1
|
Sabuakham S, Nasoontorn S, Kongtaworn N, Rungrotmongkol T, Silsirivanit A, Pingaew R, Mahalapbutr P. Anilino-1,4-naphthoquinones as potent mushroom tyrosinase inhibitors: in vitro and in silico studies. J Enzyme Inhib Med Chem 2024; 39:2357174. [PMID: 38814149 PMCID: PMC11141316 DOI: 10.1080/14756366.2024.2357174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/14/2024] [Indexed: 05/31/2024] Open
Abstract
Tyrosinase, a pivotal enzyme in melanin synthesis, is a primary target for the development of depigmenting agents. In this work, in vitro and in silico techniques were employed to identify novel tyrosinase inhibitors from a set of 12 anilino-1,4-naphthoquinone derivatives. Results from the mushroom tyrosinase activity assay indicated that, among the 12 derivatives, three compounds (1, 5, and 10) demonstrated the most significant inhibitory activity against mushroom tyrosinase, surpassing the effectiveness of the kojic acid. Molecular docking revealed that all studied derivatives interacted with copper ions and amino acid residues at the enzyme active site. Molecular dynamics simulations provided insights into the stability of enzyme-inhibitor complexes, in which compounds 1, 5, and particularly 10 displayed greater stability, atomic contacts, and structural compactness than kojic acid. Drug likeness prediction further strengthens the potential of anilino-1,4-naphthoquinones as promising candidates for the development of novel tyrosinase inhibitors for the treatment of hyperpigmentation disorders.
Collapse
Affiliation(s)
- Sahachai Sabuakham
- Department of Biochemistry, Center for Translational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Sutita Nasoontorn
- Department of Biochemistry, Center for Translational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Napat Kongtaworn
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok, Thailand
| | - Thanyada Rungrotmongkol
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Structural and Computational Biology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Atit Silsirivanit
- Department of Biochemistry, Center for Translational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Ratchanok Pingaew
- Department of Chemistry, Faculty of Science, Srinakharinwirot University, Bangkok, Thailand
| | - Panupong Mahalapbutr
- Department of Biochemistry, Center for Translational Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
2
|
Cephalosporin as Potent Urease and Tyrosinase Inhibitor: Exploration through Enzyme Inhibition, Kinetic Mechanism, and Molecular Docking Studies. BIOMED RESEARCH INTERNATIONAL 2022; 2022:1092761. [PMID: 35937399 PMCID: PMC9352478 DOI: 10.1155/2022/1092761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 07/08/2022] [Indexed: 11/17/2022]
Abstract
In present study, eleven cephalosporin drugs were selected to explore their new medically important enzyme targets with inherited safety advantage. To this end, selected drugs with active ingredient, cefpodoxime proxetil, ceftazidime, cefepime, ceftriaxone sodium, cefaclor, cefotaxime sodium, cefixime trihydrate, cephalexin, cefadroxil, cephradine, and cefuroxime, were evaluated and found to have significant activity against urease (IC50 = 0.06 ± 0.004 to 0.37 ± 0.046 mM) and tyrosinase (IC50 = 0.01 ± 0.0005 to 0.12 ± 0.017 mM) enzymes. Urease activity was lower than standard thiourea; however, tyrosinase activity of all drugs outperforms (ranging 6 to 18 times) the positive control: hydroquinone (IC50 = 0.18 ± 0.02 mM). Moreover, the kinetic analysis of the most active drugs, ceftriaxone sodium and cefotaxime sodium, revealed that they bind irreversibly with both the enzymes; however, their mode of action was competitive for urease and mixed-type, preferentially competitive for tyrosinase enzyme. Like in vitro activity, ceftriaxone sodium and cefotaxime sodium docking analysis showed their considerable binding affinity and significant interactions with both urease and tyrosinase enzymes sufficient for downstream signaling responsible for observed enzyme inhibition in vitro, purposing them as potent candidates to control enzyme-rooted obstructions in future.
Collapse
|
3
|
Nam G, An SK, Park IC, Bae S, Lee JH. Daphnetin inhibits α-MSH-induced melanogenesis via PKA and ERK signaling pathways in B16F10 melanoma cells. Biosci Biotechnol Biochem 2022; 86:596-609. [PMID: 35325017 DOI: 10.1093/bbb/zbac016] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/24/2022] [Indexed: 12/18/2022]
Abstract
Daphnetin is a dehydroxylated derivative of coumarin isolated from Daphne species. However, the effect of daphnetin on melanogenesis has not been elucidated. This study aims to investigate the inhibitory effect of daphnetin on melanogenesis in α-melanocyte stimulating hormone (α-MSH)-treated B16F10 cells and its potential mechanism. Melanin content analysis and cellular tyrosinase activity assay showed that daphnetin inhibited melanin biosynthesis in α-MSH-treated B16F10 cells. Immunoblotting and qRT-PCR also indicated that daphnetin suppressed the expression of microphthalmia-associated transcription factor, a mastering transcription factor of melanogenesis and its downstream melanogenic enzymes including tyrosinase and tyrosinase-related proteins. Moreover, daphnetin downregulated the phosphorylation of PKA, ERK, MSK1, and CREB. Additionally, daphnetin inhibited melanin synthesis in UVB-irradiated HaCaT conditioned medium system suggesting that daphnetin has potential as an antipigmentation activity in a physiological skin condition. Our data propose that daphnetin inhibits melanogenesis via modulating both the PKA/CREB and the ERK/MSK1/CREB pathways.
Collapse
Affiliation(s)
- Garam Nam
- Department of Cosmetics Engineering, Konkuk University, Seoul, Republic of Korea
| | - Sung Kwan An
- Department of Cosmetics Engineering, Konkuk University, Seoul, Republic of Korea
| | - In-Chul Park
- Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Nowon-gu, Seoul, Republic of Korea
| | - Seunghee Bae
- Department of Cosmetics Engineering, Konkuk University, Seoul, Republic of Korea
| | - Jae Ho Lee
- Department of Cosmetics Engineering, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
4
|
Zeng G, Chen F, Lei Y, Zhou L, Yang X, Guo H, Tuo X, Guo Y. Revealing the binding properties between resorcinol and DNA. LUMINESCENCE 2021; 37:4-13. [PMID: 34499419 DOI: 10.1002/bio.4140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/12/2021] [Accepted: 09/06/2021] [Indexed: 01/08/2023]
Abstract
Resorcinol (1,3-dihydroxybenzene) is a common coupling agent in permanent hair dyes, and has arrested people's attention for its potential hazard to human health. However, the action mechanism of resorcinol and human DNA has not been elucidated. In this research, the binding properties between resorcinol and calf thymus DNA (ct-DNA) were studied for the first time through various spectral and molecular docking techniques. Spectral studies showed that the initial fluorescence quenching of resorcinol against DNA was a static one. The result of ΔH < 0 and ΔS > 0 was produced from thermodynamic experimental data, therefore it could be concluded that electrostatic force was the major driving force, while binding constant Kb was 1.56 × 104 M-1 at 298 K. The electrostatic binding network between resorcinol and ct-DNA was established explicitly through competitive substitution analysis and other spectral approaches. The results of FT-IR absorption spectra indicated that resorcinol had bound to the DNA phosphate skeleton. Molecular docking clearly revealed that binding occurred between hydroxyl groups of resorcinol and phosphorus oxygen bonds (P-O) of the DNA skeleton. These findings may deepen our understanding of the action mechanism between resorcinol and ct-DNA and provide some useful data on the effect of resorcinol on human diseases.
Collapse
Affiliation(s)
- Guofang Zeng
- College of Chemistry, Nanchang University, Nanchang, Jiangxi, China
| | - Fengping Chen
- School of Pharmacy, Nanchang University, Nanchang, Jiangxi, China
| | - Yating Lei
- School of Pharmacy, Nanchang University, Nanchang, Jiangxi, China
| | - Like Zhou
- College of Chemistry, Nanchang University, Nanchang, Jiangxi, China
| | - Xi Yang
- School of Pharmacy, Nanchang University, Nanchang, Jiangxi, China
| | - Hui Guo
- College of Chemistry, Nanchang University, Nanchang, Jiangxi, China
| | - Xun Tuo
- College of Chemistry, Nanchang University, Nanchang, Jiangxi, China
| | - Ying Guo
- College of Chemistry, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
5
|
REN H, DU N, NIU X, WANG Y, TIAN H, CAO Y, ZHANG B, FAN W. Inhibitory effects of L-3-phenyllacitc acid on the activity of mushnroom pholyphenol oxidase. FOOD SCIENCE AND TECHNOLOGY 2021. [DOI: 10.1590/fst.08420] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | - Nana DU
- Lanzhou University of Technology, China
| | | | | | - Hui TIAN
- Lanzhou University of Technology, China
| | | | | | | |
Collapse
|
6
|
Ruwizhi N, Aderibigbe BA. Cinnamic Acid Derivatives and Their Biological Efficacy. Int J Mol Sci 2020; 21:ijms21165712. [PMID: 32784935 PMCID: PMC7460980 DOI: 10.3390/ijms21165712] [Citation(s) in RCA: 201] [Impact Index Per Article: 40.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/30/2020] [Accepted: 05/06/2020] [Indexed: 12/17/2022] Open
Abstract
The role played by cinnamic acid derivatives in treating cancer, bacterial infections, diabetes and neurological disorders, among many, has been reported. Cinnamic acid is obtained from cinnamon bark. Its structure is composed of a benzene ring, an alkene double bond and an acrylic acid functional group making it possible to modify the aforementioned functionalities with a variety of compounds resulting in bioactive agents with enhanced efficacy. The nature of the substituents incorporated into cinnamic acid has been found to play a huge role in either enhancing or decreasing the biological efficacy of the synthesized cinnamic acid derivatives. Some of the derivatives have been reported to be more effective when compared to the standard drugs used to treat chronic or infectious diseases in vitro, thus making them very promising therapeutic agents. Compound 20 displayed potent anti-TB activity, compound 27 exhibited significant antibacterial activity on S. aureus strain of bacteria and compounds with potent antimalarial activity are 35a, 35g, 35i, 36i, and 36b. Furthermore, compounds 43d, 44o, 55g–55p, 59e, 59g displayed potent anticancer activity and compounds 86f–h were active against both hAChE and hBuChE. This review will expound on the recent advances on cinnamic acid derivatives and their biological efficacy.
Collapse
|
7
|
Natural and Bioinspired Phenolic Compounds as Tyrosinase Inhibitors for the Treatment of Skin Hyperpigmentation: Recent Advances. COSMETICS 2019. [DOI: 10.3390/cosmetics6040057] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
One of the most common approaches for control of skin pigmentation involves the inhibition of tyrosinase, a copper-containing enzyme which catalyzes the key steps of melanogenesis. This review focuses on the tyrosinase inhibition properties of a series of natural and synthetic, bioinspired phenolic compounds that have appeared in the literature in the last five years. Both mushroom and human tyrosinase inhibitors have been considered. Among the first class, flavonoids, in particular chalcones, occupy a prominent role as natural inhibitors, followed by hydroxystilbenes (mainly resveratrol derivatives). A series of more complex phenolic compounds from a variety of sources, first of all belonging to the Moraceae family, have also been described as potent tyrosinase inhibitors. As to the synthetic compounds, hydroxycinnamic acids and chalcones again appear as the most exploited scaffolds. Several inhibition mechanisms have been reported for the described inhibitors, pointing to copper chelating and/or hydrophobic moieties as key structural requirements to achieve good inhibition properties. Emerging trends in the search for novel skin depigmenting agents, including the development of assays that could distinguish between inhibitors and potentially toxic substrates of the enzyme as well as of formulations aimed at improving the bioavailability and hence the effectiveness of well-known inhibitors, have also been addressed.
Collapse
|
8
|
Otręba M, Pajor M, Warncke JD. Antimelanoma activity of perphenazine and prochlorperazine in human COLO829 and C32 cell lines. Naunyn Schmiedebergs Arch Pharmacol 2019; 392:1257-1264. [PMID: 31172223 DOI: 10.1007/s00210-019-01668-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 05/16/2019] [Indexed: 12/24/2022]
Abstract
Cutaneous melanoma is least common (only about 1% of skin cancers) but is the deadliest malignant tumor. Moreover, amelanotic types of melanoma are very difficult for clinical diagnosis. The standard therapy can cause a lot of side effects, e.g., nausea, vomiting, and headaches, which means that novel and effective strategies are required. Interestingly, phenothiazine derivatives possess sedative, antiemetic, and anticancer activity. Our goal was to determine the effect of perphenazine and prochlorperazine on cell viability, motility, microphthalmia-associated transcription factor (MITF) and tyrosinase content in melanotic and amelanotic melanoma cells. The viability of C32 and COLO829 melanoma cells was evaluated by the WST-1 colorimetric assay; impact on motility of human melanoma was performed by wound-healing assay, while tyrosinase and MITF content were determined by Western blot. In the present study, we explore the anticancer effect of perphenazine and prochlorperazine in human melanotic (COLO829) and amelanotic (C32) melanoma cells concluding that prochlorperazine inhibits cell viability in a concentration-dependent manner, impairs motility, and decreases tyrosinase and MITF amounts. Moreover, the analyzed drugs decrease/increase MITF amount depending on the type of melanoma. We demonstrated that the decrease of MITF and tyrosinase protein induces motility inhibition of C32 cells, which suggests the ability of those drugs to restore cancer cell sensitivity to treatment. The ability of prochlorperazine to contain the spread of the amelanotic melanoma in vivo may be helpful in the development of a new and effective antimelanoma therapies.
Collapse
Affiliation(s)
- Michał Otręba
- Department of Pharmaceutical Chemistry, School of Pharmacy with the Division of Laboratory Medicine, Medical University of Silesia, Jagiellońska 4, 41-200, Sosnowiec, Poland.
| | - Monika Pajor
- Department of Pharmaceutical Chemistry, School of Pharmacy with the Division of Laboratory Medicine, Medical University of Silesia, Jagiellońska 4, 41-200, Sosnowiec, Poland
| | - Jared D Warncke
- Bioanalytical Shared Resource Laboratory, Virginia Commonwealth University School of Pharmacy, Richmond, VA, USA
| |
Collapse
|
9
|
Kang M, Park SH, Oh SW, Lee SE, Yoo JA, Nho YH, Lee S, Han BS, Cho JY, Lee J. Anti-melanogenic effects of resorcinol are mediated by suppression of cAMP signaling and activation of p38 MAPK signaling. Biosci Biotechnol Biochem 2018; 82:1188-1196. [PMID: 29621941 DOI: 10.1080/09168451.2018.1459176] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In this study, we investigated the inhibitory mechanisms of resorcinol in B16F10 mouse melanoma cells. We found that resorcinol reduced both the melanin content and tyrosinase activity in these cells. In addition, resorcinol suppressed the expression of melanogenic gene microphthalmia-associated transcriptional factor (MITF) and its downstream target genes tyrosinase, tyrosinase-related protein (TRP)-1, and TRP-2. In addition, we found that resorcinol reduced intracellular cAMP levels and protein kinase A (PKA) activity, and increased phosphorylation of the p38 mitogen-activated protein kinase (MAPK). Resorcinol was also found to directly inhibit tyrosinase activity. However, resorcinol-induced decrease in melanin content, tyrosinase activity, and tyrosinase protein levels were attenuated by SB203580, a p38 MAPK inhibitor. Taken together, these data indicate that anti-melanogenic activity of resorcinol is be mediated through the inhibition of cAMP signaling and activation of p38 MAPK, indicating that resorcinol may be a possible ameliorating agent in the treatment of hyperpigmentation skin disorders.
Collapse
Affiliation(s)
- Mingyeong Kang
- a Molecular Dermatology Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering , Sungkyunkwan University , Suwon City , Republic of Korea
| | - See-Hyoung Park
- b Department of Bio and Chemical Engineering , Hongik University , Sejong City , Republic of Korea
| | - Sae Woong Oh
- a Molecular Dermatology Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering , Sungkyunkwan University , Suwon City , Republic of Korea
| | - Seung Eun Lee
- a Molecular Dermatology Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering , Sungkyunkwan University , Suwon City , Republic of Korea
| | - Ju Ah Yoo
- a Molecular Dermatology Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering , Sungkyunkwan University , Suwon City , Republic of Korea
| | - Youn Hwa Nho
- c COSMAX R&I Center , COSMAX Inc. , Seongnam City , Republic of Korea
| | - Sukyeon Lee
- d AMI Cosmetic Co., Ltd. , Seoul , Republic of Korea
| | | | - Jae Youl Cho
- e Molecular Immunology Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering , Sungkyunkwan University , Suwon City , Republic of Korea.,f Molecular Immunology Laboratory, Department of Genetic Engineering, College of Biotechnology and Bioengineering , Sungkyunkwan University , Suwon City , Republic of Korea
| | - Jongsung Lee
- a Molecular Dermatology Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering , Sungkyunkwan University , Suwon City , Republic of Korea.,g Department of Genetic Engineering, College of Biotechnology and Bioengineering , Sungkyunkwan University , Suwon City , Republic of Korea
| |
Collapse
|
10
|
Zhao J, Bao X, Wang S, Lu S, Sun J, Yang X. In Situ Fluorogenic and Chromogenic Reactions for the Sensitive Dual-Readout Assay of Tyrosinase Activity. Anal Chem 2017; 89:10529-10536. [PMID: 28891289 DOI: 10.1021/acs.analchem.7b02739] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
As a well-known copper-containing oxidase, tyrosinase has been anticipated to serve as the biomarker of skin diseases. We describe here an exquisite label-free fluorescent and colorimetric dual-readout assay of its activity, inspired by the specific oxidation ability of monophenolamine substrates to catecholamines and a unique fluorogenic reaction between resorcinol and catecholamines. By employing commercially available tyramine as the model substrate (dopamine as the product), it is found that the tyrosinase-incubated tyramine solution exhibits obvious pale yellow with intense blue fluorescence in the presence of resorcinol and O2, where the absorbance and fluorescence intensity are directly related to the concentration of added tyrosinase (i.e., the amount of conversion of tyramine to dopamine). The overall process of sensing tyrosinase activity takes less than 100 min at ambient temperature and pressure conditions with exceedingly simple operation procedure, explicit response mechanism, and formation of fluorophore with high quantum yield from scratch. Furthermore, such a convenient, rapid, cost-effective, and highly sensitive dual-readout assay exhibits promising prospect for the tyrosinase activity in extensive bioassays and clinic research as well as in screening potential tyrosinase inhibitors.
Collapse
Affiliation(s)
- Jiahui Zhao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun, Jilin 130022, China.,University of Chinese Academy of Sciences , Beijing 100049, China
| | - Xingfu Bao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun, Jilin 130022, China
| | - Shuang Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun, Jilin 130022, China.,University of Science and Technology of China , Hefei, Anhui 230026, China
| | - Shasha Lu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun, Jilin 130022, China.,University of Science and Technology of China , Hefei, Anhui 230026, China
| | - Jian Sun
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun, Jilin 130022, China
| | - Xiurong Yang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun, Jilin 130022, China
| |
Collapse
|
11
|
Song C, Wang L, Ye G, Song X, He Y, Qiu X. Residual Ammonium Persulfate in Nanoparticles Has Cytotoxic Effects on Cells through Epithelial-Mesenchymal Transition. Sci Rep 2017; 7:11769. [PMID: 28924225 PMCID: PMC5603593 DOI: 10.1038/s41598-017-12328-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 09/07/2017] [Indexed: 12/13/2022] Open
Abstract
Ammonium persulfate (APS), a low molecular weight chemical compound with strong oxidizing properties, should to be totally removed during preparation of nanomaterials due to its cytotoxicity. APS exerts its oxidative stress effects mainly on cell membrane, but its intracellular influence remains unclear. Here, we designed a facile negatively-charged carboxylic gelatin-methyacrylate (carbox-GelMA) nanoparticle (NP) as a cargo-carrier through the catalytic and oxidizing action of APS in W/O system. The formed APS-loaded carbox-GelMA NPs (APS/NPs) were transported into the lysosome in MCF-7 breast cancer cells. The intracellular APS/NPs produced a high level of oxidative stress in lysosome and induced epithelial-mesenchymal transition (EMT). Consequently, the MCF-7 cells challenged with APS/NPs had a strong metastatic and invasive capability in vitro and in vivo. This study highlights that a facile APS-loaded nanocarrier has cyctotoxicity on cells through EMT. Unexpectedly, we found a novel pathway inducing EMT via lysosomal oxidative stress.
Collapse
Affiliation(s)
- Chen Song
- Deparment of Anatomy, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangdong, Guangzhou, 510515, China
| | - Leyu Wang
- Deparment of Anatomy, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangdong, Guangzhou, 510515, China.
| | - Genlan Ye
- Deparment of Anatomy, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangdong, Guangzhou, 510515, China
| | - Xiaoping Song
- Deparment of Anatomy, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangdong, Guangzhou, 510515, China
| | - Yutong He
- Deparment of Anatomy, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangdong, Guangzhou, 510515, China
| | - Xiaozhong Qiu
- Deparment of Anatomy, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangdong, Guangzhou, 510515, China.
| |
Collapse
|
12
|
Characterization of the action of tyrosinase on resorcinols. Bioorg Med Chem 2016; 24:4434-4443. [PMID: 27480027 DOI: 10.1016/j.bmc.2016.07.048] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 07/18/2016] [Accepted: 07/20/2016] [Indexed: 11/22/2022]
Abstract
The action of tyrosinase on resorcinol and some derivatives (4-ethylresorcinol, 2-methylresorcinol and 4-methylresorcinol) was investigated. If the catalytic cycle is completed with a reductant such as ascorbic acid or an o-diphenol such as 4-tert-butylcatechol, these compounds act as substrates of tyrosinase in all cases. The reaction can also be carried out, adding hydrogen peroxide to the medium. All the above compounds were characterized as substrates of the enzyme and their kinetic constants, KM (Michaelis constant) and kcat (catalytic constant) were determined. Measurement of the activity of the enzyme after pre-incubation with resorcinol, 4-ethylresorcinol or 4-methylresorcinol points to an apparent loss of activity at short times, which could correspond to an enzymatic inactivation process. However, if the measurements are extended over longer times, a burst is observed and the enzymatic activity is recovered, demonstrating that these compounds are not suicide substrates of the enzyme. These effects are not observed with 2-methylresorcinol. The docking results indicate that the binding of met-tyrosinase with these resorcinols occurs in the same way, but not with 2-methylresorcinol, due to steric hindrance.
Collapse
|
13
|
Hu YH, Zhuang JX, Yu F, Cui Y, Yu WW, Yan CL, Chen QX. Inhibitory effects of cefotaxime on the activity of mushroom tyrosinase. J Biosci Bioeng 2015; 121:385-9. [PMID: 26342770 DOI: 10.1016/j.jbiosc.2015.08.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 07/28/2015] [Accepted: 08/07/2015] [Indexed: 01/13/2023]
Abstract
Tyrosinase (EC 1.14.18.1) catalyzes both the hydroxylation of tyrosine into o-diphenols and the oxidation of o-diphenols into o-quinones that form brown or black pigments. In the present paper, cefotaxime, a cephalosporin antibacterial drug, was tested as an inhibitor of tyrosinase. The results show that cefotaxime inhibits both the monophenolase and diphenolase activities of tyrosinase. For the monophenolase activity, cefotaxime increased the lag time and decreased the steady-state activity with an IC50 of 3.2 mM. For the diphenolase activity, the inhibition by cefotaxime is reversible and mix-I type with an IC50 of 0.14 mM. The inhibition constants (K(I) and K(IS)) were determined to be 0.14 and 0.36 mM, respectively. The molecular mechanism of inhibition of tyrosinase by cefotaxime was determined by fluorescence quenching and molecular docking. The results demonstrated that cefotaxime was a static quencher of tyrosinase and that cefotaxime could dock favorably in the active site of tyrosinase. This research may offer a lead for designing and synthesizing novel and effective tyrosinase inhibitors in the future.
Collapse
Affiliation(s)
- Yong-Hua Hu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, China
| | - Jiang-Xing Zhuang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, College of Medicine, Xiamen University, Xiamen 361102, China
| | - Feng Yu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, China
| | - Yi Cui
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, China
| | - Wen-Wen Yu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, China
| | - Chong-Ling Yan
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, China
| | - Qing-Xi Chen
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, China; Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
14
|
Qin HL, Shang ZP, Jantan I, Tan OU, Hussain MA, Sher M, Bukhari SNA. Molecular docking studies and biological evaluation of chalcone based pyrazolines as tyrosinase inhibitors and potential anticancer agents. RSC Adv 2015. [DOI: 10.1039/c5ra02995c] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
A series of synthetic chalcones and pyrazoline derivatives showed antityrosinase, anticancer and considerable tubulin polymerization activity.
Collapse
Affiliation(s)
- Hua-Li Qin
- Department of Pharmaceutical Engineering
- School of Chemistry, Chemical Engineering and Life Science
- Wuhan University of Technology
- Wuhan
- P. R. China
| | - Zhen-Peng Shang
- Department of Pharmaceutical Engineering
- School of Chemistry, Chemical Engineering and Life Science
- Wuhan University of Technology
- Wuhan
- P. R. China
| | - Ibrahim Jantan
- Drug and Herbal Research Centre
- Faculty of Pharmacy
- Universiti Kebangsaan Malaysia
- 50300 Kuala Lumpur
- Malaysia
| | - Oya Unsal Tan
- Department of Pharmaceutical Chemistry
- Faculty of Pharmacy
- Hacettepe University
- Ankara 06100
- Turkey
| | | | - Muhammad Sher
- Department of Chemistry
- University of Sargodha
- Sargodha 40100
- Pakistan
| | - Syed Nasir Abbas Bukhari
- Drug and Herbal Research Centre
- Faculty of Pharmacy
- Universiti Kebangsaan Malaysia
- 50300 Kuala Lumpur
- Malaysia
| |
Collapse
|