1
|
Serafim Júnior V, Fernandes GMDM, Tedeschi BBB, Cuzziol CI, Castanhole-Nunes MMU, Ferreira LAM, Rodrigues GH, de Oliveira-Cucolo JG, Pavarino ÉC, Goloni-Bertollo EM. Cetuximab and Paclitaxel Drug Response in Head and Neck Tumor Stem Cells. Biomolecules 2025; 15:352. [PMID: 40149887 PMCID: PMC11940455 DOI: 10.3390/biom15030352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 02/17/2025] [Accepted: 02/19/2025] [Indexed: 03/29/2025] Open
Abstract
Head and neck cancer (HNC) is one of the most common types of cancer in the world, characterized by resistance to conventional therapies and an unfavorable prognosis due to the presence of tumor stem cells (TSCs). TSCs are cell subpopulations with high potential for invasion, migration, and metastasis, being responsible for the initiation and dissemination of cancer. This study aimed to evaluate the efficacy of treatments with cetuximab and paclitaxel, alone and in combination, in TSCs from oral cavity (SCC-28) and hypopharynx (FADU) cancer cell lines. In addition, the influence of the gene and protein expression of EGFR, NTRK2 (TRKB), KRAS, and HIF-1α on the response to treatments was investigated. TSCs were identified based on ALDH staining, and cell viability assays (MTS) indicated that both TSCs and non-TSCs showed resistance to cetuximab monotherapy, while paclitaxel, either alone or in combination with cetuximab, was more effective in reducing cell viability. Real-time PCR and Western blot analysis revealed increased expression of KRAS and HIF-1α in TSCs, suggesting their possible association with treatment resistance. The results of this study point to specific molecular factors that influence therapeutic responses in HNC, with an emphasis on the efficacy of drug combinations to overcome TSC resistance. The identification of these molecular mechanisms may provide guidelines for the development of more targeted and effective therapies against HNC, improving clinical management and patient prognoses.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Eny Maria Goloni-Bertollo
- Genetics and Molecular Biology Research Unit [UPGEM], Faculty of Medicine of São José do Rio Preto [FAMERP], Avenida Brigadeiro Faria Lima, number 5416, Vila São Pedro, São José do Rio Preto 15090-000, SP, Brazil; (V.S.J.); (G.M.d.M.F.); (B.B.B.T.); (C.I.C.); (M.M.U.C.-N.); (L.A.M.F.); (G.H.R.); (J.G.d.O.-C.); (É.C.P.)
| |
Collapse
|
2
|
Ostapowicz J, Ostrowska K, Golusiński W, Kulcenty K, Suchorska WM. Improving therapeutic strategies for Head and Neck Cancer: Insights from 3D hypoxic cell culture models in treatment response evaluation. Adv Med Sci 2024; 69:368-376. [PMID: 39047970 DOI: 10.1016/j.advms.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/04/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024]
Abstract
Hypoxia in the tumor core negatively affects the outcome of patients with head and neck squamous cell carcinoma (HNSCC). Nevertheless, its role in predicting treatment response requires further exploration. Typically, reduced oxygen levels in the tumor core correlate with diminished efficacy of radiotherapy, chemotherapy, and immunotherapy, which are commonly used for HNSCC patients' treatment. Understanding the mechanistic underpinnings of these varied treatment responses in HNSCC is crucial for enhancing therapeutic outcomes and extending patients' overall survival (OS) rates. Standard monolayer cell culture conditions have major limitations in mimicking tumor physiological features and the complexity of the tumor microenvironment. Three-dimensional (3D) cell cultures enable the recreation of the in vivo tumor attributes, encompassing oxygen and nutrient gradients, cellular morphology, and intracellular connections. It is vital to use the 3D model in treatment response studies to mimic the tumor microenvironment, as evidenced by the decreased sensitivity of 3D structures to anticancer therapy. Accordingly, the aim of the study was to delineate the utility of the 3D models of hypoxic head and neck tumors in drug screening and treatment response studies.
Collapse
Affiliation(s)
- Julia Ostapowicz
- Department of Electroradiology, Poznan University of Medical Sciences, Poznan, Poland; Radiobiology Laboratory, The Greater Poland Cancer Centre, Poznan, Poland; Doctoral School, Poznan University of Medical Sciences, Poznan, Poland.
| | - Kamila Ostrowska
- Radiobiology Laboratory, The Greater Poland Cancer Centre, Poznan, Poland; Department of Head and Neck Surgery, Poznan University of Medical Sciences, The Greater Poland Cancer Centre, Poznan, Poland
| | - Wojciech Golusiński
- Department of Head and Neck Surgery, Poznan University of Medical Sciences, The Greater Poland Cancer Centre, Poznan, Poland
| | - Katarzyna Kulcenty
- Radiobiology Laboratory, The Greater Poland Cancer Centre, Poznan, Poland
| | - Wiktoria M Suchorska
- Department of Electroradiology, Poznan University of Medical Sciences, Poznan, Poland; Radiobiology Laboratory, The Greater Poland Cancer Centre, Poznan, Poland
| |
Collapse
|
3
|
Diniz CHDP, Henrique T, Stefanini ACB, De Castro TB, Tajara EH. Cetuximab chemotherapy resistance: Insight into the homeostatic evolution of head and neck cancer (Review). Oncol Rep 2024; 51:80. [PMID: 38639184 PMCID: PMC11056821 DOI: 10.3892/or.2024.8739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 04/03/2024] [Indexed: 04/20/2024] Open
Abstract
The complex evolution of genetic alterations in cancer that occurs in vivo is a selective process involving numerous factors and mechanisms. Chemotherapeutic agents that prevent the growth and spread of cancer cells induce selective pressure, leading to rapid artificial selection of resistant subclones. This rapid evolution is possible because antineoplastic drugs promote alterations in tumor‑cell metabolism, thus creating a bottleneck event. The few resistant cells that survive in this new environment obtain differential reproductive success that enables them to pass down the newly selected resistant gene pool. The present review aims to summarize key findings of tumor evolution, epithelial‑mesenchymal transition and resistance to cetuximab therapy in head and neck squamous cell carcinoma.
Collapse
Affiliation(s)
- Carlos Henrique De Paula Diniz
- Department of Molecular Biology, School of Medicine of São José do Rio Preto-FAMERP, São José do Rio Preto, São Paulo, SP 15090-000, Brazil
| | - Tiago Henrique
- Department of Molecular Biology, School of Medicine of São José do Rio Preto-FAMERP, São José do Rio Preto, São Paulo, SP 15090-000, Brazil
| | - Ana Carolina B. Stefanini
- Department of Molecular Biology, School of Medicine of São José do Rio Preto-FAMERP, São José do Rio Preto, São Paulo, SP 15090-000, Brazil
- Department of Experimental Research, Albert Einstein Education and Research Israeli Institute, IIEPAE, São Paulo, SP 05652-900, Brazil
| | - Tialfi Bergamin De Castro
- Department of Molecular Biology, School of Medicine of São José do Rio Preto-FAMERP, São José do Rio Preto, São Paulo, SP 15090-000, Brazil
- Microbial Pathogenesis Department, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA
| | - Eloiza H. Tajara
- Department of Molecular Biology, School of Medicine of São José do Rio Preto-FAMERP, São José do Rio Preto, São Paulo, SP 15090-000, Brazil
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, SP 05508-090, Brazil
| |
Collapse
|
4
|
Fernandes GMDM, Serafim Junior V, Galbiatti-Dias ALS, Ferreira LAM, Castanhole-Nunes MMU, Kawasaki-Oyama RS, Maniglia JV, Pavarino EC, Goloni-Bertollo EM. Treatment effects of the EGFR pathway drugs on head and neck cancer stem cells. Am J Cancer Res 2022; 12:4196-4210. [PMID: 36225637 PMCID: PMC9548020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 06/18/2022] [Indexed: 06/16/2023] Open
Abstract
(1) Head and neck cancer (HNC) is the sixth most common cancer worldwide and show low survival rates and drug resistance, which can be due to the presence of cancer stem cells (CSCs), a small cell population with metastatic potential, invasion and self-renewal ability. (2) Here, seven tumor cells were sorted as CD44+/CD117+/CD133+ or ALDH+, considered as HNC stem cells (HNCSCs), and as CD44-/CD117-/CD133- or ALDH-, considered non-HNCSCs after both cells sorted criteria was compared to evaluate cell migration, invasion, and colony forming assays. These subpopulations were treated with Cetuximab, Paclitaxel, or a combination of both drugs and evaluated for cell viability. Quantitative PCR and western blot were performed to evaluate EGFR, TRKB, KRAS and HIF-1α gene and protein expression. (3) HNCSCs presented more colonies and appeared to be more sensitive to the drug combination when compared with non-HNCSCs, regardless cells sorted criteria and primary tumor subsite. The EGFR, TRKB, KRAS and HIF-1α genes and proteins were upregulated in CSCs compared with non-HNCSCs, thus explaining the drug resistance. (4) This study contributes to the better development of specific therapeutic protocols based on Cetuximab and Paclitaxel drugs in the treatment of HNC in the presence of CSCs and cell proliferation biomarkers.
Collapse
Affiliation(s)
- Glaucia Maria de Mendonça Fernandes
- Molecular Biology Department, Genetics and Molecular Biology Research Unit (UPGEM), Faculdade de Medicina de São José do Rio Preto (FAMERP)São José do Rio Preto, São Paulo, Brazil
| | - Vilson Serafim Junior
- Molecular Biology Department, Genetics and Molecular Biology Research Unit (UPGEM), Faculdade de Medicina de São José do Rio Preto (FAMERP)São José do Rio Preto, São Paulo, Brazil
| | - Ana Lívia Silva Galbiatti-Dias
- Molecular Biology Department, Genetics and Molecular Biology Research Unit (UPGEM), Faculdade de Medicina de São José do Rio Preto (FAMERP)São José do Rio Preto, São Paulo, Brazil
| | - Leticia Antunes Muniz Ferreira
- Molecular Biology Department, Genetics and Molecular Biology Research Unit (UPGEM), Faculdade de Medicina de São José do Rio Preto (FAMERP)São José do Rio Preto, São Paulo, Brazil
| | - Márcia Maria Urbanin Castanhole-Nunes
- Molecular Biology Department, Genetics and Molecular Biology Research Unit (UPGEM), Faculdade de Medicina de São José do Rio Preto (FAMERP)São José do Rio Preto, São Paulo, Brazil
| | - Rosa Sayoko Kawasaki-Oyama
- Molecular Biology Department, Genetics and Molecular Biology Research Unit (UPGEM), Faculdade de Medicina de São José do Rio Preto (FAMERP)São José do Rio Preto, São Paulo, Brazil
| | - José Victor Maniglia
- Department of Otolaryngology and Head and Neck Surgery, Faculdade de Medicina de São José do Rio Preto (FAMERP)São José do Rio Preto, São Paulo, Brazil
| | - Erika Cristina Pavarino
- Molecular Biology Department, Genetics and Molecular Biology Research Unit (UPGEM), Faculdade de Medicina de São José do Rio Preto (FAMERP)São José do Rio Preto, São Paulo, Brazil
| | - Eny Maria Goloni-Bertollo
- Molecular Biology Department, Genetics and Molecular Biology Research Unit (UPGEM), Faculdade de Medicina de São José do Rio Preto (FAMERP)São José do Rio Preto, São Paulo, Brazil
| |
Collapse
|
5
|
Cserepes M, Nelhűbel GA, Meilinger-Dobra M, Herczeg A, Türk D, Hegedűs Z, Svajda L, Rásó E, Ladányi A, Csikó KG, Kenessey I, Szöőr Á, Vereb G, Remenár É, Tóvári J. EGFR R521K Polymorphism Is Not a Major Determinant of Clinical Cetuximab Resistance in Head and Neck Cancer. Cancers (Basel) 2022; 14:cancers14102407. [PMID: 35626010 PMCID: PMC9140151 DOI: 10.3390/cancers14102407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/02/2022] [Accepted: 05/11/2022] [Indexed: 02/05/2023] Open
Abstract
Background: Head and neck squamous cell carcinomas (HNSCCs) are among the most abundant malignancies worldwide. Patients with recurrent/metastatic disease undergo combination chemotherapy containing cetuximab, the monoclonal antibody used against the epidermal growth factor receptor (EGFR). Cetuximab augments the effect of chemotherapy; however, a significant number of patients show therapy resistance. The mechanism of resistance is yet to be unveiled, although extracellular alterations of the receptor have been reported, and their role in cetuximab failure has been proposed. Aims: Here, we investigate possible effects of the multi-exon deletion variant (EGFRvIII), and the single nucleotide polymorphism EGFR R521K on cetuximab efficacy. Results: Our results show that in HNSCC patients, the EGFRvIII allele frequency is under 1%; therefore, it cannot lead to common resistance. EGFR R521K, present in 42% of the patients, is investigated in vitro in four HNSCC cell lines (two wild-type and two heterozygous for EGFR R521K). While no direct effect is found to be related to the EGFR status, cells harboring R521K show a reduced sensitivity in ADCC experiments and in vivo xenograft experiments. However, this preclinical difference is not reflected in the progression-free or overall survival of HNSCC patients. Furthermore, NK cell and macrophage presence in tumors is not related to EGFR R521K. Discussion: Our results suggest that EGFR R521K, unlike reported previously, is unable to cause cetuximab resistance in HNSCC patients; therefore, its screening before therapy selection is not justifiable.
Collapse
Affiliation(s)
- Mihály Cserepes
- Department of Experimental Pharmacology, National Institute of Oncology, Ráth György utca 7-9, H-1122 Budapest, Hungary; (M.C.); (G.A.N.); (D.T.); (Z.H.); (L.S.)
- National Tumor Biology Laboratory, National Institute of Oncology, H-1122 Budapest, Hungary; (A.L.); (I.K.)
| | - Györgyi A. Nelhűbel
- Department of Experimental Pharmacology, National Institute of Oncology, Ráth György utca 7-9, H-1122 Budapest, Hungary; (M.C.); (G.A.N.); (D.T.); (Z.H.); (L.S.)
| | - Mónika Meilinger-Dobra
- The Multidisciplinary Head and Neck Cancer Center, National Institute of Oncology, H-1122 Budapest, Hungary; (M.M.-D.); (A.H.); (É.R.)
| | - Adrienn Herczeg
- The Multidisciplinary Head and Neck Cancer Center, National Institute of Oncology, H-1122 Budapest, Hungary; (M.M.-D.); (A.H.); (É.R.)
| | - Dóra Türk
- Department of Experimental Pharmacology, National Institute of Oncology, Ráth György utca 7-9, H-1122 Budapest, Hungary; (M.C.); (G.A.N.); (D.T.); (Z.H.); (L.S.)
| | - Zita Hegedűs
- Department of Experimental Pharmacology, National Institute of Oncology, Ráth György utca 7-9, H-1122 Budapest, Hungary; (M.C.); (G.A.N.); (D.T.); (Z.H.); (L.S.)
| | - Laura Svajda
- Department of Experimental Pharmacology, National Institute of Oncology, Ráth György utca 7-9, H-1122 Budapest, Hungary; (M.C.); (G.A.N.); (D.T.); (Z.H.); (L.S.)
| | - Erzsébet Rásó
- Department of Pathology, Forensic and Insurance Medicine, Semmelweis University, H-1091 Budapest, Hungary;
| | - Andrea Ladányi
- National Tumor Biology Laboratory, National Institute of Oncology, H-1122 Budapest, Hungary; (A.L.); (I.K.)
- Department of Surgical and Molecular Pathology, National Institute of Oncology, H-1122 Budapest, Hungary
| | - Kristóf György Csikó
- Department of Chest and Abdominal Tumors and Clinical Pharmacology, National Institute of Oncology, H-1122 Budapest, Hungary;
| | - István Kenessey
- National Tumor Biology Laboratory, National Institute of Oncology, H-1122 Budapest, Hungary; (A.L.); (I.K.)
- Department of Pathology, Forensic and Insurance Medicine, Semmelweis University, H-1091 Budapest, Hungary;
- Hungarian Cancer Registry, National Institute of Oncology, H-1122 Budapest, Hungary
| | - Árpád Szöőr
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (Á.S.); (G.V.)
| | - György Vereb
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (Á.S.); (G.V.)
| | - Éva Remenár
- The Multidisciplinary Head and Neck Cancer Center, National Institute of Oncology, H-1122 Budapest, Hungary; (M.M.-D.); (A.H.); (É.R.)
| | - József Tóvári
- Department of Experimental Pharmacology, National Institute of Oncology, Ráth György utca 7-9, H-1122 Budapest, Hungary; (M.C.); (G.A.N.); (D.T.); (Z.H.); (L.S.)
- National Tumor Biology Laboratory, National Institute of Oncology, H-1122 Budapest, Hungary; (A.L.); (I.K.)
- Correspondence: ; Tel.: +36-1-224-8778; Fax: +36-1-224-8724
| |
Collapse
|
6
|
Wiechec E, Matic N, Ali A, Roberg K. Hypoxia induces radioresistance, epithelial‑mesenchymal transition, cancer stem cell‑like phenotype and changes in genes possessing multiple biological functions in head and neck squamous cell carcinoma. Oncol Rep 2022; 47:58. [PMID: 35059742 PMCID: PMC8808704 DOI: 10.3892/or.2022.8269] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 12/16/2021] [Indexed: 12/16/2022] Open
Abstract
Hypoxia has been linked with increased resistance to treatment in various solid tumors, including head and neck squamous cell carcinoma (HNSCC). The aim of the present study was to identify genes involved in hypoxia‑mediated responses to radiotherapy in HNSCC. A total of three HNSCC cell lines with an epithelial phenotype were selected for this study and cultured under normoxic (21% O2) or hypoxic (1% O2) conditions. The sensitivity of the HNSCC cells to radiotherapy was assessed by a crystal violet assay. Western blotting (for protein expression), cDNA microarrays and reverse transcription‑quantitative PCR (for gene expression) were also applied. Small interfering RNA silencing was used to knock down target genes. The results revealed that hypoxia negatively affected the response of HNSCC cells to radiotherapy. Of note, increased levels of N‑cadherin, vimentin and fibronectin, as well as stem cell‑associated transcription factors, were observed under hypoxia. The microarray analysis revealed a number of hypoxia‑regulated genes that were involved in multiple biological functions. However, downregulation of hypoxia‑regulated genes did not affect sensitivity to radiotherapy of the investigated cell lines. Taken together, the present findings indicated several important pathways and genes that were involved in hypoxia and radiotherapy resistance. It is hypothesized that panels of reported hypoxia‑regulated genes may be useful for the prediction of radiotherapy responses in patients with HNSCC.
Collapse
Affiliation(s)
- Emilia Wiechec
- Department of Biomedical and Clinical Sciences, Division of Cell Biology, Linköping University, 58185 Linköping, Sweden
| | - Natasa Matic
- Department of Otorhinolaryngology in Linköping, Anaesthetics, Operations and Specialty Surgery Center, Region Östergötland, 58185 Linköping, Sweden
| | - Ashfaq Ali
- National Bioinformatics Infrastructure Sweden, Science for Life Laboratory; Department of Immune Technology, Lund University, 22100 Lund, Sweden
| | - Karin Roberg
- Department of Biomedical and Clinical Sciences, Division of Cell Biology, Linköping University, 58185 Linköping, Sweden
| |
Collapse
|
7
|
Kałafut J, Czerwonka A, Anameriç A, Przybyszewska-Podstawka A, Misiorek JO, Rivero-Müller A, Nees M. Shooting at Moving and Hidden Targets-Tumour Cell Plasticity and the Notch Signalling Pathway in Head and Neck Squamous Cell Carcinomas. Cancers (Basel) 2021; 13:6219. [PMID: 34944837 PMCID: PMC8699303 DOI: 10.3390/cancers13246219] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 12/15/2022] Open
Abstract
Head and Neck Squamous Cell Carcinoma (HNSCC) is often aggressive, with poor response to current therapies in approximately 40-50% of the patients. Current therapies are restricted to operation and irradiation, often combined with a small number of standard-of-care chemotherapeutic drugs, preferentially for advanced tumour patients. Only very recently, newer targeted therapies have entered the clinics, including Cetuximab, which targets the EGF receptor (EGFR), and several immune checkpoint inhibitors targeting the immune receptor PD-1 and its ligand PD-L1. HNSCC tumour tissues are characterized by a high degree of intra-tumour heterogeneity (ITH), and non-genetic alterations that may affect both non-transformed cells, such as cancer-associated fibroblasts (CAFs), and transformed carcinoma cells. This very high degree of heterogeneity likely contributes to acquired drug resistance, tumour dormancy, relapse, and distant or lymph node metastasis. ITH, in turn, is likely promoted by pronounced tumour cell plasticity, which manifests in highly dynamic and reversible phenomena such as of partial or hybrid forms of epithelial-to-mesenchymal transition (EMT), and enhanced tumour stemness. Stemness and tumour cell plasticity are strongly promoted by Notch signalling, which remains poorly understood especially in HNSCC. Here, we aim to elucidate how Notch signal may act both as a tumour suppressor and proto-oncogenic, probably during different stages of tumour cell initiation and progression. Notch signalling also interacts with numerous other signalling pathways, that may also have a decisive impact on tumour cell plasticity, acquired radio/chemoresistance, and metastatic progression of HNSCC. We outline the current stage of research related to Notch signalling, and how this pathway may be intricately interconnected with other, druggable targets and signalling mechanisms in HNSCC.
Collapse
Affiliation(s)
- Joanna Kałafut
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, ul. Chodzki 1, 20-093 Lublin, Poland; (J.K.); (A.C.); (A.A.); (A.P.-P.); (A.R.-M.)
| | - Arkadiusz Czerwonka
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, ul. Chodzki 1, 20-093 Lublin, Poland; (J.K.); (A.C.); (A.A.); (A.P.-P.); (A.R.-M.)
| | - Alinda Anameriç
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, ul. Chodzki 1, 20-093 Lublin, Poland; (J.K.); (A.C.); (A.A.); (A.P.-P.); (A.R.-M.)
| | - Alicja Przybyszewska-Podstawka
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, ul. Chodzki 1, 20-093 Lublin, Poland; (J.K.); (A.C.); (A.A.); (A.P.-P.); (A.R.-M.)
| | - Julia O. Misiorek
- Department of Molecular Neurooncology, Institute of Bioorganic Chemistry Polish Academy of Sciences, ul. Noskowskiego 12/14, 61-704 Poznan, Poland;
| | - Adolfo Rivero-Müller
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, ul. Chodzki 1, 20-093 Lublin, Poland; (J.K.); (A.C.); (A.A.); (A.P.-P.); (A.R.-M.)
| | - Matthias Nees
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, ul. Chodzki 1, 20-093 Lublin, Poland; (J.K.); (A.C.); (A.A.); (A.P.-P.); (A.R.-M.)
- Western Finland Cancer Centre (FICAN West), Institute of Biomedicine, University of Turku, 20101 Turku, Finland
| |
Collapse
|
8
|
Wu K, Mao YY, Chen Q, Zhang B, Zhang S, Wu HJ, Li Y. Hypoxia-induced ROS promotes mitochondrial fission and cisplatin chemosensitivity via HIF-1α/Mff regulation in head and neck squamous cell carcinoma. Cell Oncol (Dordr) 2021; 44:1167-1181. [PMID: 34460078 DOI: 10.1007/s13402-021-00629-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2021] [Indexed: 10/20/2022] Open
Abstract
PURPOSE Chemotherapy based on cisplatin (CDDP) has been established as the treatment of choice for head and neck squamous cell carcinoma (HNSCC). Malignant tumors respond to microenvironmental alterations through a dynamic balance between mitochondrial fission and fusion. HNSCCs are known to exhibit hypoxic conditions, yet the respective effects and underlying mechanisms of hypoxia on chemosensitivity and mitochondrial dynamics remain to be resolved. METHODS The effect of hypoxia on the chemosensitivity of HNCC cells was determined by flow cytometry. Mitochondrial fission factor (Mff) expression was assessed by RT-PCR and Western blotting in hypoxic HNSCC cells, and further verified in primary CDDP-sensitive and CDDP-resistant HSNCC samples. The biological function of Mff was evaluated by loss of function and gain of function analyses, both in vitro and in vivo. RESULTS We found that hypoxia promoted mitochondrial fission and CDDP sensitivity in HNSCC cells. Importantly, Mff was found to be correlated with chemosensitivity in primary clinical samples under hypoxic conditions. Hypoxia-inducible factor 1α (HIF-1α) was found to markedly increase Mff transcription and to directly bind to Mff. Hypoxia enhanced the release of reactive oxygen species (ROS) and upregulated the expression of Mff via HIF-1α in HNSCC cells. ROS depletion in HNSCC cells attenuated HIF-1α expression, Mff expression and mitochondrial fission. Moreover, Mff knockdown led to suppression of hypoxia-induced mitochondrial fission and to decreased CDDP chemosensitivity in vivo and in vitro. CONCLUSIONS Our findings indicate that hypoxia-induced release of ROS can promote mitochondrial fission and CDDP chemosensitivity via HIF1α/Mff regulation in HNSCC cells, indicating that Mff may serve as a biomarker to predict neoadjuvant chemosensitivity in HNSCC patients and as a target for overcoming chemoresistance.
Collapse
Affiliation(s)
- Kun Wu
- Department of Stomatology, Second Xiangya Hospital, Central South University, Renmin road, No. 139, Changsha, 410011, Hunan, China
| | - Yuan-Yuan Mao
- Department of Anesthesiology, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qi Chen
- Department of Stomatology Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Bolin Zhang
- Department of Stomatology, Xinhua Hospital Affiliated To Shanghai Jiao Tong University, Shanghai, China
| | - Sheng Zhang
- Department of Stomatology, Second Xiangya Hospital, Central South University, Renmin road, No. 139, Changsha, 410011, Hunan, China.
| | - Han-Jiang Wu
- Department of Stomatology, Second Xiangya Hospital, Central South University, Renmin road, No. 139, Changsha, 410011, Hunan, China.
| | - Yan Li
- Precision Research Center for Refractory Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 650 Xin Songjia Road, Shanghai, 200025, China.
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China.
| |
Collapse
|
9
|
De Las Rivas J, Brozovic A, Izraely S, Casas-Pais A, Witz IP, Figueroa A. Cancer drug resistance induced by EMT: novel therapeutic strategies. Arch Toxicol 2021; 95:2279-2297. [PMID: 34003341 PMCID: PMC8241801 DOI: 10.1007/s00204-021-03063-7] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 04/28/2021] [Indexed: 02/06/2023]
Abstract
Over the last decade, important clinical benefits have been achieved in cancer patients by using drug-targeting strategies. Nevertheless, drug resistance is still a major problem in most cancer therapies. Epithelial-mesenchymal plasticity (EMP) and tumour microenvironment have been described as limiting factors for effective treatment in many cancer types. Moreover, epithelial-to-mesenchymal transition (EMT) has also been associated with therapy resistance in many different preclinical models, although limited evidence has been obtained from clinical studies and clinical samples. In this review, we particularly deepen into the mechanisms of which intermediate epithelial/mesenchymal (E/M) states and its interconnection to microenvironment influence therapy resistance. We also describe how the use of bioinformatics and pharmacogenomics will help to figure out the biological impact of the EMT on drug resistance and to develop novel pharmacological approaches in the future.
Collapse
Affiliation(s)
- Javier De Las Rivas
- Bioinformatics and Functional Genomics Group, Cancer Research Center (CiC-IBMCC, CSIC/USAL/IBSAL), Consejo Superior de Investigaciones Científicas (CSIC), University of Salamanca (USAL), Salamanca, Spain
| | - Anamaria Brozovic
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička 54, 10000, Zagreb, Croatia
| | - Sivan Izraely
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel Aviv, Israel
| | - Alba Casas-Pais
- Epithelial Plasticity and Metastasis Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, Spain.,Universidade da Coruña (UDC), Coruña, Spain
| | - Isaac P Witz
- Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel Aviv, Israel
| | - Angélica Figueroa
- Epithelial Plasticity and Metastasis Group, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), Sergas, Spain. .,Universidade da Coruña (UDC), Coruña, Spain.
| |
Collapse
|
10
|
Fernandes GMDM, Galbiatti-Dias ALS, Ferreira LAM, Serafim Junior V, Rodrigues-Fleming GH, de Oliveira-Cucolo JG, Biselli-Chicote PM, Kawasaki-Oyama RS, Maniglia JV, Pavarino ÉC, Goloni-Bertollo EM. Anti-EGFR treatment effects on laryngeal cancer stem cells. Am J Transl Res 2021; 13:143-155. [PMID: 33527014 PMCID: PMC7847503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 07/18/2020] [Indexed: 06/12/2023]
Abstract
Laryngeal cancer (LC) is one of the common head and neck neoplasms and is characterized by resistance to conventional therapy and poor prognosis. This may result from the presence of cancer stem cells (CSCs), which form a small population in tumors with metastatic potential, high invasive capacity, self-renewal, and differentiation. This study aimed to evaluate the effectiveness of 5-fluorouracil and cisplatin individually, as well as the combination of cetuximab and paclitaxel in a CSC subpopulation separated with biomarkers related to tumoral growth (CD44, CD117, and CD133). In addition, expression of TrkB, KRAS, HIF-1α, and VEGF-A genes and proteins related to cell proliferation were evaluated in this subpopulation. The CD44, CD133, and CD117 biomarkers were used to analyze the identification and separation of both subpopulations using FACSAria Fusion. Subpopulations positive for CD44, CD133, and CD117 or lacking these biomarkers were classified as laryngeal cancer stem cells (LCSCs) or laryngeal cancer non-stem cells (non-LCSCs), respectively. Matrigel invasion and colony forming assays were performed to confirm CSC presence. Subpopulations were cultured and exposed to 5-fluorouracil, cisplatin, and cetuximab/paclitaxel drugs for 24 h. Cell proliferation was determined using MTS assay. KRAS and TrkB gene expression levels were evaluated using quantitative real time PCR with TaqMan® Assay in both subpopulations. The non-LCSC subpopulation was considered as the control for relative expression. We found that the LCSC subpopulation demonstrated more resistance to cetuximab and paclitaxel combination chemotherapy when compared with the non-LCSC subpopulation of the cell line. These LCSC subpopulations presented up-regulated expression of KRAS, HIF-1α, and VEGF-A genes and proteins and no TrkB gene expression, but TrkB protein expression was up-regulated in the LC cell line when compared to the non-CSC subpopulation. "In conclusion, the combination of CD44, CD133, and CD117 biomarkers has stem cell properties. Moreover, LCSCs, are capable of resisting treatment and present high KRAS, HIF-1α, and VEGF-A gene expression".
Collapse
Affiliation(s)
| | - Ana Lívia Silva Galbiatti-Dias
- Genetics and Molecular Biology Research Unit (UPGEM), São José do Rio Preto Medical School (FAMERP)São José do Rio Preto, São Paulo, Brazil
| | - Leticia Antunes Muniz Ferreira
- Genetics and Molecular Biology Research Unit (UPGEM), São José do Rio Preto Medical School (FAMERP)São José do Rio Preto, São Paulo, Brazil
| | - Vilson Serafim Junior
- Genetics and Molecular Biology Research Unit (UPGEM), São José do Rio Preto Medical School (FAMERP)São José do Rio Preto, São Paulo, Brazil
| | - Gabriela Helena Rodrigues-Fleming
- Genetics and Molecular Biology Research Unit (UPGEM), São José do Rio Preto Medical School (FAMERP)São José do Rio Preto, São Paulo, Brazil
| | - Juliana Garcia de Oliveira-Cucolo
- Genetics and Molecular Biology Research Unit (UPGEM), São José do Rio Preto Medical School (FAMERP)São José do Rio Preto, São Paulo, Brazil
| | - Patrícia Matos Biselli-Chicote
- Genetics and Molecular Biology Research Unit (UPGEM), São José do Rio Preto Medical School (FAMERP)São José do Rio Preto, São Paulo, Brazil
| | - Rosa Sayoko Kawasaki-Oyama
- Genetics and Molecular Biology Research Unit (UPGEM), São José do Rio Preto Medical School (FAMERP)São José do Rio Preto, São Paulo, Brazil
| | - José Victor Maniglia
- Department of Otolaryngology and Head and Neck Surgery, São José do Rio Preto Medical School (FAMERP)São José do Rio Preto, São Paulo, Brazil
| | - Érika Cristina Pavarino
- Genetics and Molecular Biology Research Unit (UPGEM), São José do Rio Preto Medical School (FAMERP)São José do Rio Preto, São Paulo, Brazil
| | - Eny Maria Goloni-Bertollo
- Genetics and Molecular Biology Research Unit (UPGEM), São José do Rio Preto Medical School (FAMERP)São José do Rio Preto, São Paulo, Brazil
| |
Collapse
|
11
|
Patel U, Pandey M, Kannan S, Samant TA, Gera P, Mittal N, Rane S, Patil A, Noronha V, Joshi A, Patil VM, Prabhash K, Mahimkar MB. Prognostic and predictive significance of nuclear HIF1α expression in locally advanced HNSCC patients treated with chemoradiation with or without nimotuzumab. Br J Cancer 2020; 123:1757-1766. [PMID: 32939054 PMCID: PMC7722894 DOI: 10.1038/s41416-020-01064-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 08/10/2020] [Accepted: 08/26/2020] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Anti-EGFR-based therapies have limited success in HNSCC patients. Predictive biomarkers are greatly needed to identify the patients likely to be benefited from these targeted therapies. Here, we present the prognostic and predictive association of biomarkers in HPV-negative locally advanced (LA) HNSCC patients. METHODS Treatment-naive tumour tissue samples of 404 patients, a subset of randomised Phase 3 trial comparing cisplatin radiation (CRT) versus nimotuzumab plus cisplatin radiation (NCRT) were analysed to evaluate the expression of HIF1α, EGFR and pEGFR by immunohistochemistry and EGFR gene copy change by FISH. Progression-free survival (PFS), locoregional control (LRC) and overall survival (OS) were estimated by Kaplan-Meier method. Hazard ratios were estimated by Cox proportional hazard models. RESULTS Baseline characteristics of the patients were balanced between two treatment groups (CRT vs NCRT) and were representative of the trial cohort. The median follow-up was of 39.13 months. Low HIF1α was associated with better PFS [HR (95% CI) = 0.62 (0.42-0.93)], LRC [HR (95% CI) = 0.56 (0.37-0.86)] and OS [HR (95% CI) = 0.63 (0.43-0.93)] in the CRT group. Multivariable analysis revealed HIF1α as an independent negative prognostic biomarker. For patients with high HIF1α, NCRT significantly improved the outcomes [PFS:HR (95% CI) = 0.55 (0.37-0.82), LRC:HR (95% CI) = 0.55 (0.36-0.85) and OS:HR (95% CI) = 0.54 (0.36-0.81)] compared to CRT. While in patients with low HIF1α, no difference in the clinical outcomes was observed between treatments. Interaction test suggested a predictive value of HIF1α for OS (P = 0.008). CONCLUSIONS High HIF1α expression is a predictor of poor clinical response to CRT in HPV-negative LA-HNSCC patients. These patients with high HIF1α significantly benefited with the addition of nimotuzumab to CRT. CLINICAL TRIAL REGISTRATION Registered with the Clinical Trial Registry of India (Trial registration identifier-CTRI/2014/09/004980).
Collapse
Affiliation(s)
- Usha Patel
- Mahimkar Lab, Cancer Research Institute, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, Maharashtra, India.,Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra, India
| | - Manish Pandey
- Mahimkar Lab, Cancer Research Institute, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, Maharashtra, India
| | - Sadhana Kannan
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra, India.,Biostatistician, Clinical Research Secretariat, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, Maharashtra, India
| | - Tanuja A Samant
- Mahimkar Lab, Cancer Research Institute, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, Maharashtra, India
| | - Poonam Gera
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra, India.,Biorepository, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, Maharashtra, India
| | - Neha Mittal
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra, India.,Department of Pathology, Tata Memorial Hospital, Tata Memorial Centre, Mumbai, Maharashtra, India
| | - Swapnil Rane
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra, India.,Department of Pathology, Tata Memorial Hospital, Tata Memorial Centre, Mumbai, Maharashtra, India
| | - Asawari Patil
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra, India.,Department of Pathology, Tata Memorial Hospital, Tata Memorial Centre, Mumbai, Maharashtra, India
| | - Vanita Noronha
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra, India.,Department of Medical Oncology, Tata Memorial Hospital, Tata Memorial Centre, Mumbai, Maharashtra, India
| | - Amit Joshi
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra, India.,Department of Medical Oncology, Tata Memorial Hospital, Tata Memorial Centre, Mumbai, Maharashtra, India
| | - Vijay M Patil
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra, India.,Department of Medical Oncology, Tata Memorial Hospital, Tata Memorial Centre, Mumbai, Maharashtra, India
| | - Kumar Prabhash
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra, India.,Department of Medical Oncology, Tata Memorial Hospital, Tata Memorial Centre, Mumbai, Maharashtra, India
| | - Manoj B Mahimkar
- Mahimkar Lab, Cancer Research Institute, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, Maharashtra, India. .,Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra, India.
| |
Collapse
|
12
|
Positron Emission Tomography and Molecular Imaging of Head and Neck Malignancies. CURRENT RADIOLOGY REPORTS 2020. [DOI: 10.1007/s40134-020-00366-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
13
|
Serafim Junior V, Fernandes GMDM, Oliveira-Cucolo JGD, Pavarino EC, Goloni-Bertollo EM. Role of Tropomyosin-related kinase B receptor and brain-derived neurotrophic factor in cancer. Cytokine 2020; 136:155270. [PMID: 32911446 DOI: 10.1016/j.cyto.2020.155270] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 08/27/2020] [Indexed: 02/07/2023]
Abstract
The tropomyosin-related kinase B (TrkB) receptor is a member of the neurotrophic tyrosine kinase receptors family and, together with the brain-derived neurotrophic factor (BDNF), plays an important role in the development of breast cancer, lung cancer, neuroblastoma, colorectal cancer, leukemia, cervical cancer, gallbladder cancer, gastric cancer, kidney cancer, Ewing's sarcoma, esophageal cancer, and head and neck cancer. Overexpression of these two factors has been associated with increased processes involved in carcinogenesis, such as invasion, migration, epithelial-mesenchymal transition (EMT), angiogenesis, metastasis, cell proliferation, resistance to apoptosis, resistance to cell death due to loss of adhesion (anoikis), activation of cell proliferation pathways, regulation of tumor suppressor genes, and drug resistance, and is related to advanced clinical stage. Inhibition of the TrkB/BDNF axis using drugs in phase 1 studies, approved drugs, and small interfering RNA (siRNA) are promising strategies for the treatment of various malignant tumors in addition to increasing the sensitivity of cells resistant to chemotherapy, improving the effectiveness of drugs without increasing toxicity. Another factor related to poor cancer prognosis is the presence of cancer stem cells, having effects similar to the high expression of the TrkB/BDNF axis, on cancer. This review aimed to show the role of the TrkB/BDNF axis in several types of cancer, its possible use as a prognostic biomarker, the effects of inhibiting this axis, and its role in the cancer stem cells.
Collapse
Affiliation(s)
- Vilson Serafim Junior
- Genetics and Molecular Biology Research Unit (UPGEM), São José do Rio Preto Medical School (FAMERP), São José do Rio Preto, São Paulo, Brazil
| | - Glaucia Maria de Mendonça Fernandes
- Genetics and Molecular Biology Research Unit (UPGEM), São José do Rio Preto Medical School (FAMERP), São José do Rio Preto, São Paulo, Brazil
| | - Juliana Garcia de Oliveira-Cucolo
- Genetics and Molecular Biology Research Unit (UPGEM), São José do Rio Preto Medical School (FAMERP), São José do Rio Preto, São Paulo, Brazil
| | - Erika Cristina Pavarino
- Genetics and Molecular Biology Research Unit (UPGEM), São José do Rio Preto Medical School (FAMERP), São José do Rio Preto, São Paulo, Brazil
| | - Eny Maria Goloni-Bertollo
- Genetics and Molecular Biology Research Unit (UPGEM), São José do Rio Preto Medical School (FAMERP), São José do Rio Preto, São Paulo, Brazil.
| |
Collapse
|
14
|
Bhatia P, Sharma V, Alam O, Manaithiya A, Alam P, Kahksha, Alam MT, Imran M. Novel quinazoline-based EGFR kinase inhibitors: A review focussing on SAR and molecular docking studies (2015-2019). Eur J Med Chem 2020; 204:112640. [PMID: 32739648 DOI: 10.1016/j.ejmech.2020.112640] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/29/2020] [Accepted: 07/01/2020] [Indexed: 12/11/2022]
Abstract
The over expression of EGFR has been recognized as the driver mechanism in the occurrence and progression of carcinomas such as lung cancer, breast cancer, pancreatic cancer, etcetera. EGFR receptor was thus established as an important target for the management of solid tumors. The occurrence of resistance caused as a result of mutations in EGFR has presented a formidable challenge in the discovery of novel inhibitors of EGFR. This has resulted in the development of three generations of EGFR TKIs. Newer mutations like C797S cause failure of Osimertinib and other EGFR TKIs belonging to the third-generation caused by the development of resistance. In this review, we have summarized the work done in the last five years to overcome the limitations of currently marketed drugs, giving structural activity relationships of quinazoline-based lead compounds synthesized and tested recently. We have also highlighted the shortcomings of the currently used approaches and have provided guidance for circumventing these limitations. Our review would help medicinal chemists streamline and guide their efforts towards developing novel quinazoline-based EGFR inhibitors.
Collapse
Affiliation(s)
- Parth Bhatia
- Medicinal Chemistry and Molecular Modelling Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Vrinda Sharma
- Medicinal Chemistry and Molecular Modelling Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Ozair Alam
- Medicinal Chemistry and Molecular Modelling Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| | - Ajay Manaithiya
- Medicinal Chemistry and Molecular Modelling Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Perwaiz Alam
- Medicinal Chemistry and Molecular Modelling Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Kahksha
- Medicinal Chemistry and Molecular Modelling Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Md Tauquir Alam
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Northern Border University, Rafha, Pin Code 91911, Saudi Arabia
| | - Mohd Imran
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Northern Border University, Rafha, Pin Code 91911, Saudi Arabia
| |
Collapse
|
15
|
Tang J, Zhu H, Lin J, Wang H. Knockdown of Circ_0081143 Mitigates Hypoxia-Induced Migration, Invasion, and EMT in Gastric Cancer Cells Through the miR-497-5p/EGFR Axis. Cancer Biother Radiopharm 2020; 36:333-346. [PMID: 32678674 DOI: 10.1089/cbr.2019.3512] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Jianjun Tang
- Department of General Surgery, Xiangyang No. 1 People's Hospital (Affiliated Hospital of Hubei University of Medicine), Xiangyang, China
| | - Hongyan Zhu
- Department of Oncology, Xiangyang No. 1 People's Hospital (Affiliated Hospital of Hubei University of Medicine), Xiangyang, China
| | - Jingjing Lin
- Department of Blood Transfusion, Xiangyang Traditional Chinese Medicine Hospital, Xiangyang, China
| | - Hongbo Wang
- Department of General Surgery, Xiangyang Central Hospital (Affiliated Hospital of Hubei University of Arts and Science), Xiangyang, China
| |
Collapse
|
16
|
MicroRNA-141 suppresses growth and metastatic potential of head and neck squamous cell carcinoma. Aging (Albany NY) 2020; 11:921-932. [PMID: 30737360 PMCID: PMC6382419 DOI: 10.18632/aging.101791] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 01/21/2019] [Indexed: 12/01/2022]
Abstract
MicroRNAs (miRNAs) serve as regulatory factors in both healthy tissue and various cancers. Here, we used an miRNA microarray to screen for miRNAs differentially expressed between HNSCC and adjacent epithelial tissue. Among these, levels of miR-141 were significantly reduced in HNSCC tissues. Expression levels of epidermal growth factor receptor (EGFR) were enhanced in tissues with low miR-141 expression but were reduced by miR-141 overexpression, and there was a significant negative correlation between EGFR and miR-141 levels in HNSCC tissues (P < 0.01). Luciferase assays confirmed that miR-141 targeted EGFR mRNA. In vitro, miR-141 inhibited the proliferation and migration of Cal-27 and FaDu HNSCC cells with corresponding decreases in CDK4 and MMP2. miR-141 also enhanced the incidence of apoptosis among the cells with a corresponding decrease in bcl-2. In BALB/c mice injected with FaDu HNSCC cells, miR-141 mitigated hepatic metastasis and inhibited expression of EGFR, CDK4, bcl-2 and MMP2. These results suggest that miR-141 functions as a tumor suppressor in HNSCC and that it suppresses tumor growth and metastasis by suppressing EGFR signaling. MiR-141 thus appears to be a potentially useful therapeutic target in the treatment of HNSCC.
Collapse
|
17
|
Matic N, Ressner M, Wiechec E, Roberg K. In vitro measurement of glucose uptake after radiation and cetuximab treatment in head and neck cancer cell lines using 18F-FDG, gamma spectrometry and PET/CT. Oncol Lett 2019; 18:5155-5162. [PMID: 31620196 PMCID: PMC6788167 DOI: 10.3892/ol.2019.10916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 08/06/2019] [Indexed: 11/25/2022] Open
Abstract
The standard treatment for head and neck squamous cell carcinoma (HNSCC) is radiotherapy, often in combination with chemotherapy or surgery. However, a novel monoclonal antibody, cetuximab (Erbitux®), has also been approved for patient therapy. The aim of present study was to develop an in vitro method for the measurement of 18F-fluoro-2deoxy-D-glucose (FDG) to determine if cellular 18F-FDG uptake is associated with response to radiotherapy or cetuximab treatment. In the current study, HNSCC cell lines were treated with radiation or with cetuximab. Next, the uptake of 18F-FDG was measured using a gamma spectrometer (GS). Thereafter, uptake after radiation was measured first with GS and then compared with positron emission tomography (PET)/computed tomography (CT) imaging. Furthermore, the mRNA expression of glucose transporter 1 (GLUT1) was measured following cetuximab treatment via reverse transcription-quantitative PCR. A study protocol was developed to measure the cellular uptake of 18F-FDG via gamma-ray spectrometry and comparable results were obtained with those of clinical PET/CT. The results revealed a decrease in 18F-FDG after radiation and cetuximab treatment. The uptake of 18F-FDG following cetuximab treatment was significantly lower in the cetuximab-sensitive cell line UT-SCC-14 compared with the cetuximab-resistant cell lines UT-SCC-2 and UT-SCC-45. Furthermore, after treatment with cetuximab for 24 and 48 h, a significant increase in GLUT1 expression was detected in the sensitive cell line compared with the two resistant cell lines. In conclusion, a novel yet reliable method for the measurement of intracellular 18F-FDG via GS has been developed, and our results indicate that 18F-FDG uptake is associated with radiation and cetuximab response in HNSCC.
Collapse
Affiliation(s)
- Natasa Matic
- Division of Cell Biology, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping, Östergötland SE-58185, Sweden.,Department of Otorhinolaryngology in Linköping, Anesthetics, Operations and Specialty Surgery Center, University Hospital, Linköping, Östergötland SE-58185, Sweden
| | - Marcus Ressner
- Center for Medical Image Science and Visualization, Linköping University, Linköping, Östergötland SE-58185, Sweden
| | - Emilia Wiechec
- Division of Cell Biology, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping, Östergötland SE-58185, Sweden
| | - Karin Roberg
- Division of Cell Biology, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping, Östergötland SE-58185, Sweden.,Department of Otorhinolaryngology in Linköping, Anesthetics, Operations and Specialty Surgery Center, University Hospital, Linköping, Östergötland SE-58185, Sweden
| |
Collapse
|
18
|
Benedetto R, Massicano AVF, Crenshaw BK, Oliveira R, Reis RM, Araújo EB, Lapi SE. 89Zr-DFO-Cetuximab as a Molecular Imaging Agent to Identify Cetuximab Resistance in Head and Neck Squamous Cell Carcinoma. Cancer Biother Radiopharm 2019; 34:288-296. [PMID: 30865493 DOI: 10.1089/cbr.2018.2616] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background: Despite the improvement in clinical outcomes for head and neck squamous cell carcinoma (HNSCC) as the result of cetuximab, patients may present with or develop resistance that increases tumor recurrence rates and limits clinical efficacy. Therefore, identifying those patients who are or become resistant is essential to tailor the best therapeutic approach. Materials and Methods: Cetuximab was conjugated to p-NCS-Bz-DFO and labeled with 89Zr. The resistance model was developed by treating FaDu cells with cetuximab. Western blotting (WB) and specific binding assays were performed to evaluate epidermal growth factor receptor (EGFR) expression and 89Zr-DFO-cetuximab uptake in FaDu cetuximab-resistant (FCR) and FaDu cetuximab-sensitive (FCS) cells. Positron emission tomography imaging and biodistribution were conducted in NU/NU nude mice implanted with FCR or FCS cells. Results: Cetuximab was successfully radiolabeled with 89Zr (≥95%). Binding assays performed in FCR and FCS cells showed significantly lower 89Zr-DFO-cetuximab uptake in FCR (p < 0.0001). WB suggests that the resistance mechanism is associated with EGFR downregulation (p = 0.038). This result is in agreement with the low uptake of 89Zr-DFO-cetuximab in FCR cells. Tumor uptake of 89Zr-DFO-cetuximab in FCR was significantly lower than FCS tumors (p = 0.0340). Conclusions: In this work, the authors showed that 89Zr-DFO-cetuximab is suitable for identification of EGFR downregulation in vitro and in vivo. This radiopharmaceutical may be useful for monitoring resistance in HNSCC patients during cetuximab therapy.
Collapse
Affiliation(s)
- Raquel Benedetto
- 1 Instituto de Pesquisas Energéticas e Nucleares (IPEN), Sao Paulo, Brazil
| | - Adriana V F Massicano
- 2 Department of Radiology, University of Alabama at Birmingham (UAB), Birmingham, Alabama
| | - Bryant K Crenshaw
- 2 Department of Radiology, University of Alabama at Birmingham (UAB), Birmingham, Alabama
| | - Renato Oliveira
- 3 Molecular Oncology Research Center, Barretos Cancer Hospital, Sao Paulo, Brazil
| | - Rui M Reis
- 3 Molecular Oncology Research Center, Barretos Cancer Hospital, Sao Paulo, Brazil
| | - Elaine B Araújo
- 1 Instituto de Pesquisas Energéticas e Nucleares (IPEN), Sao Paulo, Brazil
| | - Suzanne E Lapi
- 2 Department of Radiology, University of Alabama at Birmingham (UAB), Birmingham, Alabama
| |
Collapse
|
19
|
Melissaridou S, Wiechec E, Magan M, Jain MV, Chung MK, Farnebo L, Roberg K. The effect of 2D and 3D cell cultures on treatment response, EMT profile and stem cell features in head and neck cancer. Cancer Cell Int 2019; 19:16. [PMID: 30651721 PMCID: PMC6332598 DOI: 10.1186/s12935-019-0733-1] [Citation(s) in RCA: 181] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 01/08/2019] [Indexed: 01/20/2023] Open
Abstract
Background Head and Neck Squamous Cell Carcinoma (HNSCC) tumors are often resistant to therapies. Therefore searching for predictive markers and new targets for treatment in clinically relevant in vitro tumor models is essential. Five HNSCC-derived cell lines were used to assess the effect of 3D culturing compared to 2D monolayers in terms of cell proliferation, response to anti-cancer therapy as well as expression of EMT and CSC genes. Methods The viability and proliferation capacity of HNSCC cells as well as induction of apoptosis in tumor spheroids cells after treatment was assessed by MTT assay, crystal violet- and TUNEL assay respectively. Expression of EMT and CSC markers was analyzed on mRNA (RT-qPCR) and protein (Western blot) level. Results We showed that HNSCC cells from different tumors formed spheroids that differed in size and density in regard to EMT-associated protein expression and culturing time. In all spheroids, an up regulation of CDH1, NANOG and SOX2 was observed in comparison to 2D but changes in the expression of EGFR and EMT markers varied among the cell lines. Moreover, most HNSCC cells grown in 3D showed decreased sensitivity to cisplatin and cetuximab (anti-EGFR) treatment. Conclusions Taken together, our study points at notable differences between these two cellular systems in terms of EMT-associated gene expression profile and drug response. As the 3D cell cultures imitate the in vivo behaviour of neoplastic cells within the tumor, our study suggest that 3D culture model is superior to 2D monolayers in the search for new therapeutic targets. Electronic supplementary material The online version of this article (10.1186/s12935-019-0733-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Styliani Melissaridou
- 1Division of Cell Biology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Emilia Wiechec
- 1Division of Cell Biology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Mustafa Magan
- 1Division of Cell Biology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.,Department of Otorhinolaryngology in Linköping, Anaesthetics, Operations and Specialty Surgery Center, Region Östergötland, Linköping, Sweden
| | - Mayur Vilas Jain
- 1Division of Cell Biology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.,3Department of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Man Ki Chung
- Department of Otorhinolaryngology-Head & Neck Surgery, Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul, South Korea
| | - Lovisa Farnebo
- 1Division of Cell Biology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.,Department of Otorhinolaryngology in Linköping, Anaesthetics, Operations and Specialty Surgery Center, Region Östergötland, Linköping, Sweden
| | - Karin Roberg
- 1Division of Cell Biology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden.,Department of Otorhinolaryngology in Linköping, Anaesthetics, Operations and Specialty Surgery Center, Region Östergötland, Linköping, Sweden
| |
Collapse
|
20
|
Qian X, Nie X, Wollenberg B, Sudhoff H, Kaufmann AM, Albers AE. Heterogeneity of Head and Neck Squamous Cell Carcinoma Stem Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1139:23-40. [PMID: 31134493 DOI: 10.1007/978-3-030-14366-4_2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Current systemic cancer treatment in head and neck squamous cell carcinoma (HNSCC) is moving toward more personalized approaches such as de-escalation protocols human-papilloma-virus dependent HNSCC or application of checkpoint inhibitors. However, these treatments have been challenged by cancer stem cells (CSC), a small population within the bulk tumor, which are leading to treatment failure, tumor recurrence, or metastases. This review will give an overview of the characteristics of HNSCC-CSC. Specifically, the mechanisms by which HNSCC-CSC induce tumor initiation, progression, recurrence, or metastasis will be discussed. Although evidence-based treatment options targeting HNSCC-CSC specifically are still being sought for, they warrant a promise for additional and sustainable treatment options where for HNSCC patients where others have failed.
Collapse
Affiliation(s)
- Xu Qian
- Department of Otorhinolaryngology, Head and Neck Surgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institutes of Health, Berlin, Germany.,Division of Molecular Diagnostics, Department of Laboratory Medicine, Zhejiang Cancer Hospital, Hangzhou, People's Republic of China
| | - Xiaobo Nie
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Basic Medical Sciences, Henan University, Kaifeng, People's Republic of China
| | - Barbara Wollenberg
- University Hospital Schleswig Holstein, Campus Lübeck, Clinic for Otorhinolaryngology - Head and Neck Surgery, Lübeck, Germany
| | - Holger Sudhoff
- Department of Otorhinolaryngology, Head and Neck Surgery, Klinikum Bielefeld, Bielefeld, Germany
| | - Andreas M Kaufmann
- Clinic for Gynecology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institutes of Health, Berlin, Germany
| | - Andreas E Albers
- Department of Otorhinolaryngology, Head and Neck Surgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institutes of Health, Berlin, Germany.
| |
Collapse
|
21
|
Xin Y, Yan Q, Yang C, Jiang F, Guo W, Huang Q, Jiang G, Zhang L. Meta-analysis of the effects of anti-epidermal growth factor receptor on recurrent/metastatic head and neck squamous cell carcinoma. Medicine (Baltimore) 2018; 97:e13717. [PMID: 30572506 PMCID: PMC6320165 DOI: 10.1097/md.0000000000013717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 11/21/2018] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND We performed a meta-analysis to compare the efficacy and safety of anti-epidermal growth factor receptor (EGFR) therapy and non-anti-EGFR therapy in recurrent/metastatic (RM) head and neck squamous cell carcinoma (HNSCC). METHODS The Cochrane library, WanFang Data, PubMed, Medline, VIP, CBM, and EBSCO databases were searched for relevant studies. The objective response rate (ORR, defined as complete response or partial response according to RECTST version 1.1) and grade 3 to 4 adverse effects were used. RESULTS Ten studies involving 2260 patients were included. Primary meta-analysis showed that anti-EGFR therapy improved the ORR [odds ratio (OR): 1.79, 95% confidence interval 1.44-2.21, P <.00001]. Subgroup analyses revealed that the ORR of patients with RM HNSCC could be improved by monoclonal antibodies (OR: 1.89, 1.46-2.45, P <.00001) and tyrosine kinase inhibitors (OR: 1.57, 1.07-2.31, P = .02). Analysis of grade 3 to 4 adverse effects demonstrated that diarrhea (3.15, [1.90, 5.20]), rash/desquamation (13.66, [6.86, 27.20]), hypomagnesemia (1.83, [1.28, 2.62]), vomiting (1.99, [1.00, 3.95]), anorexia (3.34, [1.45, 7.73]), dehydration (2.22, [1.19, 4.12]), and hypokalemia (1.63, [1.09, 2.42]) were significantly associated with anti-EGFR therapy. CONCLUSION Anti-EGFR therapy is recommended for patients with RM HNSCC. Adverse effects, such as diarrhea, anorexia, hypomagnesemia, and hypokalemia, should be carefully monitored during anti-EGFR therapy.
Collapse
Affiliation(s)
- Yong Xin
- Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou
| | - Qiuyue Yan
- Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou
| | - ChunSheng Yang
- Department of Dermatology, Affiliated Huai’an Hospital of Xuzhou Medical University, Huai’an
| | - Fan Jiang
- Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou
| | - Wenwen Guo
- Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou
| | - Qian Huang
- Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou
| | - Guan Jiang
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Longzhen Zhang
- Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou
| |
Collapse
|
22
|
Kolenda T, Przybyła W, Kapałczyńska M, Teresiak A, Zajączkowska M, Bliźniak R, Lamperska KM. Tumor microenvironment - Unknown niche with powerful therapeutic potential. Rep Pract Oncol Radiother 2018; 23:143-153. [PMID: 29760589 PMCID: PMC5948324 DOI: 10.1016/j.rpor.2018.01.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 11/20/2017] [Accepted: 01/20/2018] [Indexed: 12/25/2022] Open
Abstract
Head and neck squamous cell carcinomas (HNSCC) are in a group of cancers that are the most resistant to treatment. The survival rate of HNSCC patients has been still very low since last 20 years. The existence of relationship between oncogenic and surrounding cells is probably the reason for a poor response to treatment. Fibroblasts are an important element of tumor stroma which increases tumor cells ability to proliferate. Another highly resistance, tumorigenic and metastatic cell population in tumor microenvironment are cancer initiating cells (CICs). The population of cancer initiating cells can be found regardless of differentiation status of cancer and they seem to be crucial for HNSCC development. In this review, we describe the current state of knowledge about HNSCC biological and physiological tumor microenvironment.
Collapse
Affiliation(s)
- Tomasz Kolenda
- Laboratory of Cancer Genetic, Greater Poland Cancer Centre, Poznan, Poland
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, Poland
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, Poznan, Poland
| | - Weronika Przybyła
- Laboratory of Cancer Genetic, Greater Poland Cancer Centre, Poznan, Poland
- Department of Pediatric Research, Division of Pediatric and Adolescent Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Marta Kapałczyńska
- Laboratory of Cancer Genetic, Greater Poland Cancer Centre, Poznan, Poland
- Department of Gastroenterology and Hepatology, Charite University Medicine Berlin, Berlin, Germany
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Anna Teresiak
- Laboratory of Cancer Genetic, Greater Poland Cancer Centre, Poznan, Poland
| | - Maria Zajączkowska
- Laboratory of Cancer Genetic, Greater Poland Cancer Centre, Poznan, Poland
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, Poznan, Poland
| | - Renata Bliźniak
- Laboratory of Cancer Genetic, Greater Poland Cancer Centre, Poznan, Poland
| | | |
Collapse
|
23
|
Shang W, Zhang Q, Huang Y, Shanti R, Alawi F, Le A, Jiang C. Cellular Plasticity-Targeted Therapy in Head and Neck Cancers. J Dent Res 2018; 97:654-664. [PMID: 29486673 DOI: 10.1177/0022034518756351] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Head and neck cancer is one of the most frequent human malignancies worldwide, with a high rate of recurrence and metastasis. Head and neck squamous cell carcinoma (HNSCC) is cellularly and molecularly heterogeneous, with subsets of undifferentiated cancer cells exhibiting stem cell-like properties, called cancer stem cells (CSCs). Epithelial-mesenchymal transition, gene mutation, and epigenetic modification are associated with the formation of cellular plasticity of tumor cells in HNSCC, contributing to the acquisition of invasive, recurrent, and metastatic properties and therapeutic resistance. Tumor microenvironment (TME) plays a supportive role in the initiation, progression, and metastasis of head and neck cancer. Stromal fibroblasts, vasculature, immune cells, cytokines, and hypoxia constitute the main components of TME in HNSCC, which contributes not only to the acquisition of CSC properties but also to the recurrence and therapeutic resistance of the malignancies. In this review, we discuss the potential mechanisms underlying the development of cellular plasticity, especially the emergence of CSCs, in HNSCC. We also highlight recent studies implicating the complex interplays among TME components, plastic CSCs, tumorigenesis, recurrence, and therapeutic resistance of HNSCC. Finally, we summarize the treatment modalities of HNSCC and reinforce the novel concept of therapeutic targeting CSCs in HNSCC.
Collapse
Affiliation(s)
- W Shang
- 1 Department of Oral and Maxillofacial Surgery, The Affiliated Hospital of Qingdao University, Shandong, China.,4 School of Stomatology, Qingdao University, Shandong, China
| | - Q Zhang
- 2 Department of Oral and Maxillofacial Surgery and Pharmacology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Y Huang
- 3 Department of Orthodontics, The Affiliated Hospital of Qingdao University, Shandong, China.,4 School of Stomatology, Qingdao University, Shandong, China
| | - R Shanti
- 2 Department of Oral and Maxillofacial Surgery and Pharmacology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.,5 Department of Oral and Maxillofacial Surgery, Perelman Center for Advanced Medicine, Penn Medicine Hospital of the University of Pennsylvania, Philadelphia, PA, USA.,6 Department of Otorhinolaryngology-Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - F Alawi
- 7 Department of Pathology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - A Le
- 2 Department of Oral and Maxillofacial Surgery and Pharmacology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.,5 Department of Oral and Maxillofacial Surgery, Perelman Center for Advanced Medicine, Penn Medicine Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - C Jiang
- 3 Department of Orthodontics, The Affiliated Hospital of Qingdao University, Shandong, China.,4 School of Stomatology, Qingdao University, Shandong, China
| |
Collapse
|