1
|
Lu S, Wang L, Liao L, Niu S, Xiong K, Yan J, Yan W. The Role of Sgt1 in Methamphetamine/Hyperthermia-induced Necroptosis. Curr Med Chem 2025; 32:1195-1207. [PMID: 38204230 DOI: 10.2174/0109298673277649231127055610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/25/2023] [Accepted: 10/31/2023] [Indexed: 01/12/2024]
Abstract
INTRODUCTION Methamphetamine (METH) is a synthetic drug widely abused globally and can result in hyperthermia (HT) and psychiatric symptoms. Our previous studies showed that heat shock protein 90 alpha (HSP90α) plays a vital role in METH/HT-elicited neuronal necroptosis; however, the detailed mechanism of HSP90α regulation remained obscure. METHODS Herein, we demonstrated a function of the suppressor of G-two allele of SKP1 (Sgt1) in METH/HT-induced necroptosis. Sgt1 was mainly expressed in neurons, co-located with HSP90α, and increased in rat striatum after METH treatment. METH/HT injury triggered necroptosis and increased Sgt1 expression in PC-12 cells. RESULTS Data from computer simulations indicated that Sgt1 might interact with HSP90α. Geldanamycin (GA), the specific inhibitor of HSP90α, attenuated the interaction between Sgt1 and HSP90α. Knockdown of Sgt1 expression did not affect the expression level of HSP90α. Still, it inhibited the expression of receptor-interacting protein 3 (RIP3), mixed lineage kinase domain-like protein (MLKL), p-RIP3, and p-MLKL, as well as necroptosis induced by METH/HT injury. CONCLUSION In conclusion, Sgt1 may regulate the expression of RIP3, p-RIP3, MLKL, and p-MLKL by assisting HSP90α in affecting the METH/HT-induced necroptotic cell death.
Collapse
Affiliation(s)
- Shuang Lu
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Lewen Wang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Lvshuang Liao
- School of Physical Education, Hunan Institute of Science and Technology, Yueyang, China
| | - Shuliang Niu
- School of Basic Medical Science, Xinjiang Medical University, Urumqi, China
| | - Kun Xiong
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Ophthalmology, Changsha, China
| | - Jie Yan
- School of Basic Medical Science, Xinjiang Medical University, Urumqi, China
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, China
| | - Weitao Yan
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| |
Collapse
|
2
|
Hur KH, Lee Y, Donio AL, Kim SK, Lee BR, Seo JY, Kundu D, Kim KM, Kohut SJ, Lee SY, Jang CG. Transient receptor potential ankyrin 1 channel modulates the abuse-related mechanisms of methamphetamine through interaction with dopamine transporter. Br J Pharmacol 2024; 181:2794-2809. [PMID: 38644533 PMCID: PMC11230846 DOI: 10.1111/bph.16370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 02/17/2024] [Accepted: 02/29/2024] [Indexed: 04/23/2024] Open
Abstract
BACKGROUND AND PURPOSE Methamphetamine (METH) use disorder has risen dramatically over the past decade, and there are currently no FDA-approved medications due, in part, to gaps in our understanding of the pharmacological mechanisms related to METH action in the brain. EXPERIMENTAL APPROACH Here, we investigated whether transient receptor potential ankyrin 1 (TRPA1) mediates each of several METH abuse-related behaviours in rodents: self-administration, drug-primed reinstatement, acquisition of conditioned place preference, and hyperlocomotion. Additionally, METH-induced molecular (i.e., neurotransmitter and protein) changes in the brain were compared between wild-type and TRPA1 knock-out mice. Finally, the relationship between TRPA1 and the dopamine transporter was investigated through immunoprecipitation and dopamine reuptake assays. KEY RESULTS TRPA1 antagonism blunted METH self-administration and drug-primed reinstatement of METH-seeking behaviour. Further, development of METH-induced conditioned place preference and hyperlocomotion were inhibited by TRPA1 antagonist treatment, effects that were not observed in TRPA1 knock-out mice. Similarly, molecular studies revealed METH-induced increases in dopamine levels and expression of dopamine system-related proteins in wild-type, but not in TRPA1 knock-out mice. Furthermore, pharmacological blockade of TRPA1 receptors reduced the interaction between TRPA1 and the dopamine transporter, thereby increasing dopamine reuptake activity by the transporter. CONCLUSION AND IMPLICATIONS This study demonstrates that TRPA1 is involved in the abuse-related behavioural effects of METH, potentially through its modulatory role in METH-induced activation of dopaminergic neurotransmission. Taken together, these data suggest that TRPA1 may be a novel therapeutic target for treating METH use disorder.
Collapse
Affiliation(s)
- Kwang-Hyun Hur
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
- Behavioral Neuroimaging Laboratory, McLean Hospital, Boston, Massachusetts, USA
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
| | - Youyoung Lee
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Audrey Lynn Donio
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Seon-Kyung Kim
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Bo-Ram Lee
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jee-Yeon Seo
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Dooti Kundu
- Department of Pharmacology, College of Pharmacy, Chonnam National University, Gwang-Ju, Republic of Korea
| | - Kyeong-Man Kim
- Department of Pharmacology, College of Pharmacy, Chonnam National University, Gwang-Ju, Republic of Korea
| | - Stephen J Kohut
- Behavioral Neuroimaging Laboratory, McLean Hospital, Boston, Massachusetts, USA
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
| | - Seok-Yong Lee
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Choon-Gon Jang
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|
3
|
Vincent B, Shukla M. The Common Denominators of Parkinson's Disease Pathogenesis and Methamphetamine Abuse. Curr Neuropharmacol 2024; 22:2113-2156. [PMID: 37691228 PMCID: PMC11337683 DOI: 10.2174/1570159x21666230907151226] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 09/12/2023] Open
Abstract
The pervasiveness and mortality associated with methamphetamine abuse have doubled during the past decade, suggesting a possible worldwide substance use crisis. Epitomizing the pathophysiology and toxicology of methamphetamine abuse proclaims severe signs and symptoms of neurotoxic and neurobehavioral manifestations in both humans and animals. Most importantly, chronic use of this drug enhances the probability of developing neurodegenerative diseases manifolds. Parkinson's disease is one such neurological disorder, which significantly and evidently not only shares a number of toxic pathogenic mechanisms induced by methamphetamine exposure but is also interlinked both structurally and genetically. Methamphetamine-induced neurodegeneration involves altered dopamine homeostasis that promotes the aggregation of α-synuclein protofibrils in the dopaminergic neurons and drives these neurons to make them more vulnerable to degeneration, as recognized in Parkinson's disease. Moreover, the pathologic mechanisms such as mitochondrial dysfunction, oxidative stress, neuroinflammation and decreased neurogenesis detected in methamphetamine abusers dramatically resemble to what is observed in Parkinson's disease cases. Therefore, the present review comprehensively cumulates a holistic illustration of various genetic and molecular mechanisms putting across the notion of how methamphetamine administration and intoxication might lead to Parkinson's disease-like pathology and Parkinsonism.
Collapse
Affiliation(s)
- Bruno Vincent
- Institute of Molecular and Cellular Pharmacology, Laboratory of Excellence DistALZ, Université Côte d'Azur, INSERM, CNRS, Sophia-Antipolis, 06560, Valbonne, France
| | - Mayuri Shukla
- Chulabhorn Graduate Institute, Chulabhorn Royal Academy, 10210, Bangkok, Thailand
| |
Collapse
|
4
|
Zald DH. The influence of dopamine autoreceptors on temperament and addiction risk. Neurosci Biobehav Rev 2023; 155:105456. [PMID: 37926241 PMCID: PMC11330662 DOI: 10.1016/j.neubiorev.2023.105456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/22/2023] [Accepted: 10/31/2023] [Indexed: 11/07/2023]
Abstract
As a major regulator of dopamine (DA), DA autoreceptors (DAARs) exert substantial influence over DA-mediated behaviors. This paper reviews the physiological and behavioral impact of DAARs. Individual differences in DAAR functioning influences temperamental traits such as novelty responsivity and impulsivity, both of which are associated with vulnerability to addictive behavior in animal models and a broad array of externalizing behaviors in humans. DAARs additionally impact the response to psychostimulants and other drugs of abuse. Human PET studies of D2-like receptors in the midbrain provide evidence for parallels to the animal literature. These data lead to the proposal that weak DAAR regulation is a risk factor for addiction and externalizing problems. The review highlights the potential to build translational models of the functional role of DAARs in behavior. It also draws attention to key limitations in the current literature that would need to be addressed to further advance a weak DAAR regulation model of addiction and externalizing risk.
Collapse
Affiliation(s)
- David H Zald
- Center for Advanced Human Brain Imaging and Department of Psychiatry, Rutgers University, Piscataway, NJ, USA.
| |
Collapse
|
5
|
Gupta SK, Ali KH, Lee S, Seo YH. Exploring new histone deacetylase 6 inhibitors and their effects on reversing the α-tubulin deacetylation and cell morphology changes caused by methamphetamine. Arch Pharm Res 2023; 46:795-807. [PMID: 37777709 DOI: 10.1007/s12272-023-01467-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 09/19/2023] [Indexed: 10/02/2023]
Abstract
Indazole-based HDAC6 inhibitors with novel zinc-binding modifications were synthesized and evaluated to determine their potential to inhibit HDAC6. The analogs were subjected to a histone deacetylase (HDAC) enzyme assay, which led to identification of compounds 3a and 3b. Both compounds demonstrated higher potency and selectivity as HDAC6 inhibitors with IC50 values of 9.1 nM and 9.0 nM, respectively, and highlighted the importance of the hydroxamic acid moiety for binding to Zn2+ inside the catalytic pocket of HDAC enzymes. In the neuroblastoma SH-SY5Y cell line, both compounds efficiently acetylated α-tubulin but not histone H3 at a low concentration of 0.5 µM. Moreover, compounds 3a and 3b effectively reversed the deacetylation of α-tubulin caused by methamphetamine in the SH-SY5Y cell line, suggesting the potential usefulness of HDAC6 selective inhibition in restoring blood brain barrier integrity by reversing methamphetamine-induced deacetylation.
Collapse
Affiliation(s)
- Sunil K Gupta
- College of Pharmacy, Keimyung University, Daegu, 42601, South Korea
| | - Khan Hashim Ali
- College of Pharmacy, Keimyung University, Daegu, 42601, South Korea
| | - Sooyeun Lee
- College of Pharmacy, Keimyung University, Daegu, 42601, South Korea
| | - Young Ho Seo
- College of Pharmacy, Keimyung University, Daegu, 42601, South Korea.
| |
Collapse
|
6
|
Miao B, Xing X, Bazylianska V, Madden P, Moszczynska A, Zhang B. Methamphetamine-induced region-specific transcriptomic and epigenetic changes in the brain of male rats. Commun Biol 2023; 6:991. [PMID: 37758941 PMCID: PMC10533900 DOI: 10.1038/s42003-023-05355-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Psychostimulant methamphetamine (METH) is neurotoxic to the brain and, therefore, its misuse leads to neurological and psychiatric disorders. The gene regulatory network (GRN) response to neurotoxic METH binge remains unclear in most brain regions. Here we examined the effects of binge METH on the GRN in the nucleus accumbens, dentate gyrus, Ammon's horn, and subventricular zone in male rats. At 24 h after METH, ~16% of genes displayed altered expression and over a quarter of previously open chromatin regions - parts of the genome where genes are typically active - showed shifts in their accessibility. Intriguingly, most changes were unique to each area studied, and independent regulation between transcriptome and chromatin accessibility was observed. Unexpectedly, METH differentially impacted gene activity and chromatin accessibility within the dentate gyrus and Ammon's horn. Around 70% of the affected chromatin-accessible regions in the rat brain have conserved DNA sequences in the human genome. These regions frequently act as enhancers, ramping up the activity of nearby genes, and contain mutations linked to various neurological conditions. By sketching out the gene regulatory networks associated with binge METH in specific brain regions, our study offers fresh insights into how METH can trigger profound, region-specific molecular shifts.
Collapse
Affiliation(s)
- Benpeng Miao
- Department of Developmental Biology, Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Genetics, Center for Genomic Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Xiaoyun Xing
- Department of Genetics, Center for Genomic Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Viktoriia Bazylianska
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI, 48201, USA
| | - Pamela Madden
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Anna Moszczynska
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI, 48201, USA.
| | - Bo Zhang
- Department of Developmental Biology, Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
7
|
Mahoney-Rafferty EC, Tucker HR, Akhtar K, Herlihy R, Audil A, Shah D, Gupta M, Kochman EM, Feustel PJ, Molho ES, Pilitsis JG, Shin DS. Assessing the Location, Relative Expression and Subclass of Dopamine Receptors in the Cerebellum of Hemi-Parkinsonian Rats. Neuroscience 2023; 521:1-19. [PMID: 37116741 DOI: 10.1016/j.neuroscience.2023.03.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 03/06/2023] [Accepted: 03/17/2023] [Indexed: 04/30/2023]
Abstract
Parkinson's Disease (PD) is a neurodegenerative disease with loss of dopaminergic neurons in the nigrostriatal pathway resulting in basal ganglia (BG) dysfunction. This is largely why much of the preclinical and clinical research has focused on pathophysiological changes in these brain areas in PD. The cerebellum is another motor area of the brain. Yet, if and how this brain area responds to PD therapy and contributes to maintaining motor function fidelity in the face of diminished BG function remains largely unanswered. Limited research suggests that dopaminergic signaling exists in the cerebellum with functional dopamine receptors, tyrosine hydroxylase (TH) and dopamine transporters (DATs); however, much of this information is largely derived from healthy animals and humans. Here, we identified the location and relative expression of dopamine 1 receptors (D1R) and dopamine 2 receptors (D2R) in the cerebellum of a hemi-parkinsonian male rat model of PD. D1R expression was higher in PD animals compared to sham animals in both hemispheres in the purkinje cell layer (PCL) and granule cell layer (GCL) of the cerebellar cortex. Interestingly, D2R expression was higher in PD animals than sham animals mostly in the posterior lobe of the PCL, but no discernible pattern of D2R expression was seen in the GCL between PD and sham animals. To our knowledge, we are the first to report these findings, which may lay the foundation for further interrogation of the role of the cerebellum in PD therapy and/or pathophysiology.
Collapse
Affiliation(s)
- Emily C Mahoney-Rafferty
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208, USA
| | - Heidi R Tucker
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208, USA
| | - Kainat Akhtar
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208, USA
| | - Rachael Herlihy
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208, USA
| | - Aliyah Audil
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208, USA
| | - Dia Shah
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208, USA
| | - Megan Gupta
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208, USA
| | - Eliyahu M Kochman
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208, USA
| | - Paul J Feustel
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208, USA
| | - Eric S Molho
- Department of Neurology, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208, USA
| | - Julie G Pilitsis
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208, USA; Department of Neurosurgery, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208, USA
| | - Damian S Shin
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208, USA; Department of Neurology, Albany Medical College, 47 New Scotland Avenue, Albany, NY 12208, USA.
| |
Collapse
|
8
|
Sexual satiety modifies methamphetamine-induced locomotor and rewarding effects and dopamine-related protein levels in the striatum of male rats. Psychopharmacology (Berl) 2023; 240:797-812. [PMID: 36745226 DOI: 10.1007/s00213-023-06322-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/18/2023] [Indexed: 02/07/2023]
Abstract
RATIONALE Drug and natural rewarding stimuli activate the mesolimbic dopaminergic system. Both methamphetamine (Meth) and copulation to satiety importantly increase dopamine (DA) release in the nucleus accumbens (NAc), but with differences in magnitude. This paper analyzes the interaction between Meth administration and the intense sexual activity associated with sexual satiety. OBJECTIVES To evaluate possible changes in Meth-induced behavioral effects and striatal DA-related protein expression due to sexual satiety. METHODS Meth-induced locomotor activity and conditioned place preference (CPP) were tested in sexually experienced male rats that copulated to satiety (S-S) or ejaculated once (1E) the day before or displayed no sexual activity (control group; C). DA receptors and DA transporter expression were determined by western blot in the striatum of animals of all sexual conditions treated with specific Meth doses. RESULTS Meth's locomotor and rewarding effects were exacerbated in S-S animals, while in 1E rats, only locomotor effects were enhanced. Sexual activity, by itself, modified DA-related protein expression in the NAc core and in the caudate-putamen (CPu), while Meth treatment alone changed their expression only in the NAc shell. Meth-induced changes in the NAc shell turned in the opposite direction when animals had sexual activity, and additional changes appeared in the NAc core and CPu of S-S rats. CONCLUSION Sexual satiety sensitizes rats to Meth's behavioral effects and the Meth-induced striatal DA-related protein adaptations are modified by sexual activity, evidencing cross-sensitization between both stimuli.
Collapse
|
9
|
Guo D, Huang X, Xiong T, Wang X, Zhang J, Wang Y, Liang J. Molecular mechanisms of programmed cell death in methamphetamine-induced neuronal damage. Front Pharmacol 2022; 13:980340. [PMID: 36059947 PMCID: PMC9428134 DOI: 10.3389/fphar.2022.980340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 07/28/2022] [Indexed: 12/02/2022] Open
Abstract
Methamphetamine, commonly referred to as METH, is a highly addictive psychostimulant and one of the most commonly misused drugs on the planet. Using METH continuously can increase your risk for drug addiction, along with other health complications like attention deficit disorder, memory loss, and cognitive decline. Neurotoxicity caused by METH is thought to play a significant role in the onset of these neurological complications. The molecular mechanisms responsible for METH-caused neuronal damage are discussed in this review. According to our analysis, METH is closely associated with programmed cell death (PCD) in the process that causes neuronal impairment, such as apoptosis, autophagy, necroptosis, pyroptosis, and ferroptosis. In reviewing this article, some insights are gained into how METH addiction is accompanied by cell death and may help to identify potential therapeutic targets for the neurological impairment caused by METH abuse.
Collapse
Affiliation(s)
- Dongming Guo
- Institute of Translational Medicine, Medical, Yangzhou University, Yangzhou, China
| | - Xinlei Huang
- Institute of Translational Medicine, Medical, Yangzhou University, Yangzhou, China
| | - Tianqing Xiong
- Institute of Translational Medicine, Medical, Yangzhou University, Yangzhou, China
| | - Xingyi Wang
- Institute of Translational Medicine, Medical, Yangzhou University, Yangzhou, China
| | - Jingwen Zhang
- Institute of Translational Medicine, Medical, Yangzhou University, Yangzhou, China
| | - Yingge Wang
- Department of Neurology, Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Jingyan Liang
- Institute of Translational Medicine, Medical, Yangzhou University, Yangzhou, China
- *Correspondence: Jingyan Liang,
| |
Collapse
|
10
|
Liao LS, Lu S, Yan WT, Wang SC, Guo LM, Yang YD, Huang K, Hu XM, Zhang Q, Yan J, Xiong K. The Role of HSP90α in Methamphetamine/Hyperthermia-Induced Necroptosis in Rat Striatal Neurons. Front Pharmacol 2021; 12:716394. [PMID: 34349659 PMCID: PMC8326403 DOI: 10.3389/fphar.2021.716394] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/07/2021] [Indexed: 01/07/2023] Open
Abstract
Methamphetamine (METH) is one of the most widely abused synthetic drugs in the world. The users generally present hyperthermia (HT) and psychiatric symptoms. However, the mechanisms involved in METH/HT-induced neurotoxicity remain elusive. Here, we investigated the role of heat shock protein 90 alpha (HSP90α) in METH/HT (39.5°C)-induced necroptosis in rat striatal neurons and an in vivo rat model. METH treatment increased core body temperature and up-regulated LDH activity and the molecular expression of canonical necroptotic factors in the striatum of rats. METH and HT can induce necroptosis in primary cultures of striatal neurons. The expression of HSP90α increased following METH/HT injuries. The specific inhibitor of HSP90α, geldanamycin (GA), and HSP90α shRNA attenuated the METH/HT-induced upregulation of receptor-interacting protein 3 (RIP3), phosphorylated RIP3, mixed lineage kinase domain-like protein (MLKL), and phosphorylated MLKL. The inhibition of HSP90α protected the primary cultures of striatal neurons from METH/HT-induced necroptosis. In conclusion, HSP90α plays an important role in METH/HT-induced neuronal necroptosis and the HSP90α-RIP3 pathway is a promising therapeutic target for METH/HT-induced neurotoxicity in the striatum.
Collapse
Affiliation(s)
- Lv-shuang Liao
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
- School of Physical Education, Hunan Institute of Science and Technology, Yueyang, China
| | - Shuang Lu
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Wei-tao Yan
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Shu-chao Wang
- Center for Medical Research, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Li-min Guo
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Yan-di Yang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Kai Huang
- Department of Human Anatomy and Histoembryolog, School of Basic Medical Sciences, Shaoyang University, Shaoyang, China
| | - Xi-min Hu
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
| | - Qi Zhang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Jie Yan
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, China
- School of Basic Medical Science, Xinjiang Medical University, Urumqi, China
| | - Kun Xiong
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Ophthalmology, Changsha, China
| |
Collapse
|
11
|
New designer phenethylamines 2C-C and 2C-P have abuse potential and induce neurotoxicity in rodents. Arch Toxicol 2021; 95:1413-1429. [PMID: 33515270 DOI: 10.1007/s00204-021-02980-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 01/04/2021] [Indexed: 12/22/2022]
Abstract
2C (2C-x) is the general name for the family of phenethylamines containing two methoxy groups at the 2 and 5 positions of the benzene ring. The abuse of 2C family drugs has grown rapidly, although the abuse potential and neurotoxic properties of 2C drugs have not yet been fully investigated. In this study, we investigated the abuse potential and neurotoxicity of 4-chloro-2,5-dimethoxyphenethylamine (2C-C) and 2,5-dimethoxy-4-propylphenethylamine (2C-P). We found that 2C-C and 2C-P produced conditioned place preference in a dose-dependent manner in mice, and increased self-administration in rats, suggesting that 2C-C and 2C-P have abuse potential. To investigate the neurotoxicity of 2C-C and 2C-P, we examined motor performance and memory impairment after high doses of 2C-C and 2C-P. High doses of 2C-C and 2C-P decreased locomotor activity, rota-rod performance, and lower Y-maze test, novel objective recognition test, and passive avoidance test scores. We also observed that 2C-C and 2C-P affected expression levels of the D1 dopamine receptor, D2 dopamine receptor, dopamine transporter, and phospho-dopamine transporter in the nucleus accumbens and the medial prefrontal cortex, and increased c-Fos immuno-positive cells in the nucleus accumbens. Moreover, high doses of 2C-C and 2C-P induced microglial activation, which is involved in the inflammatory reaction in the striatum. These results suggest that 2C-C and 2C-P have abuse potential by affecting dopaminergic signaling and induce neurotoxicity via initiating neuroinflammation at high doses.
Collapse
|
12
|
Talebnejad MR, Khazaei P, Jahanbani-Ardakani H, Saberikia Z, Moghimi Sarani E, Khalili MR. Effects of chronic methamphetamine abuse on the retinal nerve fiber layer, ganglion cell layer and Bruch's membrane opening minimum rim width. Neurotoxicology 2020; 80:140-143. [PMID: 32726659 DOI: 10.1016/j.neuro.2020.07.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 07/17/2020] [Accepted: 07/18/2020] [Indexed: 11/25/2022]
Abstract
BACKGROUND Methamphetamine (Meth) is a highly addictive and hallucinogenic agent which is used as the second most common illicit drug globally. Meth could affect the retina and optic nerve by inducing the release of vasoconstrictive agents such as endothelin 1 and induction of severe oxidative stress with accumulation of reactive oxygen species. AIM To evaluate the effects of chronic Meth abuse on the retinal nerve fiber layer (RNFL), ganglion cell layer (GCL) and the Bruch's membrane opening minimum rim width (MRW). METHOD In this case-control study, we recruited 55 Meth abusers and 49 healthy individuals with mean age of 44.63 ± 0.97 and 43.08 ± 0.91 years, respectively. RNFL thickness, GCL thickness and MRW were evaluated using optical coherence tomography. RESULTS We found statistically significant decrease in RNFL, MRW thickness in Meth abusers (P: 0.002 and P: 0.006, respectively). We did not detect statistically significant difference regarding GCL thickness between the groups (P = 0.320). Our results showed a weak but statistically significant correlation of Meth dose increment and decrement of RNFL thickness ((P: 0.005, r = -0.193) and MRW (P: 0.013, r = -0.174). We found no correlation between duration of Meth consumption with RNFL and MRW thickness (P: 0.205, r= -0.124; P: 0.771, r= -0.029, respectively). CONCLUSION We found a statistically significant adverse association in meth abusers with RNFL thickness and MRW. These two parameters were also statistically associated with the meth dose as measured by daily dose of Meth. Although we found a decrease in the GCL thickness, it did not reach statistical significance.
Collapse
Affiliation(s)
- Mohammad Reza Talebnejad
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Peyman Khazaei
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamidreza Jahanbani-Ardakani
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Saberikia
- Department of Biology, College of Sciences, Shiraz University, Shiraz, Iran
| | - Ebrahim Moghimi Sarani
- Department of Psychiatry, Research Center for Psychiatry and Behavioral Science, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Reza Khalili
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
13
|
Sharma C, Oh YJ, Park B, Lee S, Jeong CH, Lee S, Seo JH, Seo YH. Development of Thiazolidinedione-Based HDAC6 Inhibitors to Overcome Methamphetamine Addiction. Int J Mol Sci 2019; 20:ijms20246213. [PMID: 31835389 PMCID: PMC6940941 DOI: 10.3390/ijms20246213] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/04/2019] [Accepted: 12/06/2019] [Indexed: 12/20/2022] Open
Abstract
Thiazolidinedione is a five-membered heterocycle that is widely used in drug discovery endeavors. In this study, we report the design, synthesis, and biological evaluation of a series of thiazolidinedione-based HDAC6 inhibitors. In particular, compound 6b exerts an excellent inhibitory activity against HDAC6 with an IC50 value of 21 nM, displaying a good HDAC6 selectivity over HDAC1. Compound 6b dose-dependently induces the acetylation level of α-tubulin via inhibition of HDAC6 in human neuroblastoma SH-SY5Y cell line. Moreover, compound 6b efficiently reverses methamphetamine-induced morphology changes of SH-SY5Y cells via regulating acetylation landscape of α-tubulin. Collectively, compound 6b represents a novel HDAC6-isoform selective inhibitor and demonstrates promising therapeutic potential for the treatment of methamphetamine addiction.
Collapse
Affiliation(s)
- Chiranjeev Sharma
- College of Pharmacy, Keimyung University, Daegu 42601, Korea; (C.S.); (Y.J.O.); (B.P.); (S.L.); (C.-H.J.); (S.L.)
| | - Yong Jin Oh
- College of Pharmacy, Keimyung University, Daegu 42601, Korea; (C.S.); (Y.J.O.); (B.P.); (S.L.); (C.-H.J.); (S.L.)
| | - Byoungduck Park
- College of Pharmacy, Keimyung University, Daegu 42601, Korea; (C.S.); (Y.J.O.); (B.P.); (S.L.); (C.-H.J.); (S.L.)
| | - Sooyeun Lee
- College of Pharmacy, Keimyung University, Daegu 42601, Korea; (C.S.); (Y.J.O.); (B.P.); (S.L.); (C.-H.J.); (S.L.)
| | - Chul-Ho Jeong
- College of Pharmacy, Keimyung University, Daegu 42601, Korea; (C.S.); (Y.J.O.); (B.P.); (S.L.); (C.-H.J.); (S.L.)
| | - Sangkil Lee
- College of Pharmacy, Keimyung University, Daegu 42601, Korea; (C.S.); (Y.J.O.); (B.P.); (S.L.); (C.-H.J.); (S.L.)
| | - Ji Hae Seo
- Department of Biochemistry, School of Medicine, Keimyung University, Daegu 42601, Korea;
| | - Young Ho Seo
- College of Pharmacy, Keimyung University, Daegu 42601, Korea; (C.S.); (Y.J.O.); (B.P.); (S.L.); (C.-H.J.); (S.L.)
- Correspondence: ; Tel.: +82-053-580-6639
| |
Collapse
|
14
|
Yang H, Tao L, Li L. Long-Term Systemic Treatment With Methamphetamine Causes Retinal Damage in CD1 Mice. Int J Toxicol 2018; 37:448-456. [PMID: 30373422 DOI: 10.1177/1091581818809356] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
As a powerful psychostimulant with high potential for abuse, methamphetamine (Meth) could cause long-lasting abnormalities in retinas. The purpose of this study was to investigate the effects of systemic administration of Meth at low dose on retinal damage and understand the underlying mechanisms of pathology. CD1 mice were treated with 0.5 mg/kg or 1 mg/kg Meth by intraperitoneal injection daily for 2 months, mice treated with saline were used as negative control. Electroretinography (ERG) reflects the mass response of photoreceptor cells and was used to test the outer retinal function after Meth treatment. Toluidine blue staining was used to show the retinal morphology and evaluate the photoreceptor cell loss. Inflammatory factors were measured by enzyme-linked immunosorbent assay to show the inflammatory response. Terminal deoxynucleotidyl transferase dUTP Nick end labeling assay was used to detect the apoptosis-positive cells. Real-time polymerase chain reaction and Western blot were applied to measure the gene and protein change to explore the underlying mechanisms. Results demonstrated that retinal damage was caused by Meth treatment after 2 months, evidenced by loss of rod photoreceptor cells; decreased ERG amplitude; increased apoptotic photoreceptor cells, cytochrome-c release, caspase-3 activity, caspase-9 activity, and apoptosis-related protein expression; increased malondialdehyde level as well as nicotinamide adenine dinucleotide phosphate oxidase 4 protein expression; decreased anti-oxidative agents glutathione as well as superoxide dismutase levels; and increased production and gene expression of inflammatory factors. Our study indicated that systemic administration of Meth caused neurotoxic effects on CD1 mouse retinas, providing the potential mechanisms for the retina damage caused by Meth abuse.
Collapse
Affiliation(s)
- Haojiang Yang
- Department of Ophthalmology, The Second Hospital Affiliated to Anhui Medical University, Hefei, People’s Republic of China
| | - Liming Tao
- Department of Ophthalmology, The Second Hospital Affiliated to Anhui Medical University, Hefei, People’s Republic of China
| | - Lin Li
- Department of Ophthalmology, Shenzhen Second People’s Hospital, Shenzhen, People’s Republic of China
| |
Collapse
|
15
|
Khazaee-Pool M, Jahangiry L, Pashaei T, Ramezani-badr F, Nadrian H, Ponnet K. Development and psychometric properties of the methamphetamine decisional balance scale (METH-DBS) for young adults. Subst Abuse Treat Prev Policy 2018; 13:38. [PMID: 30373625 PMCID: PMC6206728 DOI: 10.1186/s13011-018-0175-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 10/17/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Drug misuse is a major problem that has an extreme negative effect on people's health. Methamphetamine (MA) is frequently used by young adults, despite its harmful consequences. The Transtheoretical Model (TTM) has been known to be very effective in explaining both the achievement and cessation of several health-related behaviors. Therefore, in this study, the TTM was used toward the domain of immoderate MA use among young adults. This study aimed to test the validity and reliability of a decisional balance scale for MA use in young adults. METHODS A multi-phase scale development approach was used to develop the scale. First, 41 university students enrolled in a qualitative study that generated content for a primary set of a 40-item instrument. In order to produce a pre-final version of the instrument, face and content validity were calculated in the next step. The instrument validation was assessed with a sample of 250 university students. Then, the construct validity (exploratory and confirmatory), convergent validity, discriminate validity, internal consistency applying test-retest reliability, and Cronbach's alpha of the scale were measured. RESULTS Forty items were initially generated from the qualitative data. After content validity, this amount was reduced to 25 items. The exploratory factor analysis revealed four factors (self and other cons, coping and social pros) containing 21 items that jointly accounted for 55.24% of the observed variance. The confirmatory factor analysis indicated a model with appropriate fitness for the data. Cronbach's alpha coefficient for the dimensions ranged from .74 to .87, and the Intraclass Correlation Coefficient (ICC) ranged from .83 to .91, which is within acceptable ranges. CONCLUSION The findings showed that the Methamphetamine Decisional Balance Scale is a valid and reliable scale that increases our ability to study motivational factors related to MA use among young adult. Consequently, the instrument could be applied in both practice and future studies.
Collapse
Affiliation(s)
- Maryam Khazaee-Pool
- Department of Health Education and Promotion, School of Public Health, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Leila Jahangiry
- Department of Health Education and Health Promotion, Health Faculty, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tahereh Pashaei
- Environmental Health Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
- Department of Public Health, Faculty of Health, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Farhad Ramezani-badr
- Department of Critical Care Nursing, School of Nursing and Midwifery, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Haidar Nadrian
- Department of Health Education and Health Promotion, Health Faculty, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Koen Ponnet
- Department of Communication Sciences, Faculty of Political and Social Sciences, imec-mict-Ghent University, Ghent, Belgium
| |
Collapse
|
16
|
Gemechu JM, Sharma A, Yu D, Xie Y, Merkel OM, Moszczynska A. Characterization of Dopaminergic System in the Striatum of Young Adult Park2 -/- Knockout Rats. Sci Rep 2018; 8:1517. [PMID: 29367643 PMCID: PMC5784013 DOI: 10.1038/s41598-017-18526-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 11/20/2017] [Indexed: 12/13/2022] Open
Abstract
Mutations in parkin gene (Park2) are linked to early-onset autosomal recessive Parkinson's disease (PD) and young-onset sporadic PD. Park2 knockout (PKO) rodents; however, do not display neurodegeneration of the nigrostriatal pathway, suggesting age-dependent compensatory changes. Our goal was to examine dopaminergic (DAergic) system in the striatum of 2 month-old PKO rats in order to characterize compensatory mechanisms that may have occurred within the system. The striata form wild type (WT) and PKO Long Evans male rats were assessed for the levels of DAergic markers, for monoamine oxidase (MAO) A and B activities and levels, and for the levels of their respective preferred substrates, serotonin (5-HT) and ß-phenylethylamine (ß-PEA). The PKO rats displayed lower activities of MAOs and higher levels of ß-PEA in the striatum than their WT counterparts. Decreased levels of ß-PEA receptor, trace amine-associated receptor 1 (TAAR-1), and postsynaptic DA D2 (D2L) receptor accompanied these alterations. Drug-naive PKO rats displayed normal locomotor activity; however, they displayed decreased locomotor response to a low dose of psychostimulant methamphetamine, suggesting altered DAergic neurotransmission in the striatum when challenged with an indirect agonist. Altogether, our findings suggest that 2 month-old PKO male rats have altered DAergic and trace aminergic signaling.
Collapse
Affiliation(s)
- Jickssa M Gemechu
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI, USA
- Department of Biomedical Sciences, OUWB School of Medicine, Rochester, MI, USA
| | - Akhil Sharma
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI, USA
| | - Dongyue Yu
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI, USA
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD, USA
| | - Yuran Xie
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI, USA
- Boston Biomedical Inc., Allston, MA, USA
| | - Olivia M Merkel
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI, USA
- Department of Pharmacy, Ludwig-Maximilians University of Munich, Munich, Germany
| | - Anna Moszczynska
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI, USA.
| |
Collapse
|
17
|
Wen D, An M, Gou H, Liu X, Liu L, Ma C, Cong B. Cholecystokinin-8 inhibits methamphetamine-induced neurotoxicity via an anti-oxidative stress pathway. Neurotoxicology 2016; 57:31-38. [DOI: 10.1016/j.neuro.2016.08.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 06/07/2016] [Accepted: 08/15/2016] [Indexed: 11/28/2022]
|
18
|
Hong SI, Kim MJ, You IJ, Kwon SH, Ma SX, Hwang JY, Seo JY, Ko YH, Lee BR, Lee SY, Jang CG. Phentermine induces conditioned rewarding effects via activation of the PI3K/Akt signaling pathway in the nucleus accumbens. Psychopharmacology (Berl) 2016; 233:1405-13. [PMID: 26887589 DOI: 10.1007/s00213-016-4231-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 02/02/2016] [Indexed: 01/18/2023]
Abstract
RATIONALE Phentermine is structurally similar to methamphetamine and is widely used as an anti-obesity drug in the USA and many other countries. The potential for reward of phentermine has been noted; however, the mechanisms of phentermine dependence have not been established. OBJECTIVES Here, we investigated the rewarding and dopaminergic behavioral responses to phentermine in mice and found that phentermine produced conditioned rewarding effects through the phosphoinositide 3-kinase (PI3K)/Akt signaling pathway in the nucleus accumbens (NAc). METHODS The impact of phentermine was assessed using conditioned place preference (CPP) test, climbing behavior test, and western blot analysis. RESULTS Phentermine 1 and 3 mg/kg (i.p.) significantly increased CPP. Phentermine, a known dopamine releaser, boosted apomorphine-induced climbing behavior in mice, and methamphetamine (i.p.) also increased apomorphine-induced dopaminergic behavior. Phentermine and methamphetamine increased the level of expression of the dopamine transporter (DAT) and phospho-Akt proteins to a similar degree in the NAc of CPP mice. To determine whether the conditioned rewarding effects of phentermine were mediated through the PI3K/Akt pathway, we assessed the effects of the Akt inhibitor LY294002 on phentermine-induced place preference and climbing behavior. LY294002 (1 and 3 μg/site, i.c.v.) reduced phentermine-induced CPP and phentermine-increased climbing behavior. However, LY294002 did not change CPP and climbing behavior itself and also did not decrease apomorphine-induced climbing behavior in mice. Further, LY294002 decreased the phentermine-increased levels of DAT protein and phosphorylation of Akt in the NAc of CPP mice. CONCLUSIONS Thus, these findings suggest that phentermine induces conditioned rewarding effects via activation of the PI3K/Akt signaling pathway in the NAc.
Collapse
Affiliation(s)
- Sa-Ik Hong
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 440-746, Republic of Korea
| | - Min-Jung Kim
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 440-746, Republic of Korea
| | - In-Jee You
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 440-746, Republic of Korea
| | - Seung-Hwan Kwon
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 440-746, Republic of Korea
| | - Shi-Xun Ma
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 440-746, Republic of Korea
| | - Ji-Young Hwang
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 440-746, Republic of Korea
| | - Jee-Yeon Seo
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 440-746, Republic of Korea
| | - Yong-Hyun Ko
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 440-746, Republic of Korea
| | - Bo Ram Lee
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 440-746, Republic of Korea
| | - Seok-Yong Lee
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 440-746, Republic of Korea
| | - Choon-Gon Jang
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 440-746, Republic of Korea.
| |
Collapse
|
19
|
Sirova J, Kristofikova Z, Vrajova M, Fujakova-Lipski M, Ripova D, Klaschka J, Slamberova R. Sex-Dependent Changes in Striatal Dopamine Transport in Preadolescent Rats Exposed Prenatally and/or Postnatally to Methamphetamine. Neurochem Res 2016; 41:1911-23. [PMID: 27038442 DOI: 10.1007/s11064-016-1902-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 03/23/2016] [Accepted: 03/24/2016] [Indexed: 01/13/2023]
Abstract
Methamphetamine (MA) is the most commonly used psychostimulant drug, the chronic abuse of which leads to neurodegenerative changes in the brain. The global use of MA is increasing, including in pregnant women. Since MA can cross both placental and haematoencephalic barriers and is also present in maternal milk, children of chronically abused mothers are exposed prenatally as well as postnatally. Women seem to be more vulnerable to some aspects of MA abuse than men. MA is thought to exert its effects among others via direct interactions with dopamine transporters (DATs) in the brain tissue. Sexual dimorphism of the DAT system could be a base of sex-dependent actions of MA observed in behavioural and neurochemical studies. Possible sex differences in the DATs of preadolescent offspring exposed to MA prenatally and/or postnatally have not yet been evaluated. We examined the striatal synaptosomal DATs (the activity and density of surface expressed DATs and total DAT expression) in preadolescent male and female Wistar rats (31-35-day old animals) exposed prenatally and/or postnatally to MA (daily 5 mg/kg, s.c. to mothers during pregnancy and lactation). To distinguish between specific and nonspecific effects of MA on DATs, we also evaluated the in vitro effects of lipophilic MA on the fluidity of striatal membranes isolated from preadolescent and young adult rats of both sexes. We observed similar changes in the DATs of preadolescent rats exposed prenatally or postnatally (MA-mediated drop in the reserve pool but no alterations in surface-expressed DATs). However, prenatal exposure evoked significant changes in males and postnatal exposure in females. A significant decrease in the activity of surface-expressed DATs was found only in postnatally exposed females sensitized to MA via prenatal exposure. MA applied in vitro increased the fluidity of striatal membranes of preadolescent female but not male rats. In summary, DATs of preadolescent males are more sensitive to prenatal MA exposure via changes in the reserve pool and those of preadolescent females to postnatal MA exposure via the same mechanism. The combination of prenatal and postnatal MA exposure increases the risk of dopaminergic deficits via alterations in the activity of surface-expressed DATs especially in preadolescent females. MA-mediated changes in DATs of preadolescent females could be still enhanced via nonspecific disordering actions of MA on striatal membranes.
Collapse
Affiliation(s)
- Jana Sirova
- National Institute of Mental Health, Topolova 748, 250 67, Klecany, Czech Republic.,Department of Normal, Pathological and Clinical Physiology, Third Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Zdenka Kristofikova
- National Institute of Mental Health, Topolova 748, 250 67, Klecany, Czech Republic.
| | - Monika Vrajova
- National Institute of Mental Health, Topolova 748, 250 67, Klecany, Czech Republic
| | | | - Daniela Ripova
- National Institute of Mental Health, Topolova 748, 250 67, Klecany, Czech Republic
| | - Jan Klaschka
- Institute of Computer Science, The Czech Academy of Sciences, Prague, Czech Republic
| | - Romana Slamberova
- Department of Normal, Pathological and Clinical Physiology, Third Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| |
Collapse
|
20
|
Fricks-Gleason AN, German CL, Hoonakker AJ, Friend DM, Ganesh KK, Carver AS, Hanson GR, Fleckenstein AE, Keefe KA. An acute, epitope-specific modification in the dopamine transporter associated with methamphetamine-induced neurotoxicity. Synapse 2016; 70:139-46. [PMID: 26799527 DOI: 10.1002/syn.21891] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 12/08/2015] [Accepted: 01/18/2016] [Indexed: 11/12/2022]
Abstract
Preclinical studies demonstrate that repeated, high-dose methamphetamine administrations rapidly decrease plasmalemmal dopamine uptake, which may contribute to aberrant dopamine accumulation, reactive species generation, and long-term dopaminergic deficits. The present study extends these findings by demonstrating a heretofore unreported, epitope-specific modification in the dopamine transporter caused by a methamphetamine regimen that induces these deficits. Specifically, repeated, high-dose methamphetamine injections (4 × 10 mg/kg/injection, 2-h intervals) rapidly decreased immunohistochemical detection of striatal dopamine transporter as assessed 1 h after the final methamphetamine exposure. In contrast, neither a single high dose (1 × 10 mg/kg) nor repeated injections of a lower dose (4 × 2 mg/kg/injection) induced this change. The high-dose regimen-induced alteration was only detected using antibodies directed against the N-terminus. Immunohistochemical staining using antibodies directed against the C-terminus did not reveal any changes. The high-dose regimen also did not alter dopamine transporter expression as assessed using [(125) I]RTI-55 autoradiography. These data suggest that the repeated, high-dose methamphetamine regimen alters the N-terminus of the dopamine transporter. Further, these data may be predictive of persistent dopamine deficits caused by the stimulant. Future studies of the signaling cascades involved should provide novel insight into potential mechanisms underlying the physiological and pathophysiological regulation of the dopamine transporter.
Collapse
Affiliation(s)
| | | | | | - Danielle M Friend
- Eating and Addiction Section, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland, 20892.,Interdepartmental Program in Neuroscience, University of Utah, Salt Lake City, Utah, 84112
| | - Kamala K Ganesh
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah, 84112
| | - Aaron S Carver
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah, 84112
| | - Glen R Hanson
- School of Dentistry, University of Utah, Salt Lake City, Utah, 84108.,Interdepartmental Program in Neuroscience, University of Utah, Salt Lake City, Utah, 84112
| | - Annette E Fleckenstein
- School of Dentistry, University of Utah, Salt Lake City, Utah, 84108.,Interdepartmental Program in Neuroscience, University of Utah, Salt Lake City, Utah, 84112
| | - Kristen A Keefe
- Interdepartmental Program in Neuroscience, University of Utah, Salt Lake City, Utah, 84112.,Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah, 84112
| |
Collapse
|
21
|
Kumar JR, Rajkumar R, Farooq U, Lee LC, Tan FCK, Dawe GS. Evidence of D2 receptor expression in the nucleus incertus of the rat. Physiol Behav 2015; 151:525-34. [PMID: 26300469 DOI: 10.1016/j.physbeh.2015.08.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 07/27/2015] [Accepted: 08/17/2015] [Indexed: 01/11/2023]
Abstract
The nucleus incertus (NI), located in the caudal brainstem, mainly consists of GABAergic neurons with widespread projections across the brain. It is the chief source of relaxin-3 in the mammalian brain and densely expresses corticotropin-releasing factor type 1 (CRF1) receptors. Several other neurotransmitters, peptides and receptors are reportedly expressed in the NI. In the present investigation, we show the expression of dopamine type-2 (D2) receptors in the NI by reverse transcriptase-polymerase chain reaction (RT-PCR), western blotting (WB) and immunofluorescence (IF). RT-PCR did not show expression of D3 receptors. D2 receptor short isoform (D2S)-like, relaxin-3, CRF1/2 receptor and NeuN immunoreactivity were co-expressed in the cells of the NI. Behavioural effects of D2 receptor activation by intra-NI infusion of quinpirole (a D2/D3 agonist) were evaluated. Hypolocomotion was observed in home cage monitoring system (LABORAS) and novel environment-induced suppression of feeding behavioural paradigms. Thus the D2 receptors expressed in the NI are likely to play a role in locomotion. Based on its strong bidirectional connections to the median raphe and interpeduncular nuclei, the NI was predicted to play a role in modulating behavioural activity and the present results lend support to this hypothesis. This is the first evidence of expression of a catecholamine receptor, D2-like immunoreactivity, in the NI.
Collapse
Affiliation(s)
- Jigna Rajesh Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore; Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, 117456, Singapore; Singapore Institute for Neurotechnology (SINAPSE), 117456, Singapore; NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, 117456, Singapore
| | - Ramamoorthy Rajkumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore; Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, 117456, Singapore; Singapore Institute for Neurotechnology (SINAPSE), 117456, Singapore
| | - Usman Farooq
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore; Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, 117456, Singapore; Singapore Institute for Neurotechnology (SINAPSE), 117456, Singapore
| | - Liying Corinne Lee
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore; Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, 117456, Singapore; Singapore Institute for Neurotechnology (SINAPSE), 117456, Singapore
| | - Francis Chee Kuan Tan
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore; Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, 117456, Singapore; Singapore Institute for Neurotechnology (SINAPSE), 117456, Singapore
| | - Gavin S Dawe
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore; Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, 117456, Singapore; Singapore Institute for Neurotechnology (SINAPSE), 117456, Singapore; NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, 117456, Singapore.
| |
Collapse
|