1
|
Patel HV, Shah FD. Mapping the intricacies of GLI1 in hedgehog signaling: A combined bioinformatics and clinical analysis in Head & Neck cancer in Western India. Curr Probl Cancer 2024; 53:101146. [PMID: 39265246 DOI: 10.1016/j.currproblcancer.2024.101146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 08/09/2024] [Accepted: 09/05/2024] [Indexed: 09/14/2024]
Abstract
BACKGROUND Activation of various cancer stem cell pathways are thought to be responsible for treatment failure and loco-regional recurrence in Head and Neck cancer. Hedgehog signaling, a major cancer stem signaling pathway plays a major role in relapse of disease. GLI1, a transcription activator, plays an important role in canonical/non-canonical activation of Hedgehog signaling. METHODS Data for H&N cancer patients were collected from The Cancer Genome Atlas- H&N Cancer (TCGA-HNSC). GLI1 co-expressed genes in TCGA-HNSC were then identified using cBioPortal and subjected to KEGG pathway analysis by DAVID tool. Network Analyzer and GeneMania plugins from CytoScape were used to identify hub genes and predict a probable pathway from the identified hub genes respectively. To confirm the hypothesis, real-time gene expression was carried out in 75 patients of head and neck cancer. RESULTS Significantly higher GLI1 expression was observed in tumor tissues of H&N cancer and it also showed worst overall survival. Using cBioPortal tool, 2345 genes were identified that were significantly co-expressed with GLI1. From which, 15 hub genes were identified through the Network Analyzer plugin in CytoScape. A probable pathway prediction based on hub genes showed the interconnected molecular mechanism and its role in non-canonical activation of Hedgehog pathway by altering the GLI1 activity. The expressions of SHH, GLI1 and AKT1 were significant with each other and were found to be significantly associated with Age, Lymph-Node status and Keratin. CONCLUSION The study emphasizes the critical role of the Hh pathway's activation modes in H&N cancer, particularly highlighting the non-canonical activation through GLI1 and AKT1. The identification of SHH, GLI1 and AKT1 as potential diagnostic biomarkers and their association with clinic-pathological parameters underscores their relevance in prognostication and treatment planning. Hh pathway activation through GLI1 and its cross-talk with various pathways opens up the possibility of newer treatment strategies and developing a panel of therapeutic targets in H&N cancer patients.
Collapse
Affiliation(s)
- Hitarth V Patel
- Junior Research Fellow, Molecular Diagnostic and Research Lab-3, Department of Cancer Biology, The Gujarat Cancer and Research Institute, Ahmedabad, Gujarat, India
| | - Franky D Shah
- Junior Research Fellow, Molecular Diagnostic and Research Lab-3, Department of Cancer Biology, The Gujarat Cancer and Research Institute, Ahmedabad, Gujarat, India.
| |
Collapse
|
2
|
Al-Asfour A, Bhardwaj RG, Karched M. Growth Suppression of Oral Squamous Cell Carcinoma Cells by Lactobacillus Acidophilus. Int Dent J 2024; 74:1151-1160. [PMID: 38679518 PMCID: PMC11561490 DOI: 10.1016/j.identj.2024.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/18/2024] [Accepted: 03/28/2024] [Indexed: 05/01/2024] Open
Abstract
OBJECTIVES Oral squamous cell carcinoma (OSCC) is a highly aggressive form of oral cancer. Probiotic lactobacilli have demonstrated anticancer effects, whilst their interaction with Streptococcus mutans in this context remains unexplored. The objective of this study was to investigate the antiproliferative effect of Lactobacillus acidophilus on OSCC and to understand the effect of S mutans on OSCCs and whether it affects the antiproliferative potential of L acidophilus when co-exposed to OSCC. METHODS The human head and neck squamous cell carcinoma cells of the oral cavity (HNO97 cell line) were exposed to cultures of L acidophilus and S mutans separately and in combination. Further, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was performed to assess the viability of HNO97 cells. Bacterial adhesion to HNO97 cells was examined by confocal microscopy and apoptosis by Nexin staining. To understand the underlying mechanism of apoptosis, expression of the tumour necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) gene and protein were determined by real-time polymerase chain reaction and quantitative enzyme-linked immunosorbent assay, respectively. RESULTS A significant decrease (53%-56%) in the viability of HNO97 cells on exposure to L acidophilus, S mutans, and the 2 species together demonstrated the antiproliferative activity of L acidophilus and S mutans. Both bacteria showed adhesion to HNO97 cells. The expression of the TRAIL gene increased 5-fold in HNO97 cells on treatment with L acidophilus and S mutans, which further increased to ∼17-fold with both species present. Expression levels of the TRAIL protein were significantly (P < .05) increased in bacteria-treated cell lysates. Further, bacteria-treated HNO97 cells exhibited lower live and intact cell percentages with higher proportions of cells in early and late apoptotic stages. CONCLUSIONS L acidophilus exhibits the antiproliferative activity against OSCC cells possibly partially via a TRAIL-induced mechanism of apoptosis, which is not affected by the presence of S mutans. These findings may encourage further investigation into the possible therapeutic application of probiotic L acidophilus in OSCC.
Collapse
Affiliation(s)
- Adel Al-Asfour
- Department of Surgical Sciences, College of Dentistry, Kuwait University, Kuwait City, Kuwait
| | - Radhika G Bhardwaj
- Oral Microbiology Research Laboratory, Department of Bioclinical Sciences, College of Dentistry, Kuwait University, Kuwait City, Kuwait; Department of Biotechnology, School of Arts and Science, American International University, Kuwait
| | - Maribasappa Karched
- Oral Microbiology Research Laboratory, Department of Bioclinical Sciences, College of Dentistry, Kuwait University, Kuwait City, Kuwait.
| |
Collapse
|
3
|
Bhal S, Das B, Sinha S, Das C, Acharya SS, Maji J, Kundu CN. Resveratrol nanoparticles induce apoptosis in oral cancer stem cells by disrupting the interaction between β-catenin and GLI-1 through p53-independent activation of p21. Med Oncol 2024; 41:167. [PMID: 38831079 DOI: 10.1007/s12032-024-02405-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 05/06/2024] [Indexed: 06/05/2024]
Abstract
Cancer stem cells (CSCs) are mainly responsible for tumorigenesis, chemoresistance, and cancer recurrence. CSCs growth and progression are regulated by multiple signaling cascades including Wnt/β-catenin and Hh/GLI-1, which acts independently or via crosstalk. Targeting the crosstalk of signaling pathways would be an effective approach to control the CSC population. Both Wnt/β-catenin and Hh/GLI-1 signaling cascades are known to be regulated by p53/p21-dependent mechanism. However, it is interesting to delineate whether p21 can induce apoptosis in a p53-independent manner. Therefore, utilizing various subtypes of oral CSCs (SCC9-PEMT p53+/+p21+/+, SCC9-PEMT p53-/-p21+/+, SCC9-PEMT p53+/+p21-/- and SCC9-PEMT p53-/-p21-/-), we have examined the distinct roles of p53 and p21 in Resveratrol nanoparticle (Res-Nano)-mediated apoptosis. It is interesting to see that, besides the p53/p21-mediated mechanism, Res-Nano exposure also significantly induced apoptosis in oral CSCs through a p53-independent activation of p21. Additionally, Res-Nano-induced p21-activation deregulated the β-catenin-GLI-1 complex and consequently reduced the TCF/LEF and GLI-1 reporter activities. In agreement with in vitro data, similar experimental results were obtained in in vivo mice xenograft model.
Collapse
Affiliation(s)
- Subhasmita Bhal
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Campus-11, Patia, Bhubaneswar, 751024, Odisha, India
| | - Biswajit Das
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Campus-11, Patia, Bhubaneswar, 751024, Odisha, India
| | - Saptarshi Sinha
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Campus-11, Patia, Bhubaneswar, 751024, Odisha, India
| | - Chinmay Das
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Campus-11, Patia, Bhubaneswar, 751024, Odisha, India
| | - Sushree Subhadra Acharya
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Campus-11, Patia, Bhubaneswar, 751024, Odisha, India
| | - Joydeb Maji
- Department of Botany, Siliguri College, Siliguri, Darjeeling, 734001, West Bengal, India
| | - Chanakya Nath Kundu
- Cancer Biology Division, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Campus-11, Patia, Bhubaneswar, 751024, Odisha, India.
| |
Collapse
|
4
|
Alsayed RKME, Sheikhan KSAM, Alam MA, Buddenkotte J, Steinhoff M, Uddin S, Ahmad A. Epigenetic programing of cancer stemness by transcription factors-non-coding RNAs interactions. Semin Cancer Biol 2023; 92:74-83. [PMID: 37054905 DOI: 10.1016/j.semcancer.2023.04.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/30/2023] [Accepted: 04/09/2023] [Indexed: 04/15/2023]
Abstract
Cancer 'stemness' is fundamental to cancer existence. It defines the ability of cancer cells to indefinitely perpetuate as well as differentiate. Cancer stem cell populations within a growing tumor also help evade the inhibitory effects of chemo- as well as radiation-therapies, in addition to playing an important role in cancer metastases. NF-κB and STAT-3 are representative transcription factors (TFs) that have long been associated with cancer stemness, thus presenting as attractive targets for cancer therapy. The growing interest in non-coding RNAs (ncRNAs) in the recent years has provided further insight into the mechanisms by which TFs influence cancer stem cell characteristics. There is evidence for a direct regulation of TFs by ncRNAs, such as, microRNAs (miRNAs), long non-coding RNAs (lncRNAs) as well as circular RNAs (circRNAs), and vice versa. Additionally, the TF-ncRNAs regulations are often indirect, involving ncRNA-target genes or the sponging of other ncRNA species by individual ncRNAs. The information is rapidly evolving and this review provides a comprehensive review of TF-ncRNAs interactions with implications on cancer stemness and in response to therapies. Such knowledge will help uncover the many levels of tight regulations that control cancer stemness, providing novel opportunities and targets for therapy in the process.
Collapse
Affiliation(s)
- Reem Khaled M E Alsayed
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar
| | | | - Majid Ali Alam
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha, 3050, Qatar
| | - Jorg Buddenkotte
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha, 3050, Qatar
| | - Martin Steinhoff
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha, 3050, Qatar; Weill Cornell Medicine-Qatar, Medical School, Doha, 24144, Qatar; Dept. of Dermatology, Weill Cornell Medicine, New York, 10065, NY, USA
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar; Laboratory Animal Research Center, Qatar University, Doha, 2713, Qatar
| | - Aamir Ahmad
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha, 3050, Qatar.
| |
Collapse
|
5
|
Wei Z, Zhou Y, Wang R, Wang J, Chen Z. Aptamers as Smart Ligands for Targeted Drug Delivery in Cancer Therapy. Pharmaceutics 2022; 14:2561. [PMID: 36559056 PMCID: PMC9781707 DOI: 10.3390/pharmaceutics14122561] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/25/2022] Open
Abstract
Undesirable side effects and multidrug tolerance are the main holdbacks to the treatment of cancer in conventional chemotherapy. Fortunately, targeted drug delivery can improve the enrichment of drugs at the target site and reduce toxicity to normal tissues and cells. A targeted drug delivery system is usually composed of a nanocarrier and a targeting component. The targeting component is called a "ligand". Aptamers have high target affinity and specificity, which are identified as attractive and promising ligands. Therefore, aptamers have potential application in the development of smart targeting systems. For instance, aptamers are able to efficiently recognize tumor markers such as nucleolin, mucin, and epidermal growth factor receptor (EGFR). Besides, aptamers can also identify glycoproteins on the surface of tumor cells. Thus, the aptamer-mediated targeted drug delivery system has received extensive attention in the application of cancer therapy. This article reviews the application of aptamers as smart ligands for targeted drug delivery in cancer therapy. Special interest is focused on aptamers as smart ligands, aptamer-conjugated nanocarriers, aptamer targeting strategy for tumor microenvironment (TME), and aptamers that are specified to crucial cancer biomarkers for targeted drug delivery.
Collapse
Affiliation(s)
| | | | | | - Jin Wang
- Jiangxi Province Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Zhenhua Chen
- Jiangxi Province Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| |
Collapse
|
6
|
Kubina R, Krzykawski K, Kabała-Dzik A, Wojtyczka RD, Chodurek E, Dziedzic A. Fisetin, a Potent Anticancer Flavonol Exhibiting Cytotoxic Activity against Neoplastic Malignant Cells and Cancerous Conditions: A Scoping, Comprehensive Review. Nutrients 2022; 14:2604. [PMID: 35807785 PMCID: PMC9268460 DOI: 10.3390/nu14132604] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 12/10/2022] Open
Abstract
Diet plays a crucial role in homeostasis maintenance. Plants and spices containing flavonoids have been widely used in traditional medicine for thousands of years. Flavonols present in our diet may prevent cancer initiation, promotion and progression by modulating important enzymes and receptors in signal transduction pathways related to proliferation, differentiation, apoptosis, inflammation, angiogenesis, metastasis and reversal of multidrug resistance. The anticancer activity of fisetin has been widely documented in numerous in vitro and in vivo studies. This review summarizes the worldwide, evidence-based research on the activity of fisetin toward various types of cancerous conditions, while describing the chemopreventive and therapeutic effects, molecular targets and mechanisms that contribute to the observed anticancer activity of fisetin. In addition, this review synthesized the results from preclinical studies on the use of fisetin as an anticancer agent. Based on the available literature, it might be suggested that fisetin has a bioactive potential to become a complementary drug in the prevention and treatment of cancerous conditions. However, more in-depth research is required to validate current data, so that this compound or its derivatives can enter the clinical trial phase.
Collapse
Affiliation(s)
- Robert Kubina
- Department of Pathology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 30 Ostrogórska Str., 41-200 Sosnowiec, Poland;
- Silesia LabMed: Centre for Research and Implementation, Medical University of Silesia in Katowice, 18 Medyków Str., 40-752 Katowice, Poland;
| | - Kamil Krzykawski
- Silesia LabMed: Centre for Research and Implementation, Medical University of Silesia in Katowice, 18 Medyków Str., 40-752 Katowice, Poland;
| | - Agata Kabała-Dzik
- Department of Pathology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 30 Ostrogórska Str., 41-200 Sosnowiec, Poland;
| | - Robert D. Wojtyczka
- Department of Microbiology and Virology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 4 Jagiellońska Str., 41-200 Sosnowiec, Poland;
| | - Ewa Chodurek
- Department of Biopharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 8 Jedności Str., 41-208 Sosnowiec, Poland;
| | - Arkadiusz Dziedzic
- Department of Conservative Dentistry with Endodontics, Medical University of Silesia, 17 Akademicki Sq., 41-902 Bytom, Poland;
| |
Collapse
|
7
|
Comprehensive Review on Development of Early Diagnostics on Oral Cancer with a Special Focus on Biomarkers. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12104926] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
One of the most frequent head and neck cancers is oral cancer, with less than half of those diagnosed surviving five years. Despite breakthroughs in the treatment of many other cancers, the prognosis for people with OSCC remains dismal. The conventional methods of detection include a thorough clinical examination, biochemical investigations, and invasive biopsies. Early identification and treatment are important for a better chance of extending a patient’s life. Early diagnosis may be possible by identifying biomarkers in biological fluids. Currently, the primary method for diagnosing oral lesions is a visual oral examination; however, such a technique has certain drawbacks, as individuals are recognized after their cancer has advanced to a severe degree. The first section of this review discusses several diagnostic techniques for cancer detection, while the second section discusses the present state of knowledge about known existing predictive markers for the timely identification of malignant lesions, as well as disease activity tracking. The aim of the paper is to conduct a critical review of existing oral cancer diagnostic processes and to consider the possible application of innovative technology for early detection. This might broaden our diagnostic choices and enhance our capacity to identify and treat oral malignant tumors more effectively.
Collapse
|
8
|
Joshi J, Patel H, Bhavnagari H, Tarapara B, Pandit A, Shah F. Eliminating Cancer Stem-Like Cells in Oral Cancer by Targeting Elementary Signaling Pathways. Crit Rev Oncog 2022; 27:65-82. [PMID: 37199303 DOI: 10.1615/critrevoncog.2022047207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Oral cancer is a heterogeneous, aggressive, and complex entity. Current major treatment options for the disease are surgery, chemo, and/or radiotherapy either alone or in combination with each other. Each treatment method has its own limitations such as a significant journey with deformities and a protracted rehabilitation process leading to loss of self-esteem, loss of tolerance, and therapeutic side effects. Conventional therapies are frequently experienced with regimen resistance and recurrence attributed to the cancer stem cells (CSCs). Given that CSCs exert their tumorigenesis by affecting several cellular and molecular targets and pathways an improved understanding of CSCs' actions is required. Hence, more research is recommended to fully understand the fundamental mechanisms driving CSC-mediated treatment resistance. Despite the difficulties and disagreements surrounding the removal of CSCs from solid tumors, a great amount of knowledge has been derived from the characterization of CSCs. Various efforts have been made to identify the CSCs using several cell surface markers. In the current review, we will discuss numerous cell surface markers such as CD44, ALDH1, EPCAM, CD24, CD133, CD271, CD90, and Cripto-1 for identifying and isolating CSCs from primary oral squamous cell carcinoma (OSCC). Further, a spectrum of embryonic signaling pathways has been thought to be the main culprit of CSCs' active state in cancers, resulting in conventional therapeutic resistance. Hence, we discuss the functional and molecular bases of several signaling pathways such as the Wnt/beta;-catenin, Notch, Hedgehog, and Hippo pathways and their associations with disease aggressiveness. Moreover, numerous inhibitors targeting the above mentioned signaling pathways have already been identified and some of them are already undergoing clinical trials. Hence, the present review encapsulates the characterization and effectiveness of the prospective potential targeted therapies for eradicating CSCs in oral cancers.
Collapse
Affiliation(s)
- Jigna Joshi
- Molecular Diagnostic and Research Lab-III, Department of Cancer Biology, The Gujarat Cancer and Research Institute, Ahmedabad, Gujarat, India
| | - Hitarth Patel
- Molecular Diagnostic and Research Lab-III, Department of Cancer Biology, The Gujarat Cancer and Research Institute, Ahmedabad, Gujarat, India
| | - Hunayna Bhavnagari
- Molecular Diagnostic and Research Lab-III, Department of Cancer Biology, The Gujarat Cancer and Research Institute, Ahmedabad, Gujarat, India
| | - Bhoomi Tarapara
- Molecular Diagnostic and Research Lab-III, Department of Cancer Biology, The Gujarat Cancer and Research Institute, Ahmedabad, Gujarat, India
| | - Apexa Pandit
- Molecular Diagnostic and Research Lab-III, Department of Cancer Biology, The Gujarat Cancer and Research Institute, Ahmedabad, Gujarat, India
| | - Franky Shah
- Molecular Diagnostic and Research Lab-III, Department of Cancer Biology, The Gujarat Cancer and Research Institute, Ahmedabad, Gujarat, India
| |
Collapse
|
9
|
Fayyaz S, Attar R, Xu B, Sabitaliyevich UY, Adylova A, Fares M, Qureshi MZ, Yaylim I, Alaaeddine N. Realizing the Potential of Blueberry as Natural Inhibitor of Metastasis and Powerful Apoptosis Inducer: Tapping the Treasure Trove for Effective Regulation of Cell Signaling Pathways. Anticancer Agents Med Chem 2021; 20:1780-1786. [PMID: 32160854 DOI: 10.2174/1871520620666200311103206] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/20/2019] [Accepted: 11/04/2019] [Indexed: 12/20/2022]
Abstract
Blueberries belong to the genus Vaccinium of the family Ericaceae. Rapidly accumulating experimentally verified data is uncovering the tremendous pharmacological properties of biologically active constituents of blueberries against different diseases. Our rapidly evolving knowledge about the multifaceted nature of cancer has opened new horizons to search for different strategies to target multiple effectors of oncogenic networks to effectively inhibit cancer onset and progression. Excitingly, whole blueberry powder and various bioactive constituents (pterostilbene, malvidin-3-galactoside) of blueberries have been shown to efficiently inhibit metastasis in animal models. These results are encouraging and future studies must focus on the identification of cell signaling pathways effectively modulated by blueberries in different cancers. It seems exciting to note that researchers are focusing on metastasis inhibitory effects of blueberry; however, to reap full benefits, it is necessary to take a step back and critically re-interpret the mechanisms used by active components of blueberry to inhibit or prevent metastasis. JAK/STAT, TGF/SMAD, Notch, SHH/GLI, and Wnt/ β-Catenin have been shown to be directly involved in the regulation of metastasis. However, because of limited studies, it is difficult to critically assess the true potential of blueberry. Loss of apoptosis, metastasis and deregulation of signaling pathways are branching trajectories of molecular oncology. Accordingly, we have to emphasize on these essential facets to realistically claim blueberry as "Superfood". Different clinical trials have been conducted to gather clinical evidence about the chemopreventive role of blueberry or its bioactive components in cancer patients. But it seems clear that because of the lack of sufficient proof-of-concept studies, we cannot extract significant information about the transition of blueberry into the next phases of clinical trials. Overview of the existing scientific evidence revealed visible knowledge gaps and a better understanding of the targets of blueberry will be helpful in efficient and meaningful translation of laboratory findings to clinically effective therapeutics.
Collapse
Affiliation(s)
- Sundas Fayyaz
- Department of Biochemistry, Rashid Latif Medical College (RLMC), Lahore, Pakistan
| | - Rukset Attar
- Department of Obstetrics and Gynecology, Yeditepe University, Istanbul, Turkey
| | - Baojun Xu
- Food Science and Technology Program, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai 519087, China
| | - Uteuliyev Y Sabitaliyevich
- Department of Postgraduate Education and Research, Kazakhstan Medical University KSPH, Almaty, Kazakhstan
| | - Aima Adylova
- Department of Postgraduate Education and Research, Kazakhstan Medical University KSPH, Almaty, Kazakhstan
| | | | - Muhammad Z Qureshi
- Department of Plant Production and Protection, College of Agriculture and Veterinary Medicine, Qassim University, Al-Qassim, Saudi Arabia
| | - Ilhan Yaylim
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Nada Alaaeddine
- Faculty of Medical Sciences, Neuroscience Research Center, Lebanese University, Beirut, Lebanon
| |
Collapse
|
10
|
Isoorientin inhibits epithelial-to-mesenchymal properties and cancer stem-cell-like features in oral squamous cell carcinoma by blocking Wnt/β-catenin/STAT3 axis. Toxicol Appl Pharmacol 2021; 424:115581. [PMID: 34019859 DOI: 10.1016/j.taap.2021.115581] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 05/14/2021] [Accepted: 05/16/2021] [Indexed: 01/22/2023]
Abstract
Oral squamous cell carcinoma (OSCC) is among the most prevalent cancers of the head and neck. This study revealed that isoorientin attenuates OSCC cell stemness and epithelial-mesenchymal transition potential through the inhibition of JAK/signal transducer and activator of transcription 3 (STAT3) and Wnt/β-catenin signaling in cell lines. Our findings indicated that isoorientin is a potential inhibitor of β-catenin/STAT3 in vitro and in vivo. We analyzed possible synergism between isoorientin and cisplatin in OSCC. A sulforhodamine B assay, colony formation assay, tumorsphere-formation assay, and Wnt reporter activity assay were used for determining cell invasion, cell migration, drug cytotoxicity, and cell viability with potential molecular mechanisms in vitro. Isoorientin reduced the expression of p-STAT3, β-catenin, and p-GSK3 as well as downstream effectors TCF1/TCF7 and LEF1 and significantly reduced β-catenin colocalization in the nucleus. Isoorientin markedly strengthened the cytotoxic effects of cisplatin against SAS and SCC-25. Therefore, combining isoorientin and cisplatin treatments can potentially improve the anticancer effect of cisplatin. Isoorientin inhibited the tumorigenicity and growth of OSCC through the abrogation of Wnt/β-catenin/STAT3 signaling in vivo. Thus, isoorientin disrupted the β-catenin signaling pathway through the inactivation of STAT3 signaling. In conclusion, targeting OSCC-SC-mediated stemness with isoorientin to eradicate OSCC-SCs may be an effective strategy for preventing relapse and metastasis of OSCC and providing long-term survival benefits.
Collapse
|
11
|
Xie J, Huang L, Lu YG, Zheng DL. Roles of the Wnt Signaling Pathway in Head and Neck Squamous Cell Carcinoma. Front Mol Biosci 2021; 7:590912. [PMID: 33469547 PMCID: PMC7814318 DOI: 10.3389/fmolb.2020.590912] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/21/2020] [Indexed: 12/12/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the most common type of head and neck tumor. It is a high incidence malignant tumor associated with a low survival rate and limited treatment options. Accumulating conclusions indicate that the Wnt signaling pathway plays a vital role in the pathobiological process of HNSCC. The canonical Wnt/β-catenin signaling pathway affects a variety of cellular progression, enabling tumor cells to maintain and further promote the immature stem-like phenotype, proliferate, prolong survival, and gain invasiveness. Genomic studies of head and neck tumors have shown that although β-catenin is not frequently mutated in HNSCC, its activity is not inhibited by mutations in upstream gene encoding β-catenin, NOTCH1, FAT1, and AJUBA. Genetic defects affect the components of the Wnt pathway in oral squamous cell carcinoma (OSCC) and the epigenetic mechanisms that regulate inhibitors of the Wnt pathway. This paper aims to summarize the groundbreaking discoveries and recent advances involving the Wnt signaling pathway and highlight the relevance of this pathway in head and neck squamous cell cancer, which will help provide new insights into improving the treatment of human HNSCC by interfering with the transcriptional signaling of Wnt.
Collapse
Affiliation(s)
- Jing Xie
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China.,Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Li Huang
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China.,Department of Dentistry, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - You-Guang Lu
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China.,Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Da-Li Zheng
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| |
Collapse
|
12
|
Ling Z, Cheng B, Tao X. Epithelial-to-mesenchymal transition in oral squamous cell carcinoma: Challenges and opportunities. Int J Cancer 2020; 148:1548-1561. [PMID: 33091960 DOI: 10.1002/ijc.33352] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 10/08/2020] [Accepted: 10/12/2020] [Indexed: 02/06/2023]
Abstract
Oral squamous cell carcinoma (OSCC) is the most common malignancy representing 90% of all forms of oral cancer worldwide. Although great efforts have been made in the past decades, the 5-year survival rate of OSCC patients is no more than 60% due to tumor metastasis and subsequent recurrence. The metastasis from the primary site is due to a complex process known as epithelial-to-mesenchymal transition (EMT). During the EMT, epithelial cells gradually acquire the structural and functional characteristics of mesenchymal cells, leading to the upregulation of cell migration and the promotion of tumor cell dissemination. Therefore, EMT attracted broad attention due to its close relationship with cancer invasion and metastasis. Therefore, in the present review, an extensive description of the current research on OSCC and the role of EMT in this cancer type is provided, including diverse EMT markers, regulatory networks and crucial EMT-inducing transcription factors in OSCC. Moreover, a brief summary was made regarding the current application of EMT-correlated indexes in the prognostic analysis of OSCC patients, and the potential therapeutic approaches against OSCC and difficulties in the development of an effective anti-EMT treatment are discussed. Our aim is to provide novel insights to develop new strategies to combat OSCC by targeting EMT.
Collapse
Affiliation(s)
- Zihang Ling
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Bin Cheng
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Xiaoan Tao
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| |
Collapse
|
13
|
MicroRNA-31 Regulates Expression of Wntless in Both Drosophila melanogaster and Human Oral Cancer Cells. Int J Mol Sci 2020; 21:ijms21197232. [PMID: 33007980 PMCID: PMC7582764 DOI: 10.3390/ijms21197232] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 12/27/2022] Open
Abstract
Recent comparative studies have indicated distinct expression profiles of short, non-coding microRNAs (miRNAs) in various types of cancer, including oral squamous cell carcinoma (OSCC). In this study, we employed a hybrid approach using Drosophila melanogaster as well as OSCC cell lines to validate putative targets of oral cancer-related miRNAs both in vivo and in vitro. Following overexpression of Drosophila miR-31, we found a significant decrease in the size of the imaginal wing discs and downregulation of a subset of putative targets, including wntless (wls), an important regulator of the Wnt signaling pathway. Parallel experiments performed in OSCC cells have also confirmed a similar miR-31-dependent regulation of human WLS that was not initially predicted as targets of human miR-31. Furthermore, we found subsequent downregulation of cyclin D1 and c-MYC, two of the main transcriptional targets of Wnt signaling, suggesting a potential role of miR-31 in regulating the cell cycle and proliferation of OSCC cells. Taken together, our Drosophila-based in vivo system in conjunction with the human in vitro platform will thus provide a novel insight into a mammal-to-Drosophila-to-mammal approach to validate putative targets of human miRNA and to better understand the miRNA-target relationships that play an important role in the pathophysiology of oral cancer.
Collapse
|
14
|
Yang J, Xie K, Li C. Immune-related genes have prognostic significance in head and neck squamous cell carcinoma. Life Sci 2020; 256:117906. [PMID: 32504750 DOI: 10.1016/j.lfs.2020.117906] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/15/2020] [Accepted: 05/25/2020] [Indexed: 01/10/2023]
Abstract
AIMS Head and neck squamous cell carcinoma (HNSCC) is an highly aggressive tumor with heterogeneous prognosis. We here report that immune-related genes (IRGs) could effectively distinguish prognostically different HNSCC patients. MATERIALS AND METHODS MRNA levels of 1333 IRGs that from ImmPort database in HNSCC samples were acquired from the Cancer Genome Atlas (TCGA). H2o, a machine learning-based R package, was used for screening the top most representative genes from the IRGs. Univariate Cox-regression analysis was performed to identify prognostically-related genes based on the randomly generated training samples from TCGA set. LASSO Cox-regression analysis was applied for the construction of prognostic model for HNSCC. A total of six IRGs were finally retained for their prognostic significance and used for LASSO Cox-regression analysis. KEY FINDINGS Samples from exclusive training and testing set that randomly generated from TCGA, and another independent validation set from the Gene Expression Omnibus (GEO) were divided into high- and low-risk groups according to the prognostic model. HNSCC samples within high-risk groups have significantly inferior overall survival (OS) compared with those within low-risk groups. Differences in genomic mutation landscape and tumor infiltration immune cells also exist between the two sample groups. What's more, risk score was proved to be an independent prognostic factor for HNSCC by stratification analysis. SIGNIFICANCE IRGs are pivotal HNSCC prognostic signatures and should be helpful for its clinical decision-making.
Collapse
Affiliation(s)
- Jingrun Yang
- Department of Dermatology, PLA General Hospital, Beijing 100853, PR China
| | - Kuixia Xie
- Dermatological Department, Tianjin Fifth Centre Hospital, Tianjin 300450, PR China
| | - Chengxin Li
- Department of Dermatology, PLA General Hospital, Beijing 100853, PR China.
| |
Collapse
|
15
|
Pan YJ, Wan J, Wang CB. MiR-326: Promising Biomarker for Cancer. Cancer Manag Res 2019; 11:10411-10418. [PMID: 31849530 PMCID: PMC6912009 DOI: 10.2147/cmar.s223875] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 12/02/2019] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are small non-coding and highly conserved RNAs that act in biological processes including cell proliferation, invasion, apoptosis, metabolism, signal transduction, and tumorigenesis. The previously identified miRNA-326 (miR-326) has been reported to participate in cellular apoptosis, tumor growth, cell invasion, embryonic development, immunomodulation, chemotherapy resistance, and oncogenesis. This review presents a detailed overview of what is known about the effects of miR-326 on cell invasion, metastasis, drug resistance, proliferation, apoptosis, and its involvement in signaling pathways.
Collapse
Affiliation(s)
- Yao-Jie Pan
- Department of Oncology, The Affiliated Yancheng Hospital of Medicine School of Southeast University, The Third People’s Hospital of Yancheng, Yancheng224001, People’s Republic of China
| | - Jian Wan
- Department of General Surgery, Center for Difficult and Complicated Abdominal Surgery, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai200092, People’s Republic of China
| | - Chun-Bin Wang
- Department of Oncology, The Affiliated Yancheng Hospital of Medicine School of Southeast University, The Third People’s Hospital of Yancheng, Yancheng224001, People’s Republic of China
| |
Collapse
|
16
|
Zhao JF, Zha ZA, Xie WH, Wang HB, Li XM, Sun Q, Sun ML. [Effect of long chain non-coding RNA H19 on the migration and invasion of oral cancer cells and its molecular mechanism]. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2019; 37:378-383. [PMID: 31512829 DOI: 10.7518/hxkq.2019.04.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To investigate the effect of the long chain non-coding RNA H19 (lncRNA H19) on the invasion and migration of oral cancer cells and its related molecular mechanism. METHODS The expression levels of lncRNA H19, miR-107, and cyclin-dependent kinase 6 (CDK6) in the immortalized oral epithelial cell line HIOEC and the oral cancer cell line CAL27 were detected by real-time quantitative polymerase chain reaction. CAL27 cells were transfected with siRNA H19, miR-107 mimics, pcDNA H19, or anti-miR-107, and the effects of H19 and miR-107 on the invasion and migration of cells were examined via Transwell assay. The TargetScan database predicted the targeting of H19, miR-107, and CDK6. Double luciferase reporter gene assay was performed to detect interactions among H19, miR-107, and CDK6. Western blot analysis was conducted to examine the effects of H19 and miR-107 on the protein level of the target gene CDK6. RESULTS Compared with that in HIOEC cells, the expression of H19 was significantly increased in CAL27 cells (P<0.05). After transfection with siRNA H19, the expression of H19 decreased, and the invasion and migration ability of CAL27 cells were inhibited (P<0.05). H19 could bind specifically to the 3'-UTR of miR-107 to modulate the expression of miR-107. Compared with that in HIOEC cells, the expression of miR-107 significantly decreased in CAL27 cells (P<0.05). The expression of miR-107 increased after transfection with siRNA H19, and anti-mir-107 co-transfection could promote the invasion and migration ability of siRNA H19 in CAL27 cells (P<0.05). Compared with that in HIOEC cells, CDK6 expression significantly increased in CAL27 cells (P<0.05), and the expression level of the gene was coregulated by H19 and miR-107 (P<0.05). CONCLUSIONS lncRNA H19 plays an important role in the development of oral cancer. It can regulate the invasion and migration of oral cancer cells by targeting the miR-107/CDK6 signaling axis.
Collapse
Affiliation(s)
- Jun-Fang Zhao
- Dept. of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Zhi-An Zha
- Dept. of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Wei-Hong Xie
- Dept. of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Hai-Bin Wang
- Dept. of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Xin-Ming Li
- Dept. of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Qiang Sun
- Dept. of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Ming-Lei Sun
- Dept. of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
17
|
A novel reporter construct for screening small molecule inhibitors that specifically target self-renewing cancer cells. Exp Cell Res 2019; 383:111551. [PMID: 31401066 DOI: 10.1016/j.yexcr.2019.111551] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 08/05/2019] [Accepted: 08/06/2019] [Indexed: 12/11/2022]
Abstract
Cancer stem cells (CSCs) are a subset of cancer cells, which possess self-renewal ability, and lead to tumor progression, metastasis, and resistance to therapy. Live detection and isolation of CSCs are important to understand the biology of CSCs as well as to screen drugs that target them. Even though CSCs are detected using surface markers, there is a lot of inconsistencies for that in a given cancer type. At the same time, self-renewal markers like ALDH1A1, OCT4A and SOX2, which are intracellular molecules, are reliable markers for CSCs in different cancers. In the present study, we generated a reporter construct for self-renewing CSCs, based on ALDH1A1 expression. Oral cancer cells harboring ALDH1A1-DsRed2 were used to screen inhibitors that target CSCs. Our results showed that Comb1, a cocktail of inhibitors for EGF and TGF-β pathways and their intermediates, effectively reduced the DsRed2 population to 34%. Our immunohistochemical analysis on primary oral cancer corroborated the importance of EGF and TGF-β pathways in sustaining CSCs. Since these two pathways are also critical for the self-renewal and differentiation of normal stem cells, Comb1 might abolish them as well. On analysis of the effect of Comb1 on normal murine bone marrow cells, there was no significant change in the stem cell self-renewal and differentiation potential in the treated group compared to untreated cells. To conclude, we claim that ALDH1A1-DsRed2 is a useful tool to detect CSCs, and Comb1 is effective in targeting CSCs without affecting normal stem cells.
Collapse
|
18
|
Wang L, Chen W, Zha J, Yan Y, Wei Y, Chen X, Zhu X, Ge L. miR‑543 acts as a novel oncogene in oral squamous cell carcinoma by targeting CYP3A5. Oncol Rep 2019; 42:973-990. [PMID: 31322243 PMCID: PMC6667884 DOI: 10.3892/or.2019.7230] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 07/03/2019] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNAs/miRs) are small non-coding RNAs that can act as oncogenes or tumor-suppressor genes in human cancer. Previous studies have revealed that abnormal expression of miRNAs is closely associated with tumor cell cycle, differentiation, growth and apoptosis. miR-543 is expressed abnormally in a wide variety of cancers and has been associated with cellular proliferation, apoptosis, and invasion; however, the effect of miR-543 remains unknown in oral squamous cell carcinoma (OSCC). In the present study, the expression level of miR-543 in OSCC cell lines and tissues was investigated by RT-qPCR. A series of experiments was then performed to elucidate the functions of miR-543 in OSCC, such as CCK-8 assay, colony formation assay, flow cytometry, cell cycle distribution assay and cell apoptosis assay and Transwell assay. miR-543 expression was significantly upregulated in tumors from patients with OSCC and in OSCC cell lines. Overexpression of miR-543 promoted the proliferation, invasion and migration of OSCC cell lines, and inhibited cell apoptosis. In addition, the present study identified cytochrome P450 family 3 subfamily A member 5 (CYP3A5) as a direct target of miR-543 using software analysis and dual-luciferase reporter assays. In conclusion, the results of the present study suggest that miR-543 acts as a tumor promoter and serves a vital role in OSCC proliferation and invasion. These results confirm that miR-543 may serve as a potential novel target for the treatment of OSCC.
Collapse
Affiliation(s)
- Liping Wang
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510140, P.R. China
| | - Weihong Chen
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510140, P.R. China
| | - Jun Zha
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510140, P.R. China
| | - Yongyong Yan
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510140, P.R. China
| | - Yongxiang Wei
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510140, P.R. China
| | - Xili Chen
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510140, P.R. China
| | - Xinxin Zhu
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510140, P.R. China
| | - Linhu Ge
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510140, P.R. China
| |
Collapse
|
19
|
Peng L, Yang C, Yin J, Ge M, Wang S, Zhang G, Zhang Q, Xu F, Dai Z, Xie L, Li Y, Si JQ, Ma K. TGF-β2 Induces Gli1 in a Smad3-Dependent Manner Against Cerebral Ischemia/Reperfusion Injury After Isoflurane Post-conditioning in Rats. Front Neurosci 2019; 13:636. [PMID: 31297044 PMCID: PMC6608402 DOI: 10.3389/fnins.2019.00636] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 06/03/2019] [Indexed: 12/11/2022] Open
Abstract
Isoflurane (ISO) post-conditioning attenuates cerebral ischemia/reperfusion (I/R) injury, but the underlying mechanism is incompletely elucidated. Transforming growth factor beta (TGF-β) and hedgehog (Hh) signaling pathways govern a wide range of mechanisms in the central nervous system. We aimed to investigate the effect of the TGF-β2/Smad3 and sonic hedgehog (Shh)/Glioblastoma (Gli) signaling pathway and their crosstalk in the hippocampus of rats with ISO post-conditioning after cerebral I/R injury. Adult male Sprague-Dawley rats were subjected to middle cerebral artery occlusion (MCAO), 1.5 h occlusion and 24 h reperfusion (MCAO/R). To assess the effect of ISO after I/R injury, various approaches were used, including neurobehavioral tests, TTC staining, HE staining, Nissl staining, TUNEL staining, immunofluorescence (IF), qRT-PCR (quantitative real-time polymerase chain reaction) and Western blot. The ISO post-conditioning group (ISO group) received 1 h ISO post-conditioning when reperfusion was initiated, leading to lower infarct volumes and neurologic deficit scores, more surviving neurons, and less damaged and apoptotic neurons. IF staining, qRT-PCR and Western blot showed high expression levels of TGF-β2, Shh and Gli1 in the hippocampal CA1 of the ISO group. Phosphorylated Smad3 (p-Smad3), Patched (Ptch), and Smoothed (Smo) were also increased at protein level in the ISO group, whereas total Smad3 expression did not change in all groups. When TGF-β2 inhibitor, pirfenidone, or Smad3 inhibitor, SIS3 HCl, were administered, the expression levels of p-Smad3 and Gli1 were reduced, and surviving pyramidal neurons decreased. By contrast, the expression levels of TGF-β2 and p-Smad3 did not change significantly after pre-injection of Smo inhibitor cyclopamine, but reduced the expression levels of Shh, Ptch, and Gli1. Moreover, Gli showed the lowest expression levels with pirfenidone combined with cyclopamine. These findings indicate that the TGF-β and hedgehog signaling pathways mediate the neuroprotection of ISO post-conditioning after cerebral I/R injury, and crosstalk between two pathways at the Gli1 level.
Collapse
Affiliation(s)
- Li Peng
- Department of Anesthesiology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Chengwei Yang
- Department of Anesthesiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Jiangwen Yin
- Department of Anesthesiology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Mingyue Ge
- Department of Anesthesiology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Sheng Wang
- Department of Anesthesiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Guixing Zhang
- Department of Anesthesiology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Qingtong Zhang
- Department of Anesthesiology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Feng Xu
- Department of Anesthesiology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Zhigang Dai
- Department of Anesthesiology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Liping Xie
- Department of Anesthesiology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Yan Li
- Department of Anesthesiology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Jun-Qiang Si
- Department of Physiology, School of Medicine, Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University, Shihezi, China
| | - Ketao Ma
- Department of Physiology, School of Medicine, Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University, Shihezi, China
| |
Collapse
|
20
|
Molecular Biomarkers Related to Oral Carcinoma: Clinical Trial Outcome Evaluation in a Literature Review. DISEASE MARKERS 2019; 2019:8040361. [PMID: 31019584 PMCID: PMC6452537 DOI: 10.1155/2019/8040361] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 12/02/2018] [Accepted: 01/15/2019] [Indexed: 02/07/2023]
Abstract
Backgrounds The objective of the present research was to systematically revise the international literature about the genetic biomarkers related to oral cancer (OC) evaluating the recent findings in clinical studies. Methods A comprehensive review of the current literature was conducted according to the PRISMA guidelines by accessing the NCBI PubMed database. The authors conducted the search of articles in the English language published from 2008 to 2018. The present systematic review included only papers with significant results about correlation between wound healing, genetic alteration, and OC. Prognostic capacity of genetic markers was not evaluated in vivo. Results The first analysis with filters recorded about 1884 published papers. Beyond reading and consideration of suitability, only 20 and then 8 papers, with case report exclusion, were recorded for the revision. Conclusion All the researches recorded the proteomic and genetic alterations in OC human biopsy cells. The gene modification level in the different studies, compared with samples of healthy tissues, has always been statistically significant, but it is not possible to associate publications with each other because each job is based on the measurement of different biomarkers and gene targets. Further investigations should be required in order to state scientific evidence about a clear advantage of using these biomarkers for diagnostic purpose.
Collapse
|
21
|
Wang L, Liu LF, Zhou L, Liao F, Wang J. Effects of ebv-miR-BART7 on tumorigenicity, metastasis, and TRAIL sensitivity of non-small cell lung cancer. J Cell Biochem 2018; 120:10057-10068. [PMID: 30569505 DOI: 10.1002/jcb.28289] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 10/24/2018] [Indexed: 02/06/2023]
Abstract
OBJECTIVE To investigate how the Epstein-Barr virus (EBV) encoded microRNA BART7 (miR-BART7) affects tumorigenicity, metastasis, and TRAIL sensitivity of non-small cell lung cancer (NSCLC). METHODS Real time-polymerase chain reaction was performed to detect miR-BART7 expression in NSCLC cell lines. A549 and Calu-1 cells transfected with miR-BART7 inhibitors/mimics were used to do the in-vitro experiments, including 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, Annexin V-fluorescein isothiocyanate/PI, wound-healing, transwell, clonogenic assays, Western blot analysis, and anchorage-independent growth assay. Additionally, mice were used to inject A549 cells infected with miR-BART7 inhibitors to observe the tumorigenicity and metastasis of NSCLC. RESULTS TRAIL-resistant NSCLC cell lines (H460R, A549, Calu-1, and H1299) exhibited higher miR-BART7 rather than sensitive H460 and H292 cells. After transfected with miR-BART7 inhibitors, we observed an inhibition in proliferation, migration, invasion, and colony formation, but an enhancement in apoptosis as well as expressions of caspase-3 and caspase-8 in A549 and Calu-1 cells. Besides, TRAIL elevated the migration, invasion, and anchorage-independent growth of A549 cells, which was reversed by silencing DR4 and DR5 (siDRs). However, miR-BART7 inhibitors could reduce migration, invasion, and transformation potential of TRAIL treated A549 cells. Moreover, the expression of transforming growth factor-beta 1 (TGFβ1) could be decreased by miR-BART7 inhibitors with or without TRAIL treatment. Moreover, the tumor growth, epithelial-to-mesenchymal transition, and metastasis was suppressed and tumor-free survival was extended after injection of A549-miR-BART7 inhibitors. CONCLUSION Inhibition of miR-BART7 exerted inhibitory effects on cell proliferation, migration, invasion, and colony formation, consequently facilitating cell apoptosis and raising TRAIL sensitivity, providing a new therapeutic target in NSCLC.
Collapse
Affiliation(s)
- Lei Wang
- Department of Thoracic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Li-Fa Liu
- Department of Thoracic Surgery, The Affiliated Hospital of Shandong Medical College, Linyi, Shandong, China
| | - Li Zhou
- The Central Operating Room, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Fei Liao
- Department of Thoracic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Ju Wang
- Department of Thoracic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
22
|
Marimuthu M, Andiappan M, Wahab A, Muthusekhar MR, Balakrishnan A, Shanmugam S. Canonical Wnt pathway gene expression and their clinical correlation in oral squamous cell carcinoma. Indian J Dent Res 2018; 29:291-297. [PMID: 29900911 DOI: 10.4103/ijdr.ijdr_375_17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Aim The aim of this study is to explore the prognostic significance and clinicopathological correlations of the Wnt pathway genes in a cohort of surgically treated patients with oral squamous cell carcinoma (OSCC) patients. Settings and Design A prospective genetic study on patients with OSCC was carried out during the period from July 2014 to January 2016. Informed consent from patients and institutional ethical approval for the study was obtained and the guidelines were strictly followed for collection of samples. Subjects and Methods Clinical data and mRNA expression analysis of ten genes in the canonical Wnt pathway were evaluated and their relationships with clinical and demographic variables were studied in 58 tissue samples. Wnt-3a, β-catenin, secreted frizzled-related proteins sFRP-1, sFRP-2, sFRP-4, sFRP-5, Wnt inhibitory factor 1, dickkopf-1, c-MYC, and cyclin-D1 from cancer (n = 29) and normal (n = 29) tissue samples were investigated using quantitative reverse transcription-polymerase chain reaction. Statistical Analysis Descriptive statistics were used to summarize the sample characteristics and clinical variables. If the data were normal, then parametric tests were used; otherwise, nonparametric alternatives were used. All the analyses were carried out using SPSS version 23.0 (IBM SPSS Inc., USA). Results Expression of sFRP-1, sFRP-2, and sFRP-5 in control samples and expression of c-MYC and cyclin D1 in cancer samples showed statistical significance. Significant expression of Wnt3A was observed among patients who had recurrence and were deceased. Conclusion Wnt3A, β-catenin, and cyclin D1 are recognized as key components of Wnt/β-catenin signaling. However, in this study, there was no significant expression of all the three genes in OSCC. The proto-oncogene c-MYC showed statistically significant upregulation in cancer tissue samples suggesting that the OSCC among South Indian population is primarily not mediated by the canonical Wnt signaling pathway.
Collapse
Affiliation(s)
- Madhulaxmi Marimuthu
- Department of Oral and Maxillofacial Surgery, Saveetha Dental College, Saveetha University, Chennai, Tamil Nadu, India
| | - Manoharan Andiappan
- Biostatistics and Research Methods Centre Dental Institute, King's College, London, UK
| | - Abdul Wahab
- Department of Oral and Maxillofacial Surgery, Saveetha Dental College, Saveetha University, Chennai, Tamil Nadu, India
| | - M R Muthusekhar
- Department of Oral and Maxillofacial Surgery, Saveetha Dental College, Saveetha University, Chennai, Tamil Nadu, India
| | - Anandan Balakrishnan
- Department of Molecular Genetics, University of Madras, Chennai, Tamil Nadu, India
| | - Sambandham Shanmugam
- Department of Molecular Genetics, University of Madras, Chennai, Tamil Nadu, India
| |
Collapse
|
23
|
Zhang L, Yu S. Role of miR-520b in non-small cell lung cancer. Exp Ther Med 2018; 16:3987-3995. [PMID: 30402147 PMCID: PMC6200959 DOI: 10.3892/etm.2018.6732] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 05/11/2018] [Indexed: 12/14/2022] Open
Abstract
The aim of the present study was to investigate the expression of microRNA (miR)-520b in non-small cell lung cancer (NSCLC) and its biological functions. Reverse transcription-quantitative polymerase chain reaction was used to detect the expression of miR-520b in 52 cases of NSCLC tissues, and its associations with tumor clinical staging and lymph node metastasis were analyzed. miR-520b mimics was transfected into A549 and Calu-3 cells. Cell proliferation, cell cycle, and cell invasion and migration abilities were assessed via cell counting kit-8 assay, flow cytometry and Transwell chamber assay, respectively. Western blot analysis was performed to detected protein expression levels, and dual luciferase reporter assay was used to detect the gene interaction. miR-520b expression was significantly downregulated in NSCLC. The expression of miR-520b in tumor tissues at N1 stage was lower than that at the N0 stage. miR-520b expression was negatively associated with clinical TNM staging. Furthermore, miR-520b mimic transfection inhibited the proliferation and invasion and metastasis abilities of A549 and Calu-3 cells. The expression of Rab22A was downregulated in the miR-520b mimics-transfected cells, whereas E-cadherin expression was increased, and vimentin expression was downregulated. Dual luciferase reporter assay demonstrated that miR-520b directly targeted the expression of Rab22A. Furthermore, Rab22A reversal downregulated the inhibitory effect of miR-520b. miR-520b expression was downregulated in NSCLC, which was negatively correlated with lymph node metastasis and TNM staging. miR-520b targeted on Rab22A to work as a tumor suppressor, inhibiting tumor proliferation and metastasis.
Collapse
Affiliation(s)
- Linlin Zhang
- Respiratory Department, Shandong Chest Hospital, Jinan No. 5 People's Hospital, Jinan, Shandong 250000, P.R. China
| | - Shuangquan Yu
- Department of General Surgery, Jinan No. 5 People's Hospital, Jinan, Shandong 250000, P.R. China
| |
Collapse
|
24
|
Chen CN, Chen YT, Yang TL. The data of establishing a three-dimensional culture system for in vitro recapitulation and mechanism exploration of tumor satellite formation during cancer cell transition. Data Brief 2017; 15:545-561. [PMID: 29071292 PMCID: PMC5651497 DOI: 10.1016/j.dib.2017.09.053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 09/20/2017] [Accepted: 09/22/2017] [Indexed: 01/17/2023] Open
Abstract
Tumor satellite formation is an indicator of cancer invasiveness and correlates with recurrence, metastasis, and poorer prognosis. By analyzing pathological specimens, tumor satellites formed at the tumor-host interface reflect the phenomena of epithelial-mesenchymal transition. It is impossible to reveal the dynamic processes and the decisive factors of tumor satellite formation using clinicopathological approaches alone. Therefore, establishment of an in vitro system to monitor the phenomena is important to explicitly elucidate underlying mechanisms. In this study, we explored the feasibility of creating an in vitro three-dimensional collagen culture system to recapitulate the process of tumor satellite formation. This data presented here are referred to the research article (Chen et al., 2017) [1]. Using this model, the dynamic process of tumor satellite formation could be recapitulated in different types of human cancer cells. Induced by calcium deprivation, the treated cells increased the incidence and migratory distance of tumor satellites. E-cadherin internalization and invadopodia formation were enhanced by calcium deprivation and were associated with cellular dynamic change during tumor satellite formation. The data confirmed the utility of this culture system to recapitulate dynamic cellular alteration and to explore the potential mechanisms of tumor satellite formation.
Collapse
Affiliation(s)
- Chun-Nan Chen
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan.,Department of Otolaryngology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - You-Tzung Chen
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan.,Graduate Institute of Medical Genomics and Proteomics, National Taiwan University College of Medicine, Taipei, Taiwan.,Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan
| | - Tsung-Lin Yang
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan.,Department of Otolaryngology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan.,Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|