1
|
Hong XY, Li S, Li T, Chen W, Li Y, Wang Z, Luo Y. Differential involvement of central and peripheral catecholamines between Alzheimer's disease and vascular dementia. Heliyon 2024; 10:e38843. [PMID: 39398044 PMCID: PMC11471233 DOI: 10.1016/j.heliyon.2024.e38843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/28/2024] [Accepted: 10/01/2024] [Indexed: 10/15/2024] Open
Abstract
Background and aim The important role of catecholamines has been gradually emphasized in the pathogenesis of neurodegenerative process. As the most prevalent form of cognitive dysfunction, Alzheimer's disease (AD) and vascular dementia (VaD) have the distinct pathological features and pathogenic mechanisms, however, the differential involvement of central and peripheral catecholamines between AD and VaD was still unclear. Methods Triple-transgenic AD (3 × Tg-AD) mice and chronic cerebral hypoperfusion (CCH) in rats induced by two-vessel occlusion (2VO) were used as the AD and VaD model in this study, respectively. The concentrations of catecholamines (dopamine, epinephrine and norepinephrine) and their metabolites (3-methoxytyramine, metanephrine and normetanephrine) in serum and five brain regions (hippocampus, cortex, corpus striatum, thalamus and pons) from 3 × Tg-AD mice and 2VO rats were quantitatively determined by liquid chromatography-tandem mass spectrometry (LC-MS/MS) assay. Results High expression and distribution of hippocampal dopamine, and epinephrine and norepinephrine in the cortex and thalamus were found in the early 3 × Tg-AD model, whereas chronic cerebral hypoperfusion induced by 2VO mainly affected the central noradrenergic and noradrenergic system, but not dopaminergic system. The increased serum levels of catecholamines were investigated in the 2VO rats, but not in the 3 × Tg-AD mice. Conclusion The differential expression and distribution of central catecholamines and their metabolites suggests the distinct catecholamines-related pathogenesis between AD and VaD. Peripheral catecholamine surge may be involved in the development of VaD, and the treatment strategy to prevent or reverse the effects of peripheral catecholamines may be protective for VaD.
Collapse
Affiliation(s)
- Xiao-Yue Hong
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Donghu Road 169, Wuhan, 430071, Hubei, China
| | - Siwei Li
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Donghu Road 169, Wuhan, 430071, Hubei, China
| | - Tian Li
- Department of Neurology, Zhongnan Hospital of Wuhan University, Donghu Road 169, Wuhan, 430071, Hubei, China
| | - Wei Chen
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Donghu Road 169, Wuhan, 430071, Hubei, China
| | - Yirong Li
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Donghu Road 169, Wuhan, 430071, Hubei, China
| | - Zhuo Wang
- Department of Neurology, Zhongnan Hospital of Wuhan University, Donghu Road 169, Wuhan, 430071, Hubei, China
- Medical Science Research Center, Zhongnan Hospital of Wuhan University, Donghu Road 169, Wuhan, 430071, Hubei, China
| | - Yi Luo
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Donghu Road 169, Wuhan, 430071, Hubei, China
| |
Collapse
|
2
|
Kajevu N, Lipponen A, Andrade P, Bañuelos I, Puhakka N, Hämäläinen E, Natunen T, Hiltunen M, Pitkänen A. Treatment of Status Epilepticus after Traumatic Brain Injury Using an Antiseizure Drug Combined with a Tissue Recovery Enhancer Revealed by Systems Biology. Int J Mol Sci 2023; 24:14049. [PMID: 37762352 PMCID: PMC10531083 DOI: 10.3390/ijms241814049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/30/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
We tested a hypothesis that in silico-discovered compounds targeting traumatic brain injury (TBI)-induced transcriptomics dysregulations will mitigate TBI-induced molecular pathology and augment the effect of co-administered antiseizure treatment, thereby alleviating functional impairment. In silico bioinformatic analysis revealed five compounds substantially affecting TBI-induced transcriptomics regulation, including calpain inhibitor, chlorpromazine, geldanamycin, tranylcypromine, and trichostatin A (TSA). In vitro exposure of neuronal-BV2-microglial co-cultures to compounds revealed that TSA had the best overall neuroprotective, antioxidative, and anti-inflammatory effects. In vivo assessment in a rat TBI model revealed that TSA as a monotherapy (1 mg/kg/d) or in combination with the antiseizure drug levetiracetam (LEV 150 mg/kg/d) mildly mitigated the increase in plasma levels of the neurofilament subunit pNF-H and cortical lesion area. The percentage of rats with seizures during 0-72 h post-injury was reduced in the following order: TBI-vehicle 80%, TBI-TSA (1 mg/kg) 86%, TBI-LEV (54 mg/kg) 50%, TBI-LEV (150 mg/kg) 40% (p < 0.05 vs. TBI-vehicle), and TBI-LEV (150 mg/kg) combined with TSA (1 mg/kg) 30% (p < 0.05). Cumulative seizure duration was reduced in the following order: TBI-vehicle 727 ± 688 s, TBI-TSA 898 ± 937 s, TBI-LEV (54 mg/kg) 358 ± 715 s, TBI-LEV (150 mg/kg) 42 ± 64 (p < 0.05 vs. TBI-vehicle), and TBI-LEV (150 mg/kg) combined with TSA (1 mg/kg) 109 ± 282 s (p < 0.05). This first preclinical intervention study on post-TBI acute seizures shows that a combination therapy with the tissue recovery enhancer TSA and LEV was safe but exhibited no clear benefit over LEV monotherapy on antiseizure efficacy. A longer follow-up is needed to confirm the possible beneficial effects of LEV monotherapy and combination therapy with TSA on chronic post-TBI structural and functional outcomes, including epileptogenesis.
Collapse
Affiliation(s)
- Natallie Kajevu
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Anssi Lipponen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
- Expert Microbiology Unit, Finnish Institute for Health and Welfare, P.O. Box 95, 70701 Kuopio, Finland
| | - Pedro Andrade
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Ivette Bañuelos
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Noora Puhakka
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Elina Hämäläinen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Teemu Natunen
- Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Mikko Hiltunen
- Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| | - Asla Pitkänen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
| |
Collapse
|
3
|
Su C, Hou Y, Zhou M, Rajendran S, Maasch JRA, Abedi Z, Zhang H, Bai Z, Cuturrufo A, Guo W, Chaudhry FF, Ghahramani G, Tang J, Cheng F, Li Y, Zhang R, DeKosky ST, Bian J, Wang F. Biomedical discovery through the integrative biomedical knowledge hub (iBKH). iScience 2023; 26:106460. [PMID: 37020958 PMCID: PMC10068563 DOI: 10.1016/j.isci.2023.106460] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 09/20/2022] [Accepted: 03/16/2023] [Indexed: 04/01/2023] Open
Abstract
The abundance of biomedical knowledge gained from biological experiments and clinical practices is an invaluable resource for biomedicine. The emerging biomedical knowledge graphs (BKGs) provide an efficient and effective way to manage the abundant knowledge in biomedical and life science. In this study, we created a comprehensive BKG called the integrative Biomedical Knowledge Hub (iBKH) by harmonizing and integrating information from diverse biomedical resources. To make iBKH easily accessible for biomedical research, we developed a web-based, user-friendly graphical portal that allows fast and interactive knowledge retrieval. Additionally, we also implemented an efficient and scalable graph learning pipeline for discovering novel biomedical knowledge in iBKH. As a proof of concept, we performed our iBKH-based method for computational in-silico drug repurposing for Alzheimer's disease. The iBKH is publicly available.
Collapse
Affiliation(s)
- Chang Su
- Department of Health Service Administration and Policy, College of Public Health, Temple University, Philadelphia, PA 19122, USA
| | - Yu Hou
- Department of Population Health Sciences, Weill Cornell Medicine, New York, NY 10065, USA
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA
| | - Manqi Zhou
- Department of Computational Biology, Cornell University, Ithaca, NY 14850, USA
| | - Suraj Rajendran
- Tri-Institutional Computational Biology & Medicine Program, Cornell University, New York, NY 10065, USA
| | | | - Zehra Abedi
- Department of Population Health Sciences, Weill Cornell Medicine, New York, NY 10065, USA
| | - Haotan Zhang
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA
| | - Zilong Bai
- Department of Population Health Sciences, Weill Cornell Medicine, New York, NY 10065, USA
| | | | - Winston Guo
- Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Fayzan F. Chaudhry
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA
| | - Gregory Ghahramani
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, USA
| | - Jian Tang
- Mila-Quebec AI Institute and HEC Montreal, Montreal, QC H2S 3H1, Canada
| | - Feixiong Cheng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
- Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Yue Li
- School of Computer Science, McGill University, Montreal, QC H3A 0C6, Canada
| | - Rui Zhang
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA
| | - Steven T. DeKosky
- Department of Neurology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Jiang Bian
- Department of Health Outcomes & Biomedical Informatics, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Fei Wang
- Department of Population Health Sciences, Weill Cornell Medicine, New York, NY 10065, USA
| |
Collapse
|
4
|
Nakuci J, McGuire M, Schweser F, Poulsen D, Muldoon SF. Differential Patterns of Change in Brain Connectivity Resulting from Severe Traumatic Brain Injury. Brain Connect 2022; 12:799-811. [PMID: 35302399 PMCID: PMC9805864 DOI: 10.1089/brain.2021.0168] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Background: Traumatic brain injury (TBI) damages white matter tracts, disrupting brain network structure and communication. There exists a wide heterogeneity in the pattern of structural damage associated with injury, as well as a large heterogeneity in behavioral outcomes. However, little is known about the relationship between changes in network connectivity and clinical outcomes. Materials and Methods: We utilize the rat lateral fluid-percussion injury model of severe TBI to study differences in brain connectivity in 8 animals that received the insult and 11 animals that received only a craniectomy. Diffusion tensor imaging is performed 5 weeks after the injury and network theory is used to investigate changes in white matter connectivity. Results: We find that (1) global network measures are not able to distinguish between healthy and injured animals; (2) injury induced alterations predominantly exist in a subset of connections (subnetworks) distributed throughout the brain; and (3) injured animals can be divided into subgroups based on changes in network motifs-measures of local structural connectivity. In addition, alterations in predicted functional connectivity indicate that the subgroups have different propensities to synchronize brain activity, which could relate to the heterogeneity of clinical outcomes. Discussion: These results suggest that network measures can be used to quantify progressive changes in brain connectivity due to injury and differentiate among subpopulations with similar injuries, but different pathological trajectories.
Collapse
Affiliation(s)
- Johan Nakuci
- Neuroscience Program, University at Buffalo, SUNY, Buffalo, New York, USA
| | - Matthew McGuire
- Neuroscience Program, University at Buffalo, SUNY, Buffalo, New York, USA
- Department of Neurosurgery, University at Buffalo, SUNY, Buffalo, New York, USA
| | - Ferdinand Schweser
- Buffalo Neuroimaging Analysis Center, Department of Neurology, School of Medicine and Biomedical Sciences, University at Buffalo, SUNY, Buffalo, New York, USA
- Center for Biomedical Imaging, Clinical and Translational Science Institute, University at Buffalo, SUNY, Buffalo, New York, USA
| | - David Poulsen
- Department of Neurosurgery, University at Buffalo, SUNY, Buffalo, New York, USA
| | - Sarah F. Muldoon
- Neuroscience Program, University at Buffalo, SUNY, Buffalo, New York, USA
- Department of Mathematics and CDSE Program, University at Buffalo, SUNY, Buffalo, New York, USA
| |
Collapse
|
5
|
A small molecule inhibitor of caspase-1 inhibits NLRP3 inflammasome activation and pyroptosis to alleviate gouty inflammation. Immunol Lett 2022; 244:28-39. [DOI: 10.1016/j.imlet.2022.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/07/2022] [Accepted: 03/10/2022] [Indexed: 12/11/2022]
|
6
|
Ma Z, Wang F, Xue LL, Niu YJ, Hu Y, Su ZY, Huang J, Niu RZ, Wang TH, Ba YC, Xiong LL, Bai X. bFGF promotes neurological recovery from neonatal hypoxic-ischemic encephalopathy by IL-1β signaling pathway-mediated axon regeneration. Brain Behav 2020; 10:e01696. [PMID: 32525289 PMCID: PMC7428497 DOI: 10.1002/brb3.1696] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 05/06/2020] [Accepted: 05/11/2020] [Indexed: 12/02/2022] Open
Abstract
INTRODUCTION Neonatal hypoxia-ischemic brain damage (HIBD) can lead to serious neuron damage and dysfunction, causing a significant worldwide health problem. bFGF as a protective reagent promotes neuron repair under hypoxia/ischemia (HI). However, how bFGF and downstream molecules were regulated in HI remains elusive. METHODS We established an in vitro HI model by culturing primary cortical neurons and treated with oxygen-glucose deprivation (OGD). We suppressed the expression of bFGF by using siRNA (small interfering RNA) interference to detect the neuronal morphological changes by immunofluorescence staining. To determine the potential mechanisms regulated by bFGF, the change of downstream molecular including IL-1β was examined in bFGF knockdown condition. IL-1β knockout (KO) rats were generated using CRISPR/Cas9-mediated technologies. We used an accepted rat model of HI, to assess the effect of IL-1β deletion on disease outcomes and carried out analysis on the behavior, histological, cellular, and molecular level. RESULTS We identified that OGD can induce endogenous expression of bFGF. Both OGD and knockdown of bFGF resulted in reduction of neuron numbers, enlarged cell body and shortened axon length. We found molecules closely related to bFGF, such as interleukin-1β (IL-1β). IL-1β was up-regulated after bFGF interference under OGD conditions, suggesting complex signaling between bFGF and OGD-mediated pathways. We found HI resulted in up-regulation of IL-1β mRNA in cortex and hippocampus. IL-1β KO rats markedly attenuated the impairment of long-term learning and memory induced by HI. Meanwhile, IL-1β-/- (KO, homozygous) group showed better neurite growth and less apoptosis in OGD model. Furthermore, serine/threonine protein kinase (AKT1) mRNA and protein expression was significantly up-regulated in IL-1β KO rats. CONCLUSIONS We showed that IL-1β-mediated axon regeneration underlie the mechanism of bFGF for the treatment of HIBD in neonatal rats. Results from this study would provide insights and molecular basis for future therapeutics in treating HIBD.
Collapse
Affiliation(s)
- Zheng Ma
- Department of Anatomy, Kunming Medical University, Kunming, China.,Qingdao Huanghai University, Qingdao, China
| | - Fang Wang
- Institute of Neuroscience, Laboratory Zoology Department, Kunming Medical University, Kunming, China
| | - Lu-Lu Xue
- Institute of Neuroscience, Laboratory Zoology Department, Kunming Medical University, Kunming, China
| | - Ying-Jie Niu
- Institute of Neuroscience, Laboratory Zoology Department, Kunming Medical University, Kunming, China
| | - Yue Hu
- Institute of Neuroscience, Laboratory Zoology Department, Kunming Medical University, Kunming, China
| | - Zhang-Yu Su
- National Traditional Chinese Medicine Clinical Research Base and Western Medicine Translational Medicine Research Center, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Jin Huang
- Institute of Neuroscience, Laboratory Zoology Department, Kunming Medical University, Kunming, China
| | - Rui-Ze Niu
- Institute of Neuroscience, Laboratory Zoology Department, Kunming Medical University, Kunming, China
| | - Ting-Hua Wang
- Institute of Neuroscience, Laboratory Zoology Department, Kunming Medical University, Kunming, China
| | - Ying-Chun Ba
- Department of Anatomy, Kunming Medical University, Kunming, China
| | - Liu-Lin Xiong
- National Traditional Chinese Medicine Clinical Research Base and Western Medicine Translational Medicine Research Center, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Xue Bai
- National Traditional Chinese Medicine Clinical Research Base and Western Medicine Translational Medicine Research Center, Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| |
Collapse
|
7
|
Lipponen A, Natunen T, Hujo M, Ciszek R, Hämäläinen E, Tohka J, Hiltunen M, Paananen J, Poulsen D, Kansanen E, Ekolle Ndode-Ekane X, Levonen AL, Pitkänen A. In Vitro and In Vivo Pipeline for Validation of Disease-Modifying Effects of Systems Biology-Derived Network Treatments for Traumatic Brain Injury-Lessons Learned. Int J Mol Sci 2019; 20:ijms20215395. [PMID: 31671916 PMCID: PMC6861918 DOI: 10.3390/ijms20215395] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 10/19/2019] [Accepted: 10/22/2019] [Indexed: 02/07/2023] Open
Abstract
We developed a pipeline for the discovery of transcriptomics-derived disease-modifying therapies and used it to validate treatments in vitro and in vivo that could be repurposed for TBI treatment. Desmethylclomipramine, ionomycin, sirolimus and trimipramine, identified by in silico LINCS analysis as candidate treatments modulating the TBI-induced transcriptomics networks, were tested in neuron-BV2 microglial co-cultures, using tumour necrosis factor α as a monitoring biomarker for neuroinflammation, nitrite for nitric oxide-mediated neurotoxicity and microtubule associated protein 2-based immunostaining for neuronal survival. Based on (a) therapeutic time window in silico, (b) blood-brain barrier penetration and water solubility, (c) anti-inflammatory and neuroprotective effects in vitro (p < 0.05) and (d) target engagement of Nrf2 target genes (p < 0.05), desmethylclomipramine was validated in a lateral fluid-percussion model of TBI in rats. Despite the favourable in silico and in vitro outcomes, in vivo assessment of clomipramine, which metabolizes to desmethylclomipramine, failed to demonstrate favourable effects on motor and memory tests. In fact, clomipramine treatment worsened the composite neuroscore (p < 0.05). Weight loss (p < 0.05) and prolonged upregulation of plasma cytokines (p < 0.05) may have contributed to the worsened somatomotor outcome. Our pipeline provides a rational stepwise procedure for evaluating favourable and unfavourable effects of systems-biology discovered compounds that modulate post-TBI transcriptomics.
Collapse
Affiliation(s)
- Anssi Lipponen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FIN-70211 Kuopio, Finland.
| | - Teemu Natunen
- Institute of Biomedicine, University of Eastern Finland, PO Box 1627, FIN-70211 Kuopio, Finland.
| | - Mika Hujo
- School of Computing, University of Eastern Finland, PO Box 1627, FIN-70211 Kuopio, Finland.
| | - Robert Ciszek
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FIN-70211 Kuopio, Finland.
| | - Elina Hämäläinen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FIN-70211 Kuopio, Finland.
| | - Jussi Tohka
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FIN-70211 Kuopio, Finland.
| | - Mikko Hiltunen
- Institute of Biomedicine, University of Eastern Finland, PO Box 1627, FIN-70211 Kuopio, Finland.
| | - Jussi Paananen
- Institute of Biomedicine, University of Eastern Finland, PO Box 1627, FIN-70211 Kuopio, Finland.
- Bioinformatics Center, University of Eastern Finland, PO Box 1627, FIN-70211 Kuopio, Finland.
| | - David Poulsen
- Jacobs School of Medicine and Biomedical Sciences, University of Buffalo, 875 Ellicott St, 6071 CTRC, Buffalo, NY 14203, USA.
| | - Emilia Kansanen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FIN-70211 Kuopio, Finland.
| | - Xavier Ekolle Ndode-Ekane
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FIN-70211 Kuopio, Finland.
| | - Anna-Liisa Levonen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FIN-70211 Kuopio, Finland.
| | - Asla Pitkänen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, PO Box 1627, FIN-70211 Kuopio, Finland.
| |
Collapse
|
8
|
Williams G, Gatt A, Clarke E, Corcoran J, Doherty P, Chambers D, Ballard C. Drug repurposing for Alzheimer's disease based on transcriptional profiling of human iPSC-derived cortical neurons. Transl Psychiatry 2019; 9:220. [PMID: 31492831 PMCID: PMC6731247 DOI: 10.1038/s41398-019-0555-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 05/21/2019] [Accepted: 07/17/2019] [Indexed: 12/16/2022] Open
Abstract
Alzheimer's disease is a complex disorder encompassing multiple pathological features with associated genetic and molecular culprits. However, target-based therapeutic strategies have so far proved ineffective. The aim of this study is to develop a methodology harnessing the transcriptional changes associated with Alzheimer's disease to develop a high content quantitative disease phenotype that can be used to repurpose existing drugs. Firstly, the Alzheimer's disease gene expression landscape covering severe disease stage, early pathology progression, cognitive decline and animal models of the disease has been defined and used to select a set of 153 drugs tending to oppose disease-associated changes in the context of immortalised human cancer cell lines. The selected compounds have then been assayed in the more biologically relevant setting of iPSC-derived cortical neuron cultures. It is shown that 51 of the drugs drive expression changes consistently opposite to those seen in Alzheimer's disease. It is hoped that the iPSC profiles will serve as a useful resource for drug repositioning within the context of neurodegenerative disease and potentially aid in generating novel multi-targeted therapeutic strategies.
Collapse
Affiliation(s)
- Gareth Williams
- Wolfson Centre for Age-Related Diseases, King's College London, London Bridge, London, SE1 1UL, UK.
| | - Ariana Gatt
- Wolfson Centre for Age-Related Diseases, King's College London, London Bridge, London, SE1 1UL, UK
| | - Earl Clarke
- Wolfson Centre for Age-Related Diseases, King's College London, London Bridge, London, SE1 1UL, UK
| | - Jonathan Corcoran
- Wolfson Centre for Age-Related Diseases, King's College London, London Bridge, London, SE1 1UL, UK
| | - Patrick Doherty
- Wolfson Centre for Age-Related Diseases, King's College London, London Bridge, London, SE1 1UL, UK
| | - David Chambers
- Wolfson Centre for Age-Related Diseases, King's College London, London Bridge, London, SE1 1UL, UK
| | - Clive Ballard
- College of Medicine and Health, University of Exeter, Exeter, EX1 2LU, UK
| |
Collapse
|
9
|
Wang YY, Niu RZ, Wang JD, Jin Y, Wang TH, Liu F. Establishment of brain ischemia model in tree shrew. Brain Res 2019; 1718:194-200. [PMID: 31077648 DOI: 10.1016/j.brainres.2019.05.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 05/06/2019] [Accepted: 05/07/2019] [Indexed: 02/05/2023]
Abstract
BACKGROUND Tree shrew, as a kind of small and inexpensive animal between insectivores and primates with the general anatomy being similar to human, could be considered as developed animal model for brain ischemia (BI) study. However, there is no neural behavior scores criterion from tree shrew with BI up to now. METHODS To produce BI model of tree shrew, a novel systematic neurobehavioral assessment scale, named as neural behavior scores (NBS) including aggressive behavior, seeking behavior, gait, startle reflex, high jump and warped-tail phenomenon was firstly established and used in this study. Moreover, magnetic resonance imaging (MRI) was performed on the first day after the operation to detect the imaging changes caused by ischemia. Then TTC, HE staining and immunofluorescent staining for GFAP and NeuN, were performed 24 h after surgery respectively. RESULTS NBS in BI group were significantly higher than that of sham operation group at 1d, 3d, 5d and 7d after ischemia. Meanwhile, compared with the sham operation group, the T2 images demonstrated significant higher signal and local brain swelling after cerebral ischemia in tree shrews. The staining of TTC and HE showed apparent infarction and necrosis of the cerebral region, and most of neurons exhibited a shrink. CONCLUSION We have successfully established the BI model of tree shrew, confirmed by NBS (a new developed method), MRI, HE staining, TTC staining and immunofluorescence staining. It is the first time to report a novel neurobehavioral assessment scale for BI in tree shrew.
Collapse
Affiliation(s)
- Yang-Yang Wang
- Institute of Neurological Disease, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Rui-Ze Niu
- Laboratory Zoology Department, Institute of Neuroscience, Kunming Medical University, Kunming 650000, China
| | - Jie-Dong Wang
- Laboratory Zoology Department, Institute of Neuroscience, Kunming Medical University, Kunming 650000, China
| | - Yuan Jin
- Laboratory Zoology Department, Institute of Neuroscience, Kunming Medical University, Kunming 650000, China
| | - Ting-Hua Wang
- Institute of Neurological Disease, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu 610041, China; Laboratory Zoology Department, Institute of Neuroscience, Kunming Medical University, Kunming 650000, China.
| | - Fei Liu
- Institute of Neurological Disease, Department of Anesthesiology, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
10
|
Toffolo K, Osei J, Kelly W, Poulsen A, Donahue K, Wang J, Hunter M, Bard J, Wang J, Poulsen D. Circulating microRNAs as biomarkers in traumatic brain injury. Neuropharmacology 2018; 145:199-208. [PMID: 30195586 DOI: 10.1016/j.neuropharm.2018.08.028] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 08/13/2018] [Accepted: 08/23/2018] [Indexed: 12/22/2022]
Abstract
Preclinical and clinical studies can be greatly improved through the inclusion of diagnostic, prognostic, predictive or pharmacodynamics biomarkers. Circulating microRNAs (miRNAs) represent highly stable targets that respond to physiological and pathological changes. MicroRNA biomarkers can be detected by highly sensitive and absolutely quantitative methods currently available in most clinical laboratories. Here we review preclinical and clinical studies that have examined circulating miRNAs as potential diagnostic and prognostic biomarkers. We also present data that suggests pharmacodynamics biomarkers can be identified that are associated with neuroprotection in general. Although circulating miRNA can serve as useful tools, it is clear their expression profiles are highly sensitive to changing conditions and are influenced by a broad range of parameters including age, sex, body mass index, injury severity, time of collection, as well as methods of processing, purification and detection. Thus, considerable effort will be required to standardize methods and experimental design conditions before circulating miRNAs can prove useful in a heterologous injury like TBI. This article is part of the Special Issue entitled "Novel Treatments for Traumatic Brain Injury".
Collapse
Affiliation(s)
- Kathryn Toffolo
- Neurosurgery Department, Jacobs School of Medicine and Biomedical Sciences, Clinical and Translational Research Center, University at Buffalo, Buffalo, NY, 14203, USA
| | - Jennifer Osei
- Neurosurgery Department, Jacobs School of Medicine and Biomedical Sciences, Clinical and Translational Research Center, University at Buffalo, Buffalo, NY, 14203, USA
| | - William Kelly
- Neurosurgery Department, Jacobs School of Medicine and Biomedical Sciences, Clinical and Translational Research Center, University at Buffalo, Buffalo, NY, 14203, USA
| | - Austin Poulsen
- Neurosurgery Department, Jacobs School of Medicine and Biomedical Sciences, Clinical and Translational Research Center, University at Buffalo, Buffalo, NY, 14203, USA
| | - Kaitlynn Donahue
- Neurosurgery Department, Jacobs School of Medicine and Biomedical Sciences, Clinical and Translational Research Center, University at Buffalo, Buffalo, NY, 14203, USA
| | - Jiefei Wang
- Department of Biostatistics, University at Buffalo, Buffalo, NY, USA
| | - Madison Hunter
- Neurosurgery Department, Jacobs School of Medicine and Biomedical Sciences, Clinical and Translational Research Center, University at Buffalo, Buffalo, NY, 14203, USA
| | - Jonathan Bard
- New York State Center for Bioinformatics and Life Sciences, Buffalo, NY, USA
| | - Jianxin Wang
- New York State Center for Bioinformatics and Life Sciences, Buffalo, NY, USA
| | - David Poulsen
- Neurosurgery Department, Jacobs School of Medicine and Biomedical Sciences, Clinical and Translational Research Center, University at Buffalo, Buffalo, NY, 14203, USA.
| |
Collapse
|
11
|
IonStar enables high-precision, low-missing-data proteomics quantification in large biological cohorts. Proc Natl Acad Sci U S A 2018; 115:E4767-E4776. [PMID: 29743190 DOI: 10.1073/pnas.1800541115] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Reproducible quantification of large biological cohorts is critical for clinical/pharmaceutical proteomics yet remains challenging because most prevalent methods suffer from drastically declined commonly quantified proteins and substantially deteriorated quantitative quality as cohort size expands. MS2-based data-independent acquisition approaches represent tremendous advancements in reproducible protein measurement, but often with limited depth. We developed IonStar, an MS1-based quantitative approach enabling in-depth, high-quality quantification of large cohorts by combining efficient/reproducible experimental procedures with unique data-processing components, such as efficient 3D chromatographic alignment, sensitive and selective direct ion current extraction, and stringent postfeature generation quality control. Compared with several popular label-free methods, IonStar exhibited far lower missing data (0.1%), superior quantitative accuracy/precision [∼5% intragroup coefficient of variation (CV)], the widest protein abundance range, and the highest sensitivity/specificity for identifying protein changes (<5% false altered-protein discovery) in a benchmark sample set (n = 20). We demonstrated the usage of IonStar by a large-scale investigation of traumatic injuries and pharmacological treatments in rat brains (n = 100), quantifying >7,000 unique protein groups (>99.8% without missing data across the 100 samples) with a low false discovery rate (FDR), two or more unique peptides per protein, and high quantitative precision. IonStar represents a reliable and robust solution for precise and reproducible protein measurement in large cohorts.
Collapse
|
12
|
Brooks DM, Patel SA, Wohlgehagen ED, Semmens EO, Pearce A, Sorich EA, Rau TF. Multiple mild traumatic brain injury in the rat produces persistent pathological alterations in the brain. Exp Neurol 2017; 297:62-72. [PMID: 28756201 DOI: 10.1016/j.expneurol.2017.07.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 07/24/2017] [Accepted: 07/25/2017] [Indexed: 12/17/2022]
Abstract
Multiple mild traumatic brain injury (mmTBI), in certain cases, produces persistent symptoms. However, the molecular mechanisms underlying these symptoms remain unclear. Here, we demonstrate extended pathological changes in the rat brain following mmTBI. Using the lateral fluid percussion (LFP) technique we exposed adult male Wistar rats to a mild TBI (mTBI) once a week for four weeks and compared them to surgical shams. At 90days following the last TBI or sham procedure the animals were cognitively tested in the Morris Water Maze (MWM), euthanized, and the brains removed for immunohistochemistry. At 90days following the last mTBI, NRF-2 staining was significantly decreased in the hilus of the hippocampus and cortex on the injured side, but did not significantly differ from shams on the un-injured side. CD68 positive microglia were significantly increased in the ipsilateral corpus callosum, cortex, and internal capsule of injured animals. Reactive astrocytosis, determined by increased GFAP staining, was also evident in the corpus callosum, cortex, internal capsule and thalamus on the injured side. Interestingly, the corpus callosum thickness at the midline was decreased in injured animals and had evident demyelination when compared to sham animals. Despite these findings, there were no significant differences in neurological assessments at 90days following the last injury. In MWM testing there were not significant differences in the training phase, the time spent in the thigmotaxia zone, or the target quadrant during the probe trial. However, there were significant differences between shams and injured animals in platform zone crossings during the probe trial. These results demonstrate that repetitive head trauma may produce persistent, long-term pathological alterations in brain architecture that may be difficult to detect using standard cognitive and neurological assessments.
Collapse
Affiliation(s)
- Diane M Brooks
- The Neural Injury Center, University of Montana, Missoula, MT 59812, United States
| | - Sarjubhai A Patel
- The Neural Injury Center, University of Montana, Missoula, MT 59812, United States
| | - Eric D Wohlgehagen
- The Neural Injury Center, University of Montana, Missoula, MT 59812, United States
| | - Erin O Semmens
- School of Public and Community Health Sciences, University of Montana, Missoula, MT 59812, United States
| | - Alan Pearce
- Melbourne School of Health Sciences, The University of Melbourne, Victoria 3010, Australia; Faculty of Health, Arts and Design, Swinburne University of Technology, Melbourne, Victoria 3122, Australia
| | - Edmond A Sorich
- GLIA Diagnostics, PO Box 138N, Armadale, VIC 3143, Australia
| | - Thomas F Rau
- The Neural Injury Center, University of Montana, Missoula, MT 59812, United States.
| |
Collapse
|
13
|
Chiu CC, Liao YE, Yang LY, Wang JY, Tweedie D, Karnati HK, Greig NH, Wang JY. Neuroinflammation in animal models of traumatic brain injury. J Neurosci Methods 2016; 272:38-49. [PMID: 27382003 PMCID: PMC5201203 DOI: 10.1016/j.jneumeth.2016.06.018] [Citation(s) in RCA: 205] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Traumatic brain injury (TBI) is a leading cause of mortality and morbidity worldwide. Neuroinflammation is prominent in the short and long-term consequences of neuronal injuries that occur after TBI. Neuroinflammation involves the activation of glia, including microglia and astrocytes, to release inflammatory mediators within the brain, and the subsequent recruitment of peripheral immune cells. Various animal models of TBI have been developed that have proved valuable to elucidate the pathophysiology of the disorder and to assess the safety and efficacy of novel therapies prior to clinical trials. These models provide an excellent platform to delineate key injury mechanisms that associate with types of injury (concussion, contusion, and penetration injuries) that occur clinically for the investigation of mild, moderate, and severe forms of TBI. Additionally, TBI modeling in genetically engineered mice, in particular, has aided the identification of key molecules and pathways for putative injury mechanisms, as targets for development of novel therapies for human TBI. This Review details the evidence showing that neuroinflammation, characterized by the activation of microglia and astrocytes and elevated production of inflammatory mediators, is a critical process occurring in various TBI animal models, provides a broad overview of commonly used animal models of TBI, and overviews representative techniques to quantify markers of the brain inflammatory process. A better understanding of neuroinflammation could open therapeutic avenues for abrogation of secondary cell death and behavioral symptoms that may mediate the progression of TBI.
Collapse
Affiliation(s)
- Chong-Chi Chiu
- Department of General Surgery, Chi Mei Medical Center, Tainan and Liouying, Taiwan
| | - Yi-En Liao
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Ling-Yu Yang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Jing-Ya Wang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - David Tweedie
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Hanuma K Karnati
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Nigel H Greig
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Jia-Yi Wang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|