1
|
Ayeldeen G, Shaker OG, Gomaa M, Magdy MM, Elsamaloty N, Kamel AS, Senousy MA. Association of Epistatic Effects of lncRNA GAS5, miR-146a, IRAK-1, and miR-155 Genetic Variants with Multiple Sclerosis Risk and Severity. Mol Neurobiol 2025:10.1007/s12035-025-04876-8. [PMID: 40234289 DOI: 10.1007/s12035-025-04876-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 03/20/2025] [Indexed: 04/17/2025]
Abstract
The complex genetic architecture of heritability in multiple sclerosis (MS) remains undisclosed mainly. Epistasis (gene-gene interaction) substantially impacts MS; however, it is largely unexplored, especially among the non-coding RNA genes and their targets. The long non-coding RNA GAS5 exacerbates demyelination and sponges miR-146a and miR-155, impeccable contributors to MS pathogenesis. miR-146a negatively regulates the immune responses by targeting IRAK-1. We investigated the association of epistatic effects and haplotypes of five single nucleotide polymorphisms (SNPs), GAS5 rs2067079, miR-146a rs2910164 and rs57095329, IRAK-1 rs3027898, and miR-155 rs767649, with the risk of MS and its phenotypes. The expression quantitative trait locus (eQTL) associated with these variants was explored through bioinformatics analysis. The study enrolled 116 MS patients and 120 healthy controls. No strong linkage disequilibrium (D' ≥ 0.8) was detected among the studied SNPs. SNP-SNP interactions overlaid an overall magnified risk of MS and its phenotypes compared to the single-locus effects. After adjustment for multiple comparisons, the most significant interactions associated with the risk of overall MS and secondary-progressive MS were rs2067079-rs2910164, rs2910164-rs57095329, and rs3027898-rs767649. The last two former SNP-SNP interactions were highly associated with relapsing-remitting MS risk. The same pattern of interactions, as observed in association with MS risk, was female-specific. The CCAAA haplotype (alleles in the order of rs2067079, rs2910164, rs57095329, rs3027898, and rs767649) was protective against MS risk (CCAAA vs. CGAAT, adjusted OR = 0.14, 95% CI = 0.03-0.69, P = 0.009). Among MS patients, harboring the CGACT and CGAAT haplotypes was more prevalent in females and males, respectively. MS patients having EDSS ≥ 6 had a significantly higher frequency of the CCGCA haplotype than those with EDSS < 6. Functional analysis revealed rs2067079, rs57095329, and rs767649 as strong cis-eQTL regulating multiple genes, particularly in the brain and immune system. We propose that a magnified combined effect of GAS5, miR-146a, IRAK-1, and miR-155 genetic variants via epistatic interactions might impact the risk of MS and its phenotypes and could help in the risk stratification of MS patients.
Collapse
Affiliation(s)
- Ghada Ayeldeen
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Olfat G Shaker
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mohammed Gomaa
- Department of Neurology, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Mostafa M Magdy
- Department of Neurology, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Nourhan Elsamaloty
- Department of Biochemistry, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University, Cairo, 11786, Egypt
| | - Ahmed S Kamel
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
- Department of Pharmacology and Toxicology, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University, Gesr El Suez St, Cairo, PO 11786, Egypt
| | - Mahmoud A Senousy
- Department of Biochemistry, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University, Cairo, 11786, Egypt.
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| |
Collapse
|
2
|
Barbo M, Koritnik B, Leonardis L, Blagus T, Dolžan V, Ravnik-Glavač M. Genetic Variability in Oxidative Stress, Inflammatory, and Neurodevelopmental Pathways: Impact on the Susceptibility and Course of Spinal Muscular Atrophy. Cell Mol Neurobiol 2024; 44:71. [PMID: 39463208 PMCID: PMC11513727 DOI: 10.1007/s10571-024-01508-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 10/16/2024] [Indexed: 10/29/2024]
Abstract
The spinal muscular atrophy (SMA) phenotype strongly correlates with the SMN2 gene copy number. However, the severity and progression of the disease vary widely even among affected individuals with identical copy numbers. This study aimed to investigate the impact of genetic variability in oxidative stress, inflammatory, and neurodevelopmental pathways on SMA susceptibility and clinical progression. Genotyping for 31 genetic variants across 20 genes was conducted in 54 SMA patients and 163 healthy controls. Our results revealed associations between specific polymorphisms and SMA susceptibility, disease type, age at symptom onset, and motor and respiratory function. Notably, the TNF rs1800629 and BDNF rs6265 polymorphisms demonstrated a protective effect against SMA susceptibility, whereas the IL6 rs1800795 was associated with an increased risk. The polymorphisms CARD8 rs2043211 and BDNF rs6265 were associated with SMA type, while SOD2 rs4880, CAT rs1001179, and MIR146A rs2910164 were associated with age at onset of symptoms after adjustment for clinical parameters. In addition, GPX1 rs1050450 and HMOX1 rs2071747 were associated with motor function scores and lung function scores, while MIR146A rs2910164, NOTCH rs367398 SNPs, and GSTM1 deletion were associated with motor and upper limb function scores, and BDNF rs6265 was associated with lung function scores after adjustment. These findings emphasize the potential of genetic variability in oxidative stress, inflammatory processes, and neurodevelopmental pathways to elucidate the complex course of SMA. Further exploration of these pathways offers a promising avenue for developing personalized therapeutic strategies for SMA patients.
Collapse
Affiliation(s)
- Maruša Barbo
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Blaž Koritnik
- Institute of Clinical Neurophysiology, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Department of Neurology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Lea Leonardis
- Institute of Clinical Neurophysiology, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Department of Neurology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Tanja Blagus
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Vita Dolžan
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Metka Ravnik-Glavač
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.
- , Ljubljana, Slovenia.
| |
Collapse
|
3
|
Jing Y, Hu S, Song J, Dong X, Zhang Y, Sun X, Wang D. Association between polymorphisms in miRNAs and ischemic stroke: A meta-analysis. Medicine (Baltimore) 2022; 101:e32078. [PMID: 36596006 PMCID: PMC9803434 DOI: 10.1097/md.0000000000032078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Atherosclerosis remains a predominant cause of ischemic stroke (IS). Four miRNA polymorphisms associated with arteriosclerosis mechanism were meta-analyzed to explore whether they had predictive significance for IS. METHODS PubMed, Excerpta Medica database, Web of Science, Cochrane Library, Scopus, China National Knowledge Infrastructure, and China Wanfang Database were searched for relevant case-control studies published before September 2022. Two researchers independently reviewed the studies and extracted the data. Data synthesis was carried out on eligible studies. Meta-analysis, subgroup analysis, sensitivity analysis, and publication bias analysis were performed using Stata software 16.0. RESULTS Twenty-two studies were included, comprising 8879 cases and 12,091 controls. The results indicated that there were no significant associations between miR-146a C>G (rs2910164), miR-196a2 T>C (rs11614913) and IS risk in the overall analyses, but miR-149 T>C (rs2292832) and miR-499 A>G (rs3746444) increased IS risk under the allelic model, homozygote model and recessive model. The subgroup analyses based on Trial of Org 101072 in Acute Stroke Treatment classification indicated that rs2910164 increased small artery occlusion (SAO) risk under the allelic model, heterozygote model and dominant model; rs11614913 decreased the risk of SAO under the allelic model, homozygote model, heterozygote model and dominant model. CONCLUSION This Meta-analysis showed that all 4 single nucleotide polymorphisms were associated with the risk of IS or SAO, even though the overall and subgroup analyses were not entirely consistent.
Collapse
Affiliation(s)
- Yunnan Jing
- Heilongjiang University of Chinese Medicine, Harbin, China
- Department of Acupuncture and Moxibustion, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Siya Hu
- Heilongjiang University of Chinese Medicine, Harbin, China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jing Song
- Department of Acupuncture and Moxibustion, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xu Dong
- Department of Acupuncture and Moxibustion, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ying Zhang
- Heilongjiang University of Chinese Medicine, Harbin, China
- Department of Acupuncture and Moxibustion, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xiaowei Sun
- Heilongjiang University of Chinese Medicine, Harbin, China
- Department of Acupuncture and Moxibustion, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Dongyan Wang
- Department of Acupuncture and Moxibustion, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
- * Correspondence: Dongyan Wang, Department of Acupuncture and Moxibustion, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, 411 Gogoli Dajie, Nangang District, Harbin City, Heilongjiang Province 150000, China (e-mail: )
| |
Collapse
|
4
|
Human Melanoma Cells Differentially Express RNASEL/RNase-L and miR-146a-5p under Sex Hormonal Stimulation. Curr Issues Mol Biol 2022; 44:4790-4802. [PMID: 36286041 PMCID: PMC9601115 DOI: 10.3390/cimb44100326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/28/2022] [Accepted: 10/07/2022] [Indexed: 12/01/2022] Open
Abstract
Polymorphisms in the ribonuclease L (RNASEL) coding gene and hsa-miR-146a-5p (miR-146a) have been associated with melanoma in a sex-specific manner. We hypothesized that RNASEL and miR-146a expression could be influenced by sex hormones playing a role in the female advantages observed in melanoma incidence and survival. Thus, we explored the effects of testosterone and 17β-estradiol on RNASEL and miR-146a expression in LM-20 and A375 melanoma cell lines. Direct targeting of miR-146a to the 3′ untranslated region (3′UTR) of RNASEL was examined using a luciferase reporter system. Our results indicate that RNASEL is a direct target of miR-146a in both melanoma cell lines. Trough qPCR and western blot analyses, we explored the effect of miR-146a mimic transfection in the presence of each hormone either on RNASEL mRNA level or on protein expression of RNase-L, the enzyme codified by RNASEL gene. In the presence of testosterone or 17β-estradiol, miR-146a overexpression did not influence RNASEL transcript level in LM-20 cell line, but it slightly induced RNASEL mRNA level in A375 cells. Remarkably, miR-146a overexpression was able to repress the protein level of RNase-L in both LM-20 and A375 cells in the presence of each hormone, as well as to elicit high expression levels of the activated form of the extracellular signal-regulated kinases (ERK)1/2, hence confirming the pro-tumorigenic role of miR-146a overexpression in melanoma. Thereafter, we assessed if the administration of each hormone could affect the endogenous expression of RNASEL and miR-146a genes in LM-20 and A375 cell lines. Testosterone exerted no significant effect on RNASEL gene expression in both cell lines, while 17β-estradiol enhanced RNASEL transcript level at least in LM-20 melanoma cells. Conversely, miR-146a transcript augmented only in the presence of testosterone in either melanoma cell line. Importantly, each hormone acted quite the opposite regarding the RNase-L protein expression, i.e., testosterone significantly decreased RNase-L expression, whereas 17β-estradiol increased it. Overall, the data show that, in melanoma cells treated with 17β-estradiol, RNase-L expression increased likely by transcriptional induction of its gene. Testosterone, instead, decreased RNase-L expression in melanoma cell lines with a post-transcriptional mechanism in which miR-146a could play a role. In conclusion, the pro-tumor activity of androgen hormone in melanoma cells could be exacerbated by both miR-146a increase and RNase-L downregulation. These events may contribute to the worse outcome in male melanoma patients.
Collapse
|
5
|
Strafella C, Caputo V, Termine A, Fabrizio C, Calvino G, Megalizzi D, Ruffo P, Toppi E, Banaj N, Bassi A, Bossù P, Caltagirone C, Spalletta G, Giardina E, Cascella R. Identification of Genetic Networks Reveals Complex Associations and Risk Trajectory Linking Mild Cognitive Impairment to Alzheimer’s Disease. Front Aging Neurosci 2022; 14:821789. [PMID: 35250545 PMCID: PMC8892382 DOI: 10.3389/fnagi.2022.821789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/19/2022] [Indexed: 12/15/2022] Open
Abstract
Amnestic mild cognitive impairment (aMCI) and sporadic Alzheimer’s disease (AD) are multifactorial conditions resulting from a complex crosstalk among multiple molecular and biological processes. The present study investigates the association of variants localized in genes and miRNAs with aMCI and AD, which may represent susceptibility, prognostic biomarkers or multi-target treatment options for such conditions. We included 371 patients (217 aMCI and 154 AD) and 503 healthy controls, which were genotyped for a panel of 120 single nucleotide polymorphisms (SNPs) and, subsequently, analyzed by statistical, bioinformatics and machine-learning approaches. As a result, 21 SNPs were associated with aMCI and 13 SNPs with sporadic AD. Interestingly, a set of variants shared between aMCI and AD displayed slightly higher Odd Ratios in AD with respect to aMCI, highlighting a specific risk trajectory linking aMCI to AD. Some of the associated genes and miRNAs were shown to interact within the signaling pathways of APP (Amyloid Precursor Protein), ACE2 (Angiotensin Converting Enzyme 2), miR-155 and PPARG (Peroxisome Proliferator Activated Receptor Gamma), which are known to contribute to neuroinflammation and neurodegeneration. Overall, results of this study increase insights concerning the genetic factors contributing to the neuroinflammatory and neurodegenerative mechanisms underlying aMCI and sporadic AD. They have to be exploited to develop personalized approaches based on the individual genetic make-up and multi-target treatments.
Collapse
Affiliation(s)
- Claudia Strafella
- Genomic Medicine Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy
- Medical Genetics Laboratory, Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
- *Correspondence: Claudia Strafella,
| | - Valerio Caputo
- Genomic Medicine Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy
- Medical Genetics Laboratory, Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
| | - Andrea Termine
- Genomic Medicine Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Carlo Fabrizio
- Genomic Medicine Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Giulia Calvino
- Genomic Medicine Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy
| | | | - Paola Ruffo
- Genomic Medicine Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Elisa Toppi
- Laboratory of Experimental Neuropsychobiology, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Nerisa Banaj
- Laboratory of Neuropsychiatry, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Andrea Bassi
- Laboratory of Neuropsychiatry, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Paola Bossù
- Laboratory of Experimental Neuropsychobiology, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Carlo Caltagirone
- Department of Clinical and Behavioral Neurology, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Gianfranco Spalletta
- Laboratory of Neuropsychiatry, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Emiliano Giardina
- Genomic Medicine Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy
- Medical Genetics Laboratory, Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
- Emiliano Giardina,
| | - Raffaella Cascella
- Genomic Medicine Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy
- Department of Biomedical Sciences, Catholic University Our Lady of Good Counsel, Tirana, Albania
| |
Collapse
|
6
|
Tabasi F, Hasanpour V, Sarhadi S, Kaykhaei MA, Pourzand P, Heravi M, Langari AA, Bahari G, Taheri M, Hashemi M, Ghavami S. Association of miR-499 Polymorphism and Its Regulatory Networks with Hashimoto Thyroiditis Susceptibility: A Population-Based Case-Control Study. Int J Mol Sci 2021; 22:10094. [PMID: 34576267 PMCID: PMC8470033 DOI: 10.3390/ijms221810094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 12/29/2022] Open
Abstract
Hashimoto thyroiditis (HT) is a common autoimmune disorder with a strong genetic background. Several genetic factors have been suggested, yet numerous genetic contributors remain to be fully understood in HT pathogenesis. MicroRNAs (miRs) are gene expression regulators critically involved in biological processes, of which polymorphisms can alter their function, leading to pathologic conditions, including autoimmune diseases. We examined whether miR-499 rs3746444 polymorphism is associated with susceptibility to HT in an Iranian subpopulation. Furthermore, we investigated the potential interacting regulatory network of the miR-499. This case-control study included 150 HT patients and 152 healthy subjects. Genotyping of rs3746444 was performed by the PCR-RFLP method. Also, target genomic sites of the polymorphism were predicted using bioinformatics. Our results showed that miR-499 rs3746444 was positively associated with HT risk in heterozygous (OR = 3.32, 95%CI = 2.00-5.53, p < 0.001, CT vs. TT), homozygous (OR = 2.81, 95%CI = 1.30-6.10, p = 0.014, CC vs. TT), dominant (OR = 3.22, 95%CI = 1.97-5.25, p < 0.001, CT + CC vs. TT), overdominant (OR = 2.57, 95%CI = 1.62-4.09, p < 0.001, CC + TT vs. CT), and allelic (OR = 1.92, 95%CI = 1.37-2.69, p < 0.001, C vs. T) models. Mapping predicted target genes of miR-499 on tissue-specific-, co-expression-, and miR-TF networks indicated that main hub-driver nodes are implicated in regulating immune system functions, including immunorecognition and complement activity. We demonstrated that miR-499 rs3746444 is linked to HT susceptibility in our population. However, predicted regulatory networks revealed that this polymorphism is contributing to the regulation of immune system pathways.
Collapse
Affiliation(s)
- Farhad Tabasi
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan 9816743463, Iran; (F.T.); (P.P.); (M.H.); (G.B.)
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 1411713116, Iran
| | - Vahed Hasanpour
- Student Research Committee, School of Medicine, Zahedan University of Medical Sciences, Zahedan 9816743463, Iran;
| | - Shamim Sarhadi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz 5166616471, Iran;
| | - Mahmoud Ali Kaykhaei
- Genetics of Non-Communicable Disease Research Center, Zahedan University of Medical Sciences, Zahedan 9816743463, Iran; (M.A.K.); (M.T.)
- Department of Endocrinology, School of Medicine, Zahedan University of Medical Sciences, Zahedan 9816743463, Iran
| | - Pouria Pourzand
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan 9816743463, Iran; (F.T.); (P.P.); (M.H.); (G.B.)
| | - Mehrdad Heravi
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan 9816743463, Iran; (F.T.); (P.P.); (M.H.); (G.B.)
| | - Ahmad Alinaghi Langari
- Student Research Committee, School of Medicine, Kerman University of Medical Sciences, Kerman 7616913555, Iran;
| | - Gholamreza Bahari
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan 9816743463, Iran; (F.T.); (P.P.); (M.H.); (G.B.)
- Children and Adolescent Health Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan 9816743463, Iran
| | - Mohsen Taheri
- Genetics of Non-Communicable Disease Research Center, Zahedan University of Medical Sciences, Zahedan 9816743463, Iran; (M.A.K.); (M.T.)
| | - Mohammad Hashemi
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan 9816743463, Iran; (F.T.); (P.P.); (M.H.); (G.B.)
- Genetics of Non-Communicable Disease Research Center, Zahedan University of Medical Sciences, Zahedan 9816743463, Iran; (M.A.K.); (M.T.)
| | - Saeid Ghavami
- Research Institute of Oncology and Hematology, Cancer Care Manitoba, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
- Biology of Breathing Theme, Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 0V9, Canada
- Faculty of Medicine, Katowice School of Technology, 40-555 Katowice, Poland
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| |
Collapse
|
7
|
Antunes Andrade F, Goeldner Eibofner I, Pieczarka C, van Tong H, Sena L, Skare T, Ramos da Rosa Utiyama S, Jose de Messias-Reason I, P Velavan T. Impact of VSIG4 gene polymorphisms on susceptibility and functional status of rheumatoid arthritis. Int J Immunogenet 2021; 48:260-265. [PMID: 33645007 DOI: 10.1111/iji.12533] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 02/03/2021] [Accepted: 02/13/2021] [Indexed: 01/31/2023]
Abstract
The complement receptor of the immunoglobulin superfamily (CRIg, encoded by the VSIG4 gene) is a macrophage receptor involved in the clearance of immune complexes and autologous cells. Our results suggest that the VSIG4 rs1044165T allele is a risk factor for severe functional status of rheumatoid arthritis in women, possibly by affecting VSIG4 gene expression.
Collapse
Affiliation(s)
- Fabiana Antunes Andrade
- Laboratory of Molecular Immunopathology, Clinic Hospital, Federal University of Paraná, Curitiba, Brazil.,Department of Medicine, Positive University, Curitiba, Brazil
| | - Isabela Goeldner Eibofner
- Laboratory of Molecular Immunopathology, Clinic Hospital, Federal University of Paraná, Curitiba, Brazil.,Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
| | - Cristhine Pieczarka
- Laboratory of Molecular Immunopathology, Clinic Hospital, Federal University of Paraná, Curitiba, Brazil
| | - Hoang van Tong
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany.,Vietnamese-German Center for Medical Research, Hanoi, Vietnam
| | - Leia Sena
- Laboratory of Molecular Immunopathology, Clinic Hospital, Federal University of Paraná, Curitiba, Brazil
| | - Thelma Skare
- Rheumatology Unit, Evangelical Hospital, Curitiba, Brazil
| | | | | | - Thirumalaisamy P Velavan
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany.,Vietnamese-German Center for Medical Research, Hanoi, Vietnam.,Fondation Congolaise pour la Recherche Médicale, Brazzaville, Republic of Congo.,Duy Tan University, Da Nang, Vietnam
| |
Collapse
|
8
|
Shareef S, Ebrahimi SO, Reiisi S. Contribution of hsa-miR-146a and hsa-miR-223 gene variations in patients with multiple sclerosis reveals association of rs2910164 and rs1044165 with risk of multiple sclerosis susceptibility. J Investig Med 2021; 69:1015-1021. [PMID: 33478974 DOI: 10.1136/jim-2020-001539] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2021] [Indexed: 11/04/2022]
Abstract
MicroRNAs (miRNAs) are a group of non-coding RNAs that play a role in gene regulation. Due to their possible functional importance, genetic variants within miRNA genes have been recognized as candidate biomarkers. Single-nucleotide polymorphisms (SNPs) in miRNA genes can be related to the risk of different autoimmune diseases. Some of these SNPs are rs2910164 in the miR-146a and rs1044165 in the miR-223. The aim of this study was to investigate the relationship between these polymorphisms and the risk of multiple sclerosis (MS) in an Iranian population. In this case-control study, 261 patients with MS and 250 healthy controls that matched by age and geographical region were enrolled. After sampling and genomic DNA extraction, genotyping was determined by PCR-restriction fragment length polymorphism. Allelic and genotypic associations between the SNPs and MS were evaluated by the data analysis conducted by SPSS V.20. The frequencies of rs2910164 and rs1044165 SNPs were significantly different between the patients with MS and healthy controls. C and T alleles in the variants rs2910164 and rs1044165, respectively, are associated with increased risk of MS. Such association was obtained in codominant, dominant, and overdominant models for both variants (OR ~3 and OR ~1.5, respectively). Furthermore, this study determined that the C and T alleles of rs2910164 and rs1044165 are risk factors for MS in the Iranian population.
Collapse
Affiliation(s)
- Salar Shareef
- Department of Medical Laboratory Science, College of Sciences, University of Raparin, Ranya, Kurdistan Region, Iraq
| | - Seyed Omar Ebrahimi
- Department of Genetics, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran
| | - Somayeh Reiisi
- Department of Genetics, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran
| |
Collapse
|
9
|
Song Q, Zhao F, Yao J, Dai H, Hu L, Yu S. Protective effect of microRNA-134-3p on multiple sclerosis through inhibiting PRSS57 and promotion of CD34 + cell proliferation in rats. J Cell Biochem 2020; 121:4347-4363. [PMID: 32619071 DOI: 10.1002/jcb.29643] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 12/19/2019] [Indexed: 12/23/2022]
Abstract
MicroRNAs (miRs) have been extensively studied for their involvement in multiple sclerosis (MS). We investigated the involvement of miR-134-3p on MS. The MS rat model was established, and positive expression of interleukin-17 (IL-17) was detected using the immunohistochemical method while the expression of miR-134-3p and serine protease 57 (PRSS57) was determined by means of reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and Western blot analysis. Second, the miR-134-3p overexpression or short hairpin RNA against PRSS57 was introduced into the CD34+ cells to investigate the levels of proliferation and apoptosis-related genes by RT-qPCR and Western blot analysis. In addition, analysis of the targeting relations of miR-134-3p and PRSS57 was conducted using online software and dual-luciferase reporter gene assay. Furthermore, neuronal functions, inflammatory response, proliferation, and apoptosis of CD34+ cells were assayed by flow cytometry, enzyme-linked immunosorbent assay, and methyl thiazolyl tetrazolium. IL-17 and PRSS57 expression increased while miR-134-3p expression decreased in the spinal cord from MS rats. miR-134-3p could target PRSS57. miR-134-3p overexpression or PRSS57 silencing enhanced mitochondrial activity of neurons, mitochondrial membrane potential content, CD34+ cell proliferation, while decreasing Cyt C content, inflammatory response, and cell apoptosis. Collectively, overexpression of miR-134-3p promotes CD34+ cell proliferation via inhibition of PRSS57 in MS, which may serve as a promising target for MS intervention.
Collapse
Affiliation(s)
- Qihan Song
- Department of Neurobiology, Xuanwu Hospital of Capital Medical University, Beijing, China.,Department of Neurology, The No.2 Hospital of Baoding, Baoding, China
| | - Fengli Zhao
- Department of Neurology, The No.2 Hospital of Baoding, Baoding, China
| | - Jingfan Yao
- Department of Neurology, Beijing Tiantan Hospital of Capital Medical University, Beijing, China
| | - Hailin Dai
- Department of Neurology, The No.2 Hospital of Baoding, Baoding, China
| | - Lei Hu
- Department of Neurology, The No.2 Hospital of Baoding, Baoding, China
| | - Shun Yu
- Department of Neurobiology, Xuanwu Hospital of Capital Medical University, Beijing, China
| |
Collapse
|
10
|
Senousy MA, Shaker OG, Sayed NH, Fathy N, Kortam MA. LncRNA GAS5 and miR-137 Polymorphisms and Expression are Associated with Multiple Sclerosis Risk: Mechanistic Insights and Potential Clinical Impact. ACS Chem Neurosci 2020; 11:1651-1660. [PMID: 32348112 DOI: 10.1021/acschemneuro.0c00150] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The pathogenesis of multiple sclerosis (MS) is influenced by the interaction of genetic and epigenetic mechanisms. The long noncoding RNA GAS5 acts as a competing endogenous RNA for microRNA-137 and is involved in demyelination. We investigated the association of GAS5 and miR-137 expression and their polymorphisms with MS susceptibility. One hundred and eight MS patients and 104 healthy controls were included. Expression analysis and genotyping of GAS5-rs2067079 and miR-137-rs1625579 single nucleotide polymorphisms were performed by qPCR. Serum GAS5 was upregulated, while serum miR-137 was downregulated in MS compared with the controls. Serum miR-137 was an excellent discriminator of MS patients from the controls (AUC = 0.97) and a negative independent predictor of MS in multivariate logistic analysis. Serum GAS5 expression was positively correlated with the expanded disability status scale scores in the relapsing-remitting MS patients. The rs2067079TT minor homozygote genotype was associated with an increased MS risk, while the rs1625579G minor allele was protective. rs1625579 showed an age-specific effect, while the rs2067079 affected the MS risk in gender- and age-specific manners. In MS patients, rs2067079TT was associated with a higher serum GAS5 than other genotypes, while serum miR-137 did not differ between rs1625579 genotypes. Our results suggest serum GAS5 and miR-137 as MS biomarkers, with miR-137 as a negative predictor of MS risk and GAS5 as a marker of MS severity. We propose rs2067079 and rs1625579 as novel genetic markers of MS susceptibility, and at least, rs2067079 possibly impacts the crosstalk between GAS5 and miR-137.
Collapse
Affiliation(s)
- Mahmoud A. Senousy
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Olfat G. Shaker
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Cairo University, Cairo 11562, Egypt
| | - Noha H. Sayed
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Nevine Fathy
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Mona A. Kortam
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| |
Collapse
|
11
|
Yang M, Li Z, Jin M, Sun Y, He Y, Liu Y, Yu Q. Associations between three microRNA gene polymorphisms and schizophrenia susceptibility in a Han Chinese population. Asian J Psychiatr 2020; 50:102035. [PMID: 32248084 DOI: 10.1016/j.ajp.2020.102035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 03/23/2020] [Accepted: 03/25/2020] [Indexed: 11/26/2022]
Affiliation(s)
- Mingjia Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, China
| | - Zhijun Li
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, China
| | - Mengdi Jin
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, China
| | - Yaoyao Sun
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, China
| | - Yang He
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, China
| | - Yang Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, China
| | - Qiong Yu
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, 130021, China.
| |
Collapse
|
12
|
Relationship between miR-155 and miR-146a polymorphisms and susceptibility to multiple sclerosis in an Egyptian cohort. Biomed Rep 2020; 12:276-284. [PMID: 32257191 DOI: 10.3892/br.2020.1286] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 12/13/2019] [Indexed: 11/05/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune disorder of the central nervous system. It was previously demonstrated that miR-155 and miR-146a served a vital role in the pathophysiology of MS, and single nucleotide polymorphisms in miR-155 and miR-146a were found to be associated with the susceptibility to different autoimmune diseases, such as systemic lupus erythematosus, rheumatoid arthritis and type I diabetes. The aim of the present study was to analyze the association between susceptibility to MS and two genetic polymorphisms (miR-155 rs767649 A>T and miR-146a rs57095329 A>G) in a cohort of Egyptian patients. The presence of the two polymorphisms were analyzed in 114 patients with MS and 152 healthy controls using quantitative PCR. The present study demonstrated for the first time that: The TT genotype and T allele in miR-155 (rs767649 A>T) polymorphism were associated with an increased risk of MS; the miR-146a (rs57095329 A>G) mutated G allele conferred protection against the development of MS in all genetic models; miR-155 rs767649 A>T was a risk associated polymorphism of MS in females, but not in males; and miR-155 rs767649 AT/TT and miR-146a rs57095329 GG genotypes showed significantly higher distributions among patients with higher Expanded Disability Status Scale scores and secondary progressive MS subgroups. Therefore, miR-155 rs767649 polymorphism may confer susceptibility to MS, whereas miR-146a rs57095329 may be protective against MS in an Egyptian cohort.
Collapse
|
13
|
Boxberger N, Hecker M, Zettl UK. Dysregulation of Inflammasome Priming and Activation by MicroRNAs in Human Immune-Mediated Diseases. THE JOURNAL OF IMMUNOLOGY 2019; 202:2177-2187. [PMID: 30962309 DOI: 10.4049/jimmunol.1801416] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 12/19/2018] [Indexed: 12/13/2022]
Abstract
Inflammasomes are protein complexes that respond to a wide range of pathogens and cellular damage signals. Their activation prompts the caspase-1-mediated cleavage of the proinflammatory cytokines IL-1β and IL-18. Inflammasome dysregulation has been demonstrated to play a role in a range of diseases involving the adaptive immune system like multiple sclerosis, rheumatic diseases, and type 1 diabetes. Priming and activation of inflammasomes can be modulated by microRNAs (miRNAs), small noncoding RNAs that regulate gene expression posttranscriptionally. miRNAs, such as miR-223-3p, have been demonstrated to directly target the inflammasome components NLRP3, caspase-1, and caspase-8. Other miRNAs like miR-155-5p modulate TLR-, IL-1R-, TNFR-, and IFNAR-mediated signaling pathways upstream of the inflammasomes. In this study, we discuss how a more detailed elucidation of miRNA-driven inflammasome regulation helps in understanding the molecular processes underlying immune-mediated human diseases, holds potential for the identification of biomarkers and may offer novel targets for the development of future therapeutics.
Collapse
Affiliation(s)
- Nina Boxberger
- Division of Neuroimmunology, Department of Neurology, University of Rostock, 18147 Rostock, Germany; and
| | - Michael Hecker
- Division of Neuroimmunology, Department of Neurology, University of Rostock, 18147 Rostock, Germany; and.,Steinbeis Transfer Center for Proteome Analysis, 18057 Rostock, Germany
| | - Uwe K Zettl
- Division of Neuroimmunology, Department of Neurology, University of Rostock, 18147 Rostock, Germany; and
| |
Collapse
|
14
|
Boyko AN, Kozin MS, Osmak GZ, Kulakova OG, Favorova OO. Mitochondrial genome and risk of multiple sclerosis. ACTA ACUST UNITED AC 2019. [DOI: 10.14412/2074-2711-2019-3-43-46] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Mitochondrial DNA (mtDNA) polymorphism makes a certain contribution to the formation of a genetic risk of multiple sclerosis (MS).Objective: to analyze the frequency of mtDNA variants in patients with MS and control individuals in the Russian population. A similar study was conducted for the first time.Patients and methods. The polymorphism of mtDNA was studied in the Russian population: in 283 unrelated patients with relapsing-remitting MS and in 290 unrelated healthy controls matched for gender and age.Results and discussion. The frequency of haplogroup J in the patients with MS was twice higher than that in the control group (p=0.0055) (odds ratio (OR) 2.00; 95% confidence interval (CI). 1.21–3.41). This association was mostly observed in women (p=0.0083) (OR 2.20; 95% CI, 1.19–4.03). There was also a significant association of the A allele of MT-ND5 (m. 13708G>A) with MS (p=0.03) (OR 1.89; 95% CI 1.11–3.32). Sex stratification showed that the association with MS was significant only in women (p=0.009; OR, 2.52; 95% CI, 1.29–5.14). Further investigations will aim to analyze mtDNA variability (at the level of individual polymorphisms, haplogroups, and whole genome) in patients with relapsing-remitting MS and in those with primary progressive MS versus healthy individuals and patients with relapsing-remitting MS according to disease severity.Conclusion. The data obtained in the Russian population suggest that mtDNA variations are involved in MS risk, to a greater extent in women.
Collapse
Affiliation(s)
- A. N. Boyko
- N.I. Pirogov Russian National Research Medical University, Ministry of Health of Russia;
Federal Center of Cerebrovascular Disease and Stroke, Ministry of Health of Russia
| | - M. S. Kozin
- N.I. Pirogov Russian National Research Medical University, Ministry of Health of Russia;
Federal Center of Cerebrovascular Disease and Stroke, Ministry of Health of Russia
| | - G. Zh. Osmak
- N.I. Pirogov Russian National Research Medical University, Ministry of Health of Russia;
Federal Center of Cerebrovascular Disease and Stroke, Ministry of Health of Russia
| | - O. G. Kulakova
- N.I. Pirogov Russian National Research Medical University, Ministry of Health of Russia
| | - O. O. Favorova
- N.I. Pirogov Russian National Research Medical University, Ministry of Health of Russia
| |
Collapse
|
15
|
Kiselev IS, Kulakova OG, Baulina NM, Bashinskaya VV, Popova EV, Boyko AN, Favorova OO. Variability of the MIR196A2 Gene as a Risk Factor in Primary-Progressive Multiple Sclerosis Development. Mol Biol 2019. [DOI: 10.1134/s0026893319020079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Gharibi S, Moghimi B, Haghmorad D, Mahmoudi MB, Shahvazian E, Yadegari M, Yazd EF, Tahoori MT. Altered expression patterns of complement factor H and miR‐146a genes in acute‐chronic phases in experimental autoimmune encephalomyelitis mouse. J Cell Physiol 2019; 234:19842-19851. [DOI: 10.1002/jcp.28583] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 03/10/2019] [Accepted: 03/19/2019] [Indexed: 01/10/2023]
Affiliation(s)
- Saba Gharibi
- Department of Genetics, Faculty of Medicine, International Campus Shahid Sadoughi University of Medical Sciences and Health Services Yazd Iran
| | - Bahram Moghimi
- Department of Genetics, Faculty of Medicine Shahid Sadoughi University of Medical Sciences and Health Services Yazd Iran
| | - Dariush Haghmorad
- Department of Pathology and Laboratory Medicine, School of Medicine Semnan University of Medical Sciences Semnan Iran
- Department of Immunology, School of Medicine Semnan University of Medical Sciences and Health Services Semnan Iran
| | - Mohammad Bagher Mahmoudi
- Department of Genetics, Faculty of Medicine Shahid Sadoughi University of Medical Sciences and Health Services Yazd Iran
| | - Ensieh Shahvazian
- Department of Genetics, Faculty of Medicine, International Campus Shahid Sadoughi University of Medical Sciences and Health Services Yazd Iran
| | - Maryam Yadegari
- Department of Biology & Anatomical Sciences, Shahid Sadoughi University of Medical Sciences and Health Services Faculty of Medicine Yazd Iran
| | - Ehsan Farashahi Yazd
- Department of Genetics, Faculty of Medicine Shahid Sadoughi University of Medical Sciences and Health Services Yazd Iran
- Genetic Engineering and Genome Editing Laboratory, Stem Cell Biology Research Center Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences Yazd Iran
| | - Mohammad Taher Tahoori
- Department of Immunology, Faculty of Medicine Shahid Sadoughi University of Medical Sciences and Health Services Yazd Iran
| |
Collapse
|
17
|
Teimuri S, Hosseini A, Ghaedi K, Tanhaei S, Javadirad SM, Etemadifar M, Nasr Esfahani MH. Risk factor effect of rs1044165 and rs3745453 as neighboring variants of miR-223, miR-24, miR-23a and miR-27a on the onset of MS disease in Isfahan/Iran. GENE REPORTS 2018. [DOI: 10.1016/j.genrep.2018.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
18
|
Labib DA, Shaker OG, El Refai RM, Ghoniem SA, Elmazny A. Association betweenmiRNA-146aand Polymorphisms of its Target Gene,IRAK1, Regarding Susceptibility to and Clinical Features of Systemic Lupus Erythematous and Multiple Sclerosis. Lab Med 2018; 50:34-41. [DOI: 10.1093/labmed/lmy033] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Dalia A Labib
- Division of Clinical and Chemical Pathology, Cairo University, Egypt
| | - Olfat G Shaker
- Division of Medical Biochemistry and Molecular Biology, Cairo University, Egypt
| | - Rasha M El Refai
- Division of Rheumatology and Rehabilitation, Cairo University, Egypt
| | - Shada A Ghoniem
- Division of Rheumatology and Rehabilitation, Cairo University, Egypt
| | - Alaa Elmazny
- Department of Neurology, Cairo University, Egypt
| |
Collapse
|
19
|
Kanata E, Thüne K, Xanthopoulos K, Ferrer I, Dafou D, Zerr I, Sklaviadis T, Llorens F. MicroRNA Alterations in the Brain and Body Fluids of Humans and Animal Prion Disease Models: Current Status and Perspectives. Front Aging Neurosci 2018; 10:220. [PMID: 30083102 PMCID: PMC6064744 DOI: 10.3389/fnagi.2018.00220] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 06/28/2018] [Indexed: 12/12/2022] Open
Abstract
Prion diseases are transmissible progressive neurodegenerative conditions characterized by rapid neuronal loss accompanied by a heterogeneous neuropathology, including spongiform degeneration, gliosis and protein aggregation. The pathogenic mechanisms and the origins of prion diseases remain unclear on the molecular level. Even though neurodegenerative diseases, including prion diseases, represent distinct entities, their pathogenesis shares a number of features including disturbed protein homeostasis, an overload of protein clearance pathways, the aggregation of pathological altered proteins, and the dysfunction and/or loss of specific neuronal populations. Recently, direct links have been established between neurodegenerative diseases and miRNA dysregulated patterns. miRNAs are a class of small non-coding RNAs involved in the fundamental post-transcriptional regulation of gene expression. Studies of miRNA alterations in the brain and body fluids in human prion diseases provide important insights into potential miRNA-associated disease mechanisms and biomarker candidates. miRNA alterations in prion disease models represent a unique tool to investigate the cause-consequence relationships of miRNA dysregulation in prion disease pathology, and to evaluate the use of miRNAs in diagnosis as biomarkers. Here, we provide an overview of studies on miRNA alterations in human prion diseases and relevant disease models, in relation to pertinent studies on other neurodegenerative diseases.
Collapse
Affiliation(s)
- Eirini Kanata
- Laboratory of Pharmacology, Prion Diseases Research Group, Department of Pharmacy, School of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Katrin Thüne
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Konstantinos Xanthopoulos
- Laboratory of Pharmacology, Department of Pharmacy, School of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Isidre Ferrer
- Bellvitge University Hospital, Bellvitge Biomedical Research Institute, Barcelona, Spain.,Department of Pathology and Experimental Therapeutics, University of Barcelona, Barcelona, Spain.,Network Center for Biomedical Research of Neurodegenerative Diseases, Institute Carlos III, Ministry of Health, Madrid, Spain
| | - Dimitra Dafou
- Department of Genetics, Development, and Molecular Biology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Inga Zerr
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Theodoros Sklaviadis
- Laboratory of Pharmacology, Prion Diseases Research Group, Department of Pharmacy, School of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Franc Llorens
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany.,Bellvitge University Hospital, Bellvitge Biomedical Research Institute, Barcelona, Spain.,Network Center for Biomedical Research of Neurodegenerative Diseases, Institute Carlos III, Ministry of Health, Madrid, Spain
| |
Collapse
|
20
|
Latini A, Ciccacci C, Novelli G, Borgiani P. Polymorphisms in miRNA genes and their involvement in autoimmune diseases susceptibility. Immunol Res 2018; 65:811-827. [PMID: 28741258 DOI: 10.1007/s12026-017-8937-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
MicroRNAs (miRNAs) are small non-coding RNA molecules that negatively regulate the expression of multiple protein-encoding genes at the post-transcriptional level. MicroRNAs are involved in different pathways, such as cellular proliferation and differentiation, signal transduction and inflammation, and play crucial roles in the development of several diseases, such as cancer, diabetes, and cardiovascular diseases. They have recently been recognized to play a role also in the pathogenesis of autoimmune diseases. Although the majority of studies are focused on miRNA expression profiles investigation, a growing number of studies have been investigating the role of polymorphisms in miRNA genes in the autoimmune diseases development. Indeed, polymorphisms affecting the miRNA genes can modify the set of targets they regulate or the maturation efficiency. This review is aimed to give an overview about the available studies that have investigated the association of miRNA gene polymorphisms with the susceptibility to various autoimmune diseases and to their clinical phenotypes.
Collapse
Affiliation(s)
- Andrea Latini
- Department of Biomedicine and Prevention, Genetics Section, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Cinzia Ciccacci
- Department of Biomedicine and Prevention, Genetics Section, University of Rome Tor Vergata, 00133, Rome, Italy.
| | - Giuseppe Novelli
- Department of Biomedicine and Prevention, Genetics Section, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Paola Borgiani
- Department of Biomedicine and Prevention, Genetics Section, University of Rome Tor Vergata, 00133, Rome, Italy
| |
Collapse
|
21
|
Immune-related miRNA expression patterns in peripheral blood mononuclear cells differ in multiple sclerosis relapse and remission. J Neuroimmunol 2018; 317:67-76. [DOI: 10.1016/j.jneuroim.2018.01.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 12/28/2017] [Accepted: 01/04/2018] [Indexed: 01/21/2023]
|
22
|
Ciccacci C, Latini A, Greco C, Politi C, D'Amato C, Lauro D, Novelli G, Borgiani P, Spallone V. Association between a MIR499A polymorphism and diabetic neuropathy in type 2 diabetes. J Diabetes Complications 2018; 32:11-17. [PMID: 29108839 DOI: 10.1016/j.jdiacomp.2017.10.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 09/21/2017] [Accepted: 10/22/2017] [Indexed: 12/11/2022]
Abstract
AIMS Diabetic polyneuropathy (DPN) and cardiovascular autonomic neuropathy (CAN) affect a large percentage of diabetic people and impact severely on quality of life. As it seems that miRNAs and their variations might play a role in these complications, we investigated whether the rs3746444 SNP in the MIR499A gene could be associated with susceptibility to DPN and/or CAN. METHODS We analyzed 150 participants with type 2 diabetes. DNA was extracted from peripheral blood samples and genotyping was performed by TaqMan genotyping assay. Cardiovascular tests, MNSI-Q and MDNS for neuropathic symptoms and signs, VPT, and thermal thresholds were used for CAN and DPN assessment. We performed a genotype-phenotype correlation analysis. RESULTS We observed that the GG genotype was associated with a higher risk of developing CAN (P=0.002 and OR=16.08, P=0.0005 and OR=35.02, for early and confirmed CAN, respectively) and DPN (P=0.037 and OR=6.56), after correction for BMI, sex, age, HbA1c and disease duration. Moreover, the GG genotype was associated with worse values of MDNS (P=0.017), VPT (P=0.01), thermal thresholds (P=0.01), and CAN score (P<0.001). A logistic multivariate analysis confirmed that MIR499A GG genotype, disease duration and HbA1c contributed to early CAN (R2=0.26), while the same variables and age contributed to DPN (R2=0.21). With a multiple linear regression, we observed that GG genotype (P=0.001) and disease duration (P=0.035) were the main variables contributing to the CAN score (R2=0.35). CONCLUSIONS We described for the first time that the MIR499A genetic variation could be involved in diabetic neuropathies susceptibility. In particular, patients carrying the rs3746444 GG genotype had a higher risk of CAN development, together with a more severe form of CAN.
Collapse
Affiliation(s)
- Cinzia Ciccacci
- Department of Biomedicine and Prevention, Genetics Section, University of Rome "Tor Vergata", Italy
| | - Andrea Latini
- Department of Biomedicine and Prevention, Genetics Section, University of Rome "Tor Vergata", Italy
| | - Carla Greco
- Department of Systems Medicine, Endocrinology, University of Rome "Tor Vergata", Italy
| | - Cristina Politi
- Department of Biomedicine and Prevention, Genetics Section, University of Rome "Tor Vergata", Italy
| | - Cinzia D'Amato
- Department of Systems Medicine, Endocrinology, University of Rome "Tor Vergata", Italy
| | - Davide Lauro
- Department of Systems Medicine, Endocrinology, University of Rome "Tor Vergata", Italy
| | - Giuseppe Novelli
- Department of Biomedicine and Prevention, Genetics Section, University of Rome "Tor Vergata", Italy
| | - Paola Borgiani
- Department of Biomedicine and Prevention, Genetics Section, University of Rome "Tor Vergata", Italy.
| | - Vincenza Spallone
- Department of Systems Medicine, Endocrinology, University of Rome "Tor Vergata", Italy
| |
Collapse
|
23
|
Genetic Polymorphism of miR-196a-2 is Associated with Bone Mineral Density (BMD). Int J Mol Sci 2017; 18:ijms18122529. [PMID: 29186852 PMCID: PMC5751132 DOI: 10.3390/ijms18122529] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 11/22/2017] [Accepted: 11/23/2017] [Indexed: 12/27/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNA molecules that post-transcriptionally regulate the translation of messenger RNAs. Given the crucial role of miRNAs in gene expression, genetic variants within miRNA-related sequences may affect miRNA function and contribute to disease risk. Osteoporosis is characterized by reduced bone mass, and bone mineral density (BMD) is a major diagnostic proxy to assess osteoporosis risk. Here, we aimed to identify miRNAs that are involved in BMD using data from recent genome-wide association studies (GWAS) on femoral neck, lumbar spine and forearm BMD. Of 242 miRNA-variants available in the GWAS data, we found rs11614913:C > T in the precursor miR-196a-2 to be significantly associated with femoral neck-BMD (p-value = 9.9 × 10−7, β = −0.038) and lumbar spine-BMD (p-value = 3.2 × 10−11, β = −0.061). Furthermore, our sensitivity analyses using the Rotterdam study data showed a sex-specific association of rs11614913 with BMD only in women. Subsequently, we highlighted a number of miR-196a-2 target genes, expressed in bone and associated with BMD, that may mediate the miRNA function in BMD. Collectively, our results suggest that miR-196a-2 may contribute to variations in BMD level. Further biological investigations will give more insights into the mechanisms by which miR-196a-2 control expression of BMD-related genes.
Collapse
|
24
|
Toraih EA, Hussein MH, Al Ageeli E, Riad E, AbdAllah NB, Helal GM, Fawzy MS. Structure and functional impact of seed region variant in MIR-499 gene family in bronchial asthma. Respir Res 2017; 18:169. [PMID: 28886711 PMCID: PMC5591547 DOI: 10.1186/s12931-017-0648-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 08/25/2017] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Small non-coding RNAs (microRNAs) have been evolved to master numerous cellular processes. Genetic variants within microRNA seed region might influence microRNA biogenesis and function. The study aimed at determining the role of microRNA-499 (MIR-499) gene family polymorphism as a marker for susceptibility and progression of bronchial asthma and to analyze the structural and functional impact of rs3746444 within the seed region. METHODS Genotyping for 192 participants (96 patients and 96 controls) in the discovery phase and 319 subjects (115 patients and 204 controls) in the replication phase was performed via Real Time-Polymerase Chain Reaction technology. Patients underwent the methacholine challenge test and biochemical analysis. Gene structural and functional analysis, target prediction, annotation clustering, and pathway enrichment analysis were executed. Predicted functional effect of rs37464443 SNP was analyzed. RESULTS miR-499 gene family is highly implicated in inflammation-related signaling pathways. Rs374644 (A > G) in MIR499A and MIR499B within the seed region could disrupt target genes and create new genes. The G variant was associated with high risk of developing asthma under all genetic association models (G versus A: OR = 3.27, 95% CI = 2.53-4.22; GG versus AA: OR = 9.52, 95% CI = 5.61-16.5; AG versus AA: OR = 2.13, 95% CI = 1.24-3.46; GG + AG versus AA: OR = 4.43, 95% CI = 2.88-6.82). GG genotype was associated with poor pre-bronchodilator FEV1 (p = 0.047) and the worst bronchodilator response after Salbutamol inhalation, represented in low peaked expiratory flow rate (p = 0.035). CONCLUSIONS miR-499 rs3746444 (A > G) polymorphism was associated with asthma susceptibility and bronchodilator response in Egyptian children and adolescents. Further functional analysis is warranted to develop more specific theranostic agents for selecting targeted therapy.
Collapse
Affiliation(s)
- Eman A Toraih
- Genetics Unit, Department of Histology and Cell Biology, Faculty of Medicine, Suez Canal University, Ismailia, P.O. 41522, Egypt.
| | | | - Essam Al Ageeli
- Department of Clinical Biochemistry (Medical Genetics), Faculty of Medicine, Jazan University, Jazan, Saudi Arabia
| | - Eman Riad
- Department of Chest Diseases and Tuberculosis, Faculty of Medicine, Suez Canal University, Ismailia, P.O. 41522, Egypt
| | - Nouran B AbdAllah
- Department of Pediatrics, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Ghada M Helal
- Department of Medical Biochemistry, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Manal S Fawzy
- Department of Medical Biochemistry, Faculty of Medicine, Suez Canal University, Ismailia, P.O. 41522, Egypt.
- Department of Medical Biochemistry, Faculty of Medicine, Northern Border University, Arar, Kingdom of Saudi Arabia.
| |
Collapse
|
25
|
Jagot F, Davoust N. [MiRNAs: new actors in the physiopathology of multiple sclerosis]. Med Sci (Paris) 2017; 33:620-628. [PMID: 28990564 DOI: 10.1051/medsci/20173306019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Multiple sclerosis (MS) is an auto-immune demyelinating disorder characterized by a chronic neuro-inflammatory process associated with an infiltration of the central nervous system (CNS) by autoreactive lymphocytes. The etiology of the disease remains unclear but the recent discovery of a dysregulated miRNA network in both cells and extracellular fluids of MS patients has brought new insights on the pathophysiological mechanisms involved in this disorder. miRNAs can induce a T cell polarization towards a pathological Th17 or Th1 phenotype and a deleterious activation of microglia, the CNS-resident macrophages. We provide here a review of the most recent data regarding miRNA dysregulation and pathophysiological roles in MS patients and in the animal model of MS, EAE (experimental autoimmune encephalomyelitis). Moreover, we discuss the putative clinical value of miRNAs as a novel biomarker and diagnostic tool for MS.
Collapse
Affiliation(s)
- Ferdinand Jagot
- Département de biologie, École Normale Supérieure de Lyon, France
| | - Nathalie Davoust
- Département de biologie, École Normale Supérieure de Lyon, France - Laboratoire de biologie et de modélisation de la cellule, UMR5239/École Normale Supérieure de Lyon, UMS 344 Biosciences Lyon Gerland, université de Lyon, France
| |
Collapse
|
26
|
Liu X, Han Z, Yang C. Associations of microRNA single nucleotide polymorphisms and disease risk and pathophysiology. Clin Genet 2017; 92:235-242. [PMID: 27925170 DOI: 10.1111/cge.12950] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 11/28/2016] [Indexed: 12/19/2022]
Abstract
Single nucleotide polymorphisms (SNPs) are genetic variations that contribute to human phenotypes associated with various diseases. SNPs are involved in the regulation of a broad range of physiological and pathological processes, such as cellular senescence, apoptosis, inflammation, and immune response, by upregulating the expression of classical inflammation markers. Recent studies have suggested that SNPs located in gene-encoding microRNAs (miRNAs) affect various aspects of diseases by regulating the expression or activity of miRNAs. In the last few years, miRNA polymorphisms that increase and/or reduce the risk of developing many diseases, such as cancers, autoimmune diseases, and cardiovascular diseases, have attracted increasing attention not only because of their involvement in the pathophysiology of diseases but also because they can be used as prognostic biomarkers for a variety of diseases. In this review, we summarize the relationships between miRNA SNPs and the pathophysiology and risk of diseases.
Collapse
Affiliation(s)
- X Liu
- Department of Cardiology, Wuxi Second People's Hospital of Nanjing Medical University, Wuxi, China
| | - Z Han
- Department of Laboratory Medicine, Wuxi Second People's Hospital of Nanjing Medical University, Wuxi, China
| | - C Yang
- Department of Cardiology, Wuxi Second People's Hospital of Nanjing Medical University, Wuxi, China
| |
Collapse
|
27
|
Hosseini A, Ghaedi K, Tanhaei S, Ganjalikhani-Hakemi M, Teimuri S, Etemadifar M, Nasr Esfahani MH. Upregulation of CD4+T-Cell Derived MiR-223 in The Relapsing Phase of Multiple Sclerosis Patients. CELL JOURNAL 2016; 18:371-80. [PMID: 27602319 PMCID: PMC5011325 DOI: 10.22074/cellj.2016.4565] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 11/24/2015] [Indexed: 12/13/2022]
Abstract
Objective MicroRNAs (miRNA) are a class of non-coding RNAs which play key roles in
post-transcriptional gene regulation. Previous studies indicate that miRNAs are dysregulated in patients with multiple sclerosis (MS). Th17 and regulatory T (Treg) cells are two
subsets of CD4+T-cells which have critical functions in the onset and progression of MS.
The current study seeks to distinguish fluctuations in expression of CD4+T-cell derived
miR-223 during the relapsing-remitting (RR) phase of MS (RR-MS), as well as the expressions of Th17 and Treg cell markers.
Materials and Methods This experimental study used real-time quantitative polymerase
chain reaction (qRT-PCR) to evaluate CD4+ T cell derived miR-223 expression patterns
in patients that experienced either of the RR-MS phases (n=40) compared to healthy controls (n=12), along with RNA markers for Th17 and Treg cells. We conducted flow cytometry analyses of forkhead box P3 (FOXP3) and RAR-related orphan receptor γt (RORγt) in
CD4+T-cells. Putative and validated targets of miR-223 were investigated in the miRWalk
and miRTarBase databases, respectively.
Results miR-223 significantly upregulated in CD4+T-cells during the relapsing phase of
RR-MS compared to the remitting phase (P=0.000) and healthy individuals (P=0.036).
Expression of RORγt, a master transcription factor of Th17, upregulated in the relapsing phase, whereas FOXP3 upregulated in the remitting phase. Additionally, potential
targets of miR-223, STAT1, FORKHEAD BOX O (FOXO1) and FOXO3 were predicted
by in silico studies.
Conclusion miR-223 may have a potential role in MS progression. Therefore, suppression of miR-223 can be proposed as an appropriate approach to control progression of the relapsing phase of MS.
Collapse
Affiliation(s)
- Aref Hosseini
- Division of Cellular and Molecular Biology, Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan, Iran
| | - Kamran Ghaedi
- Division of Cellular and Molecular Biology, Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan, Iran; Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Somayeh Tanhaei
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | | | - Shohreh Teimuri
- Division of Cellular and Molecular Biology, Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan, Iran
| | - Masoud Etemadifar
- Department of Neurology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Hossein Nasr Esfahani
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| |
Collapse
|
28
|
Toraih EA, Ismail NM, Toraih AA, Hussein MH, Fawzy MS. Precursor miR-499a Variant but not miR-196a2 is Associated with Rheumatoid Arthritis Susceptibility in an Egyptian Population. Mol Diagn Ther 2016; 20:279-295. [PMID: 27002721 DOI: 10.1007/s40291-016-0194-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Rheumatoid arthritis (RA) has a complex component induced by several genes that interact together with environmental and hormonal factors. We aimed to investigate the association of miR-196a2 rs11614913 (C/T) and miR-499a rs3746444 (A/G) polymorphisms and their combination with RA susceptibility and disease activity in an Egyptian population, and to evaluate their impact on methotrexate drug response and toxicity. MATERIALS AND METHODS Bioinformatics databases were searched to select potential micro RNA (miRNA)-messenger RNA (mRNA) interactions involved in RA pathogenesis. Ninety-five RA patients diagnosed according to the American College of Rheumatology and 200 healthy controls were genotyped using real-time polymerase chain reaction technology. RESULTS In overall and stratified analysis, miR-499a, but not miR-196a2, was associated with RA risk. Heterozygote carriers with rs3746444*A/G displayed protection against developing RA (p = 0.005) with an odds ratio of 0.2 (95 % confidence interval 0.17-0.62). The carriage of the combinations (miR499a*AG + miR196a2*CC) and (miR499a*AA + miR196a2*TT) were 3 and 7.5 times more likely to develop RA, respectively, while the combinations (miR499a*GG + miR196a2*CC), (miR499a*AG + miR196a2*TT) and (miR499a*AA + miR196a2*CT) show less susceptibility to have RA disease (all p < 0.05). rs3746444*AA genotype had a higher disease activity score (DAS28) [p = 0.023], tender joint count (TJC) (p = 0.007), and methotrexate-induced gastrointestinal toxicity (p = 0.043) compared with both AG/GG genotypes. rs11614913*C carriers were associated with higher DAS28 activity (p = 0.021). Homozygote male patients (CC and TT) had higher TJC (p = 0.046) and higher rheumatoid factor levels (p = 0.026), whereas, TT homozygote females had higher levels of ALT (p = 0.022). CONCLUSIONS Different genotypes of miR-499a rs3746444 single nucleotide polymorphisms (SNPs) are associated with RA risk, disease activity, and methotrexate toxicity in our population. In combination with specific miR-196a2 rs11614913 genotypes, this risk could increase or decrease according to the type of combination. Further functional analysis of the SNP and its impact on mRNA targets is required to confirm the relationship between genotype and phenotype.
Collapse
Affiliation(s)
- Eman A Toraih
- Department of Histology and Cell Biology (Genetics Unit), Faculty of Medicine, Suez Canal University, Ismailia, Egypt.
| | - Nesreen M Ismail
- Department of Rheumatology and Rehabilitation, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Ahmed A Toraih
- Department of Orthopedic Surgery, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Mohammad H Hussein
- Department of Chest Disease, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Manal S Fawzy
- Department of Medical Biochemistry, Faculty of Medicine, Suez Canal University, PO 41522, Ismailia, Egypt.
| |
Collapse
|
29
|
Sex bias in paediatric autoimmune disease – Not just about sex hormones? J Autoimmun 2016; 69:12-23. [DOI: 10.1016/j.jaut.2016.02.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 02/25/2016] [Accepted: 02/29/2016] [Indexed: 02/06/2023]
|