1
|
Akbar S, Hua X, Zhang Y, Liu G, Wang T, Shi H, Li Z, Qi Y, Habiba H, Yao W, Zhang MQ, Zhang J. Genome-wide analysis of sugar transporter gene family in Erianthus rufipilus and Saccharum officinarum, expression profiling and identification of transcription factors. FRONTIERS IN PLANT SCIENCE 2025; 15:1502649. [PMID: 39850208 PMCID: PMC11755103 DOI: 10.3389/fpls.2024.1502649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 11/29/2024] [Indexed: 01/25/2025]
Abstract
Sugar, the primary product of photosynthesis, is a vital requirement for cell activities. Allocation of sugar from source to sink tissues is facilitated by sugar transporters (ST). These STs belong to the Major Facilitator Superfamily (MFS), the largest family of STs in plants. In this study, we performed genome wide and gene expression data analysis to identify the putative ST genes in Erianthus rufipilus (E. rufipilus) and in Saccharum officinarum (S. officinarum). We identified 78 ST gene families in E. rufipilus and 86 ST gene families in S. officinarum. Phylogenetic analysis distributed the ST genes into eight distinct subfamilies (INT, MST, VGT, pGlcT, PLT, STP, SFP and SUT). Chromosomal distribution of ST genes clustered them on 10 respective chromosomes. Furthermore, synteny analysis with S. spontaneum and Sorghum bicolor (S. bicolor) revealed highly colinear regions. Synonymous and non-synonymous ratio (Ka/Ks) showed purifying selection in gene evolution. Promoter analysis identified several cis-regulatory elements, mainly associated with light responsiveness. We also examined the expression pattern of ST genes in different developing tissues (mature leaf, pre-mature stem, mature stem and seedling stem). Under sugar stress, we identified the significant ST genes showing differential expression patterns. Moreover, our yeast one-hybrid (Y1H) assays identified NAM, ATAF and CUC (NAC) and Lesion Simulating Disease (LSD) potential transcription factors (TFs) that may bind to the SUT1-T1 promoter in S. officinarum, showing negative correlation pattern with SUT1-T1. Our results deepen our understanding of ST gene evolution in Saccharum species and will facilitate the future investigation of functional analysis of the ST gene family.
Collapse
Affiliation(s)
- Sehrish Akbar
- Center for Genomics and Biotechnology, National Sugarcane Engineering Technology Research Center, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xuiting Hua
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Guangxi, China
| | - Yingying Zhang
- Center for Genomics and Biotechnology, National Sugarcane Engineering Technology Research Center, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Gang Liu
- Center for Genomics and Biotechnology, National Sugarcane Engineering Technology Research Center, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Tianyou Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Guangxi, China
| | - Huihong Shi
- Center for Genomics and Biotechnology, National Sugarcane Engineering Technology Research Center, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhen Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Guangxi, China
| | - Yiying Qi
- Center for Genomics and Biotechnology, National Sugarcane Engineering Technology Research Center, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Habiba Habiba
- Department of Biological Science, Lehman College, City University of New York, Bronx, NY, United States
| | - Wei Yao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Guangxi, China
| | - Mu-Qing Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Guangxi, China
| | - Jisen Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Guangxi, China
| |
Collapse
|
2
|
El Faqer A, Rabeh K, Alami M, Filali-Maltouf A, Belkadi B. In Silico Identification and Characterization of Fatty Acid Desaturase ( FAD) Genes in Argania spinosa L. Skeels: Implications for Oil Quality and Abiotic Stress. Bioinform Biol Insights 2024; 18:11779322241248908. [PMID: 38711943 PMCID: PMC11072076 DOI: 10.1177/11779322241248908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 04/04/2024] [Indexed: 05/08/2024] Open
Abstract
Fatty acid desaturase (FAD) is the key enzyme that leads to the formation of unsaturated fatty acids by introducing double bonds into hydrocarbon chains, and it plays a critical role in plant lipid metabolism. However, no data are available on enzyme-associated genes in argan trees. In addition, a candidate gene approach was adopted to identify and characterize the gene sequences of interest that are potentially involved in oil quality and abiotic stress. Based on phylogenetic analyses, 18 putative FAD genes of Argania spinosa L. (AsFAD) were identified and assigned to three subfamilies: stearoyl-ACP desaturase (SAD), Δ-12 desaturase (FAD2/FAD6), and Δ-15 desaturase (FAD3/FAD7). Furthermore, gene structure and motif analyses revealed a conserved exon-intron organization among FAD members belonging to the various oil crops studied, and they exhibited conserved motifs within each subfamily. In addition, the gene structure shows a wide variation in intron numbers, ranging from 0 to 8, with two highly conserved intron phases (0 and 1). The AsFAD and AsSAD subfamilies consist of three (H(X)2-4H, H(X)2-3HH, and H/Q (X)2-3HH) and two (EEN(K)RHG and DEKRHE) conserved histidine boxes, respectively. A set of primer pairs were designed for each FAD gene, and tested on DNA extracted from argan leaves, in which all amplicons of the expected size were produced. These findings of candidate genes in A spinosa L. will provide valuable knowledge that further enhances our understanding of the potential roles of FAD genes in the quality of oil and abiotic stress in the argan tree.
Collapse
Affiliation(s)
- Abdelmoiz El Faqer
- Team of Microbiology and Molecular Biology, Plant and Microbial Biotechnology, Biodiversity and Environment Research Center, Faculty of Sciences, Mohammed V University, Rabat, Morocco
| | - Karim Rabeh
- Team of Microbiology and Molecular Biology, Plant and Microbial Biotechnology, Biodiversity and Environment Research Center, Faculty of Sciences, Mohammed V University, Rabat, Morocco
| | - Mohammed Alami
- Team of Microbiology and Molecular Biology, Plant and Microbial Biotechnology, Biodiversity and Environment Research Center, Faculty of Sciences, Mohammed V University, Rabat, Morocco
| | - Abdelkarim Filali-Maltouf
- Team of Microbiology and Molecular Biology, Plant and Microbial Biotechnology, Biodiversity and Environment Research Center, Faculty of Sciences, Mohammed V University, Rabat, Morocco
| | - Bouchra Belkadi
- Team of Microbiology and Molecular Biology, Plant and Microbial Biotechnology, Biodiversity and Environment Research Center, Faculty of Sciences, Mohammed V University, Rabat, Morocco
| |
Collapse
|
3
|
Akter N, Islam MSU, Rahman MS, Zohra FT, Rahman SM, Manirujjaman M, Sarkar MAR. Genome-wide identification and characterization of protein phosphatase 2C (PP2C) gene family in sunflower (Helianthus annuus L.) and their expression profiles in response to multiple abiotic stresses. PLoS One 2024; 19:e0298543. [PMID: 38507444 PMCID: PMC10954154 DOI: 10.1371/journal.pone.0298543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 01/25/2024] [Indexed: 03/22/2024] Open
Abstract
Plant protein phosphatase 2C (PP2C) plays vital roles in responding to various stresses, stimulating growth factors, phytohormones, and metabolic activities in many important plant species. However, the PP2C gene family has not been investigated in the economically valuable plant species sunflower (Helianthus annuus L.). This study used comprehensive bioinformatics tools to identify and characterize the PP2C gene family members in the sunflower genome (H. annuus r1.2). Additionally, we analyzed the expression profiles of these genes using RNA-seq data under four different stress conditions in both leaf and root tissues. A total of 121 PP2C genes were identified in the sunflower genome distributed unevenly across the 17 chromosomes, all containing the Type-2C phosphatase domain. HanPP2C genes are divided into 15 subgroups (A-L) based on phylogenetic tree analysis. Analyses of conserved domains, gene structures, and motifs revealed higher structural and functional similarities within various subgroups. Gene duplication and collinearity analysis showed that among the 53 HanPP2C gene pairs, 48 demonstrated segmental duplications under strong purifying selection pressure, with only five gene pairs showing tandem duplications. The abundant segmental duplication was observed compared to tandem duplication, which was the major factor underlying the dispersion of the PP2C gene family in sunflowers. Most HanPP2C proteins were localized in the nucleus, cytoplasm, and chloroplast. Among the 121 HanPP2C genes, we identified 71 miRNAs targeting 86 HanPP2C genes involved in plant developmental processes and response to abiotic stresses. By analyzing cis-elements, we identified 63 cis-regulatory elements in the promoter regions of HanPP2C genes associated with light responsiveness, tissue-specificity, phytohormone, and stress responses. Based on RNA-seq data from two sunflower tissues (leaf and root), 47 HanPP2C genes exhibited varying expression levels in leaf tissue, while 49 HanPP2C genes showed differential expression patterns in root tissue across all stress conditions. Transcriptome profiling revealed that nine HanPP2C genes (HanPP2C12, HanPP2C36, HanPP2C38, HanPP2C47, HanPP2C48, HanPP2C53, HanPP2C54, HanPP2C59, and HanPP2C73) exhibited higher expression in leaf tissue, and five HanPP2C genes (HanPP2C13, HanPP2C47, HanPP2C48, HanPP2C54, and HanPP2C95) showed enhanced expression in root tissue in response to the four stress treatments, compared to the control conditions. These results suggest that these HanPP2C genes may be potential candidates for conferring tolerance to multiple stresses and further detailed characterization to elucidate their functions. From these candidates, 3D structures were predicted for six HanPP2C proteins (HanPP2C47, HanPP2C48, HanPP2C53, HanPP2C54, HanPP2C59, and HanPP2C73), which provided satisfactory models. Our findings provide valuable insights into the PP2C gene family in the sunflower genome, which could play a crucial role in responding to various stresses. This information can be exploited in sunflower breeding programs to develop improved cultivars with increased abiotic stress tolerance.
Collapse
Affiliation(s)
- Nasrin Akter
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Md Shohel Ul Islam
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Md. Shahedur Rahman
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Fatema Tuz Zohra
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Rajshahi, Rajshahi, Bangladesh
| | - Shaikh Mizanur Rahman
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - M. Manirujjaman
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, Louisiana, LA, United States of America
| | - Md. Abdur Rauf Sarkar
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| |
Collapse
|
4
|
Ahmed FF, Dola FS, Islam MSU, Zohra FT, Akter N, Rahman SM, Rauf Sarkar MA. Genome-Wide Comprehensive Identification and In Silico Characterization of Lectin Receptor-Like Kinase Gene Family in Barley ( Hordeum vulgare L.). Genet Res (Camb) 2024; 2024:2924953. [PMID: 38444770 PMCID: PMC10914435 DOI: 10.1155/2024/2924953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/27/2024] [Accepted: 02/16/2024] [Indexed: 03/07/2024] Open
Abstract
Lectin receptor-like kinases (LecRLKs) are a significant subgroup of the receptor-like kinases (RLKs) protein family. They play crucial roles in plant growth, development, immune responses, signal transduction, and stress tolerance. However, the genome-wide identification and characterization of LecRLK genes and their regulatory elements have not been explored in a major cereal crop, barley (Hordeum vulgare L.). Therefore, in this study, integrated bioinformatics tools were used to identify and characterize the LecRLK gene family in barley. Based on the phylogenetic tree and domain organization, a total of 113 LecRLK genes were identified in the barley genome (referred to as HvlecRLK) corresponding to the LecRLK genes of Arabidopsis thaliana. These putative HvlecRLK genes were classified into three groups: 62 G-type LecRLKs, 1 C-type LecRLK, and 50 L-type LecRLKs. They were unevenly distributed across eight chromosomes, including one unknown chromosome, and were predominantly located in the plasma membrane (G-type HvlecRLK (96.8%), C-type HvlecRLK (100%), and L-type HvlecRLK (98%)). An analysis of motif composition and exon-intron configuration revealed remarkable homogeneity with the members of AtlecRLK. Notably, most of the HvlecRLKs (27 G-type, 43 L-type) have no intron, suggesting their rapid functionality. The Ka/Ks and syntenic analysis demonstrated that HvlecRLK gene pairs evolved through purifying selection and gene duplication was the major factor for the expansion of the HvlecRLK gene family. Exploration of gene ontology (GO) enrichment indicated that the identified HvlecRLK genes are associated with various cellular processes, metabolic pathways, defense mechanisms, kinase activity, catalytic activity, ion binding, and other essential pathways. The regulatory network analysis identified 29 transcription factor families (TFFs), with seven major TFFs including bZIP, C2H2, ERF, MIKC_MADS, MYB, NAC, and WRKY participating in the regulation of HvlecRLK gene functions. Most notably, eight TFFs were found to be linked to the promoter region of both L-type HvleckRLK64 and HvleckRLK86. The promoter cis-acting regulatory element (CARE) analysis of barley identified a total of 75 CARE motifs responsive to light responsiveness (LR), tissue-specific (TS), hormone responsiveness (HR), and stress responsiveness (SR). The maximum number of CAREs was identified in HvleckRLK11 (25 for LR), HvleckRLK69 (17 for TS), and HvleckRLK80 (12 for HR). Additionally, HvleckRLK14, HvleckRLK16, HvleckRLK33, HvleckRLK50, HvleckRLK52, HvleckRLK56, and HvleckRLK110 were predicted to exhibit higher responses in stress conditions. In addition, 46 putative miRNAs were predicted to target 81 HvlecRLK genes and HvlecRLK13 was the most targeted gene by 8 different miRNAs. Protein-protein interaction analysis demonstrated higher functional similarities of 63 HvlecRLKs with 7 Arabidopsis STRING proteins. Our overall findings provide valuable information on the LecRLK gene family which might pave the way to advanced research on the functional mechanism of the candidate genes as well as to develop new barley cultivars in breeding programs.
Collapse
Affiliation(s)
- Fee Faysal Ahmed
- Department of Mathematics, Faculty of Science, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Farah Sumaiya Dola
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Md Shohel Ul Islam
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Fatema Tuz Zohra
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Nasrin Akter
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Shaikh Mizanur Rahman
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Md. Abdur Rauf Sarkar
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| |
Collapse
|
5
|
Ma Z, Hu L, Jiang W. Understanding AP2/ERF Transcription Factor Responses and Tolerance to Various Abiotic Stresses in Plants: A Comprehensive Review. Int J Mol Sci 2024; 25:893. [PMID: 38255967 PMCID: PMC10815832 DOI: 10.3390/ijms25020893] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/04/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Abiotic stress is an adverse environmental factor that severely affects plant growth and development, and plants have developed complex regulatory mechanisms to adapt to these unfavourable conditions through long-term evolution. In recent years, many transcription factor families of genes have been identified to regulate the ability of plants to respond to abiotic stresses. Among them, the AP2/ERF (APETALA2/ethylene responsive factor) family is a large class of plant-specific proteins that regulate plant response to abiotic stresses and can also play a role in regulating plant growth and development. This paper reviews the structural features and classification of AP2/ERF transcription factors that are involved in transcriptional regulation, reciprocal proteins, downstream genes, and hormone-dependent signalling and hormone-independent signalling pathways in response to abiotic stress. The AP2/ERF transcription factors can synergise with hormone signalling to form cross-regulatory networks in response to and tolerance of abiotic stresses. Many of the AP2/ERF transcription factors activate the expression of abiotic stress-responsive genes that are dependent or independent of abscisic acid and ethylene in response to abscisic acid and ethylene. In addition, the AP2/ERF transcription factors are involved in gibberellin, auxin, brassinosteroid, and cytokinin-mediated abiotic stress responses. The study of AP2/ERF transcription factors and interacting proteins, as well as the identification of their downstream target genes, can provide us with a more comprehensive understanding of the mechanism of plant action in response to abiotic stress, which can improve plants' ability to tolerate abiotic stress and provide a more theoretical basis for increasing plant yield under abiotic stress.
Collapse
Affiliation(s)
- Ziming Ma
- Jilin Provincial Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun 130062, China;
- Max-Planck-Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476 Potsdam-Golm, Germany
- Plant Genetics, TUM School of Life Sciences, Technical University of Munich (TUM), Emil Ramann Str. 4, 85354 Freising, Germany
| | - Lanjuan Hu
- Jilin Provincial Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun 130062, China;
| | - Wenzhu Jiang
- Jilin Provincial Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun 130062, China;
| |
Collapse
|
6
|
Faysal Ahmed F, Dola FS, Zohra FT, Rahman SM, Konak JN, Sarkar MAR. Genome-wide identification, classification, and characterization of lectin gene superfamily in sweet orange (Citrus sinensis L.). PLoS One 2023; 18:e0294233. [PMID: 37956187 PMCID: PMC10642848 DOI: 10.1371/journal.pone.0294233] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Lectins are sugar-binding proteins found abundantly in plants. Lectin superfamily members have diverse roles, including plant growth, development, cellular processes, stress responses, and defense against microbes. However, the genome-wide identification and functional analysis of lectin genes in sweet orange (Citrus sinensis L.) remain unexplored. Therefore, we used integrated bioinformatics approaches (IBA) for in-depth genome-wide identification, characterization, and regulatory factor analysis of sweet orange lectin genes. Through genome-wide comparative analysis, we identified a total of 141 lectin genes distributed across 10 distinct gene families such as 68 CsB-Lectin, 13 CsLysin Motif (LysM), 4 CsChitin-Bind1, 1 CsLec-C, 3 CsGal-B, 1 CsCalreticulin, 3 CsJacalin, 13 CsPhloem, 11 CsGal-Lec, and 24 CsLectinlegB.This classification relied on characteristic domain and phylogenetic analysis, showing significant homology with Arabidopsis thaliana's lectin gene families. A thorough analysis unveiled common similarities within specific groups and notable variations across different protein groups. Gene Ontology (GO) enrichment analysis highlighted the predicted genes' roles in diverse cellular components, metabolic processes, and stress-related regulation. Additionally, network analysis of lectin genes with transcription factors (TFs) identified pivotal regulators like ERF, MYB, NAC, WRKY, bHLH, bZIP, and TCP. The cis-acting regulatory elements (CAREs) found in sweet orange lectin genes showed their roles in crucial pathways, including light-responsive (LR), stress-responsive (SR), hormone-responsive (HR), and more. These findings will aid in the in-depth molecular examination of these potential genes and their regulatory elements, contributing to targeted enhancements of sweet orange species in breeding programs.
Collapse
Affiliation(s)
- Fee Faysal Ahmed
- Department of Mathematics, Faculty of Science, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Farah Sumaiya Dola
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Fatema Tuz Zohra
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Rajshahi, Rajshahi, Bangladesh
| | - Shaikh Mizanur Rahman
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Jesmin Naher Konak
- Department of Biochemistry and Molecular Biology, Faculty of LifeScience, Mawlana Bhashani Science and Technology University, Santosh, Tangail, Bangladesh
| | - Md. Abdur Rauf Sarkar
- Department of Genetic Engineering and Biotechnology, Faculty of Biological Science and Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| |
Collapse
|
7
|
Taway K, Dachphun I, Vuttipongchaikij S, Suttangkakul A. Evaluation of cucumber UBL5 promoter as a tool for transgene expression and genome editing in plants. Transgenic Res 2023; 32:437-449. [PMID: 37351728 DOI: 10.1007/s11248-023-00359-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 06/12/2023] [Indexed: 06/24/2023]
Abstract
Transgene expression and genome editing can help improve cucumber varieties to better respond to climate change. This study aimed to evaluate the applicability of the CsUBL5 promoter in transgene expression and genome editing in cucumber. The CsUBL5 promoter was cloned and analyzed to identify cis-elements that respond to abiotic signals, hormones, signal molecules, and nutrient treatments. 5' deletion constructs of the promoter were tested for their ability to drive GUS reporter expression in cucumber cotyledons, Arabidopsis seedlings, and tobacco leaves, and their response to various treatments including SA, light, drought, IAA, and GA was determined. The results showed that the CsUBL5 promoter effectively drove transgene expression in these plants, and their expressions under treatments were consistent with the predicted cis-elements, with some exceptions. Furthermore, the pCsUBL5-749 deletion construct can improve genome editing efficiency in cucumber when driving Cas9 expression. The editing efficiency of two sgRNAs targeting the ATG6 gene in cucumber was up to 4.6-fold higher using pCsUBL5-749 compared to a rice UBI promoter, although the effects of changing promoter on the editing efficiency is sgRNA specific. These findings highlight the potential utility of the CsUBL5 promoter for improving cucumber varieties through genetic engineering and genome editing. It also demonstrates the importance of modulating Cas9 expression to increase genome editing efficiency in cucumbers.
Collapse
Affiliation(s)
- Kamonchanok Taway
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
| | - Issariya Dachphun
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
| | - Supachai Vuttipongchaikij
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
- Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok, 10900, Thailand
- Center of Advanced Studies for Tropical Natural Resources, Kasetsart University, Ngam Wong Wan Road, Chattuchak, Bangkok, 10900, Thailand
| | - Anongpat Suttangkakul
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand.
- Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok, 10900, Thailand.
- Center of Advanced Studies for Tropical Natural Resources, Kasetsart University, Ngam Wong Wan Road, Chattuchak, Bangkok, 10900, Thailand.
| |
Collapse
|
8
|
Zhou Z, Liu J, Meng W, Sun Z, Tan Y, Liu Y, Tan M, Wang B, Yang J. Integrated Analysis of Transcriptome and Metabolome Reveals Molecular Mechanisms of Rice with Different Salinity Tolerances. PLANTS (BASEL, SWITZERLAND) 2023; 12:3359. [PMID: 37836098 PMCID: PMC10574619 DOI: 10.3390/plants12193359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/08/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023]
Abstract
Rice is a crucial global food crop, but it lacks a natural tolerance to high salt levels, resulting in significant yield reductions. To gain a comprehensive understanding of the molecular mechanisms underlying rice's salt tolerance, further research is required. In this study, the transcriptomic and metabolomic differences between the salt-tolerant rice variety Lianjian5 (TLJIAN) and the salt-sensitive rice variety Huajing5 (HJING) were examined. Transcriptome analysis revealed 1518 differentially expressed genes (DEGs), including 46 previously reported salt-tolerance-related genes. Notably, most of the differentially expressed transcription factors, such as NAC, WRKY, MYB, and EREBP, were upregulated in the salt-tolerant rice. Metabolome analysis identified 42 differentially accumulated metabolites (DAMs) that were upregulated in TLJIAN, including flavonoids, pyrocatechol, lignans, lipids, and trehalose-6-phosphate, whereas the majority of organic acids were downregulated in TLJIAN. The interaction network of 29 differentially expressed transporter genes and 19 upregulated metabolites showed a positive correlation between the upregulated calcium/cation exchange protein genes (OsCCX2 and CCX5_Ath) and ABC transporter gene AB2E_Ath with multiple upregulated DAMs in the salt-tolerant rice variety. Similarly, in the interaction network of differentially expressed transcription factors and 19 upregulated metabolites in TLJIAN, 6 NACs, 13 AP2/ERFs, and the upregulated WRKY transcription factors were positively correlated with 3 flavonoids, 3 lignans, and the lipid oleamide. These results suggested that the combined effects of differentially expressed transcription factors, transporter genes, and DAMs contribute to the enhancement of salt tolerance in TLJIAN. Moreover, this study provides a valuable gene-metabolite network reference for understanding the salt tolerance mechanism in rice.
Collapse
Affiliation(s)
- Zhenling Zhou
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College, Yangzhou University, Yangzhou 225009, China;
- Lianyungang Academy of Agricultural Sciences, Lianyungang 222000, China; (Z.S.); (Y.T.); (Y.L.)
| | - Juan Liu
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (J.L.); (W.M.); (M.T.)
| | - Wenna Meng
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (J.L.); (W.M.); (M.T.)
| | - Zhiguang Sun
- Lianyungang Academy of Agricultural Sciences, Lianyungang 222000, China; (Z.S.); (Y.T.); (Y.L.)
| | - Yiluo Tan
- Lianyungang Academy of Agricultural Sciences, Lianyungang 222000, China; (Z.S.); (Y.T.); (Y.L.)
| | - Yan Liu
- Lianyungang Academy of Agricultural Sciences, Lianyungang 222000, China; (Z.S.); (Y.T.); (Y.L.)
| | - Mingpu Tan
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (J.L.); (W.M.); (M.T.)
| | - Baoxiang Wang
- Lianyungang Academy of Agricultural Sciences, Lianyungang 222000, China; (Z.S.); (Y.T.); (Y.L.)
| | - Jianchang Yang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College, Yangzhou University, Yangzhou 225009, China;
| |
Collapse
|
9
|
Verma D, Kaushal N, Balhara R, Singh K. Genome-wide analysis of Catalase gene family reveal insights into abiotic stress response mechanism in Brassica juncea and B. rapa. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 330:111620. [PMID: 36738937 DOI: 10.1016/j.plantsci.2023.111620] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/19/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
Environmental stresses affect the yield and productivity of Brassica crops. Catalases are important antioxidant enzymes involved in reducing excess hydrogen peroxide produced by environmental stresses. In the present study, nine and seven CAT family members in two oilseed Brassica species (B. juncea and B. rapa) were identified with complete characterization based on gene and protein structure. Phylogenetic classification categorized CAT proteins into three classes and differentiated the monocot and dicot-specific CAT proteins. Further, the gene and protein characterizations revealed a high degree of conservation across the CAT family members. Differences were observed in the CAT-HEME binding affinity in CAT1, CAT2, and CAT3 isozymes, which could suggest their differential enzyme activities in different conditions. Furthermore, protein-protein interaction with other antioxidant proteins suggested their coordinated role in ROS scavenging mechanisms. Notably, the differential gene expression of BjuCATs and BraCATs and CAT enzyme activities suggested their crucial roles in major abiotic stresses faced by Brassica species. Promoter analysis in BjuCATs and BraCATs suggested the presence of abiotic-stress responsive cis-regulatory elements. Gene regulatory network analysis suggested miRNA and TF mediated stress response in BjuCATs and BraCATs. CAT family screening and characterization in Brassica sp. has established a basic ground for further functional validation in abiotic and heavy-metal stresses which can help in developing stress tolerant crops.
Collapse
Affiliation(s)
- Deepika Verma
- Department of Biotechnology, BMS Block I, Panjab University, Sector 25, Chandigarh 160014, India
| | - Nishant Kaushal
- Department of Biotechnology, BMS Block I, Panjab University, Sector 25, Chandigarh 160014, India
| | - Rinku Balhara
- Department of Biotechnology, BMS Block I, Panjab University, Sector 25, Chandigarh 160014, India
| | - Kashmir Singh
- Department of Biotechnology, BMS Block I, Panjab University, Sector 25, Chandigarh 160014, India.
| |
Collapse
|
10
|
Advances of Apetala2/Ethylene Response Factors in Regulating Development and Stress Response in Maize. Int J Mol Sci 2023; 24:ijms24065416. [PMID: 36982510 PMCID: PMC10049130 DOI: 10.3390/ijms24065416] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/28/2023] [Accepted: 03/10/2023] [Indexed: 03/18/2023] Open
Abstract
Apetala2/ethylene response factor (AP2/ERF) is one of the largest families of transcription factors, regulating growth, development, and stress response in plants. Several studies have been conducted to clarify their roles in Arabidopsis and rice. However, less research has been carried out on maize. In this review, we systematically identified the AP2/ERFs in the maize genome and summarized the research progress related to AP2/ERF genes. The potential roles were predicted from rice homologs based on phylogenetic and collinear analysis. The putative regulatory interactions mediated by maize AP2/ERFs were discovered according to integrated data sources, implying that they involved complex networks in biological activities. This will facilitate the functional assignment of AP2/ERFs and their applications in breeding strategy.
Collapse
|
11
|
Chowdhury AT, Hasan MN, Bhuiyan FH, Islam MQ, Nayon MRW, Rahaman MM, Hoque H, Jewel NA, Ashrafuzzaman M, Prodhan SH. Identification, characterization of Apyrase (APY) gene family in rice (Oryza sativa) and analysis of the expression pattern under various stress conditions. PLoS One 2023; 18:e0273592. [PMID: 37163561 PMCID: PMC10171694 DOI: 10.1371/journal.pone.0273592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 02/27/2023] [Indexed: 05/12/2023] Open
Abstract
Apyrase (APY) is a nucleoside triphosphate (NTP) diphosphohydrolase (NTPDase) which is a member of the superfamily of guanosine diphosphatase 1 (GDA1)-cluster of differentiation 39 (CD39) nucleoside phosphatase. Under various circumstances like stress, cell growth, the extracellular adenosine triphosphate (eATP) level increases, causing a detrimental influence on cells such as cell growth retardation, ROS production, NO burst, and apoptosis. Apyrase hydrolyses eATP accumulated in the extracellular membrane during stress, wounds, into adenosine diphosphate (ADP) and adenosine monophosphate (AMP) and regulates the stress-responsive pathway in plants. This study was designed for the identification, characterization, and for analysis of APY gene expression in Oryza sativa. This investigation discovered nine APYs in rice, including both endo- and ecto-apyrase. According to duplication event analysis, in the evolution of OsAPYs, a significant role is performed by segmental duplication. Their role in stress control, hormonal responsiveness, and the development of cells is supported by the corresponding cis-elements present in their promoter regions. According to expression profiling by RNA-seq data, the genes were expressed in various tissues. Upon exposure to a variety of biotic as well as abiotic stimuli, including anoxia, drought, submergence, alkali, heat, dehydration, salt, and cold, they showed a differential expression pattern. The expression analysis from the RT-qPCR data also showed expression under various abiotic stress conditions, comprising cold, salinity, cadmium, drought, submergence, and especially heat stress. This finding will pave the way for future in-vivo analysis, unveil the molecular mechanisms of APY genes in stress response, and contribute to the development of stress-tolerant rice varieties.
Collapse
Affiliation(s)
- Aniqua Tasnim Chowdhury
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Md Nazmul Hasan
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Fahmid H Bhuiyan
- Plant Biotechnology Division, National Institute of Biotechnology, Ganakbari, Ashulia, Savar, Dhaka, Bangladesh
| | - Md Qamrul Islam
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Md Rakib Wazed Nayon
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Md Mashiur Rahaman
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
- Institute of Epidemiology, Disease Control and Research (IEDCR), Dhaka, Bangladesh
| | - Hammadul Hoque
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Nurnabi Azad Jewel
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Md Ashrafuzzaman
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Shamsul H Prodhan
- Department of Genetic Engineering and Biotechnology, School of Life Sciences, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| |
Collapse
|
12
|
Abubakar AS, Feng X, Gao G, Yu C, Chen J, Chen K, Wang X, Mou P, Shao D, Chen P, Zhu A. Genome wide characterization of R2R3 MYB transcription factor from Apocynum venetum revealed potential stress tolerance and flavonoid biosynthesis genes. Genomics 2022; 114:110275. [PMID: 35108591 DOI: 10.1016/j.ygeno.2022.110275] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/07/2022] [Accepted: 01/26/2022] [Indexed: 11/04/2022]
Abstract
MYB transcription factors are crucial in regulating stress tolerance and expression of major genes involved in flavonoid biosynthesis. The functions of MYBs is well explored in a number of plants, yet no studies is reported in Apocynum venetum. We identified a total of 163 MYB candidates, that comprised of 101 (61.96%) R2R3, 6 3R, 1 4R and 55 1R. Syntenic analysis of A. venetum R2R3 (AvMYB) showed highest orthologous pairs with Vitis vinifera MYBs followed by Arabidopsis thaliana among the four species evaluated. Thirty segmental duplications and 6 tandem duplications were obtained among AvMYB gene pairs signifying their role in the MYB gene family expansion. Nucleotide substitution analysis (Ka/Ks) showed the AvMYBs to be under the influence of strong purifying selection. Expression analysis of selected AvMYB under low temperature and cadmium stresses resulted in the identification of AvMYB48, AvMYB97, AvMYB8,AvMYB4 as potential stress responsive genes and AvMYB10 and AvMYB11 in addition, proanthocyanidin biosynthesis regulatory genes which is consistent with their annotated homologues in Arabidopsis. Tissue specific expression profile analysis of AvMYBs further supported the qPCR analysis result. MYBs with higher transcript levels in root, stem and leaf like AvMYB4 forexample, was downregulated under the stresses and such with low transcript level such as AvMYB48 which had low transcript in the leaf was upregulated under both stresses. Transcriptome and phylogenetic analysis suggested AvMYB42 as a potential regulator of anthocyanin biosynthesis. Thus, this study provided valuable information on AvR2R3-MYB gene family with respect to stress tolerance and flavonoid biosynthesis.
Collapse
Affiliation(s)
- Aminu Shehu Abubakar
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China; Department of Agronomy, Bayero University, Kano, PMB 3011, Kano, Nigeria
| | - Xinkang Feng
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Gang Gao
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Chunming Yu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Jikang Chen
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Kunmei Chen
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Xiaofei Wang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Pan Mou
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Deyi Shao
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Ping Chen
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China.
| | - Aiguo Zhu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China.
| |
Collapse
|
13
|
Campos MD, Campos C, Nogales A, Cardoso H. Carrot AOX2a Transcript Profile Responds to Growth and Chilling Exposure. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112369. [PMID: 34834732 PMCID: PMC8625938 DOI: 10.3390/plants10112369] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 05/28/2023]
Abstract
Alternative oxidase (AOX) is a key enzyme of the alternative respiration, known to be involved in plant development and in response to various stresses. To verify the role of DcAOX1 and DcAOX2a genes in carrot tap root growth and in response to cold stress, their expression was analyzed in two experiments: during root growth for 13 weeks and in response to a cold challenge trial of 7 days, in both cases using different carrot cultivars. Carrot root growth is initially characterized by an increase in length, followed by a strong increase in weight. DcAOX2a presented the highest expression levels during the initial stages of root growth for all cultivars, but DcAOX1 showed no particular trend in expression. Cold stress had a negative impact on root growth, and generally up-regulated DcAOX2a with no consistent effect on DcAOX1. The identification of cis-acting regulatory elements (CAREs) located at the promoters of both genes showed putative sequences involved in cold stress responsiveness, as well as growth. However, DcAOX2a promoter presented more CAREs related to hormonal pathways, including abscisic acid and gibberellins synthesis, than DcAOX1. These results point to a dual role of DcAOX2a on carrot tap root secondary growth and cold stress response.
Collapse
Affiliation(s)
- Maria Doroteia Campos
- MED—Mediterranean Institute for Agriculture, Environment and Development, Instituto de Investigação e Formação Avançada, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal; (C.C.); (A.N.)
| | - Catarina Campos
- MED—Mediterranean Institute for Agriculture, Environment and Development, Instituto de Investigação e Formação Avançada, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal; (C.C.); (A.N.)
| | - Amaia Nogales
- MED—Mediterranean Institute for Agriculture, Environment and Development, Instituto de Investigação e Formação Avançada, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal; (C.C.); (A.N.)
- LEAF—Linking Landscape, Environment, Agriculture and Food Research Center, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Hélia Cardoso
- MED—Mediterranean Institute for Agriculture, Environment and Development, Instituto de Investigação e Formação Avançada, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal; (C.C.); (A.N.)
| |
Collapse
|
14
|
Melton AE, Beck J, Galla SJ, Jenkins J, Handley L, Kim M, Grimwood J, Schmutz J, Richardson BA, Serpe M, Novak S, Buerki S. A draft genome provides hypotheses on drought tolerance in a keystone plant species in Western North America threatened by climate change. Ecol Evol 2021; 11:15417-15429. [PMID: 34765187 PMCID: PMC8571618 DOI: 10.1002/ece3.8245] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/12/2021] [Accepted: 10/01/2021] [Indexed: 11/17/2022] Open
Abstract
Climate change presents distinct ecological and physiological challenges to plants as extreme climate events become more common. Understanding how species have adapted to drought, especially ecologically important nonmodel organisms, will be crucial to elucidate potential biological pathways for drought adaptation and inform conservation strategies. To aid in genome-to-phenome research, a draft genome was assembled for a diploid individual of Artemisia tridentata subsp. tridentata, a threatened keystone shrub in western North America. While this taxon has few genetic resources available and genetic/genomics work has proven difficult due to genetic heterozygosity in the past, a draft genome was successfully assembled. Aquaporin (AQP) genes and their promoter sequences were mined from the draft genome to predict mechanisms regulating gene expression and generate hypotheses on key genes underpinning drought response. Fifty-one AQP genes were fully assembled within the draft genome. Promoter and phylogenetic analyses revealed putative duplicates of A. tridentata subsp. tridentata AQPs which have experienced differentiation in promoter elements, potentially supporting novel biological pathways. Comparison with nondrought-tolerant congener supports enrichments of AQP genes in this taxon during adaptation to drought stress. Differentiation of promoter elements revealed that paralogues of some genes have evolved to function in different pathways, highlighting these genes as potential candidates for future research and providing critical hypotheses for future genome-to-phenome work.
Collapse
Affiliation(s)
- Anthony E. Melton
- Department of Biological SciencesBoise State UniversityBoiseIdahoUSA
| | - James Beck
- Department of ComputingBoise State UniversityBoiseIdahoUSA
| | | | - Jerry Jenkins
- HudsonAlpha Institute for BiotechnologyHuntsvilleAlabamaUSA
| | - Lori Handley
- HudsonAlpha Institute for BiotechnologyHuntsvilleAlabamaUSA
| | - Min Kim
- HudsonAlpha Institute for BiotechnologyHuntsvilleAlabamaUSA
| | - Jane Grimwood
- HudsonAlpha Institute for BiotechnologyHuntsvilleAlabamaUSA
| | - Jeremy Schmutz
- HudsonAlpha Institute for BiotechnologyHuntsvilleAlabamaUSA
| | | | - Marcelo Serpe
- Department of Biological SciencesBoise State UniversityBoiseIdahoUSA
| | - Stephen Novak
- Department of Biological SciencesBoise State UniversityBoiseIdahoUSA
| | - Sven Buerki
- Department of Biological SciencesBoise State UniversityBoiseIdahoUSA
| |
Collapse
|
15
|
Ahmed FF, Hossen MI, Sarkar MAR, Konak JN, Zohra FT, Shoyeb M, Mondal S. Genome-wide identification of DCL, AGO and RDR gene families and their associated functional regulatory elements analyses in banana (Musa acuminata). PLoS One 2021; 16:e0256873. [PMID: 34473743 PMCID: PMC8412350 DOI: 10.1371/journal.pone.0256873] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 08/17/2021] [Indexed: 12/15/2022] Open
Abstract
RNA silencing is mediated through RNA interference (RNAi) pathway gene families, i.e., Dicer-Like (DCL), Argonaute (AGO), and RNA-dependent RNA polymerase (RDR) and their cis-acting regulatory elements. The RNAi pathway is also directly connected with the post-transcriptional gene silencing (PTGS) mechanism, and the pathway controls eukaryotic gene regulation during growth, development, and stress response. Nevertheless, genome-wide identification of RNAi pathway gene families such as DCL, AGO, and RDR and their regulatory network analyses related to transcription factors have not been studied in many fruit crop species, including banana (Musa acuminata). In this study, we studied in silico genome-wide identification and characterization of DCL, AGO, and RDR genes in bananas thoroughly via integrated bioinformatics approaches. A genome-wide analysis identified 3 MaDCL, 13 MaAGO, and 5 MaRDR candidate genes based on multiple sequence alignment and phylogenetic tree related to the RNAi pathway in banana genomes. These genes correspond to the Arabidopsis thaliana RNAi silencing genes. The analysis of the conserved domain, motif, and gene structure (exon-intron numbers) for MaDCL, MaAGO, and MaRDR genes showed higher homogeneity within the same gene family. The Gene Ontology (GO) enrichment analysis exhibited that the identified RNAi genes could be involved in RNA silencing and associated metabolic pathways. A number of important transcription factors (TFs), e.g., ERF, Dof, C2H2, TCP, GATA and MIKC_MADS families, were identified by network and sub-network analyses between TFs and candidate RNAi gene families. Furthermore, the cis-acting regulatory elements related to light-responsive (LR), stress-responsive (SR), hormone-responsive (HR), and other activities (OT) functions were identified in candidate MaDCL, MaAGO, and MaRDR genes. These genome-wide analyses of these RNAi gene families provide valuable information related to RNA silencing, which would shed light on further characterization of RNAi genes, their regulatory elements, and functional roles, which might be helpful for banana improvement in the breeding program.
Collapse
Affiliation(s)
- Fee Faysal Ahmed
- Faculty of Science, Department of Mathematics, Jashore University of Science and Technology, Jashore, Bangladesh
- * E-mail:
| | - Md. Imran Hossen
- Faculty of Science, Department of Mathematics, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Md. Abdur Rauf Sarkar
- Faculty of Biological Science and Technology, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Jesmin Naher Konak
- Faculty of Life Science, Department of Biochemistry and Molecular Biology, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh
| | - Fatema Tuz Zohra
- Faculty of Agriculture, Laboratory of Fruit Science, Saga University, Honjo-machi, Saga, Japan
| | - Md. Shoyeb
- Faculty of Biological Science and Technology, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Samiran Mondal
- Faculty of Science, Department of Mathematics, Jashore University of Science and Technology, Jashore, Bangladesh
| |
Collapse
|
16
|
Haider MS, De Britto S, Nagaraj G, Gurulingaiah B, Shekhar R, Ito SI, Jogaiah S. Genome-Wide Identification, Diversification, and Expression Analysis of Lectin Receptor-Like Kinase (LecRLK) Gene Family in Cucumber under Biotic Stress. Int J Mol Sci 2021; 22:6585. [PMID: 34205396 PMCID: PMC8234520 DOI: 10.3390/ijms22126585] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/16/2021] [Accepted: 06/16/2021] [Indexed: 12/27/2022] Open
Abstract
Members of the lectin receptor-like kinase (LecRLKs) family play a vital role in innate plant immunity. Few members of the LecRLKs family have been characterized in rice and Arabidopsis, respectively. However, little literature is available about LecRLKs and their role against fungal infection in cucumber. In this study, 60 putative cucumber LecRLK (CsLecRLK) proteins were identified using genome-wide analysis and further characterized into L-type LecRLKs (24) and G-type LecRLKs (36) based on domain composition and phylogenetic analysis. These proteins were allocated to seven cucumber chromosomes and found to be involved in the expansion of the CsLecRLK gene family. Subcellular localization of CsaLecRLK9 and CsaLecRLK12 showed green fluorescence signals in the plasma membrane of leaves. The transcriptional profiling of CsLecRLK genes showed that L-type LecRLKs exhibited functional redundancy as compared to G-type LecRLKs. The qRT-PCR results indicated that both L- and G-type LecRLKs showed significant response against plant growth-promoting fungi (PGPF-Trichoderma harzianum Rifai), powdery mildew pathogen (PPM-Golovinomyces orontii (Castagne) V.P. Heluta), and combined (PGPF+PPM) treatments. The findings of this study contribute to a better understanding of the role of cucumber CsLecRLK genes in response to PGPF, PPM, and PGPF+PPM treatments and lay the basis for the characterization of this important functional gene family.
Collapse
Affiliation(s)
- Muhammad Salman Haider
- Key Laboratory of Genetics and Fruit Development, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China;
| | - Savitha De Britto
- Laboratory of Plant Healthcare and Diagnostics, P.G. Department of Biotechnology and Microbiology, Karnatak University, Dharwad 580003, India;
- Division of Biological Sciences, School of Science and Technology, University of Goroka, Goroka 441, Papua New Guinea
| | - Geetha Nagaraj
- Nanobiotechnology Laboratory, Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysuru 570006, India; (G.N.); (B.G.); (R.S.)
| | - Bhavya Gurulingaiah
- Nanobiotechnology Laboratory, Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysuru 570006, India; (G.N.); (B.G.); (R.S.)
| | - Ravikant Shekhar
- Nanobiotechnology Laboratory, Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysuru 570006, India; (G.N.); (B.G.); (R.S.)
| | - Shin-ichi Ito
- Laboratory of Molecular Plant Pathology, Department of Biological and Environmental Sciences, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8515, Japan
- Research Center for Thermotolerant Microbial Resources (RCTMR), Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Sudisha Jogaiah
- Laboratory of Plant Healthcare and Diagnostics, P.G. Department of Biotechnology and Microbiology, Karnatak University, Dharwad 580003, India;
| |
Collapse
|
17
|
Mulat MW, Sinha VB. Distribution and abundance of CREs in the promoters depicts crosstalk by WRKYs in Tef [Eragrostis tef (Zucc.) Troetter]. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
18
|
Mosharaf MP, Rahman H, Ahsan MA, Akond Z, Ahmed FF, Islam MM, Moni MA, Mollah MNH. In silico identification and characterization of AGO, DCL and RDR gene families and their associated regulatory elements in sweet orange (Citrus sinensis L.). PLoS One 2020; 15:e0228233. [PMID: 33347517 PMCID: PMC7751981 DOI: 10.1371/journal.pone.0228233] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 12/07/2020] [Indexed: 12/30/2022] Open
Abstract
RNA interference (RNAi) plays key roles in post-transcriptional and chromatin modification levels as well as regulates various eukaryotic gene expressions which are involved in stress responses, development and maintenance of genome integrity during developmental stages. The whole mechanism of RNAi pathway is directly involved with the gene-silencing process by the interaction of Dicer-Like (DCL), Argonaute (AGO) and RNA-dependent RNA polymerase (RDR) gene families and their regulatory elements. However, these RNAi gene families and their sub-cellular locations, functional pathways and regulatory components were not extensively investigated in the case of economically and nutritionally important fruit plant sweet orange (Citrus sinensis L.). Therefore, in silico characterization, gene diversity and regulatory factor analysis of RNA silencing genes in C. sinensis were conducted by using the integrated bioinformatics approaches. Genome-wide comparison analysis based on phylogenetic tree approach detected 4 CsDCL, 8 CsAGO and 4 CsRDR as RNAi candidate genes in C. sinensis corresponding to the RNAi genes of model plant Arabidopsis thaliana. The domain and motif composition and gene structure analyses for all three gene families exhibited almost homogeneity within the same group members. The Gene Ontology enrichment analysis clearly indicated that the predicted genes have direct involvement into the gene-silencing and other important pathways. The key regulatory transcription factors (TFs) MYB, Dof, ERF, NAC, MIKC_MADS, WRKY and bZIP were identified by their interaction network analysis with the predicted genes. The cis-acting regulatory elements associated with the predicted genes were detected as responsive to light, stress and hormone functions. Furthermore, the expressed sequence tag (EST) analysis showed that these RNAi candidate genes were highly expressed in fruit and leaves indicating their organ specific functions. Our genome-wide comparison and integrated bioinformatics analyses provided some necessary information about sweet orange RNA silencing components that would pave a ground for further investigation of functional mechanism of the predicted genes and their regulatory factors.
Collapse
Affiliation(s)
- Md. Parvez Mosharaf
- Bioinformatics Laboratory, Department of Statistics, University of Rajshahi, Rajshahi, Bangladesh
| | - Hafizur Rahman
- Department of Microbiology, Rajshahi Institute of Biosciences, University of Rajshahi, Rajshahi, Bangladesh
| | - Md. Asif Ahsan
- Bioinformatics Laboratory, Department of Statistics, University of Rajshahi, Rajshahi, Bangladesh
| | - Zobaer Akond
- Bioinformatics Laboratory, Department of Statistics, University of Rajshahi, Rajshahi, Bangladesh
- Institute of Environmental Science, University of Rajshahi, Rajshahi, Bangladesh
- Agricultural Statistics and ICT Division, Bangladesh Agricultural Research Institute (BARI), Gazipur, Bangladesh
| | - Fee Faysal Ahmed
- Bioinformatics Laboratory, Department of Statistics, University of Rajshahi, Rajshahi, Bangladesh
- Department of Mathematics, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Md. Mazharul Islam
- Bioinformatics Laboratory, Department of Statistics, University of Rajshahi, Rajshahi, Bangladesh
| | - Mohammad Ali Moni
- The University of Sydney, Sydney Medical School, School of Medical Sciences, Discipline of Biomedical Science, Sydney, New South Wales, Australia
| | - Md. Nurul Haque Mollah
- Bioinformatics Laboratory, Department of Statistics, University of Rajshahi, Rajshahi, Bangladesh
- * E-mail:
| |
Collapse
|
19
|
Wang M, Hao J, Chen X, Zhang X. SlMYB102 expression enhances low-temperature stress resistance in tomato plants. PeerJ 2020; 8:e10059. [PMID: 33083130 PMCID: PMC7547593 DOI: 10.7717/peerj.10059] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 09/07/2020] [Indexed: 01/05/2023] Open
Abstract
Herein, we identified the tomato SlMYB102 gene as a MYB family transcription factor of the R2R3-MYB subfamily. We additionally determined that the SlMYB102 promoter region contains photoresponsive, abiotic stress-responsive, and hormone-responsive regulatory elements, and we detected higher SlMYB102 expression in the reproductive organs of tomato than that in vegetative organs, with the expression being highest in ripe fruits and in roots. SlMYB102 expression was also shown to be cold-inducible. The protein encoded by SlMYB102 localized to the nucleus wherein it was found to mediate the transcriptional activation of target genes through its C-terminal domain. Overexpression of SlMYB102 in tomato plants conferred enhanced tolerance to cold stress. Under such cold stress conditions, we found that proline levels in the leaves of SlMYB102 overexpressing transgenic plants were higher than those in WT plants. In addition, S1MYB102 overexpression was associated with the enhanced expression of cold response genes including SlCBF1, SlCBF3, SlDREB1, SlDEB2, and SlICE1. We also found that the overexpression of SlMYB102 further enhanced the cold-induced upregulation of SlP5CS and SlAPX2. Taken together, these results suggest that SlMYB102 may be involved in the C-repeat binding transcription factor (CBF) and proline synthesis pathways, thereby improving tomato plant cold resistance.
Collapse
Affiliation(s)
- Meiling Wang
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Juan Hao
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Xiuhua Chen
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Xichun Zhang
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| |
Collapse
|
20
|
Wang M, Hao J, Chen X, Zhang X. SlMYB102 expression enhances low-temperature stress resistance in tomato plants. PeerJ 2020; 8:e10059. [PMID: 33083130 DOI: 10.7717/peerj.10059/supp-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 09/07/2020] [Indexed: 05/27/2023] Open
Abstract
Herein, we identified the tomato SlMYB102 gene as a MYB family transcription factor of the R2R3-MYB subfamily. We additionally determined that the SlMYB102 promoter region contains photoresponsive, abiotic stress-responsive, and hormone-responsive regulatory elements, and we detected higher SlMYB102 expression in the reproductive organs of tomato than that in vegetative organs, with the expression being highest in ripe fruits and in roots. SlMYB102 expression was also shown to be cold-inducible. The protein encoded by SlMYB102 localized to the nucleus wherein it was found to mediate the transcriptional activation of target genes through its C-terminal domain. Overexpression of SlMYB102 in tomato plants conferred enhanced tolerance to cold stress. Under such cold stress conditions, we found that proline levels in the leaves of SlMYB102 overexpressing transgenic plants were higher than those in WT plants. In addition, S1MYB102 overexpression was associated with the enhanced expression of cold response genes including SlCBF1, SlCBF3, SlDREB1, SlDEB2, and SlICE1. We also found that the overexpression of SlMYB102 further enhanced the cold-induced upregulation of SlP5CS and SlAPX2. Taken together, these results suggest that SlMYB102 may be involved in the C-repeat binding transcription factor (CBF) and proline synthesis pathways, thereby improving tomato plant cold resistance.
Collapse
Affiliation(s)
- Meiling Wang
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Juan Hao
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Xiuhua Chen
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Xichun Zhang
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| |
Collapse
|
21
|
Liu H, Zhu K, Tan C, Zhang J, Zhou J, Jin L, Ma G, Zou Q. Identification and characterization of PsDREB2 promoter involved in tissue-specific expression and abiotic stress response from Paeonia suffruticosa. PeerJ 2019; 7:e7052. [PMID: 31223528 PMCID: PMC6571008 DOI: 10.7717/peerj.7052] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 05/02/2019] [Indexed: 11/20/2022] Open
Abstract
Dehydration-responsive element-binding factor 2 (DREB2) belongs to the C-repeat-binding factor (CBF)/DREB subfamily of proteins. In this study, a 2,245 bp PsDREB2 promoter fragment was isolated from the genome of Paeonia suffruticosa. The fragment was rich in A/T bases and contained TATA box sequences, abscisic acid (ABA)-response elements, and other cis-elements, such as MYB and CAAT box. The promoter was fused with the β-glucuronidase (GUS) reporter gene to generate an expression vector. Arabidopsis thaliana was transformed with a flower dipping method. Gus activity in different tissues and organs of transgenic plants was determined via histochemical staining and quantified via GUS fluorescence. The activity of promoter regulatory elements in transgenic plants under drought, low-temperature, high-salt, and ABA stresses was analyzed. The results showed that the PsDREB2 gene promoter was expressed in the roots, stems, leaves, flowers, and silique pods but not in the seeds of transgenic Arabidopsis. Furthermore, the promoter was induced by drought, low temperature, high salt, and ABA. Hence, the PsDREB2 promoter is tissue- and stress-specific and can be used in the genetic engineering of novel peony cultivars in the future.
Collapse
Affiliation(s)
- Huichun Liu
- Research & Development Center of Flower, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Kaiyuan Zhu
- Research & Development Center of Flower, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Chen Tan
- Research & Development Center of Flower, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jiaqiang Zhang
- Research & Development Center of Flower, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jianghua Zhou
- Research & Development Center of Flower, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Liang Jin
- Research & Development Center of Flower, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Guangying Ma
- Research & Development Center of Flower, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Qingcheng Zou
- Research & Development Center of Flower, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
22
|
Debbarma J, Sarki YN, Saikia B, Boruah HPD, Singha DL, Chikkaputtaiah C. Ethylene Response Factor (ERF) Family Proteins in Abiotic Stresses and CRISPR-Cas9 Genome Editing of ERFs for Multiple Abiotic Stress Tolerance in Crop Plants: A Review. Mol Biotechnol 2019; 61:153-172. [PMID: 30600447 DOI: 10.1007/s12033-018-0144-x] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Abiotic stresses such as extreme heat, cold, drought, and salt have brought alteration in plant growth and development, threatening crop yield and quality leading to global food insecurity. Many factors plays crucial role in regulating various plant growth and developmental processes during abiotic stresses. Ethylene response factors (ERFs) are AP2/ERF superfamily proteins belonging to the largest family of transcription factors known to participate during multiple abiotic stress tolerance such as salt, drought, heat, and cold with well-conserved DNA-binding domain. Several extensive studies were conducted on many ERF family proteins in plant species through over-expression and transgenics. However, studies on ERF family proteins with negative regulatory functions are very few. In this review article, we have summarized the mechanism and role of recently studied AP2/ERF-type transcription factors in different abiotic stress responses. We have comprehensively discussed the application of advanced ground-breaking genome engineering tool, CRISPR/Cas9, to edit specific ERFs. We have also highlighted our on-going and published R&D efforts on multiplex CRISPR/Cas9 genome editing of negative regulatory genes for multiple abiotic stress responses in plant and crop models. The overall aim of this review is to highlight the importance of CRISPR/Cas9 and ERFs in developing sustainable multiple abiotic stress tolerance in crop plants.
Collapse
Affiliation(s)
- Johni Debbarma
- Biotechnology Group, Biological Sciences and Technology Division, CSIR-NEIST, Jorhat, Assam, 785006, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-NEIST, Jorhat, Assam, India
| | - Yogita N Sarki
- Biotechnology Group, Biological Sciences and Technology Division, CSIR-NEIST, Jorhat, Assam, 785006, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-NEIST, Jorhat, Assam, India
| | - Banashree Saikia
- Biotechnology Group, Biological Sciences and Technology Division, CSIR-NEIST, Jorhat, Assam, 785006, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-NEIST, Jorhat, Assam, India
| | - Hari Prasanna Deka Boruah
- Biotechnology Group, Biological Sciences and Technology Division, CSIR-NEIST, Jorhat, Assam, 785006, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-NEIST, Jorhat, Assam, India
| | - Dhanawantari L Singha
- Department of Agricultural Biotechnology, Assam Agriculture University, Jorhat, 785013, Assam, India.
| | - Channakeshavaiah Chikkaputtaiah
- Biotechnology Group, Biological Sciences and Technology Division, CSIR-NEIST, Jorhat, Assam, 785006, India. .,Academy of Scientific and Innovative Research (AcSIR), CSIR-NEIST, Jorhat, Assam, India.
| |
Collapse
|
23
|
Kim J, Liu L, Hu Z, Jin E. Identification and Functional Analysis of the psaD Promoter of Chlorella vulgaris Using Heterologous Model Strains. Int J Mol Sci 2018; 19:E1969. [PMID: 29986409 PMCID: PMC6073903 DOI: 10.3390/ijms19071969] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 06/22/2018] [Accepted: 07/05/2018] [Indexed: 12/18/2022] Open
Abstract
Chlorella has great potential as a bio-factory for production of value-added compounds. To produce the desired chemicals more efficiently in Chlorella, genetic tools for modification of Chlorella need to be developed, especially an endogenous promoter. In this study, the promoter of photosystem I protein D (psaD) from Chlorella vulgaris UTEX395 was identified. Computational analysis revealed the presence of several putative cis-acting elements, including a potential core element, and light-responsive or stress-responsive elements. Gene expression analysis in heterologous expression system in Chlamydomonasreinhardtii and Nicotianabenthamiana showed that CvpsaD promoter can be used to drive the expression of genes. Functional analysis of this promoter suggested that the initiator element (Inr) is important for its function (i.e., TATA-less promoter) and that an additional factor (e.g., downstream of the transcriptional start site) might be needed for light response. We have shown that the CvpsaD promoter is functional, but not sufficiently strong, both in microalgae and higher plant.
Collapse
Affiliation(s)
- Jongrae Kim
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Korea.
| | - Linpo Liu
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Zanmin Hu
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| | - EonSeon Jin
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Korea.
| |
Collapse
|
24
|
Watanabe Y, Kadono T, Kira N, Suzuki K, Iwata O, Ohnishi K, Yamaguchi H, Adachi M. Development of endogenous promoters that drive high-level expression of introduced genes in the model diatom Phaeodactylum tricornutum. Mar Genomics 2018; 42:41-48. [PMID: 30509379 DOI: 10.1016/j.margen.2018.06.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 06/20/2018] [Accepted: 06/20/2018] [Indexed: 10/28/2022]
Abstract
The marine diatom Phaeodactylum tricornutum is attractive for basic and applied diatom research. We isolated putative endogenous gene promoters derived from genes that are highly expressed in P. tricornutum: the fucoxanthin chlorophyll a/c-binding protein (FCP) C gene, the vacuolar ATP synthase 16-kDa proteolipid subunit (V-ATPase C) gene, the clumping factor A gene and the solute carrier family 34 member 2 gene. Five putative promoter regions were isolated, linked to an antibiotic resistance gene (Sh ble) and transformed into P. tricornutum. Using quantitative RT-PCR, the promoter activities in the transformants were analyzed and compared to that of the diatom endogenous gene promoter, the FCP A gene promoter which has been used for the transformation of P. tricornutum. Among the five isolated potential promoters, the activity of the V-ATPase C gene promoter was approximately 2.73 times higher than that of the FCP A gene promoter. The V-ATPase C gene promoter drove the expression of Sh ble mRNA transcripts under both light and dark conditions at the stationary phase. These results suggest that the V-ATPase C gene promoter is a novel tool for the genetic engineering of P. tricornutum.
Collapse
Affiliation(s)
- Yumi Watanabe
- Laboratory of Aquatic Environmental Science, Faculty of Agriculture and Marine Science, Kochi University, Otsu-200, Monobe, Nankoku, Kochi 783-8502, Japan
| | - Takashi Kadono
- Laboratory of Aquatic Environmental Science, Faculty of Agriculture and Marine Science, Kochi University, Otsu-200, Monobe, Nankoku, Kochi 783-8502, Japan
| | - Nozomu Kira
- Laboratory of Aquatic Environmental Science, Faculty of Agriculture and Marine Science, Kochi University, Otsu-200, Monobe, Nankoku, Kochi 783-8502, Japan
| | - Kengo Suzuki
- Euglena Co., Ltd., 22F, Morinaga Plaza Building, Shiba-5-33-1, Minato-ku, Tokyo 108-0019, Japan
| | - Osamu Iwata
- Euglena Co., Ltd., 22F, Morinaga Plaza Building, Shiba-5-33-1, Minato-ku, Tokyo 108-0019, Japan
| | - Kouhei Ohnishi
- Research Institute of Molecular Genetics, Kochi University, Otsu-200, Nankoku, Kochi 783-8502, Japan
| | - Haruo Yamaguchi
- Laboratory of Aquatic Environmental Science, Faculty of Agriculture and Marine Science, Kochi University, Otsu-200, Monobe, Nankoku, Kochi 783-8502, Japan
| | - Masao Adachi
- Laboratory of Aquatic Environmental Science, Faculty of Agriculture and Marine Science, Kochi University, Otsu-200, Monobe, Nankoku, Kochi 783-8502, Japan.
| |
Collapse
|
25
|
Global analysis of threonine metabolism genes unravel key players in rice to improve the abiotic stress tolerance. Sci Rep 2018; 8:9270. [PMID: 29915249 PMCID: PMC6006157 DOI: 10.1038/s41598-018-27703-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 06/08/2018] [Indexed: 12/13/2022] Open
Abstract
The diversity in plant metabolites with improved phytonutrients is essential to achieve global food security and sustainable crop yield. Our study using computational metabolomics genome wide association study (cmGWAS) reports on a comprehensive profiling of threonine (Thr) metabolite in rice. Sixteen abiotic stress responsive (AbSR) – Thr metabolite producing genes (ThrMPG), modulate metabolite levels and play a significant role determining both physiological and nutritional importance of rice. These AbSR-ThrMPG were computationally analysed for their protein properties using OryzaCyc through plant metabolic network analyser. A total of 1373 and 1028 SNPs were involved in complex traits and genomic variations. Comparative mapping of AbSR-ThrMPG revealed the chromosomal colinearity with C4 grass species. Further, computational expression pattern of these genes predicted a differential expression profiling in diverse developmental tissues. Protein interaction of protein coding gene sequences revealed that the abiotic stresses (AbS) are multigenic in nature. In silico expression of AbSR-ThrMPG determined the putative involvement in response to individual AbS. This is the first comprehensive genome wide study reporting on AbSR –ThrMPG analysis in rice. The results of this study provide a pivotal resource for further functional investigation of these key genes in the vital areas of manipulating AbS signaling in rice improvement.
Collapse
|
26
|
Baek D, Chun HJ, Yun DJ, Kim MC. Cross-talk between Phosphate Starvation and Other Environmental Stress Signaling Pathways in Plants. Mol Cells 2017; 40:697-705. [PMID: 29047263 PMCID: PMC5682247 DOI: 10.14348/molcells.2017.0192] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 09/21/2017] [Accepted: 09/30/2017] [Indexed: 01/22/2023] Open
Abstract
The maintenance of inorganic phosphate (Pi) homeostasis is essential for plant growth and yield. Plants have evolved strategies to cope with Pi starvation at the transcriptional, post-transcriptional, and post-translational levels, which maximizes its availability. Many transcription factors, miRNAs, and transporters participate in the Pi starvation signaling pathway where their activities are modulated by sugar and phytohormone signaling. Environmental stresses significantly affect the uptake and utilization of nutrients by plants, but their effects on the Pi starvation response remain unclear. Recently, we reported that Pi starvation signaling is affected by abiotic stresses such as salt, abscisic acid, and drought. In this review, we identified transcription factors, such as MYB, WRKY, and zinc finger transcription factors with functions in Pi starvation and other environmental stress signaling. In silico analysis of the promoter regions of Pi starvation-responsive genes, including phosphate transporters, microRNAs, and phosphate starvation-induced genes, suggest that their expression may be regulated by other environmental stresses, such as hormones, drought, cold, heat, and pathogens as well as by Pi starvation. Thus, we suggest the possibility of cross-talk between Pi starvation signaling and other environmental stress signaling pathways.
Collapse
Affiliation(s)
- Dongwon Baek
- Division of Applied Life Science (BK21 PLUS), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828,
Korea
| | - Hyun Jin Chun
- Institute of Agriculture & Life Science, Gyeongsang National University, Jinju 52828,
Korea
| | - Dae-Jin Yun
- Department of Biomedical Science and Engineering, Konkuk University, Seoul 05029,
Korea
| | - Min Chul Kim
- Division of Applied Life Science (BK21 PLUS), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828,
Korea
- Institute of Agriculture & Life Science, Gyeongsang National University, Jinju 52828,
Korea
| |
Collapse
|
27
|
Kaur A, Pati PK, Pati AM, Nagpal AK. In-silico analysis of cis-acting regulatory elements of pathogenesis-related proteins of Arabidopsis thaliana and Oryza sativa. PLoS One 2017; 12:e0184523. [PMID: 28910327 PMCID: PMC5598985 DOI: 10.1371/journal.pone.0184523] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 08/27/2017] [Indexed: 01/24/2023] Open
Abstract
Pathogenesis related (PR) proteins are low molecular weight family of proteins induced in plants under various biotic and abiotic stresses. They play an important role in plant-defense mechanism. PRs have wide range of functions, acting as hydrolases, peroxidases, chitinases, anti-fungal, protease inhibitors etc. In the present study, an attempt has been made to analyze promoter regions of PR1, PR2, PR5, PR9, PR10 and PR12 of Arabidopsis thaliana and Oryza sativa. Analysis of cis-element distribution revealed the functional multiplicity of PRs and provides insight into the gene regulation. CpG islands are observed only in rice PRs, which indicates that monocot genome contains more GC rich motifs than dicots. Tandem repeats were also observed in 5' UTR of PR genes. Thus, the present study provides an understanding of regulation of PR genes and their versatile roles in plants.
Collapse
Affiliation(s)
- Amritpreet Kaur
- Department of Botanical and Environmental sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Pratap Kumar Pati
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Aparna Maitra Pati
- Planning Project Monitoring and Evaluation Cell, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| | - Avinash Kaur Nagpal
- Department of Botanical and Environmental sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| |
Collapse
|
28
|
Yang G, Zhang W, Liu Z, Yi-Maer AY, Zhai M, Xu Z. Both JrWRKY2 and JrWRKY7 of Juglans regia mediate responses to abiotic stresses and abscisic acid through formation of homodimers and interaction. PLANT BIOLOGY (STUTTGART, GERMANY) 2017; 19:268-278. [PMID: 27860167 DOI: 10.1111/plb.12524] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 11/08/2016] [Indexed: 05/11/2023]
Abstract
WRKY transcription factors belong to a large protein family that is involved in diverse developmental processes and abiotic stress responses. Currently, there is little understanding of the role of WRKY transcription factors in regulatory mechanisms in plants, especially in the protein-protein interactions that are essential for biological regulatory functions and networks. In the present study, yeast one-hybrid, yeast two-hybrid, transient expression and quantitative RT-PCR were applied to investigate the potential characteristics of two WRKY proteins from Juglans regia, JrWRKY2 (GenBank Accession No. KU057089) and JrWRKY7 (GenBank Accession No. KP784651). JrWRKY2 and JrWRKY7 can form homodimers and interact with each other. JrWRKY2 and JrWRKY7 can bind to W-box motifs. Similarly high levels of transcription were found for JrWRKY2 and JrWRKY7 under NaCl and polyethylene glycol (PEG) stresses, as well as at different developmental stages, e.g., the pistil or terminal leaf. JrWRKY2 and JrWRKY7 were transiently overexpressed in an independent manner in the terminal leaf. Analyses of superoxide dismutase (SOD) and peroxidase (POD) activities, proline and malondialdehyde (MDA) contents, and electrolyte leakage rate showed that JrWRKY2 and JrWRKY7 overexpression improved plant tolerance to NaCl, PEG, abscisic acid, and cold stress. Additionally, JrWRKY2 and JrWRKY7 overexpression elevated transcription of SOD, POD, glutathione peroxidase (GPX), catalase (CAT), ascorbate peroxidase (APX), and MYB genes, but downregulated the expression of NAC. Overall, the results demonstrate that JrWRKY2 and JrWRKY7 are dimeric proteins that can form functional homodimers and interact with each other and that they are involved in abiotic stress responses.
Collapse
Affiliation(s)
- G Yang
- Laboratory of Walnut Research Center, College of Forestry, Northwest A & F University, Yangling, Shaanxi, China
| | - W Zhang
- Agronomy College, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Z Liu
- Laboratory of Walnut Research Center, College of Forestry, Northwest A & F University, Yangling, Shaanxi, China
| | - A-Y Yi-Maer
- Laboratory of Walnut Research Center, College of Forestry, Northwest A & F University, Yangling, Shaanxi, China
| | - M Zhai
- Laboratory of Walnut Research Center, College of Forestry, Northwest A & F University, Yangling, Shaanxi, China
| | - Z Xu
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha, Hunan, China
| |
Collapse
|
29
|
Lin CH, Chen CY. The pathogen-inducible promoter of defense-related LsGRP1 gene from Lilium functioning in phylogenetically distinct species of plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 254:22-31. [PMID: 27964782 DOI: 10.1016/j.plantsci.2016.10.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 09/11/2016] [Accepted: 10/11/2016] [Indexed: 06/06/2023]
Abstract
A suitable promoter greatly enhances the efficiency of target gene expression of plant molecular breeding and farming; however, only very few promoters are available for economically important non-graminaceous ornamental monocots. In this study, an 868-bp upstream region of defense-related LsGRP1 of Lilium, named PLsGRP1, was cloned by genome walking and proven to exhibit promoter activity in Nicotiana benthamiana and Lilium 'Stargazer' as assayed by agroinfiltration-based β-glucuronidase (GUS) expression system. Many putative biotic stress-, abiotic stress- and physiological regulation-related cis-acting elements were found in PLsGRP1. Serial deletion analysis of PLsGRP1 performed in Nicotiana tabacum var. Wisconsin 38 accompanied with types of treatments indicated that 868-bp PLsGRP1 was highly induced upon pathogen challenges and cold stress while the 131-bp 3'-end region of PLsGRP1 could be dramatically induced by many kinds of abiotic stresses, biotic stresses and phytohormone treatments. Besides, transient GUS expression in a fern, gymnosperms, monocots and dicots revealed good promotor activity of PLsGRP1 in many phylogenetically distinct plant species. Thus, pathogen-inducible PLsGRP1 and its 131-bp 3'-end region are presumed potential as tools for plant molecular breeding and farming.
Collapse
Affiliation(s)
- Chia-Hua Lin
- Department of Plant Pathology and Microbiology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan, ROC.
| | - Chao-Ying Chen
- Department of Plant Pathology and Microbiology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan, ROC.
| |
Collapse
|