: 37051110 PMCID: PMC10083367 DOI: 10.3389/fncel.2023.1159756] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/13/2023] [Indexed: 03/29/2023] Open
Abstract
Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) have proven themselves as one of the key in vivo techniques of modern neuroscience, allowing for unprecedented access to cellular manipulations in living animals. With respect to astrocyte research, DREADDs have become a popular method to examine the functional aspects of astrocyte activity, particularly G-protein coupled receptor (GPCR)-mediated intracellular calcium (Ca2+) and cyclic adenosine monophosphate (cAMP) dynamics. With this method it has become possible to directly link the physiological aspects of astrocytic function to cognitive processes such as memory. As a result, a multitude of studies have explored the impact of DREADD activation in astrocytes on synaptic activity and memory. However, the emergence of varying results prompts us to reconsider the degree to which DREADDs expressed in astrocytes accurately mimic endogenous GPCR activity. Here we compare the major downstream signaling mechanisms, synaptic, and behavioral effects of stimulating Gq-, Gs-, and Gi-DREADDs in hippocampal astrocytes of adult mice to those of endogenously expressed GPCRs.
Collapse
Affiliation(s)
- Sophie H. Lee
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Research Master’s Programme Brain and Cognitive Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Aline Mak
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Mark H. G. Verheijen
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- *Correspondence: Mark Verheijen,
| |
Collapse
|
5
|
Kotliar IB, Lorenzen E, Schwenk JM, Hay DL, Sakmar TP. Elucidating the Interactome of G Protein-Coupled Receptors and Receptor Activity-Modifying Proteins. Pharmacol Rev 2023; 75:1-34. [PMID: 36757898 PMCID: PMC9832379 DOI: 10.1124/pharmrev.120.000180] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 09/27/2022] [Indexed: 12/13/2022] Open
Abstract
G protein-coupled receptors (GPCRs) are known to interact with several other classes of integral membrane proteins that modulate their biology and pharmacology. However, the extent of these interactions and the mechanisms of their effects are not well understood. For example, one class of GPCR-interacting proteins, receptor activity-modifying proteins (RAMPs), comprise three related and ubiquitously expressed single-transmembrane span proteins. The RAMP family was discovered more than two decades ago, and since then GPCR-RAMP interactions and their functional consequences on receptor trafficking and ligand selectivity have been documented for several secretin (class B) GPCRs, most notably the calcitonin receptor-like receptor. Recent bioinformatics and multiplexed experimental studies suggest that GPCR-RAMP interactions might be much more widespread than previously anticipated. Recently, cryo-electron microscopy has provided high-resolution structures of GPCR-RAMP-ligand complexes, and drugs have been developed that target GPCR-RAMP complexes. In this review, we provide a summary of recent advances in techniques that allow the discovery of GPCR-RAMP interactions and their functional consequences and highlight prospects for future advances. We also provide an up-to-date list of reported GPCR-RAMP interactions based on a review of the current literature. SIGNIFICANCE STATEMENT: Receptor activity-modifying proteins (RAMPs) have emerged as modulators of many aspects of G protein-coupled receptor (GPCR)biology and pharmacology. The application of new methodologies to study membrane protein-protein interactions suggests that RAMPs interact with many more GPCRs than had been previously known. These findings, especially when combined with structural studies of membrane protein complexes, have significant implications for advancing GPCR-targeted drug discovery and the understanding of GPCR pharmacology, biology, and regulation.
Collapse
Affiliation(s)
- Ilana B Kotliar
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, New York (I.B.K., E.L., T.P.S.); Tri-Institutional PhD Program in Chemical Biology, New York, New York (I.B.K.); Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH-Royal Institute of Technology, Solna, Sweden (J.M.S.); Department of Pharmacology and Toxicology, School of Biomedical Sciences, Division of Health Sciences, University of Otago, Dunedin, New Zealand (D.L.H.); and Department of Neurobiology, Care Sciences and Society (NVS), Division for Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Solna, Sweden (T.P.S.)
| | - Emily Lorenzen
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, New York (I.B.K., E.L., T.P.S.); Tri-Institutional PhD Program in Chemical Biology, New York, New York (I.B.K.); Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH-Royal Institute of Technology, Solna, Sweden (J.M.S.); Department of Pharmacology and Toxicology, School of Biomedical Sciences, Division of Health Sciences, University of Otago, Dunedin, New Zealand (D.L.H.); and Department of Neurobiology, Care Sciences and Society (NVS), Division for Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Solna, Sweden (T.P.S.)
| | - Jochen M Schwenk
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, New York (I.B.K., E.L., T.P.S.); Tri-Institutional PhD Program in Chemical Biology, New York, New York (I.B.K.); Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH-Royal Institute of Technology, Solna, Sweden (J.M.S.); Department of Pharmacology and Toxicology, School of Biomedical Sciences, Division of Health Sciences, University of Otago, Dunedin, New Zealand (D.L.H.); and Department of Neurobiology, Care Sciences and Society (NVS), Division for Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Solna, Sweden (T.P.S.)
| | - Debbie L Hay
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, New York (I.B.K., E.L., T.P.S.); Tri-Institutional PhD Program in Chemical Biology, New York, New York (I.B.K.); Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH-Royal Institute of Technology, Solna, Sweden (J.M.S.); Department of Pharmacology and Toxicology, School of Biomedical Sciences, Division of Health Sciences, University of Otago, Dunedin, New Zealand (D.L.H.); and Department of Neurobiology, Care Sciences and Society (NVS), Division for Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Solna, Sweden (T.P.S.)
| | - Thomas P Sakmar
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University, New York, New York (I.B.K., E.L., T.P.S.); Tri-Institutional PhD Program in Chemical Biology, New York, New York (I.B.K.); Science for Life Laboratory, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH-Royal Institute of Technology, Solna, Sweden (J.M.S.); Department of Pharmacology and Toxicology, School of Biomedical Sciences, Division of Health Sciences, University of Otago, Dunedin, New Zealand (D.L.H.); and Department of Neurobiology, Care Sciences and Society (NVS), Division for Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Solna, Sweden (T.P.S.)
| |
Collapse
|
6
|
Functions of the Zinc-Sensing Receptor GPR39 in Regulating Intestinal Health in Animals. Int J Mol Sci 2022; 23:ijms232012133. [PMID: 36292986 PMCID: PMC9602648 DOI: 10.3390/ijms232012133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/08/2022] [Accepted: 10/10/2022] [Indexed: 11/17/2022] Open
Abstract
G protein-coupled receptor 39 (GPR39) is a zinc-sensing receptor (ZnR) that can sense changes in extracellular Zn2+, mediate Zn2+ signal transmission, and participate in the regulation of numerous physiological activities in living organisms. For example, GPR39 activates the extracellular signal-regulated kinase/mitogen-activated protein kinase (ERK/MAPK) and phosphatidylinositol3-kinase/protein kinase B (PI3K/AKT) signaling pathways upon Zn2+ stimulation, enhances the proliferation and differentiation of colonic cells, and regulates ion transport, as well as exerting other functions. In recent years, with the increased attention to animal gut health issues and the intensive research on GPR39, GPR39 has become a potential target for regulating animal intestinal health. On the one hand, GPR39 is involved in regulating ion transport in the animal intestine, mediating the Cl− efflux by activating the K+/Cl− synergistic protein transporter, and relieving diarrhea symptoms. On the other hand, GPR39 can maintain the homeostasis of the animal intestine, promoting pH restoration in colonic cells, regulating gastric acid secretion, and facilitating nutrient absorption. In addition, GPR39 can affect the expression of tight junction proteins in intestinal epithelial cells, improving the barrier function of the animal intestinal mucosa, and maintaining the integrity of the intestine. This review summarizes the structure and signaling transduction processes involving GPR39 and the effect of GPR39 on the regulation of intestinal health in animals, with the aim of further highlighting the role of GPR39 in regulating animal intestinal health and providing new directions and ideas for studying the prevention and treatment of animal intestinal diseases.
Collapse
|
7
|
Leysen H, Walter D, Clauwaert L, Hellemans L, van Gastel J, Vasudevan L, Martin B, Maudsley S. The Relaxin-3 Receptor, RXFP3, Is a Modulator of Aging-Related Disease. Int J Mol Sci 2022; 23:4387. [PMID: 35457203 PMCID: PMC9027355 DOI: 10.3390/ijms23084387] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/08/2022] [Accepted: 04/12/2022] [Indexed: 12/12/2022] Open
Abstract
During the aging process our body becomes less well equipped to deal with cellular stress, resulting in an increase in unrepaired damage. This causes varying degrees of impaired functionality and an increased risk of mortality. One of the most effective anti-aging strategies involves interventions that combine simultaneous glucometabolic support with augmented DNA damage protection/repair. Thus, it seems prudent to develop therapeutic strategies that target this combinatorial approach. Studies have shown that the ADP-ribosylation factor (ARF) GTPase activating protein GIT2 (GIT2) acts as a keystone protein in the aging process. GIT2 can control both DNA repair and glucose metabolism. Through in vivo co-regulation analyses it was found that GIT2 forms a close coexpression-based relationship with the relaxin-3 receptor (RXFP3). Cellular RXFP3 expression is directly affected by DNA damage and oxidative stress. Overexpression or stimulation of this receptor, by its endogenous ligand relaxin 3 (RLN3), can regulate the DNA damage response and repair processes. Interestingly, RLN3 is an insulin-like peptide and has been shown to control multiple disease processes linked to aging mechanisms, e.g., anxiety, depression, memory dysfunction, appetite, and anti-apoptotic mechanisms. Here we discuss the molecular mechanisms underlying the various roles of RXFP3/RLN3 signaling in aging and age-related disorders.
Collapse
Affiliation(s)
- Hanne Leysen
- Receptor Biology Laboratory, University of Antwerp, 2610 Wilrijk, Belgium; (H.L.); (D.W.); (L.C.); (L.H.); (J.v.G.)
| | - Deborah Walter
- Receptor Biology Laboratory, University of Antwerp, 2610 Wilrijk, Belgium; (H.L.); (D.W.); (L.C.); (L.H.); (J.v.G.)
| | - Lore Clauwaert
- Receptor Biology Laboratory, University of Antwerp, 2610 Wilrijk, Belgium; (H.L.); (D.W.); (L.C.); (L.H.); (J.v.G.)
| | - Lieselot Hellemans
- Receptor Biology Laboratory, University of Antwerp, 2610 Wilrijk, Belgium; (H.L.); (D.W.); (L.C.); (L.H.); (J.v.G.)
| | - Jaana van Gastel
- Receptor Biology Laboratory, University of Antwerp, 2610 Wilrijk, Belgium; (H.L.); (D.W.); (L.C.); (L.H.); (J.v.G.)
- SGS Belgium, Intercity Business Park, Generaal De Wittelaan 19-A5, 2800 Mechelen, Belgium
| | | | - Bronwen Martin
- Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium;
| | - Stuart Maudsley
- Receptor Biology Laboratory, University of Antwerp, 2610 Wilrijk, Belgium; (H.L.); (D.W.); (L.C.); (L.H.); (J.v.G.)
| |
Collapse
|
8
|
Langer I, Jeandriens J, Couvineau A, Sanmukh S, Latek D. Signal Transduction by VIP and PACAP Receptors. Biomedicines 2022; 10:406. [PMID: 35203615 PMCID: PMC8962308 DOI: 10.3390/biomedicines10020406] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 02/05/2023] Open
Abstract
Homeostasis of the human immune system is regulated by many cellular components, including two neuropeptides, VIP and PACAP, primary stimuli for three class B G protein-coupled receptors, VPAC1, VPAC2, and PAC1. Vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP) regulate intestinal motility and secretion and influence the functioning of the endocrine and immune systems. Inhibition of VIP and PACAP receptors is an emerging concept for new pharmacotherapies for chronic inflammation and cancer, while activation of their receptors provides neuroprotection. A small number of known active compounds for these receptors still impose limitations on their use in therapeutics. Recent cryo-EM structures of VPAC1 and PAC1 receptors in their agonist-bound active state have provided insights regarding their mechanism of activation. Here, we describe major molecular switches of VPAC1, VPAC2, and PAC1 that may act as triggers for receptor activation and compare them with similar non-covalent interactions changing upon activation that were observed for other GPCRs. Interhelical interactions in VIP and PACAP receptors that are important for agonist binding and/or activation provide a molecular basis for the design of novel selective drugs demonstrating anti-inflammatory, anti-cancer, and neuroprotective effects. The impact of genetic variants of VIP, PACAP, and their receptors on signalling mediated by endogenous agonists is also described. This sequence diversity resulting from gene splicing has a significant impact on agonist selectivity and potency as well as on the signalling properties of VIP and PACAP receptors.
Collapse
Affiliation(s)
- Ingrid Langer
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université libre de Bruxelles, B-1070 Brussels, Belgium; (I.L.); (J.J.)
| | - Jérôme Jeandriens
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université libre de Bruxelles, B-1070 Brussels, Belgium; (I.L.); (J.J.)
| | - Alain Couvineau
- UMR 1149 Inserm, Centre de Recherche sur l’Inflammation (CRI), Université de Paris, 75018 Paris, France;
| | - Swapnil Sanmukh
- Faculty of Chemistry, University of Warsaw, 02-093 Warsaw, Poland;
| | - Dorota Latek
- Faculty of Chemistry, University of Warsaw, 02-093 Warsaw, Poland;
| |
Collapse
|
9
|
Feng L, Yin YY, Liu CH, Xu KR, Li QR, Wu JR, Zeng R. Proteome-wide data analysis reveals tissue-specific network associated with SARS-CoV-2 infection. J Mol Cell Biol 2021; 12:946-957. [PMID: 32642770 PMCID: PMC7454804 DOI: 10.1093/jmcb/mjaa033] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 06/04/2020] [Accepted: 06/11/2020] [Indexed: 12/14/2022] Open
Abstract
For patients with COVID-19 caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the damages to multiple organs have been clinically observed. Since most of current investigations for virus–host interaction are based on cell level, there is an urgent demand to probe tissue-specific features associated with SARS-CoV-2 infection. Based on collected proteomic datasets from human lung, colon, kidney, liver, and heart, we constructed a virus-receptor network, a virus-interaction network, and a virus-perturbation network. In the tissue-specific networks associated with virus–host crosstalk, both common and different key hubs are revealed in diverse tissues. Ubiquitous hubs in multiple tissues such as BRD4 and RIPK1 would be promising drug targets to rescue multi-organ injury and deal with inflammation. Certain tissue-unique hubs such as REEP5 might mediate specific olfactory dysfunction. The present analysis implies that SARS-CoV-2 could affect multi-targets in diverse host tissues, and the treatment of COVID-19 would be a complex task.
Collapse
Affiliation(s)
- Li Feng
- CAS Key Laboratory of Systems Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Mollecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuan-Yuan Yin
- CAS Key Laboratory of Systems Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Mollecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cong-Hui Liu
- CAS Key Laboratory of Systems Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Mollecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ke-Ren Xu
- CAS Key Laboratory of Systems Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Mollecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qing-Run Li
- CAS Key Laboratory of Systems Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Mollecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jia-Rui Wu
- CAS Key Laboratory of Systems Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Mollecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China.,CAS Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou 310024, China
| | - Rong Zeng
- CAS Key Laboratory of Systems Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Mollecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China.,CAS Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
10
|
van Gastel J, Leysen H, Santos-Otte P, Hendrickx JO, Azmi A, Martin B, Maudsley S. The RXFP3 receptor is functionally associated with cellular responses to oxidative stress and DNA damage. Aging (Albany NY) 2019; 11:11268-11313. [PMID: 31794429 PMCID: PMC6932917 DOI: 10.18632/aging.102528] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 11/18/2019] [Indexed: 12/19/2022]
Abstract
DNA damage response (DDR) processes, often caused by oxidative stress, are important in aging and -related disorders. We recently showed that G protein-coupled receptor (GPCR) kinase interacting protein 2 (GIT2) plays a key role in both DNA damage and oxidative stress. Multiple tissue analyses in GIT2KO mice demonstrated that GIT2 expression affects the GPCR relaxin family peptide 3 receptor (RXFP3), and is thus a therapeutically-targetable system. RXFP3 and GIT2 play similar roles in metabolic aging processes. Gaining a detailed understanding of the RXFP3-GIT2 functional relationship could aid the development of novel anti-aging therapies. We determined the connection between RXFP3 and GIT2 by investigating the role of RXFP3 in oxidative stress and DDR. Analyzing the effects of oxidizing (H2O2) and DNA-damaging (camptothecin) stressors on the interacting partners of RXFP3 using Affinity Purification-Mass Spectrometry, we found multiple proteins linked to DDR and cell cycle control. RXFP3 expression increased in response to DNA damage, overexpression, and Relaxin 3-mediated stimulation of RXFP3 reduced phosphorylation of DNA damage marker H2AX, and repair protein BRCA1, moderating DNA damage. Our data suggests an RXFP3-GIT2 system that could regulate cellular degradation after DNA damage, and could be a novel mechanism for mitigating the rate of age-related damage accumulation.
Collapse
Affiliation(s)
- Jaana van Gastel
- Receptor Biology Lab, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.,Translational Neurobiology Group, Centre for Molecular Neuroscience, VIB, Antwerp, Belgium
| | - Hanne Leysen
- Receptor Biology Lab, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.,Translational Neurobiology Group, Centre for Molecular Neuroscience, VIB, Antwerp, Belgium
| | - Paula Santos-Otte
- Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Dresden, Germany
| | - Jhana O Hendrickx
- Receptor Biology Lab, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.,Translational Neurobiology Group, Centre for Molecular Neuroscience, VIB, Antwerp, Belgium
| | - Abdelkrim Azmi
- Translational Neurobiology Group, Centre for Molecular Neuroscience, VIB, Antwerp, Belgium
| | - Bronwen Martin
- Faculty of Pharmaceutical, Veterinary and Biomedical Science, University of Antwerp, Antwerp, Belgium
| | - Stuart Maudsley
- Receptor Biology Lab, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.,Translational Neurobiology Group, Centre for Molecular Neuroscience, VIB, Antwerp, Belgium
| |
Collapse
|
11
|
León-Navarro DA, Albasanz JL, Martín M. Functional Cross-Talk between Adenosine and Metabotropic Glutamate Receptors. Curr Neuropharmacol 2019; 17:422-437. [PMID: 29663888 PMCID: PMC6520591 DOI: 10.2174/1570159x16666180416093717] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 03/19/2018] [Accepted: 04/13/2018] [Indexed: 12/14/2022] Open
Abstract
Abstract: G-protein coupled receptors are transmembrane proteins widely expressed in cells and their transduction pathways are mediated by controlling second messenger levels through different G-protein interactions. Many of these receptors have been described as involved in the physiopathology of neurodegenerative diseases and even considered as potential targets for the design of novel therapeutic strategies. Endogenous and synthetic allosteric and orthosteric selective ligands are able to modulate GPCRs at both gene and protein expression levels and can also modify their physiological function. GPCRs that coexist in the same cells can homo- and heteromerize, therefore, modulating their function. Adenosine receptors are GPCRs which stimulate or inhibit adenylyl cyclase activity through Gi/Gs protein and are involved in the control of neurotransmitter release as glutamate. In turn, metabotropic glutamate receptors are also GPCRs which inhibit adenylyl cyclase or stimulate phospholipase C activities through Gi or Gq proteins, respectively. In recent years, evidence of crosstalk mechanisms be-tween different GPCRs have been described. The aim of the present review was to summarize the described mechanisms of interaction and crosstalking between adenosine and metabotropic glutamate receptors, mainly of group I, in both in vitro and in vivo systems, and their possible use for the design of novel ligands for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- David Agustín León-Navarro
- Departamento de Quimica Inorganica, Organica y Bioquimica. CRIB, Universidad de Castilla-La Mancha, Spain.,Facultad de Ciencias y Tecnologías Químicas, Avenida Camilo José Cela, 10, 13071 Ciudad Real, Spain
| | - José Luis Albasanz
- Departamento de Quimica Inorganica, Organica y Bioquimica. CRIB, Universidad de Castilla-La Mancha, Spain.,Facultad de Ciencias y Tecnologías Químicas, Avenida Camilo José Cela, 10, 13071 Ciudad Real, Spain.,Facultad de Medicina de Ciudad Real, Camino Moledores s/n. 13071 Ciudad Real, Spain
| | - Mairena Martín
- Departamento de Quimica Inorganica, Organica y Bioquimica. CRIB, Universidad de Castilla-La Mancha, Spain.,Facultad de Ciencias y Tecnologías Químicas, Avenida Camilo José Cela, 10, 13071 Ciudad Real, Spain.,Facultad de Medicina de Ciudad Real, Camino Moledores s/n. 13071 Ciudad Real, Spain
| |
Collapse
|
12
|
Leysen H, van Gastel J, Hendrickx JO, Santos-Otte P, Martin B, Maudsley S. G Protein-Coupled Receptor Systems as Crucial Regulators of DNA Damage Response Processes. Int J Mol Sci 2018; 19:E2919. [PMID: 30261591 PMCID: PMC6213947 DOI: 10.3390/ijms19102919] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 09/14/2018] [Accepted: 09/15/2018] [Indexed: 12/11/2022] Open
Abstract
G protein-coupled receptors (GPCRs) and their associated proteins represent one of the most diverse cellular signaling systems involved in both physiological and pathophysiological processes. Aging represents perhaps the most complex biological process in humans and involves a progressive degradation of systemic integrity and physiological resilience. This is in part mediated by age-related aberrations in energy metabolism, mitochondrial function, protein folding and sorting, inflammatory activity and genomic stability. Indeed, an increased rate of unrepaired DNA damage is considered to be one of the 'hallmarks' of aging. Over the last two decades our appreciation of the complexity of GPCR signaling systems has expanded their functional signaling repertoire. One such example of this is the incipient role of GPCRs and GPCR-interacting proteins in DNA damage and repair mechanisms. Emerging data now suggest that GPCRs could function as stress sensors for intracellular damage, e.g., oxidative stress. Given this role of GPCRs in the DNA damage response process, coupled to the effective history of drug targeting of these receptors, this suggests that one important future activity of GPCR therapeutics is the rational control of DNA damage repair systems.
Collapse
Affiliation(s)
- Hanne Leysen
- Department of Biomedical Sciences, University of Antwerp, 2610 Antwerp, Belgium.
| | - Jaana van Gastel
- Department of Biomedical Sciences, University of Antwerp, 2610 Antwerp, Belgium.
- Translational Neurobiology Group, Center of Molecular Neurology, VIB, 2610 Antwerp, Belgium.
| | - Jhana O Hendrickx
- Department of Biomedical Sciences, University of Antwerp, 2610 Antwerp, Belgium.
- Translational Neurobiology Group, Center of Molecular Neurology, VIB, 2610 Antwerp, Belgium.
| | - Paula Santos-Otte
- Institute of Biophysics, Humboldt-Universität zu Berlin, 10115 Berlin, Germany.
| | - Bronwen Martin
- Department of Biomedical Sciences, University of Antwerp, 2610 Antwerp, Belgium.
| | - Stuart Maudsley
- Department of Biomedical Sciences, University of Antwerp, 2610 Antwerp, Belgium.
- Translational Neurobiology Group, Center of Molecular Neurology, VIB, 2610 Antwerp, Belgium.
| |
Collapse
|
13
|
Doyen PJ, Vergouts M, Pochet A, Desmet N, van Neerven S, Brook G, Hermans E. Inflammation-associated regulation of RGS in astrocytes and putative implication in neuropathic pain. J Neuroinflammation 2017; 14:209. [PMID: 29078779 PMCID: PMC5658970 DOI: 10.1186/s12974-017-0971-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 09/26/2017] [Indexed: 02/07/2023] Open
Abstract
Background Regulators of G-protein signaling (RGS) are major physiological modulators of G-protein-coupled receptors (GPCR) signaling. Several GPCRs expressed in both neurons and astrocytes participate in the central control of pain processing, and the reduced efficacy of analgesics in neuropathic pain conditions may rely on alterations in RGS function. The expression and the regulation of RGS in astrocytes is poorly documented, and we herein hypothesized that neuroinflammation which is commonly observed in neuropathic pain could influence RGS expression in astrocytes. Methods In a validated model of neuropathic pain, the spared nerve injury (SNI), the regulation of RGS2, RGS3, RGS4, and RGS7 messenger RNA (mRNA) was examined up to 3 weeks after the lesion. Changes in the expression of the same RGS were also studied in cultured astrocytes exposed to defined activation protocols or to inflammatory cytokines. Results We evidenced a differential regulation of these RGS in the lumbar spinal cord of animals undergoing SNI. In particular, RGS3 appeared upregulated at early stages after the lesion whereas expression of RGS2 and RGS4 was decreased at later stages. Decrease in RGS7 expression was already observed after 3 days and outlasted until 21 days after the lesion. In cultured astrocytes, we observed that changes in the culture conditions distinctly influenced the constitutive expression of these RGS. Also, brief exposures (4 to 8 h) to either interleukin-1β, interleukin-6, or tumor necrosis factor α caused rapid changes in the mRNA levels of the RGS, which however did not strictly recapitulate the regulations observed in the spinal cord of lesioned animals. Longer exposure (48 h) to inflammatory cytokines barely influenced RGS expression, confirming the rapid but transient regulation of these cell signaling modulators. Conclusion Changes in the environment of astrocytes mimicking the inflammation observed in the model of neuropathic pain can affect RGS expression. Considering the role of astrocytes in the onset and progression of neuropathic pain, we propose that the inflammation-mediated modulation of RGS in astrocytes constitutes an adaptive mechanism in a context of neuroinflammation and may participate in the regulation of nociception.
Collapse
Affiliation(s)
- Pierre J Doyen
- Neuropharmacology, Institute of Neuroscience, Université Catholique de Louvain, Avenue Hippocrate B1.54.10, 1200, Brussels, Belgium
| | - Maxime Vergouts
- Neuropharmacology, Institute of Neuroscience, Université Catholique de Louvain, Avenue Hippocrate B1.54.10, 1200, Brussels, Belgium
| | - Amandine Pochet
- Neuropharmacology, Institute of Neuroscience, Université Catholique de Louvain, Avenue Hippocrate B1.54.10, 1200, Brussels, Belgium
| | - Nathalie Desmet
- Neuropharmacology, Institute of Neuroscience, Université Catholique de Louvain, Avenue Hippocrate B1.54.10, 1200, Brussels, Belgium
| | - Sabien van Neerven
- Neuropharmacology, Institute of Neuroscience, Université Catholique de Louvain, Avenue Hippocrate B1.54.10, 1200, Brussels, Belgium
| | - Gary Brook
- Institute for Neuropathology, University Hospital, RWTH Aachen University, Aachen, Germany
| | - Emmanuel Hermans
- Neuropharmacology, Institute of Neuroscience, Université Catholique de Louvain, Avenue Hippocrate B1.54.10, 1200, Brussels, Belgium.
| |
Collapse
|
14
|
Novel mechanisms of PIEZO1 dysfunction in hereditary xerocytosis. Blood 2017; 130:1845-1856. [PMID: 28716860 DOI: 10.1182/blood-2017-05-786004] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 07/06/2017] [Indexed: 11/20/2022] Open
Abstract
Mutations in PIEZO1 are the primary cause of hereditary xerocytosis, a clinically heterogeneous, dominantly inherited disorder of erythrocyte dehydration. We used next-generation sequencing-based techniques to identify PIEZO1 mutations in individuals from 9 kindreds referred with suspected hereditary xerocytosis (HX) and/or undiagnosed congenital hemolytic anemia. Mutations were primarily found in the highly conserved, COOH-terminal pore-region domain. Several mutations were novel and demonstrated ethnic specificity. We characterized these mutations using genomic-, bioinformatic-, cell biology-, and physiology-based functional assays. For these studies, we created a novel, cell-based in vivo system for study of wild-type and variant PIEZO1 membrane protein expression, trafficking, and electrophysiology in a rigorous manner. Previous reports have indicated HX-associated PIEZO1 variants exhibit a partial gain-of-function phenotype with generation of mechanically activated currents that inactivate more slowly than wild type, indicating that increased cation permeability may lead to dehydration of PIEZO1-mutant HX erythrocytes. In addition to delayed channel inactivation, we found additional alterations in mutant PIEZO1 channel kinetics, differences in response to osmotic stress, and altered membrane protein trafficking, predicting variant alleles that worsen or ameliorate erythrocyte hydration. These results extend the genetic heterogeneity observed in HX and indicate that various pathophysiologic mechanisms contribute to the HX phenotype.
Collapse
|
15
|
The accessory proteins REEP5 and REEP6 refine CXCR1-mediated cellular responses and lung cancer progression. Sci Rep 2016; 6:39041. [PMID: 27966653 PMCID: PMC5155276 DOI: 10.1038/srep39041] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 11/17/2016] [Indexed: 01/28/2023] Open
Abstract
Some G-protein-coupled receptors have been reported to require accessory proteins with specificity for proper functional expression. In this study, we found that CXCR1 interacted with REEP5 and REEP6, but CXCR2 did not. Overexpression of REEP5 and REEP6 enhanced IL-8-stimulated cellular responses through CXCR1, whereas depletion of the proteins led to the downregulation of the responses. Although REEPs enhanced the expression of a subset of GPCRs, in the absence of REEP5 and REEP6, CXCR1 was expressed in the plasma membrane, but receptor internalization and intracellular clustering of β-arrestin2 following IL-8 treatment were impaired, suggesting that REEP5 and REEP6 might be involved in the ligand-stimulated endocytosis of CXCR1 rather than membrane expression, which resulted in strong cellular responses. In A549 lung cancer cells, which endogenously express CXCR1, the depletion of REEP5 and REEP6 significantly reduced growth and invasion by downregulating IL-8-stimulated ERK phosphorylation, actin polymerization and the expression of genes related to metastasis. Furthermore, an in vivo xenograft model showed that proliferation and metastasis of A549 cells lacking REEP5 and REEP6 were markedly decreased compared to the control group. Thus, REEP5 and REEP6 could be novel regulators of G-protein-coupled receptor signaling whose functional mechanisms differ from other accessory proteins.
Collapse
|
16
|
Slater PG, Yarur HE, Gysling K. Corticotropin-Releasing Factor Receptors and Their Interacting Proteins: Functional Consequences. Mol Pharmacol 2016; 90:627-632. [PMID: 27612874 DOI: 10.1124/mol.116.104927] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 09/08/2016] [Indexed: 02/14/2025] Open
Abstract
The corticotropin-releasing factor (CRF) system, which is involved in stress, addiction, and anxiety disorders such as depression, acts through G-protein-coupled receptors (GPCRs) known as type-1 and type-2 CRF receptors. The purpose of this review is to highlight recent advances in the interactions of CRF receptors with other GPCRs and non-GPCR proteins and their associated functional consequences. A better understanding of these interactions may generate new pharmacological alternatives for the treatment of addiction and stress-related disorders.
Collapse
Affiliation(s)
- Paula G Slater
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Hector E Yarur
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Katia Gysling
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
17
|
Génier S, Degrandmaison J, Moreau P, Labrecque P, Hébert TE, Parent JL. Regulation of GPCR expression through an interaction with CCT7, a subunit of the CCT/TRiC complex. Mol Biol Cell 2016; 27:3800-3812. [PMID: 27708139 PMCID: PMC5170604 DOI: 10.1091/mbc.e16-04-0224] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 09/22/2016] [Accepted: 09/26/2016] [Indexed: 12/25/2022] Open
Abstract
A direct and functional interaction between a subunit of the CCT/TCP-1 ring complex (TRiC) chaperonin complex and G protein–coupled receptor (GPCRs) is shown. Evidence is provided that distinct nascent GPCRs can undergo alternative folding pathways and that CCT/TRiC is critical in preventing aggregation of some GPCRs and in promoting their proper maturation and expression. Mechanisms that prevent aggregation and promote folding of nascent G protein–coupled receptors (GPCRs) remain poorly understood. We identified chaperonin containing TCP-1 subunit eta (CCT7) as an interacting partner of the β-isoform of thromboxane A2 receptor (TPβ) by yeast two-hybrid screening. CCT7 coimmunoprecipitated with overexpressed TPβ and β2-adrenergic receptor (β2AR) in HEK 293 cells, but also with endogenous β2AR. CCT7 depletion by small interfering RNA reduced total and cell-surface expression of both receptors and caused redistribution of the receptors to juxtanuclear aggresomes, significantly more so for TPβ than β2AR. Interestingly, Hsp90 coimmunoprecipitated with β2AR but virtually not with TPβ, indicating that nascent GPCRs can adopt alternative folding pathways. In vitro pull-down assays showed that both receptors can interact directly with CCT7 through their third intracellular loops and C-termini. We demonstrate that Trp334 in the TPβ C-terminus is critical for the CCT7 interaction and plays an important role in TPβ maturation and cell-surface expression. Of note, introducing a tryptophan in the corresponding position of the TPα isoform confers the CCT7-binding and maturation properties of TPβ. We show that an interaction with a subunit of the CCT/TCP-1 ring complex (TRiC) chaperonin complex is involved in regulating aggregation of nascent GPCRs and in promoting their proper maturation and expression.
Collapse
Affiliation(s)
- Samuel Génier
- Service de Rhumatologie, Département de Médecine, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CR-CHUS), and Institut de Pharmacologie de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Jade Degrandmaison
- Service de Rhumatologie, Département de Médecine, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CR-CHUS), and Institut de Pharmacologie de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Pierrick Moreau
- Service de Rhumatologie, Département de Médecine, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CR-CHUS), and Institut de Pharmacologie de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Pascale Labrecque
- Service de Rhumatologie, Département de Médecine, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CR-CHUS), and Institut de Pharmacologie de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Terence E Hébert
- Department of Pharmacology and Therapeutics, McGill University, Montréal, QC H3G 1Y6, Canada
| | - Jean-Luc Parent
- Service de Rhumatologie, Département de Médecine, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CR-CHUS), and Institut de Pharmacologie de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| |
Collapse
|
18
|
CRF binding protein facilitates the presence of CRF type 2α receptor on the cell surface. Proc Natl Acad Sci U S A 2016; 113:4075-80. [PMID: 27035969 DOI: 10.1073/pnas.1523745113] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Corticotropin releasing factor binding protein (CRF-BP) was originally recognized as CRF sequestering protein. However, its differential subcellular localization in different brain nuclei suggests that CRF-BP may have additional functions. There is evidence that CRF-BP potentiates CRF and urocortin 1 actions through CRF type 2 receptors (CRF2R). CRF2R is a G protein-coupled receptor (GPCR) that is found mainly intracellularly as most GPCRs. The access of GPCRs to the cell surface is tightly regulated by escort proteins. We hypothesized that CRF-BP binds to CRF2R, exerting an escort protein role. We analyzed the colocalization of CRF-BP and CRF2R in cultured rat mesencephalic neurons, and the localization and interaction of heterologous expressed CRF-BP and CRF2αR in yeast, human embryonic kidney 293, and rat pheochromocytoma 12 cells. Our results showed that CRF-BP and CRF2R naturally colocalize in the neurites of cultured mesencephalic neurons. Heterologous expression of each protein showed that CRF-BP was localized mainly in secretory granules and CRF2αR in the endoplasmic reticulum. In contrast, CRF-BP and CRF2αR colocalized when both proteins are coexpressed. Here we show that CRF-BP physically interacts with the CRF2αR but not the CRF2βR isoform, increasing CRF2αR on the cell surface. Thus, CRF-BP emerges as a GPCR escort protein increasing the understanding of GPCR trafficking.
Collapse
|
19
|
Abstract
A multitude of physiological processes regulated by G protein-coupled receptors (GPCRs) signaling are accomplished by the participation of active rearrangements of the cytoskeleton. In general, it is common that a cross talk occurs among networks of microfilaments, microtubules, and intermediate filaments in order to reach specific cell responses. In particular, actin-cytoskeleton dynamics regulate processes such as cell shape, cell division, cell motility, and cell polarization, among others. This chapter describes the current knowledge about the regulation of actin-cytoskeleton dynamic by diverse GPCR signaling pathways, and also includes some protocols combining immunofluorescence and confocal microscopy for the visualization of the different rearrangements of the actin-cytoskeleton. We report how both the S1P-GPCR/G12/13/Rho/ROCK and glucagon-GPCR/Gs/cAMP axes induce differential actin-cytoskeleton rearrangements in epithelial cells. We also show that specific actin-binding molecules, like phalloidin and LifeAct, are very useful to analyze F-actin reorganization by confocal microscopy, and also that both molecules show similar results in fixed cells, whereas the anti-actin antibody is useful to detect both the G- and F-actin, as well as their compartmentalization. Thus, it is highly recommended to utilize different approaches to investigate the regulation of actin dynamics by GPCR signaling, with the aim to get a better picture of the phenomenon under study.
Collapse
|
20
|
Makin L, Gluenz E. cAMP signalling in trypanosomatids: role in pathogenesis and as a drug target. Trends Parasitol 2015; 31:373-9. [PMID: 26004537 PMCID: PMC4534343 DOI: 10.1016/j.pt.2015.04.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 04/24/2015] [Accepted: 04/24/2015] [Indexed: 12/25/2022]
Abstract
Trypanosoma brucei adenylate cyclases are implicated in modulation of host immune response and social motility. First effectors downstream of cAMP signalling were identified in Trypanosoma cruzi and T. brucei. Crystal structures reveal a unique pocket in trypanosomatid phosphodiesterases. Trypanosomatid phosphodiesterase inhibitors are promising drug candidates.
Despite recent research linking cAMP signalling to virulence in trypanosomatids and detailed studies of trypanosomatid adenylyl cyclases (ACs) and phosphodiesterases (PDEs) since their discoveries 40 years ago, downstream components of the pathway and their biological functions have remained remarkably elusive. However, in recent years, significant discoveries have been made: a role for parasite ACs has been proposed in cytokinesis, evasion of the host immune response, and social motility. cAMP phosphodiesterases PDEB1 and PDEB2 were found to be essential for survival and virulence of Trypanosoma brucei and, in Trypanosoma cruzi, PDEC2 was shown to be required for normal osmoregulation. As we discuss here, these breakthroughs have led to an ongoing surge in the development of PDE inhibitors as lead compounds for trypanocidal drugs.
Collapse
Affiliation(s)
- Laura Makin
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK.
| | - Eva Gluenz
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| |
Collapse
|
21
|
Mörl K, Beck-Sickinger AG. Intracellular Trafficking of Neuropeptide Y Receptors. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 132:73-96. [PMID: 26055055 DOI: 10.1016/bs.pmbts.2015.02.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The multireceptor multiligand system of neuropeptide Y receptors and their ligands is involved in the regulation of a multitude of physiological and pathophysiological processes. Specific expression patterns, ligand-binding modes, and signaling properties contribute to the complex network regulating distinct cellular responses. Intracellular trafficking processes are important key steps that are regulated in context with accessory proteins. These proteins exert their influence by interacting directly or indirectly with the receptors, causing modification of the receptors, or operating as scaffolds for the assembly of larger signaling complexes. On the intracellular receptor faces, sequence-specific motifs have been identified that play an important role in this process. Interestingly, it is also possible to influence the receptor internalization by modification of the peptide ligand.
Collapse
Affiliation(s)
- Karin Mörl
- Faculty of Biosciences, Pharmacy and Psychology, Institute of Biochemistry, Universität Leipzig, Leipzig, Germany.
| | - Annette G Beck-Sickinger
- Faculty of Biosciences, Pharmacy and Psychology, Institute of Biochemistry, Universität Leipzig, Leipzig, Germany
| |
Collapse
|
22
|
Huang YJ, Zhou ZW, Xu M, Ma QW, Yan JB, Wang JY, Zhang QQ, Huang M, Bao L. Alteration of gene expression profiling including GPR174 and GNG2 is associated with vasovagal syncope. Pediatr Cardiol 2015; 36:475-80. [PMID: 25367286 DOI: 10.1007/s00246-014-1036-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 09/27/2014] [Indexed: 11/24/2022]
Abstract
Vasovagal syncope (VVS) causes accidental harm for susceptible patients. However, pathophysiology of this disorder remains largely unknown. In an effort to understanding of molecular mechanism for VVS, genome-wide gene expression profiling analyses were performed on VVS patients at syncope state. A total of 66 Type 1 VVS child patients and the same number healthy controls were enrolled in this study. Peripheral blood RNAs were isolated from all subjects, of which 10 RNA samples were randomly selected from each groups for gene expression profile analysis using Gene ST 1.0 arrays (Affymetrix). The results revealed that 103 genes were differently expressed between the patients and controls. Significantly, two G-proteins related genes, GPR174 and GNG2 that have not been related to VVS were among the differently expressed genes. The microarray results were confirmed by qRT-PCR in all the tested individuals. Ingenuity pathway analysis and gene ontology annotation study showed that the differently expressed genes are associated with stress response and apoptosis, suggesting that the alteration of some gene expression including G-proteins related genes is associated with VVS. This study provides new insight into the molecular mechanism of VVS and would be helpful to further identify new molecular biomarkers for the disease.
Collapse
Affiliation(s)
- Yu-Juan Huang
- Shanghai Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Rymer JK, Hauser M, Bourdon AK, Campagna SR, Naider F, Becker JM. Novobiocin and peptide analogs of α-factor are positive allosteric modulators of the yeast G protein-coupled receptor Ste2p. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:916-24. [PMID: 25576192 DOI: 10.1016/j.bbamem.2014.12.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 12/23/2014] [Accepted: 12/30/2014] [Indexed: 10/24/2022]
Abstract
G protein-coupled receptors (GPCRs) are the target of many drugs prescribed for human medicine and are therefore the subject of intense study. It has been recognized that compounds called allosteric modulators can regulate GPCR activity by binding to the receptor at sites distinct from, or overlapping with, that occupied by the orthosteric ligand. The purpose of this study was to investigate the nature of the interaction between putative allosteric modulators and Ste2p, a model GPCR expressed in the yeast Saccharomyces cerevisiae that binds the tridecapeptide mating pheromone α-factor. Biological assays demonstrated that an eleven amino acid α-factor analog and the antibiotic novobiocin were positive allosteric modulators of Ste2p. Both compounds enhanced the biological activity of α-factor, but did not compete with α-factor binding to Ste2p. To determine if novobiocin and the 11-mer shared a common allosteric binding site, a biologically-active analog of the 11-mer peptide ([Bio-DOPA]11-mer) was chemically cross-linked to Ste2p in the presence and absence of novobiocin. Immunoblots probing for the Ste2p-[Bio-DOPA]11-mer complex revealed that novobiocin markedly decreased cross-linking of the [Bio-DOPA]11-mer to the receptor, but cross-linking of the α-factor analog [Bio-DOPA]13-mer, which interacts with the orthosteric binding site of the receptor, was minimally altered. This finding suggests that both novobiocin and [Bio-DOPA]11-mer compete for an allosteric binding site on the receptor. These results indicate that Ste2p may provide an excellent model system for studying allostery in a GPCR.
Collapse
Affiliation(s)
- Jeffrey K Rymer
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, United States
| | - Melinda Hauser
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, United States
| | - Allen K Bourdon
- Department of Chemistry, University of Tennessee, Knoxville, TN 37996, United States
| | - Shawn R Campagna
- Department of Chemistry, University of Tennessee, Knoxville, TN 37996, United States
| | - Fred Naider
- Department of Chemistry and Macromolecular Assemblies Institute, College of Staten Island, CUNY, New York, NY 10314, United States; Graduate School and University Center, CUNY, New York, NY 10314, United States
| | - Jeffrey M Becker
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, United States.
| |
Collapse
|
24
|
Gorbunov EA, Ertuzun IA, Kachaeva EV, Tarasov SA, Epstein OI. In vitro screening of major neurotransmitter systems possibly involved in the mechanism of action of antibodies to S100 protein in released-active form. Neuropsychiatr Dis Treat 2015; 11:2837-46. [PMID: 26604768 PMCID: PMC4639559 DOI: 10.2147/ndt.s92456] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Experimentally and clinically, it was shown that released-active form of antibodies to S100 protein (RAF of Abs to S100) exerts a wide range of pharmacological activities: anxiolytic, antiasthenic, antiaggressive, stress-protective, antihypoxic, antiischemic, neuroprotective, and nootropic. The purpose of this study was to determine the influence of RAF of Abs to S100 on major neurotransmitter systems (serotoninergic, GABAergic, dopaminergic, and on sigma receptors as well) which are possibly involved in its mechanism of pharmacological activity. Radioligand binding assays were used for assessment of the drug influence on ligand-receptor interaction. [(35)S]GTPγS binding assay, cyclic adenosine monophosphate HTRF™, cellular dielectric spectroscopy assays, and assays based on measurement of intracellular concentration of Ca(2+) ions were used for assessment of agonist or antagonist properties of the drug toward receptors. RAF of Abs to S100 increased radioligand binding to 5-HT1F, 5-HT2B, 5-HT2Cedited, 5-HT3, and to D3 receptors by 142.0%, 131.9%, 149.3%, 120.7%, and 126.3%, respectively. Also, the drug significantly inhibited specific binding of radioligands to GABAB1A/B2 receptors by 25.8%, and to both native and recombinant human sigma1 receptors by 75.3% and 40.32%, respectively. In the functional assays, it was shown that the drug exerted antagonism at 5-HT1B, D3, and GABAB1A/B2 receptors inhibiting agonist-induced responses by 23.24%, 32.76%, and 30.2%, respectively. On the contrary, the drug exerted an agonist effect at 5-HT1A receptors enhancing receptor functional activity by 28.0%. The pharmacological profiling of RAF of Abs to S100 among 27 receptor provides evidence for drug-related modification of major neurotransmitter systems.
Collapse
Affiliation(s)
| | - Irina A Ertuzun
- OOO "NPF "MATERIA MEDICA HOLDING", Moscow, Russian Federation
| | | | | | - Oleg I Epstein
- OOO "NPF "MATERIA MEDICA HOLDING", Moscow, Russian Federation
| |
Collapse
|
25
|
Adamson RJ, Watts A. Kinetics of the early events of GPCR signalling. FEBS Lett 2014; 588:4701-7. [PMID: 25447525 PMCID: PMC4266533 DOI: 10.1016/j.febslet.2014.10.043] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 10/10/2014] [Accepted: 10/27/2014] [Indexed: 11/28/2022]
Abstract
Little is known of the kinetics of interactions between GPCRs and their signalling partners. NTS1 binds Gαi1 and Gαs with affinities of 15 ± 6 nM and 31 ± 18 nM (SE), respectively. This SPR assay may be applicable to multiple partners in the signalling cascade. We provide the first direct evidence for GPCR-G protein coupling in nanodiscs.
Neurotensin receptor type 1 (NTS1) is a G protein-coupled receptor (GPCR) that affects cellular responses by initiating a cascade of interactions through G proteins. The kinetic details for these interactions are not well-known. Here, NTS1-nanodisc-Gαs and Gαi1 interactions were studied. The binding affinities of Gαi1 and Gαs to NTS1 were directly measured by surface plasmon resonance (SPR) and determined to be 15 ± 6 nM and 31 ± 18 nM, respectively. This SPR configuration permits the kinetics of early events in signalling pathways to be explored and can be used to initiate descriptions of the GPCR interactome.
Collapse
Affiliation(s)
- Roslin J Adamson
- Biomembrane Structure Unit, Biochemistry Department, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Anthony Watts
- Biomembrane Structure Unit, Biochemistry Department, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.
| |
Collapse
|