1
|
Lu W, Liao Z, Jiang X, Peng M, Deng Q, Zhou X, Lu M, Duan X. Targeting Mitochondrial Dysfunction: Innovative Strategies to Combat Glaucoma Neuroinflammation. Exp Eye Res 2025:110441. [PMID: 40409355 DOI: 10.1016/j.exer.2025.110441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 05/19/2025] [Accepted: 05/21/2025] [Indexed: 05/25/2025]
Abstract
Glaucomatous optic neuropathy represents a prevalent optic nerve degenerative disease. Neuroinflammation is recognized as a significant mechanism underlying optic nerve damage in glaucoma; however, the precise mechanisms driving neuroinflammation remain largely elusive. Existing studies have indicated that microglia-driven neuroinflammation is pivotal for neuroinflammation onset and progression. Mitochondrial dysfunction, encompassing mitochondrial DNA (mtDNA) damage, metabolic deficiencies, and quality control impairments, is upstream of microglial activation and neuroinflammation. Thus, a deeper comprehension of the link between mitochondrial dysfunction and microglial activation in glaucoma may provide valuable insights into the underlying pathogenesis. As a result of these findings, promising avenues for developing effective interventions to mitigate optic nerve damage and preserve visual function in glaucoma patients have been identified.
Collapse
Affiliation(s)
- Wen Lu
- Hunan provincical key laboratory of Neurorestoratology, Ophthalmology Department of 921 Hospital of Joint Logistics Support Force People's Liberation Army of China (The Second Affiliated Hospital of Hunan Normal University), Changsha, Hunan, 410003, P.R.China
| | - Zhimin Liao
- Aier Glaucoma Institute, Hunan Engineering Research Center for Glaucoma with Artificial Intelligence in Diagnosis and Application of New Materials, Changsha Glaucoma Diagnosis and Treatment Technology Innovation Center, Changsha Aier Eye Hospital, Changsha, Hunan Province, 410015, China; Aier Academy of Ophthalmology, Central South University, Changsha, Hunan Province, 410015, China
| | - Xinchen Jiang
- Hunan provincical key laboratory of Neurorestoratology, Ophthalmology Department of 921 Hospital of Joint Logistics Support Force People's Liberation Army of China (The Second Affiliated Hospital of Hunan Normal University), Changsha, Hunan, 410003, P.R.China
| | - Manjuan Peng
- Hunan provincical key laboratory of Neurorestoratology, Ophthalmology Department of 921 Hospital of Joint Logistics Support Force People's Liberation Army of China (The Second Affiliated Hospital of Hunan Normal University), Changsha, Hunan, 410003, P.R.China
| | - Que Deng
- Hunan provincical key laboratory of Neurorestoratology, Ophthalmology Department of 921 Hospital of Joint Logistics Support Force People's Liberation Army of China (The Second Affiliated Hospital of Hunan Normal University), Changsha, Hunan, 410003, P.R.China
| | - Xiaoyu Zhou
- Aier Glaucoma Institute, Hunan Engineering Research Center for Glaucoma with Artificial Intelligence in Diagnosis and Application of New Materials, Changsha Glaucoma Diagnosis and Treatment Technology Innovation Center, Changsha Aier Eye Hospital, Changsha, Hunan Province, 410015, China; Aier Academy of Ophthalmology, Central South University, Changsha, Hunan Province, 410015, China
| | - Ming Lu
- Hunan provincical key laboratory of Neurorestoratology, Ophthalmology Department of 921 Hospital of Joint Logistics Support Force People's Liberation Army of China (The Second Affiliated Hospital of Hunan Normal University), Changsha, Hunan, 410003, P.R.China.
| | - Xuanchu Duan
- Aier Glaucoma Institute, Hunan Engineering Research Center for Glaucoma with Artificial Intelligence in Diagnosis and Application of New Materials, Changsha Glaucoma Diagnosis and Treatment Technology Innovation Center, Changsha Aier Eye Hospital, Changsha, Hunan Province, 410015, China; Aier Academy of Ophthalmology, Central South University, Changsha, Hunan Province, 410015, China.
| |
Collapse
|
2
|
Wu KY, Osman R, Kearn N, Kalevar A. Three-Dimensional Bioprinting for Retinal Tissue Engineering. Biomimetics (Basel) 2024; 9:733. [PMID: 39727737 DOI: 10.3390/biomimetics9120733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/20/2024] [Accepted: 11/25/2024] [Indexed: 12/28/2024] Open
Abstract
Three-dimensional bioprinting (3DP) is transforming the field of regenerative medicine by enabling the precise fabrication of complex tissues, including the retina, a highly specialized and anatomically complex tissue. This review provides an overview of 3DP's principles, its multi-step process, and various bioprinting techniques, such as extrusion-, droplet-, and laser-based methods. Within the scope of biomimicry and biomimetics, emphasis is placed on how 3DP potentially enables the recreation of the retina's natural cellular environment, structural complexity, and biomechanical properties. Focusing on retinal tissue engineering, we discuss the unique challenges posed by the retina's layered structure, vascularization needs, and the complex interplay between its numerous cell types. Emphasis is placed on recent advancements in bioink formulations, designed to emulate retinal characteristics and improve cell viability, printability, and mechanical stability. In-depth analyses of bioinks, scaffold materials, and emerging technologies, such as microfluidics and organ-on-a-chip, highlight the potential of bioprinted models to replicate retinal disease states, facilitating drug development and testing. While challenges remain in achieving clinical translation-particularly in immune compatibility and long-term integration-continued innovations in bioinks and scaffolding are paving the way toward functional retinal constructs. We conclude with insights into future research directions, aiming to refine 3DP for personalized therapies and transformative applications in vision restoration.
Collapse
Affiliation(s)
- Kevin Y Wu
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada
| | - Rahma Osman
- Department of Medicine, School of Medicine, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Natalie Kearn
- Department of Medicine, School of Medicine, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Ananda Kalevar
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada
| |
Collapse
|
3
|
Artamonov MY, Sokov EL. Intraosseous Delivery of Mesenchymal Stem Cells for the Treatment of Bone and Hematological Diseases. Curr Issues Mol Biol 2024; 46:12672-12693. [PMID: 39590346 PMCID: PMC11592824 DOI: 10.3390/cimb46110752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
Mesenchymal stem cells are used most in regenerative medicine due to their capacities in differentiation and immune modulation. The intraosseous injection of MSC into the bone has been recommended because of expected outcomes for retention, bioavailability, and enhanced therapeutic efficacy, particularly in conditions involving the bone, such as osteoporosis and osteonecrosis. A review of the intraosseous delivery of mesenchymal stem cells in comparison with intravenous and intra-arterial delivery methods will be subjected to critical examination. This delivery mode fares better regarding paracrine signaling and immunomodulation attributes, which are the cornerstone of tissue regeneration and inflammation reduction. The local complications and technical challenges still apply with this method. This study was more focused on further research soon to be conducted to further elucidate long-term safety and efficacy of intraosseous mesenchymal stem cell therapy. Though much has been achieved with very impressive progress in this field, it is worth noting that more studies need to be put into place so that this technique can be established as a routine approach, especially with further research in biomaterials, gene therapy, and personalized medicine.
Collapse
Affiliation(s)
| | - Evgeniy L. Sokov
- Department of Algology and Rehabilitation, Peoples’ Friendship University, Moscow 117198, Russia;
| |
Collapse
|
4
|
Perumal MKK, Renuka RR, Subbiah SK. Enhancing Retinal Regeneration through Dental Pulp Stem Cells -Based 3D Organoid Culture, Cytokine Regulation and Gene Editing Technologies. Stem Cell Rev Rep 2024; 20:1998-2000. [PMID: 39115633 DOI: 10.1007/s12015-024-10772-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2024] [Indexed: 10/02/2024]
Affiliation(s)
- Manoj Kumar Karuppan Perumal
- Center for Global Health Research, Saveetha Institute of Medical and Technical Sciences, Saveetha Medical College and Hospitals, Saveetha University, Chennai, 602105, Tamil Nadu, India
| | - Remya Rajan Renuka
- Center for Global Health Research, Saveetha Institute of Medical and Technical Sciences, Saveetha Medical College and Hospitals, Saveetha University, Chennai, 602105, Tamil Nadu, India.
| | - Suresh Kumar Subbiah
- Center for Global Health Research, Saveetha Institute of Medical and Technical Sciences, Saveetha Medical College and Hospitals, Saveetha University, Chennai, 602105, Tamil Nadu, India
| |
Collapse
|
5
|
Chaibakhsh S, Azimi F, Shoae-Hassani A, Niknam P, Ghamari A, Dehghan S, Nilforushan N. Evaluating the impact of mesenchymal stem cell therapy on visual acuity and retinal nerve fiber layer thickness in optic neuropathy patients: a comprehensive systematic review and meta-analysis. BMC Ophthalmol 2024; 24:316. [PMID: 39075477 PMCID: PMC11287858 DOI: 10.1186/s12886-024-03588-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 07/22/2024] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND Stem cell therapy has emerged as a potential therapeutic avenue for optic neuropathy patients. To assess its safety and efficacy, we conducted a systematic review and meta-analysis, focusing on the latest evidence pertaining to the improvement of visual acuity (VA) through stem cell therapy. METHODS We analyzed Each database from its inception until June 2024. PubMed, Scopus, and Google Scholar were systematically searched to identify the included studies. Data were extracted regarding the year of publication, the name of the first author, sample size, VA (Log Mar), and Retinal Nerve Fiber Layer (RNFL) thickness. PRISMA protocol was used as a guide to perform this meta-analysis. STATA 16 was used for statistical analysis. RESULTS A total of 66 eyes were examined in seven papers. Based on the meta-analysis, the mean VA (Log MAR) of patients with optic neuropathy improved from 0.90 to 0.65 following stem cell therapy intervention (p-value = 0.001). The thickness of the RNFLs did not demonstrate a significant change (p-value was 0.174). CONCLUSION According to this systematic review and meta-analysis, stem cell therapy may improve the visual acuity of patients with optic neuropathy. Aside from the traditional therapy that can be provided to patients with optic neuropathy, stem cell therapy may also be beneficial.
Collapse
Affiliation(s)
- Samira Chaibakhsh
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
- Eye Research Center, The Five Senses Institute, Rassoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Azimi
- Eye Research Center, The Five Senses Institute, Rassoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Shoae-Hassani
- Eye Research Center, The Five Senses Institute, Rassoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
- Stem Cells and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Parvin Niknam
- Department of Ophthalmology, Mayo clinic, Rochester, MN, USA
| | - Ali Ghamari
- Pediatric Cell and Gene Therapy Research Center, Cell & Tissue Research Institute, Tehran university of Medical Sciences, Gene, Tehran, Iran
| | - Samaneh Dehghan
- Eye Research Center, The Five Senses Institute, Rassoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran.
- Stem Cells and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Naveed Nilforushan
- Eye Research Center, The Five Senses Institute, Rassoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Lee DH, Han JW, Park H, Hong SJ, Kim CS, Kim YS, Lee IS, Kim GJ. Achyranthis radix Extract Enhances Antioxidant Effect of Placenta-Derived Mesenchymal Stem Cell on Injured Human Ocular Cells. Cells 2024; 13:1229. [PMID: 39056810 PMCID: PMC11274440 DOI: 10.3390/cells13141229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/12/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Age-related ocular diseases such as age-related macular degeneration, glaucoma, and diabetic retinopathy are major causes of irreversible vision impairment in the elderly. Conventional treatments focus on symptom relief and disease slowdown, often involving surgery, but fall short of providing a cure, leading to substantial vision loss. Regenerative medicine, particularly mesenchymal stem cells (MSCs), holds promise for ocular disease treatment. This study investigates the synergistic potential of combining placenta-derived MSCs (PD-MSCs) with Achyranthis radix extract (ARE) from Achyranthes japonica to enhance therapeutic outcomes. In a 24-h treatment, ARE significantly increased the proliferative capacity of PD-MSCs and delayed their senescence (* p < 0.05). ARE also enhanced antioxidant capabilities and increased the expression of regeneration-associated genes in an in vitro injured model using chemical damages on human retinal pigment epithelial cell line (ARPE-19) (* p < 0.05). These results suggest that ARE-primed PD-MSC have the capability to enhance the activation of genes associated with regeneration in the injured eye via increasing antioxidant properties. Taken together, these findings support the conclusion that ARE-primed PD-MSC may serve as an enhanced source for stem cell-based therapy in ocular diseases.
Collapse
Affiliation(s)
- Dae-Hyun Lee
- Department of Biomedical Science, CHA University, Seongnam 13488, Republic of Korea; (D.-H.L.); (H.P.); (S.J.H.)
| | - Ji Woong Han
- Advanced PLAB, PLABiologics Co., Ltd., Seongnam 13522, Republic of Korea;
| | - Hyeri Park
- Department of Biomedical Science, CHA University, Seongnam 13488, Republic of Korea; (D.-H.L.); (H.P.); (S.J.H.)
| | - Se Jin Hong
- Department of Biomedical Science, CHA University, Seongnam 13488, Republic of Korea; (D.-H.L.); (H.P.); (S.J.H.)
| | - Chan-Sik Kim
- Korean Medicine Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea; (C.-S.K.); (Y.S.K.)
| | - Young Sook Kim
- Korean Medicine Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea; (C.-S.K.); (Y.S.K.)
| | - Ik Soo Lee
- Korean Medicine Convergence Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea; (C.-S.K.); (Y.S.K.)
| | - Gi Jin Kim
- Department of Biomedical Science, CHA University, Seongnam 13488, Republic of Korea; (D.-H.L.); (H.P.); (S.J.H.)
| |
Collapse
|
7
|
Mohammed MZ, Abdelrahman SA, El-Shal AS, Abdelrahman AA, Hamdy M, Sarhan WM. Efficacy of stem cells versus microvesicles in ameliorating chronic renal injury in rats (histological and biochemical study). Sci Rep 2024; 14:16589. [PMID: 39025899 PMCID: PMC11258134 DOI: 10.1038/s41598-024-66299-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/01/2024] [Indexed: 07/20/2024] Open
Abstract
Chronic exposure to heavy metals as aluminum chloride (AlCl3) could result in severe health hazards such as chronic renal injury. The present study aimed to evaluate the therapeutic potential of adipose tissue-derived stem cells (ASCs) in comparison to their microvesicles (MV) in AlCl3-induced chronic renal injury. Forty-eight adult male Wistar rats were divided into four groups: Control group, AlCl3-treated group, AlCl3/ASC-treated group, and AlCl3/MV-treated group. Biochemical studies included estimation of serum urea and creatinine levels, oxidative biomarkers assay, antioxidant biomarkers, serum cytokines (IL-1β, IL-8, IL-10, and IL-33), real time-PCR analysis of renal tissue MALT1, TNF-α, IL-6, and serum miR-150-5p expression levels. Histopathological studies included light and electron microscopes examination of renal tissue, Mallory trichrome stain for fibrosis, Periodic acid Schiff (PAS) stain for histochemical detection of carbohydrates, and immunohistochemical detection of Caspase-3 as apoptosis marker, IL-1B as a proinflammatory cytokine and CD40 as a marker of MVs. AlCl3 significantly deteriorated kidney function, enhanced renal MDA and TOS, and serum cytokines concentrations while decreased the antioxidant parameters (SOD, GSH, and TAC). Moreover, serum IL-10, TNF-α, miR-150-5p, and renal MALT1 expression values were significantly higher than other groups. Kidney sections showed marked histopathological damage in both renal cortex and medulla in addition to enhanced apoptosis and increased inflammatory cytokines immunoexpression than other groups. Both ASCs and MVs administration ameliorated the previous parameters levels with more improvement was detected in MVs-treated group. In conclusion: ASCs-derived MVs have a promising ameliorating effect on chronic kidney disease.
Collapse
Affiliation(s)
- Maha Z Mohammed
- Medical Histology & Cell Biology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Shaimaa A Abdelrahman
- Medical Histology & Cell Biology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt.
| | - Amal S El-Shal
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
- Medical Biochemistry and Molecular Biology Department, Armed Forces College of Medicine (AFCM), Cairo, Egypt
| | - Abeer A Abdelrahman
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Marwa Hamdy
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Walaa M Sarhan
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
8
|
Peng ZQ, Guan XH, Yu ZP, Wu J, Han XH, Li MH, Qu XH, Chen ZP, Han XJ, Wang XY. Human amniotic mesenchymal stem cells-derived conditioned medium and exosomes alleviate oxidative stress-induced retinal degeneration by activating PI3K/Akt/FoxO3 pathway. Exp Eye Res 2024; 244:109919. [PMID: 38729254 DOI: 10.1016/j.exer.2024.109919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/01/2024] [Accepted: 04/13/2024] [Indexed: 05/12/2024]
Abstract
Age-related macular degeneration (AMD) is the leading cause of vision loss among the elderly, which is primarily attributed to oxidative stress-induced damage to the retinal pigment epithelium (RPE). Human amniotic mesenchymal stem cells (hAMSC) were considered to be one of the most promising stem cells for clinical application due to their low immunogenicity, tissue repair ability, pluripotent potential and potent paracrine effects. The conditional medium (hAMSC-CM) and exosomes (hAMSC-exo) derived from hAMSC, as mediators of intercellular communication, play an important role in the treatment of retinal diseases, but their effect and mechanism on oxidative stress-induced retinal degeneration are not explored. Here, we reported that hAMSC-CM alleviated H2O2-induced ARPE-19 cell death through inhibiting mitochondrial-mediated apoptosis pathway in vitro. The overproduction of reactive oxygen species (ROS), alteration in mitochondrial morphology, loss of mitochondrial membrane potential and elevation of Bax/Bcl2 ratio in ARPE-19 cells under oxidative stress were efficiently reversed by hAMSC-CM. Moreover, it was found that hAMSC-CM protected cells against oxidative injury via PI3K/Akt/FoxO3 signaling. Intriguingly, exosome inhibitor GW4869 alleviated the inhibitory effect of hAMSC-CM on H2O2-induced decrease in cell viability of ARPE-19 cells. We further demonstrated that hAMSC-exo exerted the similar protective effect on ARPE-19 cells against oxidative damage as hAMSC-CM. Additionally, both hAMSC-CM and hAMSC-exo ameliorated sodium iodate-induced deterioration of RPE and retinal damage in vivo. These results first indicate that hAMSC-CM and hAMSC-exo protect RPE cells from oxidative damage by regulating PI3K/Akt/FoxO3 pathway, suggesting hAMSC-CM and hAMSC-exo will be a promising cell-free therapy for the treatment of AMD in the future.
Collapse
Affiliation(s)
- Zhe-Qing Peng
- Institute of Geriatrics, Jiangxi Provincial People's Hospital & the First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, 330006, PR China; Department of Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang, Jiangxi, 330006, PR China
| | - Xiao-Hui Guan
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi, 330031, PR China
| | - Zhen-Ping Yu
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi, 330031, PR China
| | - Jie Wu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, 330052, PR China
| | - Xin-Hao Han
- Institute of Geriatrics, Jiangxi Provincial People's Hospital & the First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, 330006, PR China
| | - Ming-Hui Li
- Institute of Geriatrics, Jiangxi Provincial People's Hospital & the First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, 330006, PR China; Department of Pharmacology, School of Pharmaceutical Science, Nanchang University, Nanchang, Jiangxi, 330006, PR China
| | - Xin-Hui Qu
- Institute of Geriatrics, Jiangxi Provincial People's Hospital & the First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, 330006, PR China; The Second Department of Neurology, Jiangxi Provincial People's Hospital & the First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, 330006, PR China
| | - Zhi-Ping Chen
- Institute of Geriatrics, Jiangxi Provincial People's Hospital & the First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, 330006, PR China
| | - Xiao-Jian Han
- Institute of Geriatrics, Jiangxi Provincial People's Hospital & the First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, 330006, PR China.
| | - Xiao-Yu Wang
- Institute of Geriatrics, Jiangxi Provincial People's Hospital & the First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, 330006, PR China.
| |
Collapse
|
9
|
Finocchio L, Zeppieri M, Gabai A, Spadea L, Salati C. Recent Advances of Adipose-Tissue-Derived Mesenchymal Stem Cell-Based Therapy for Retinal Diseases. J Clin Med 2023; 12:7015. [PMID: 38002628 PMCID: PMC10672618 DOI: 10.3390/jcm12227015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 10/29/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
With the rapid development of stem cell research in modern times, stem cell-based therapy has opened a new era of tissue regeneration, becoming one of the most promising strategies for currently untreatable retinal diseases. Among the various sources of stem cells, adipose tissue-derived mesenchymal stem cells (ADSCs) have emerged as a promising therapeutic modality due to their characteristics and multiple functions, which include immunoregulation, anti-apoptosis of neurons, cytokine and growth factor secretion, and antioxidative activities. Studies have shown that ADSCs can facilitate the replacement of dying cells, promote tissue remodeling and regeneration, and support the survival and growth of retinal cells. Recent studies in this field have provided numerous experiments using different preclinical models. The aim of our review is to provide an overview of the therapeutic strategies, modern-day clinical trials, experimental models, and potential clinical use of this fascinating class of cells in addressing retinal disorders and diseases.
Collapse
Affiliation(s)
- Lucia Finocchio
- Department of Ophthalmology, University Hospital of Udine, 33100 Udine, Italy; (L.F.)
| | - Marco Zeppieri
- Department of Ophthalmology, University Hospital of Udine, 33100 Udine, Italy; (L.F.)
| | - Andrea Gabai
- Department of Ophthalmology, University Hospital of Udine, 33100 Udine, Italy; (L.F.)
| | - Leopoldo Spadea
- Eye Clinic, Policlinico Umberto I, La Sapienza University of Rome, 00142 Rome, Italy
| | - Carlo Salati
- Department of Ophthalmology, University Hospital of Udine, 33100 Udine, Italy; (L.F.)
| |
Collapse
|
10
|
Mohebichamkhorami F, Niknam Z, Zali H, Mostafavi E. Therapeutic Potential of Oral-Derived Mesenchymal Stem Cells in Retinal Repair. Stem Cell Rev Rep 2023; 19:2709-2723. [PMID: 37733198 DOI: 10.1007/s12015-023-10626-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2023] [Indexed: 09/22/2023]
Abstract
The retina has restricted regeneration ability to recover injured cell layer because of reduced production of neurotrophic factors and increased inhibitory molecules against axon regrowth. A diseased retina could be regenerated by repopulating the damaged tissue with functional cell sources like mesenchymal stem cells (MSCs). The cells are able to release neurotrophic factors (NFs) to boost axonal regeneration and cell maintenance. In the current study, we comprehensively explore the potential of various types of stem cells (SCs) from oral cavity as promising therapeutic options in retinal regeneration. The oral MSCs derived from cranial neural crest cells (CNCCs) which explains their broad neural differentiation potential and secret rich NFs. They are comprised of dental pulp SCs (DPSCs), SCs from exfoliated deciduous teeth (SHED), SCs from apical papilla (SCAP), periodontal ligament-derived SCs (PDLSCs), gingival MSCs (GMSCs), and dental follicle SCs (DFSCs). The Oral MSCs are becoming a promising source of cells for cell-free or cell-based therapeutic approach to recover degenerated retinal. These cells have various mechanisms of action in retinal regeneration including cell replacement and the paracrine effect. It was demonstrated that they have more neuroprotective and neurotrophic effects on retinal cells than immediate replacement of injured cells in retina. This could be the reason that their therapeutic effects would be weakened over time. It can be concluded that neuronal and retinal regeneration through these cells is most likely due to their NFs that dramatically suppress oxidative stress, inflammation, and apoptosis. Although, oral MSCs are attractive therapeutic options for retinal injuries, more preclinical and clinical investigations are required.
Collapse
Affiliation(s)
- Fariba Mohebichamkhorami
- Department of Food Science & Technology, University of California, Davis, CA, 95616, USA
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Niknam
- Neurophysiology Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Hakimeh Zali
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Ebrahim Mostafavi
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
11
|
Becherucci V, Bacci GM, Marziali E, Sodi A, Bambi F, Caputo R. The New Era of Therapeutic Strategies for the Treatment of Retinitis Pigmentosa: A Narrative Review of Pathomolecular Mechanisms for the Development of Cell-Based Therapies. Biomedicines 2023; 11:2656. [PMID: 37893030 PMCID: PMC10604477 DOI: 10.3390/biomedicines11102656] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
Retinitis pigmentosa, defined more properly as cone-rod dystrophy, is a paradigm of inherited diffuse retinal dystrophies, one of the rare diseases with the highest prevalence in the worldwide population and one of the main causes of low vision in the pediatric and elderly age groups. Advancements in and the understanding of molecular biology and gene-editing technologies have raised interest in laying the foundation for new therapeutic strategies for rare diseases. As a consequence, new possibilities for clinicians and patients are arising due to the feasibility of treating such a devastating disorder, reducing its complications. The scope of this review focuses on the pathomolecular mechanisms underlying RP better to understand the prospects of its treatment using innovative approaches.
Collapse
Affiliation(s)
- Valentina Becherucci
- Cell Factory Meyer, Children’s Hospital A. Meyer Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), University of Florence, 50139 Florence, Italy; (V.B.); (F.B.)
| | - Giacomo Maria Bacci
- Pediatric Ophthalmology Unit, Children’s Hospital A. Meyer Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), University of Florence, 50139 Florence, Italy; (E.M.); (R.C.)
| | - Elisa Marziali
- Pediatric Ophthalmology Unit, Children’s Hospital A. Meyer Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), University of Florence, 50139 Florence, Italy; (E.M.); (R.C.)
| | - Andrea Sodi
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, 50139 Florence, Italy;
| | - Franco Bambi
- Cell Factory Meyer, Children’s Hospital A. Meyer Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), University of Florence, 50139 Florence, Italy; (V.B.); (F.B.)
| | - Roberto Caputo
- Pediatric Ophthalmology Unit, Children’s Hospital A. Meyer Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), University of Florence, 50139 Florence, Italy; (E.M.); (R.C.)
| |
Collapse
|
12
|
Wu KY, Kulbay M, Toameh D, Xu AQ, Kalevar A, Tran SD. Retinitis Pigmentosa: Novel Therapeutic Targets and Drug Development. Pharmaceutics 2023; 15:685. [PMID: 36840007 PMCID: PMC9963330 DOI: 10.3390/pharmaceutics15020685] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/12/2023] [Accepted: 02/16/2023] [Indexed: 02/19/2023] Open
Abstract
Retinitis pigmentosa (RP) is a heterogeneous group of hereditary diseases characterized by progressive degeneration of retinal photoreceptors leading to progressive visual decline. It is the most common type of inherited retinal dystrophy and has a high burden on both patients and society. This condition causes gradual loss of vision, with its typical manifestations including nyctalopia, concentric visual field loss, and ultimately bilateral central vision loss. It is one of the leading causes of visual disability and blindness in people under 60 years old and affects over 1.5 million people worldwide. There is currently no curative treatment for people with RP, and only a small group of patients with confirmed RPE65 mutations are eligible to receive the only gene therapy on the market: voretigene neparvovec. The current therapeutic armamentarium is limited to retinoids, vitamin A supplements, protection from sunlight, visual aids, and medical and surgical interventions to treat ophthalmic comorbidities, which only aim to slow down the progression of the disease. Considering such a limited therapeutic landscape, there is an urgent need for developing new and individualized therapeutic modalities targeting retinal degeneration. Although the heterogeneity of gene mutations involved in RP makes its target treatment development difficult, recent fundamental studies showed promising progress in elucidation of the photoreceptor degeneration mechanism. The discovery of novel molecule therapeutics that can selectively target specific receptors or specific pathways will serve as a solid foundation for advanced drug development. This article is a review of recent progress in novel treatment of RP focusing on preclinical stage fundamental research on molecular targets, which will serve as a starting point for advanced drug development. We will review the alterations in the molecular pathways involved in the development of RP, mainly those regarding endoplasmic reticulum (ER) stress and apoptotic pathways, maintenance of the redox balance, and genomic stability. We will then discuss the therapeutic approaches under development, such as gene and cell therapy, as well as the recent literature identifying novel potential drug targets for RP.
Collapse
Affiliation(s)
- Kevin Y. Wu
- Division of Ophthalmology, Department of Surgery, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada
| | - Merve Kulbay
- Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Dana Toameh
- Faculty of Medicine, McGill University, Montreal, QC H3G 2M1, Canada
| | - An Qi Xu
- Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Ananda Kalevar
- Division of Ophthalmology, Department of Surgery, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada
| | - Simon D. Tran
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 1G1, Canada
| |
Collapse
|
13
|
Domouky AM, Samy WM, Rashad WA. Therapeutic effect of the mesenchymal stem cells on vigabatrin-induced retinopathy in adult male albino rat. Anat Cell Biol 2022; 55:217-228. [PMID: 35773221 PMCID: PMC9256488 DOI: 10.5115/acb.22.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/25/2022] [Accepted: 03/06/2022] [Indexed: 12/02/2022] Open
Abstract
Vigabatrin (VGB) is an effective antiepileptic drug used mainly to treat infantile spasms and refractory complex partial seizures. However, using VGB was restricted as it was known to cause retinal toxicity that appears as a severe peripheral visual field defect. Accordingly, this study was conducted to examine the histopathological and biochemical effects of VGB on the retina in adult male albino rats and assess the possible therapeutic role of mesenchymal stem cells (MSCs) against this potential toxicity. The rats were divided into three groups (control group, VGB group, and VGB/MSCs group), one week after 65 days of VGB treatment ±MSCs. The right eyeballs were prepared for histological and immunohistochemical examination, whereas the left eyeballs were prepared for real-time polymerase chain reaction analysis. Our results demonstrated that MSCs ameliorated retinal pathological changes and downregulated the expression of glial fibrillary acidic protein, vascular endothelial growth factor, and synaptophysin after VGB administration suggesting MSCs function and vascular modulating effect. Moreover, MSCs regulate retinal tissue gene expression of BAX, Bcl-2, BDNF, NGF, synapsin, interleukin (IL)-6, IL-1β, and occludin suggesting MSCs antiapoptotic and immunomodulating effect. In conclusion, MSCs administration could be a suitable therapeutic line to ameliorate VGB-induced retinopathy.
Collapse
Affiliation(s)
- Ayat Mahmoud Domouky
- Department of Human Anatomy & Embryology, Faculty of Medicine, Zagazig University, Zagazig, Zagazig, Egypt
| | - Walaa M Samy
- Department of Medical Biochemistry, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Walaa A Rashad
- Department of Human Anatomy & Embryology, Faculty of Medicine, Zagazig University, Zagazig, Zagazig, Egypt
| |
Collapse
|
14
|
Bacci GM, Becherucci V, Marziali E, Sodi A, Bambi F, Caputo R. Treatment of Inherited Retinal Dystrophies with Somatic Cell Therapy Medicinal Product: A Review. Life (Basel) 2022; 12:life12050708. [PMID: 35629375 PMCID: PMC9147057 DOI: 10.3390/life12050708] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 01/06/2023] Open
Abstract
Inherited retinal dystrophies and retinal degenerations related to more common diseases (i.e., age-related macular dystrophy) are a major issue and one of the main causes of low vision in pediatric and elderly age groups. Advancement and understanding in molecular biology and the possibilities raised by gene-editing techniques opened a new era for clinicians and patients due to feasible possibilities of treating disabling diseases and the reduction in their complications burden. The scope of this review is to focus on the state-of-the-art in somatic cell therapy medicinal products as the basis of new insights and possibilities to use this approach to treat rare eye diseases.
Collapse
Affiliation(s)
- Giacomo Maria Bacci
- Pediatric Ophthalmology Unit, Children’s Hospital A. Meyer-University of Florence, 50139 Florence, Italy; (E.M.); (R.C.)
- Correspondence:
| | - Valentina Becherucci
- Cell Factory Meyer, Children’s Hospital A. Meyer-University of Florence, 50139 Florence, Italy; (V.B.); (F.B.)
| | - Elisa Marziali
- Pediatric Ophthalmology Unit, Children’s Hospital A. Meyer-University of Florence, 50139 Florence, Italy; (E.M.); (R.C.)
| | - Andrea Sodi
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, 50139 Florence, Italy;
| | - Franco Bambi
- Cell Factory Meyer, Children’s Hospital A. Meyer-University of Florence, 50139 Florence, Italy; (V.B.); (F.B.)
| | - Roberto Caputo
- Pediatric Ophthalmology Unit, Children’s Hospital A. Meyer-University of Florence, 50139 Florence, Italy; (E.M.); (R.C.)
| |
Collapse
|
15
|
Mesenchymal stem cells transfer mitochondria to allogeneic Tregs in an HLA-dependent manner improving their immunosuppressive activity. Nat Commun 2022; 13:856. [PMID: 35165293 PMCID: PMC8844425 DOI: 10.1038/s41467-022-28338-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 01/18/2022] [Indexed: 12/15/2022] Open
Abstract
Cell-based immunotherapies can provide safe and effective treatments for various disorders including autoimmunity, cancer, and excessive proinflammatory events in sepsis or viral infections. However, to achieve this goal there is a need for deeper understanding of mechanisms of the intercellular interactions. Regulatory T cells (Tregs) are a lymphocyte subset that maintain peripheral tolerance, whilst mesenchymal stem cells (MSCs) are multipotent nonhematopoietic progenitor cells. Despite coming from different origins, Tregs and MSCs share immunoregulatory properties that have been tested in clinical trials. Here we demonstrate how direct and indirect contact with allogenic MSCs improves Tregs’ potential for accumulation of immunosuppressive adenosine and suppression of conventional T cell proliferation, making them more potent therapeutic tools. Our results also demonstrate that direct communication between Tregs and MSCs is based on transfer of active mitochondria and fragments of plasma membrane from MSCs to Tregs, an event that is HLA-dependent and associates with HLA-C and HLA-DRB1 eplet mismatch load between Treg and MSC donors. Regulatory T (Treg) cells and mesenchymal stem cells (MSCs) are both cell populations capable of immune tolerance induction. Here the authors show that the transfer of mitochondria from mesenchymal stem cells to allogeneic Treg cells in an HLA-dependent manner results in enhanced immunosuppressive functions of Treg cells.
Collapse
|
16
|
Garcia-Ayuso D, Di Pierdomenico J, García-Bernal D, Vidal-Sanz M, Villegas-Pérez MP. Bone marrow-derived mononuclear stem cells in the treatment of retinal degenerations. Neural Regen Res 2022; 17:1937-1944. [PMID: 35142670 PMCID: PMC8848608 DOI: 10.4103/1673-5374.335692] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Retinal degenerative diseases affecting the outer retina in its many forms (inherited, acquired or induced) are characterized by photoreceptor loss, and represent currently a leading cause of irreversible vision loss in the world. At present, there are very few treatments capable of preventing, recovering or reversing photoreceptor degeneration or the secondary retinal remodeling, which follows photoreceptor loss and can also cause the death of other retinal cells. Thus, these diseases are nowadays one of the greatest challenges in the field of ophthalmological research. Bone marrow derived-mononuclear stem cell transplantation has shown promising results for the treatment of photoreceptor degenerations. These cells may have the potential to slow down photoreceptor loss, and therefore should be applied in the early stages of photoreceptor degenerations. Furthermore, because of their possible paracrine effects, they may have a wide range of clinical applications, since they can potentially impact on several retinal cell types at once and photoreceptor degenerations can involve different cells and/or begin in one cell type and then affect adjacent cells. The intraocular injection of bone marrow derived-mononuclear stem cells also enhances the outcomes of other treatments aimed to protect photoreceptors. Therefore, it is likely that future investigations may combine bone marrow derived-mononuclear stem cell therapy with other systemic or intraocular treatments to obtain greater therapeutic effects in degenerative retinal diseases.
Collapse
Affiliation(s)
- Diego Garcia-Ayuso
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, Campus de Ciencias de la salud; Instituto Murciano de Investigación Biosanitaria Hospital Virgen de la Arrixaca (IMIB-Virgen de la Arrixaca), Murcia, Spain
| | - Johnny Di Pierdomenico
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, Campus de Ciencias de la salud; Instituto Murciano de Investigación Biosanitaria Hospital Virgen de la Arrixaca (IMIB-Virgen de la Arrixaca), Murcia, Spain
| | - David García-Bernal
- Instituto Murciano de Investigación Biosanitaria Hospital Virgen de la Arrixaca (IMIB-Virgen de la Arrixaca); Servicio de Hematología, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
| | - Manuel Vidal-Sanz
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, Campus de Ciencias de la salud; Instituto Murciano de Investigación Biosanitaria Hospital Virgen de la Arrixaca (IMIB-Virgen de la Arrixaca), Murcia, Spain
| | - María P Villegas-Pérez
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, Campus de Ciencias de la salud; Instituto Murciano de Investigación Biosanitaria Hospital Virgen de la Arrixaca (IMIB-Virgen de la Arrixaca), Murcia, Spain
| |
Collapse
|
17
|
Mazen NF, Abdel‐Fattah EA, Desoky SR, El‐Shal AS. Therapeutic role of adipose tissue-derived stem cells versus microvesicles in a rat model of cerebellar injury. J Cell Mol Med 2022; 26:326-342. [PMID: 34874117 PMCID: PMC8743657 DOI: 10.1111/jcmm.17083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/10/2021] [Accepted: 11/17/2021] [Indexed: 12/12/2022] Open
Abstract
Monosodium glutamate (MSG) is a controversial food additive reported to cause negative effects on public health. Adipose stem cells (ASCs) and their derived vesicles (MVs) represent a promising cure for human diseases. This work was planned to compare the therapeutic effects of adipose stem cells and microvesicles in MSG-induced cerebellar damage. Forty adult healthy male Wister rats were equally divided into four groups: Group I (control group), group II (MSG-treated), group III (MSG/ASCs-treated), and group IV (MSG/MVs-treated). Motor behaviour of rats was assessed. Characterization of ASCs and MVs was done by flow cytometry. The cerebellum was processed for light and electron microscopic studies, and immunohistochemical localization of PCNA and GFAP. Morphometry was done for the number of Purkinje cells in H&E-stained sections, area per cent of GFAP immune reactivity and number of positive PCNA cells. Our results showed MSG-induced deterioration in the motor part. Moreover, MSG increases oxidant and apoptotic with decreases of antioxidant biomarkers. Structural changes in the cerebellar cortex as degeneration of nerve cells and gliosis were detected. There were also a decrease in the number of Purkinje cells, an increase in the area per cent of GFAP immune reactivity and a decrease in the number of positive PCNA cells, as compared to the control. Rats treated with ASCs showed marked functional and structural improvement in comparison with MV-treated rats. Thus, both ASCs and MVs had therapeutic potential for MSG-induced cerebellar damage with better results in case of ASCs.
Collapse
Affiliation(s)
- Nehad F. Mazen
- Medical Histology and Cell Biology DepartmentFaculty of MedicineZagazig UniversityZagazigEgypt
| | - Eman A. Abdel‐Fattah
- Medical Histology and Cell Biology DepartmentFaculty of MedicineZagazig UniversityZagazigEgypt
| | - Shimaa R. Desoky
- Histology and Cell Biology DepartmentFaculty of MedicineSuez UniversityIsmailiaEgypt
| | - Amal S. El‐Shal
- Medical Biochemistry & Molecular Biology DepartmentFaculty of Human MedicineZagazig UniversityZagazigEgypt
| |
Collapse
|
18
|
Zhao T, Lie H, Wang F, Liu Y, Meng X, Yin Z, Li S. Comparative Study of a Modified Sub-Tenon's Capsule Injection of Triamcinolone Acetonide and the Intravenous Infusion of Umbilical Cord Mesenchymal Stem Cells in Retinitis Pigmentosa Combined With Macular Edema. Front Pharmacol 2021; 12:694225. [PMID: 34646129 PMCID: PMC8503560 DOI: 10.3389/fphar.2021.694225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 09/15/2021] [Indexed: 11/22/2022] Open
Abstract
Retinitis pigmentosa (RP) is a hereditary retinal degenerative disease leading to eventual blindness. When RP is combined with macular edema (ME), the visual impairment further worsens. We compared a modified sub-Tenon’s capsule injection of triamcinolone acetonide (TA) and the intravenous infusion of umbilical cord mesenchymal stem cells (UCMSCs) in the treatment of RP combined with ME (RP-ME) to assess their safety and efficacy in eliminating ME and restoring visual function. A phase I/II clinical trial enrolled 20 patients was conducted. All patients were followed up for 6 months. There were no severe adverse effects in both groups. In retinal morphological tests, the central macular thickness (CMT) in TA group significantly decreased at first week, first and second month after injection (p < 0.05). The CMT in UCMSCs group significantly decreased at first month after infusion. The rate of reduction of CMT in TA group was significantly greater than that in UCMSCs group at second month (p < 0.05). Reversely, the rate of reduction of CMT in UCMSCs group was significantly greater than that in TA group at sixth month (p < 0.05). In visual functional test, although there were no significant differences in visual acuity or visual fields within each group or between groups, but the amplitude of P2 wave of flash visual evoked potential (FVEP) showed significant increasing in TA group at second month in UCMSCs group at sixth month (p < 0.05). At 6th month, the rate of growth in the amplitude of P2 wave in USMCSs group was significantly greater than that in TA group (p < 0.05). This study suggests both modified sub-Tenon’s capsule injection of TA and intravenous infusion of UCMSCs are safe for RP-ME patients. TA injection is more effective at alleviating ME while improving visual function in a short term. UCMSC intravenous infusion shows slow but persistent action in alleviating ME, and can improve the visual function for a longer time. These approaches can be applied separately or jointly depending on the disease condition for patients to benefit maximumly. Clinical Trial Registration:http://www.chictr.org.cn, identifier ChiCTR-ONC-16008839
Collapse
Affiliation(s)
- Tongtao Zhao
- Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| | - Hongxuan Lie
- Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China.,Changhai Hospital, The Second Military Medical University (Naval Medical University), Shanghai, China
| | - Fang Wang
- Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| | - Yong Liu
- Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| | - Xiaohong Meng
- Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| | - Zhengqin Yin
- Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| | - Shiying Li
- Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| |
Collapse
|
19
|
Rajool Dezfuly A, Safaee A, Salehi H. Therapeutic effects of mesenchymal stem cells-derived extracellular vesicles' miRNAs on retinal regeneration: a review. Stem Cell Res Ther 2021; 12:530. [PMID: 34620234 PMCID: PMC8499475 DOI: 10.1186/s13287-021-02588-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/09/2021] [Indexed: 02/07/2023] Open
Abstract
Extracellular vesicles (EVs), which consist of microvesicles and exosomes, are secreted from all cells to transform vital information in the form of lipids, proteins, mRNAs and small RNAs such as microRNAs (miRNAs). Many studies demonstrated that EVs' miRNAs have effects on target cells. Numerous people suffer from the blindness caused by retinal degenerations. The death of retinal neurons is irreversible and creates permanent damage to the retina. In the absence of acceptable cures for retinal degenerative diseases, stem cells and their paracrine agents including EVs have become a promising therapeutic approach. Several studies showed that the therapeutic effects of stem cells are due to the miRNAs of their EVs. Considering the effects of microRNAs in retinal cells development and function and studies which provide the possible roles of mesenchymal stem cells-derived EVs miRNA content on retinal diseases, we focused on the similarities between these two groups of miRNAs that could be helpful for promoting new therapeutic techniques for retinal degenerative diseases.
Collapse
Affiliation(s)
- Ali Rajool Dezfuly
- Department of Anatomical and Molecular Biology Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Azadeh Safaee
- Department of Anatomical and Molecular Biology Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hossein Salehi
- Department of Anatomical and Molecular Biology Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
20
|
Bicer A, Ercin BS, Gürler T, Yiğittürk G, Uyanikgil Y, Cetin EO. Possibility of Taking an Offensive Stance in Extravasation Injury: Effects of Fat Injection in Vesicant (Doxorubicin) Induced Skin Necrosis Model in Rats. J INVEST SURG 2021; 35:801-808. [PMID: 34402353 DOI: 10.1080/08941939.2021.1966142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Extravasation injuries are one of the most feared complications of intravenous drug administration. The most common drugs associated with extravasation injury include chemotherapy agents and contrast media. Natural course of vesicant extravasation is discomfort, pain, swelling, inflammation, and ultimately skin ulceration. While diligence is the principle approach in prevention, immediate bed-side measures are as important in controlling the extent of tissue damage. Various options, either medical or interventional are next steps in treatment of the condition including antidotes, volume dilution, flushing, suction, hyperbaric oxygen therapy, and surgery. MATERIALS AND METHODS 12 male Wistar albino rats were divided into two groups; one group received fat injections following subdermal doxorubicin infiltration in their right thighs, while other group received saline injection following subdermal doxorubicin infiltration in their right thighs for dilution. Left thighs of both groups were left untreated following subdermal doxorubicin infiltration. Total area of necrosis, as well as resultant epidermal thicknesses were assessed. Histological analyses were conducted using modified Verhofstad scoring system for comparison. RESULTS Mean necrotic area was significantly smaller in the fat injection group compared to other groups. Median Verhofstad score was lesser in the fat injection group as well. Median epidermal thickness, on the other hand, was greater in the fat injection group. CONCLUSION Injection of fat grafts following vesicant extravasation might be beneficial in preventing the progression of tissue damage, if employed early.
Collapse
Affiliation(s)
- Ahmet Bicer
- Department of Plastic Surgery, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Burak Sercan Ercin
- Department of Plastic, Reconstructive and Aesthetic surgery, Bahcesehir University, Istanbul, Turkey.,Department of Plastic, Reconstructive and Aesthetic surgery, Medicalpark Pendik Hospital, Istanbul, Turkey
| | - Tahir Gürler
- Department of Plastic Surgery, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Gürkan Yiğittürk
- Department of Histology and Embryology, Faculty of Medicine, Mugla Sitki Kocman University, Mugla, Turkey
| | - Yigit Uyanikgil
- Department of Histology and Embryology, Faculty of Medicine, Ege University, Izmir, Turkey.,Department of Stem Cell, Ege University, Health Science Institue, Izmir, Turkey.,Cord Blood, Cell and Tissue Research and Application Centre, Ege University, Izmir, Turkey
| | - Emel Oyku Cetin
- Department of Pharmaceutical Technology, Department of Biopharmaceutics and Pharmacokinetics, Faculty of Pharmacy, Ege University, Izmir, Turkey
| |
Collapse
|
21
|
Li L, Cheng D, An X, Liao G, Zhong L, Liu J, Chen Y, Yuan Y, Lu Y. Mesenchymal stem cells transplantation attenuates hyperuricemic nephropathy in rats. Int Immunopharmacol 2021; 99:108000. [PMID: 34352566 DOI: 10.1016/j.intimp.2021.108000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 07/05/2021] [Accepted: 07/18/2021] [Indexed: 02/05/2023]
Abstract
Mesenchymal stem cells (MSCs), due to their multi-directional differentiation, paracrine and immunomodulation potentials, and the capacity of homing to target organ, have been reported to facilitate regeneration and repair of kidney and improve kidney function in acute or chronic kidney injury. The present study was aimed to evaluate whether MSCs could have a protective effect in hyperuricemic nephropathy (HN) and the underlying mechanisms. A rat HN model was established by oral administration of a mixture of potassium oxonate (PO, 1.5 g/kg) and adenine (Ad, 50 mg/kg) daily for 4 weeks. For MSCs treatment, MSCs (3 × 106 cells/kg per week) were injected via tail vein from the 2nd week for 3 times. The results showed that along with the elevated uric acid (UA) in HN rats, creatinine (CREA), blood urea nitrogen (BUN), microalbuminuria (MAU) and 24-hour urinary protein levels were significantly increased comparing with the normal control rats, while decreased after MSCs treatment. Moreover, the mRNA levels of inflammation and fibrosis-related gene were reduced in UA + MSCs group. Consistently, hematoxylin-eosin (HE) staining results showed the destruction of kidney structure and fibrosis were significantly alleviated after MSCs administration. Similarly, in vitro, NRK-52Es cells were treated with high concentration UA (10 mg/dL) in the presence of MSCs, and we found that MSCs co-culture could inhibited UA-induced cell injury, characterized as improvement of cell viability and proliferation, inhibition of apoptosis, inflammation, and fibrosis. Collectively, MSCs treatment could effectively attenuate UA-induced renal injury, and thus it might be a potential therapy to hyperuricemia-related renal diseases.
Collapse
Affiliation(s)
- Lan Li
- Key Laboratory of Transplant Engineering and Immunology, NHFPC, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Dongqi Cheng
- Key Laboratory of Transplant Engineering and Immunology, NHFPC, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xingxing An
- Key Laboratory of Transplant Engineering and Immunology, NHFPC, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China; Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, China
| | - Guangneng Liao
- Experimental Animal Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ling Zhong
- Key Laboratory of Transplant Engineering and Immunology, NHFPC, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China; Department of Clinical and Experimental Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Jingping Liu
- Key Laboratory of Transplant Engineering and Immunology, NHFPC, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Younan Chen
- Key Laboratory of Transplant Engineering and Immunology, NHFPC, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yujia Yuan
- Key Laboratory of Transplant Engineering and Immunology, NHFPC, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China.
| | - Yanrong Lu
- Key Laboratory of Transplant Engineering and Immunology, NHFPC, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
22
|
Adak S, Magdalene D, Deshmukh S, Das D, Jaganathan BG. A Review on Mesenchymal Stem Cells for Treatment of Retinal Diseases. Stem Cell Rev Rep 2021; 17:1154-1173. [PMID: 33410097 PMCID: PMC7787584 DOI: 10.1007/s12015-020-10090-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2020] [Indexed: 12/12/2022]
Abstract
Mesenchymal Stem Cells (MSCs) have been studied extensively for the treatment of several retinal diseases. The therapeutic potential of MSCs lies in its ability to differentiate into multiple lineages and secretome enriched with immunomodulatory, anti-angiogenic and neurotrophic factors. Several studies have reported the role of MSCs in repair and regeneration of the damaged retina where the secreted factors from MSCs prevent retinal degeneration, improve retinal morphology and function. MSCs also donate mitochondria to rescue the function of retinal cells and exosomes secreted by MSCs were found to have anti-apoptotic and anti-inflammatory effects. Based on several promising results obtained from the preclinical studies, several clinical trials were initiated to explore the potential advantages of MSCs for the treatment of retinal diseases. This review summarizes the various properties of MSCs that help to repair and restore the damaged retinal cells and its potential for the treatment of retinal degenerative diseases.
Collapse
Affiliation(s)
- Sanjucta Adak
- Stem Cells and Cancer Biology Research Group, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Damaris Magdalene
- Department of Strabismus, Sri Sankaradeva Nethralaya Hospital, Guwahati, Assam, India
| | - Saurabh Deshmukh
- Department of Strabismus, Sri Sankaradeva Nethralaya Hospital, Guwahati, Assam, India
| | - Dipankar Das
- Department of Pathology, Sri Sankaradeva Nethralaya Hospital, Guwahati, Assam, India
| | - Bithiah Grace Jaganathan
- Stem Cells and Cancer Biology Research Group, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India.
| |
Collapse
|
23
|
Li W, Jin L, Cui Y, Nie A, Xie N, Liang G. Bone marrow mesenchymal stem cells-induced exosomal microRNA-486-3p protects against diabetic retinopathy through TLR4/NF-κB axis repression. J Endocrinol Invest 2021; 44:1193-1207. [PMID: 32979189 DOI: 10.1007/s40618-020-01405-3] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 08/23/2020] [Indexed: 02/08/2023]
Abstract
AIM Diabetic retinopathy (DR) is a chronic disease causing health and economic burdens on individuals and society. Thus, this study is conducted to figure out the mechanisms of bone marrow mesenchymal stem cells (BMSCs)-induced exosomal microRNA-486-3p (miR-486-3p) in DR. METHODS The putative miR-486-3p binding sites to 3'untranslated region of Toll-like receptor 4 (TLR4) was verified by luciferase reporter assay. High glucose (HG)-treated Muller cells were transfected with miR-486-3p or TLR4-related oligonucleotides and plasmids to explore theirs functions in DR. Additionally, HG-treated Muller cells were co-cultured with BMSC-derived exosomes, exosomes collected from BMSCs that had been transfected with miR-486-3p or TLR4-related oligonucleotides and plasmids to explore their functions in DR. MiR-486-3p, TLR4 and nuclear factor-kappaB (NF-κB) expression, angiogenesis-related factors, oxidative stress factors, viability and apoptosis in HG-treated Muller cells were detected by RT-qPCR, western blot analysis, ELISA, MTT assay and flow cytometry, respectively. RESULTS MiR-486-3p was poorly expressed while TLR4 and NF-κB were highly expressed in HG-treated Muller cells. TLR4 was a target of miR-486-3p. Upregulating miR-486-3p or down-regulating TLR4 inhibited oxidative stress, inflammation and apoptosis, and promoted proliferation of HG-treated Muller cells. Meanwhile, BMSC-derived exosomes inhibited oxidative stress, inflammation and apoptosis, and promoted proliferation of HG-treated Muller cells. Restoring miR-486-3p further enhanced, while up-regulating TLR4 reversed, the improvement of exosomes treatment. CONCLUSION Our study highlights that up-regulation of miR-486-3p induced by BMSC-derived exosomes played a protective role in DR mice via TLR4/NF-κB axis repression.
Collapse
Affiliation(s)
- W Li
- Department of Ophthalmology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, 1017 Dongmen North Road, Luohu District, Shenzhen, 518000, Guangdong, China
| | - L Jin
- Department of Ophthalmology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, 1017 Dongmen North Road, Luohu District, Shenzhen, 518000, Guangdong, China
| | - Y Cui
- Department of Ophthalmology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, 1017 Dongmen North Road, Luohu District, Shenzhen, 518000, Guangdong, China
| | - A Nie
- Department of Ophthalmology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, 1017 Dongmen North Road, Luohu District, Shenzhen, 518000, Guangdong, China
| | - N Xie
- Department of Ophthalmology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, 1017 Dongmen North Road, Luohu District, Shenzhen, 518000, Guangdong, China.
| | - G Liang
- Department of Ophthalmology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 53300, Guangxi, China.
| |
Collapse
|
24
|
Kim JY, Park S, Park HJ, Kim SH, Lew H, Kim GJ. PEDF-Mediated Mitophagy Triggers the Visual Cycle by Enhancing Mitochondrial Functions in a H 2O 2-Injured Rat Model. Cells 2021; 10:cells10051117. [PMID: 34066394 PMCID: PMC8148157 DOI: 10.3390/cells10051117] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 12/24/2022] Open
Abstract
Retinal degenerative diseases result from oxidative stress and mitochondrial dysfunction, leading to the loss of visual acuity. Damaged retinal pigment epithelial (RPE) and photoreceptor cells undergo mitophagy. Pigment epithelium-derived factor (PEDF) protects from oxidative stress in RPE and improves mitochondrial functions. Overexpression of PEDF in placenta-derived mesenchymal stem cells (PD-MSCs; PD-MSCsPEDF) provides therapeutic effects in retinal degenerative diseases. Here, we investigated whether PD-MSCsPEDF restored the visual cycle through a mitophagic mechanism in RPE cells in hydrogen peroxide (H2O2)-injured rat retinas. Compared with naïve PD-MSCs, PD-MSCsPEDF augmented mitochondrial biogenesis and translation markers as well as mitochondrial respiratory states. In the H2O2-injured rat model, intravitreal administration of PD-MSCsPEDF restored total retinal layer thickness compared to that of naïve PD-MSCs. In particular, PTEN-induced kinase 1 (PINK1), which is the major mitophagy marker, exhibited increased expression in retinal layers and RPE cells after PD-MSCPEDF transplantation. Similarly, expression of the visual cycle enzyme retinol dehydrogenase 11 (RDH11) showed the same patterns as PINK1 levels, resulting in improved visual activity. Taken together, these findings suggest that PD-MSCsPEDF facilitate mitophagy and restore the loss of visual cycles in H2O2-injured rat retinas and RPE cells. These data indicate a new strategy for next-generation MSC-based treatment of retinal degenerative diseases.
Collapse
Affiliation(s)
- Jae Yeon Kim
- Department of Biomedical Science, CHA University, Seongnam 13488, Korea; (J.Y.K.); (S.P.); (H.J.P.); (S.H.K.)
- Research Institute of Placental Science, CHA University, Seongnam 13488, Korea
| | - Sohae Park
- Department of Biomedical Science, CHA University, Seongnam 13488, Korea; (J.Y.K.); (S.P.); (H.J.P.); (S.H.K.)
| | - Hee Jung Park
- Department of Biomedical Science, CHA University, Seongnam 13488, Korea; (J.Y.K.); (S.P.); (H.J.P.); (S.H.K.)
| | - Se Ho Kim
- Department of Biomedical Science, CHA University, Seongnam 13488, Korea; (J.Y.K.); (S.P.); (H.J.P.); (S.H.K.)
| | - Helen Lew
- CHA Bundang Medical Center, Department of Ophthalmology, CHA University, Seongnam 13496, Korea;
| | - Gi Jin Kim
- Department of Biomedical Science, CHA University, Seongnam 13488, Korea; (J.Y.K.); (S.P.); (H.J.P.); (S.H.K.)
- Research Institute of Placental Science, CHA University, Seongnam 13488, Korea
- Correspondence: ; Tel.: +82-31-881-7145
| |
Collapse
|
25
|
Limoli PG, Limoli C, Vingolo EM, Franzone F, Nebbioso M. Mesenchymal stem and non-stem cell surgery, rescue, and regeneration in glaucomatous optic neuropathy. Stem Cell Res Ther 2021; 12:275. [PMID: 33957957 PMCID: PMC8101217 DOI: 10.1186/s13287-021-02351-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 04/21/2021] [Indexed: 12/11/2022] Open
Abstract
Background Glaucomatous optic neuropathy (GON) is an anatomofunctional impairment of the optic nerve triggered by glaucoma. Recently, growth factors (GFs) have been shown to produce retinal neuroenhancement. The suprachoroidal autograft of mesenchymal stem cells (MSCs) by the Limoli retinal restoration technique (LRRT) has proven to achieve retinal neuroenhancement by producing GF directly into the choroidal space. This retrospectively registered clinical study investigated the visual function changes in patients with GON treated with LRRT. Methods Twenty-five patients (35 eyes) with GON in progressive disease conditions were included in the study. Each patient underwent a comprehensive ocular examination, including the analysis of best corrected visual acuity (BCVA) for far and near visus, sensitivity by Maia microperimetry, and the study of the spectral domain-optical coherence tomography (SD-OCT). The patients were divided into two groups: a control group, consisting of 21 eyes (average age 72.2 years, range 50–83), and an LRRT group, consisting of 14 eyes (average age 67.4, range 50–84). Results After 6 months, the BCVA, close-up visus, and microperimetric sensitivity significantly improved in the LRRT-treated group (p<0.05), whereas the mean increases were not statistically significant in controls (p>0.5). Conclusions Patients with GON treated with LRRT showed a significant increase in visual performance (VP) both in BCVA and sensitivity and an improvement of residual close-up visus, in the comparison between the LRRT results and the control group. Further studies will be needed to establish the actual significance of the reported findings.
Collapse
Affiliation(s)
| | - Celeste Limoli
- Low Vision Research Centre of Milan, Piazza Sempione 3, 20145, Milan, Italy
| | - Enzo Maria Vingolo
- Department of Sense Organs, Faculty of Medicine and Odontology, Sapienza University of Rome, P.le A. Moro 5, 00185, Rome, Italy
| | - Federica Franzone
- Department of Sense Organs, Faculty of Medicine and Odontology, Sapienza University of Rome, P.le A. Moro 5, 00185, Rome, Italy
| | - Marcella Nebbioso
- Department of Sense Organs, Faculty of Medicine and Odontology, Sapienza University of Rome, P.le A. Moro 5, 00185, Rome, Italy. .,Department of Sense Organs, Ocular Electrophysiology Centre, Umberto I Policlinic, Sapienza University of Rome, Viale del Policlinico 155, 00161, Rome, Italy.
| |
Collapse
|
26
|
Koh AEH, Alsaeedi HA, Rashid MBA, Lam C, Harun MHN, Ng MH, Mohd Isa H, Then KY, Bastion MLC, Farhana A, Khursheed Alam M, Subbiah SK, Mok PL. Transplanted Erythropoietin-Expressing Mesenchymal Stem Cells Promote Pro-survival Gene Expression and Protect Photoreceptors From Sodium Iodate-Induced Cytotoxicity in a Retinal Degeneration Model. Front Cell Dev Biol 2021; 9:652017. [PMID: 33987180 PMCID: PMC8111290 DOI: 10.3389/fcell.2021.652017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/29/2021] [Indexed: 12/18/2022] Open
Abstract
Mesenchymal stem cells (MSC) are highly regarded as a potential treatment for retinal degenerative disorders like retinitis pigmentosa and age-related macular degeneration. However, donor cell heterogeneity and inconsistent protocols for transplantation have led to varied outcomes in clinical trials. We previously showed that genetically-modifying MSCs to express erythropoietin (MSCEPO) improved its regenerative capabilities in vitro. Hence, in this study, we sought to prove its potential in vivo by transplanting MSCsEPO in a rat retinal degeneration model and analyzing its retinal transcriptome using RNA-Seq. Firstly, MSCsEPO were cultured and expanded before being intravitreally transplanted into the sodium iodate-induced model. After the procedure, electroretinography (ERG) was performed bi-weekly for 30 days. Histological analyses were performed after the ERG assessment. The retina was then harvested for RNA extraction. After mRNA-enrichment and library preparation, paired-end RNA-Seq was performed. Salmon and DESeq2 were used to process the output files. The generated dataset was then analyzed using over-representation (ORA), functional enrichment (GSEA), and pathway topology analysis tools (SPIA) to identify enrichment of key pathways in the experimental groups. The results showed that the MSCEPO-treated group had detectable ERG waves (P <0.05), which were indicative of successful phototransduction. The stem cells were also successfully detected by immunohistochemistry 30 days after intravitreal transplantation. An initial over-representation analysis revealed a snapshot of immune-related pathways in all the groups but was mainly overexpressed in the MSC group. A subsequent GSEA and SPIA analysis later revealed enrichment in a large number of biological processes including phototransduction, regeneration, and cell death (Padj <0.05). Based on these pathways, a set of pro-survival gene expressions were extracted and tabulated. This study provided an in-depth transcriptomic analysis on the MSCEPO-treated retinal degeneration model as well as a profile of pro-survival genes that can be used as candidates for further genetic enhancement studies on stem cells.
Collapse
Affiliation(s)
- Avin Ee-Hwan Koh
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Hiba Amer Alsaeedi
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Munirah Binti Abd Rashid
- Department of Ophthalmology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Chenshen Lam
- Department of Ophthalmology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Mohd Hairul Nizam Harun
- Department of Ophthalmology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Min Hwei Ng
- Tissue Engineering Centre, Universiti Kebangsaan Malaysia Medical Center, Kuala Lumpur, Malaysia
| | - Hazlita Mohd Isa
- Department of Ophthalmology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Kong Yong Then
- Department of Ophthalmology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Mae-Lynn Catherine Bastion
- Department of Ophthalmology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Aisha Farhana
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
| | | | - Suresh Kumar Subbiah
- Department of Medical Microbiology and Parasitology, Universiti Putra Malaysia, Serdang, Malaysia.,Genetics and Regenerative Medicine Research Group, Universiti Putra Malaysia, Serdang, Malaysia.,Department of Biotechnology, Bharath Institute of Higher Education and Research, Chennai, India
| | - Pooi Ling Mok
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia.,Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia.,Genetics and Regenerative Medicine Research Group, Universiti Putra Malaysia, Serdang, Malaysia.,Department of Biotechnology, Bharath Institute of Higher Education and Research, Chennai, India
| |
Collapse
|
27
|
Lin Y, Ren X, Chen Y, Chen D. Interaction Between Mesenchymal Stem Cells and Retinal Degenerative Microenvironment. Front Neurosci 2021; 14:617377. [PMID: 33551729 PMCID: PMC7859517 DOI: 10.3389/fnins.2020.617377] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/17/2020] [Indexed: 02/06/2023] Open
Abstract
Retinal degenerative diseases (RDDs) are a group of diseases contributing to irreversible vision loss with yet limited therapies. Stem cell-based therapy is a promising novel therapeutic approach in RDD treatment. Mesenchymal stromal/stem cells (MSCs) have emerged as a leading cell source due to their neurotrophic and immunomodulatory capabilities, limited ethical concerns, and low risk of tumor formation. Several pre-clinical studies have shown that MSCs have the potential to delay retinal degeneration, and recent clinical trials have demonstrated promising safety profiles for the application of MSCs in retinal disease. However, some of the clinical-stage MSC therapies have been unable to meet primary efficacy end points, and severe side effects were reported in some retinal “stem cell” clinics. In this review, we provide an update of the interaction between MSCs and the RDD microenvironment and discuss how to balance the therapeutic potential and safety concerns of MSCs' ocular application.
Collapse
Affiliation(s)
- Yu Lin
- The Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,The Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Xiang Ren
- The Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,The Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Yongjiang Chen
- The School of Optometry and Vision Science, University of Waterloo, Waterloo, ON, Canada
| | - Danian Chen
- The Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,The Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
28
|
Noueihed B, Rivera JC, Dabouz R, Abram P, Omri S, Lahaie I, Chemtob S. Mesenchymal Stromal Cells Promote Retinal Vascular Repair by Modulating Sema3E and IL-17A in a Model of Ischemic Retinopathy. Front Cell Dev Biol 2021; 9:630645. [PMID: 33553187 PMCID: PMC7859341 DOI: 10.3389/fcell.2021.630645] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 01/04/2021] [Indexed: 12/15/2022] Open
Abstract
Ischemic retinopathies (IRs), such as retinopathy of prematurity and diabetic retinopathy, are characterized by an initial phase of microvascular degeneration that results in retinal ischemia, followed by exaggerated pathologic neovascularization (NV). Mesenchymal stromal cells (MSCs) have potent pro-angiogenic and anti-inflammatory properties associated with tissue repair and regeneration, and in this regard exert protection to neurons in ischemic and degenerative conditions; however, the exact mechanisms underlying these functions remain largely unknown. Class III Semaphorins (A–G) are particularly implicated in regulating neural blood supply (as well as neurogenesis) by suppressing angiogenesis and affecting myeloid cell function; this is the case for distinct neuropillin-activating Sema3A as well as PlexinD1-activating Sema3E; but during IR the former Sema3A increases while Sema3E decreases. We investigated whether retinal vascular repair actions of MSCs are exerted by normalizing Semaphorin and downstream cytokines in IR. Intravitreal administration of MSCs or their secretome (MSCs-conditioned media [MSCs-CM]) significantly curtailed vasoobliteration as well as aberrant preretinal NV in a model of oxygen-induced retinopathy (OIR). The vascular repair effects of MSCs-CM in the ischemic retina were associated with restored levels of Sema3E. Vascular benefits of MSCs-CM were reversed by anti-Sema3E; while intravitreal injection of anti-angiogenic recombinant Sema3E (rSema3E) in OIR-subjected mice reproduced effects of MSCs-CM by inhibiting as expected preretinal NV but also by decreasing vasoobliteration. To explain these opposing vascular effects of Sema3E we found in OIR high retinal levels, respectively, of the pro- and anti-angiogenic IL-17A and Sema3A-regulating IL-1β; IL-17A positively affected expression of IL-1β. rSema3E decreased concentrations of these myeloid cell-derived pro-inflammatory cytokines in vitro and in vivo. Importantly, IL-17A suppression by MSCs-CM was abrogated by anti-Sema3E neutralizing antibody. Collectively, our findings provide novel evidence by which MSCs inhibit aberrant NV and diminish vasoobliteration (promoting revascularization) in retinopathy by restoring (at least in part) neuronal Sema3E levels that reduce pathological levels of IL-17A (and in turn other proinflammatory factors) in myeloid cells. The ability of MSCs to generate a microenvironment permissive for vascular regeneration by controlling the production of neuronal factors involved in immunomodulatory activities is a promising opportunity for stem cell therapy in ocular degenerative diseases.
Collapse
Affiliation(s)
- Baraa Noueihed
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Center, University of Montréal, Montréal, QC, Canada.,Department of Pharmacology and Therapeutics, McGill University, Montréal, QC, Canada
| | - José Carlos Rivera
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Center, University of Montréal, Montréal, QC, Canada.,Departments of Pediatrics, Ophthalmology and Pharmacology, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC, Canada
| | - Rabah Dabouz
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Center, University of Montréal, Montréal, QC, Canada
| | - Pénélope Abram
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Center, University of Montréal, Montréal, QC, Canada
| | - Samy Omri
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Center, University of Montréal, Montréal, QC, Canada
| | - Isabelle Lahaie
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Center, University of Montréal, Montréal, QC, Canada
| | - Sylvain Chemtob
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Center, University of Montréal, Montréal, QC, Canada.,Department of Pharmacology and Therapeutics, McGill University, Montréal, QC, Canada.,Departments of Pediatrics, Ophthalmology and Pharmacology, Centre Hospitalier Universitaire Sainte-Justine Research Center, Montréal, QC, Canada
| |
Collapse
|
29
|
Elshaer SL, Park HS, Pearson L, Hill WD, Longo FM, El-Remessy AB. Modulation of p75 NTR on Mesenchymal Stem Cells Increases Their Vascular Protection in Retinal Ischemia-Reperfusion Mouse Model. Int J Mol Sci 2021; 22:E829. [PMID: 33467640 PMCID: PMC7830385 DOI: 10.3390/ijms22020829] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/10/2021] [Accepted: 01/11/2021] [Indexed: 12/17/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are a promising therapy to improve vascular repair, yet their role in ischemic retinopathy is not fully understood. The aim of this study is to investigate the impact of modulating the neurotrophin receptor; p75NTR on the vascular protection of MSCs in an acute model of retinal ischemia/reperfusion (I/R). Wild type (WT) and p75NTR-/- mice were subjected to I/R injury by increasing intra-ocular pressure to 120 mmHg for 45 min, followed by perfusion. Murine GFP-labeled MSCs (100,000 cells/eye) were injected intravitreally 2 days post-I/R and vascular homing was assessed 1 week later. Acellular capillaries were counted using trypsin digest 10-days post-I/R. In vitro, MSC-p75NTR was modulated either genetically using siRNA or pharmacologically using the p75NTR modulator; LM11A-31, and conditioned media were co-cultured with human retinal endothelial cells (HREs) to examine the angiogenic response. Finally, visual function in mice undergoing retinal I/R and receiving LM11A-31 was assessed by visual-clue water-maze test. I/R significantly increased the number of acellular capillaries (3.2-Fold) in WT retinas, which was partially ameliorated in p75NTR-/- retinas. GFP-MSCs were successfully incorporated and engrafted into retinal vasculature 1 week post injection and normalized the number of acellular capillaries in p75NTR-/- retinas, yet ischemic WT retinas maintained a 2-Fold increase. Silencing p75NTR on GFP-MSCs coincided with a higher number of cells homing to the ischemic WT retinal vasculature and normalized the number of acellular capillaries when compared to ischemic WT retinas receiving scrambled-GFP-MSCs. In vitro, silencing p75NTR-MSCs enhanced their secretome, as evidenced by significant increases in SDF-1, VEGF and NGF release in MSCs conditioned medium; improved paracrine angiogenic response in HREs, where HREs showed enhanced migration (1.4-Fold) and tube formation (2-Fold) compared to controls. In parallel, modulating MSCs-p75NTR using LM11A-31 resulted in a similar improvement in MSCs secretome and the enhanced paracrine angiogenic potential of HREs. Further, intervention with LM11A-31 significantly mitigated the decline in visual acuity post retinal I/R injury. In conclusion, p75NTR modulation can potentiate the therapeutic potential of MSCs to harness vascular repair in ischemic retinopathy diseases.
Collapse
Affiliation(s)
- Sally L. Elshaer
- Augusta Biomedical Research Corporation, Charlie Norwood VA Medical Center, Augusta, GA 30901, USA; (S.L.E.); (L.P.); (W.D.H.)
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Hang-soo Park
- Department of Surgery, University of Illinois at Chicago, Chicago, IL 60612, USA;
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA
| | - Laura Pearson
- Augusta Biomedical Research Corporation, Charlie Norwood VA Medical Center, Augusta, GA 30901, USA; (S.L.E.); (L.P.); (W.D.H.)
| | - William D. Hill
- Augusta Biomedical Research Corporation, Charlie Norwood VA Medical Center, Augusta, GA 30901, USA; (S.L.E.); (L.P.); (W.D.H.)
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29403, USA
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC 29403, USA
| | - Frank M. Longo
- Department of Neurology and Neurological Sciences, Stanford University, Palo Alto, CA 94304, USA;
| | - Azza B. El-Remessy
- Augusta Biomedical Research Corporation, Charlie Norwood VA Medical Center, Augusta, GA 30901, USA; (S.L.E.); (L.P.); (W.D.H.)
- Department of Surgery, University of Illinois at Chicago, Chicago, IL 60612, USA;
- Department of the Pharmacy, Doctors Hospital of Augusta, Augusta, GA 30909, USA
| |
Collapse
|
30
|
Li D, Zhang J, Liu Z, Gong Y, Zheng Z. Human umbilical cord mesenchymal stem cell-derived exosomal miR-27b attenuates subretinal fibrosis via suppressing epithelial-mesenchymal transition by targeting HOXC6. Stem Cell Res Ther 2021; 12:24. [PMID: 33413548 PMCID: PMC7792361 DOI: 10.1186/s13287-020-02064-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 12/02/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND AND AIM Subretinal fibrosis resulting from neovascular age-related macular degeneration (nAMD) is one of the major causes of serious and irreversible vision loss worldwide, and no definite and effective treatment exists currently. Retinal pigmented epithelium (RPE) cells are crucial in maintaining the visual function of normal eyes and its epithelial-mesenchymal transition (EMT) is associated with the pathogenesis of subretinal fibrosis. Stem cell-derived exosomes have been reported to play a crucial role in tissue fibrosis by transferring their molecular contents. This study aimed to explore the effects of human umbilical cord-derived mesenchymal stem cell exosomes (hucMSC-Exo) on subretinal fibrosis in vivo and in vitro and to investigate the anti-fibrotic mechanism of action of hucMSC-Exo. METHODS In this study, human umbilical cord-derived mesenchymal stem cells (hucMSCs) were successfully cultured and identified, and exosomes were isolated from the supernatant by ultracentrifugation. A laser-induced choroidal neovascularization (CNV) and subretinal fibrosis model indicated that the intravitreal administration of hucMSC-Exo effectively alleviated subretinal fibrosis in vivo. Furthermore, hucMSC-Exo could efficaciously suppress the migration of retinal pigmented epithelial (RPE) cells and promote the mesenchymal-epithelial transition by delivering miR-27b-3p. The latent binding of miR-27b-3p to homeobox protein Hox-C6 (HOXC6) was analyzed by bioinformatics prediction and luciferase reporter assays. RESULTS This study showed that the intravitreal injection of hucMSC-Exo effectively ameliorated laser-induced CNV and subretinal fibrosis via the suppression of epithelial-mesenchymal transition (EMT) process. In addition, hucMSC-Exo containing miR-27b repressed the EMT process in RPE cells induced by transforming growth factor-beta2 (TGF-β2) via inhibiting HOXC6 expression. CONCLUSIONS The present study showed that HucMSC-derived exosomal miR-27b could reverse the process of EMT induced by TGF-β2 via inhibiting HOXC6, indicating that the exosomal miR-27b/HOXC6 axis might play a vital role in ameliorating subretinal fibrosis. The present study proposed a promising therapeutic agent for treating ocular fibrotic diseases and provided insights into the mechanism of action of hucMSC-Exo on subretinal fibrosis.
Collapse
Affiliation(s)
- Dongli Li
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 20 080, China.,National Clinical Research Center for Eye Diseases, Shanghai, 200080, China.,Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, 200080, China.,Shanghai Engineering Center for Visual Science and Photomedicine, NO.100, Haining Road, Hongkou District, Shanghai, 200080, China
| | - Junxiu Zhang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 20 080, China.,National Clinical Research Center for Eye Diseases, Shanghai, 200080, China.,Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, 200080, China.,Shanghai Engineering Center for Visual Science and Photomedicine, NO.100, Haining Road, Hongkou District, Shanghai, 200080, China
| | - Zijia Liu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 20 080, China.,National Clinical Research Center for Eye Diseases, Shanghai, 200080, China.,Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, 200080, China.,Shanghai Engineering Center for Visual Science and Photomedicine, NO.100, Haining Road, Hongkou District, Shanghai, 200080, China
| | - Yuanyuan Gong
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 20 080, China. .,National Clinical Research Center for Eye Diseases, Shanghai, 200080, China. .,Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, 200080, China. .,Shanghai Engineering Center for Visual Science and Photomedicine, NO.100, Haining Road, Hongkou District, Shanghai, 200080, China.
| | - Zhi Zheng
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 20 080, China. .,National Clinical Research Center for Eye Diseases, Shanghai, 200080, China. .,Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, 200080, China. .,Shanghai Engineering Center for Visual Science and Photomedicine, NO.100, Haining Road, Hongkou District, Shanghai, 200080, China.
| |
Collapse
|
31
|
Kim JY, Park S, Park SH, Lee D, Kim GH, Noh JE, Lee KJ, Kim GJ. Overexpression of pigment epithelium-derived factor in placenta-derived mesenchymal stem cells promotes mitochondrial biogenesis in retinal cells. J Transl Med 2021; 101:51-69. [PMID: 32724163 DOI: 10.1038/s41374-020-0470-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 06/05/2020] [Accepted: 07/12/2020] [Indexed: 01/13/2023] Open
Abstract
Pigment epithelium-derived factor (PEDF) plays a role in protecting retinal pigment epithelial (RPE) cells from oxidative stress (OS), a causative factor of RPE cell death. Genetically modified mesenchymal stem cells (MSCs) can be used to treat critical and incurable retinal diseases. Here, we overexpressed PEDF in placenta-derived MSCs (PD-MSCsPEDF, PEDF+) using a nonviral gene delivery system and evaluated the characteristics of PD-MSCsPEDF and their potential regenerative effects on RPE cells damaged by H2O2-induced OS. PD-MSCsPEDF maintained their stemness, cell surface marker, and differentiation potential characteristics. Compared to naive cells, PD-MSCsPEDF promoted mitochondrial respiration by enhancing biogenesis regulators (e.g., NRF1, PPARGC1A, and TFAM) as well as antioxidant enzymes (e.g., HMOXs, SODs, and GPX1). Compared to OS-damaged RPE cells cocultured with naive cells, OS-damaged RPE cells cocultured with PD-MSCsPEDF showed PEDF upregulation and VEGF downregulation. The expression levels of antioxidant genes and RPE-specific genes, such as RPE65, RGR, and RRH, were significantly increased in RPE cells cocultured with PD-MSCsPEDF. Furthermore, OS-damaged RPE cells cocultured with PD-MSCsPEDF had dramatically enhanced mitochondrial functions, and antiapoptotic effects improved due to cell survival signaling pathways. In the H2O2-induced retinal degeneration rat model, compared to administration of the naive counterpart, intravitreal administration of PD-MSCsPEDF alleviated proinflammatory cytokines and restored retinal structure and function by increasing PEDF expression and decreasing VEGF expression. Intravitreal administration of PD-MSCsPEDF also protected retinal degeneration against OS by increasing antioxidant gene expression and regulating the mitochondrial ROS levels and biogenesis. Taken together, PEDF overexpression in PD-MSCs improved the mitochondrial activities and induced OS-damaged RPE cell regeneration by regulating the oxidative status and mitochondrial biogenesis in vitro and in vivo. These data suggest that genetic modification of PEDF in PD-MSCs might be a new cell therapy for the treatment of retinal degenerative diseases.
Collapse
Affiliation(s)
- Jae Yeon Kim
- Department of Biomedical Science, CHA University, Seongnam, 13488, Republic of Korea
| | - Sohae Park
- Department of Biomedical Science, CHA University, Seongnam, 13488, Republic of Korea
| | - So Hyun Park
- Paju 365 Veterinary Medical Center, Paju, 10892, Republic of Korea
| | - Dongsook Lee
- Hamchoon Women's clinic, Research Center of Fertility & Genetics, Seoul, 06643, Republic of Korea
| | - Gyu Hyun Kim
- Neural Circuits Research Group, Korea Brain Research Institute, Daegu, 41062, Republic of Korea
| | - Jung Eun Noh
- Neural Circuits Research Group, Korea Brain Research Institute, Daegu, 41062, Republic of Korea
| | - Kea Joo Lee
- Neural Circuits Research Group, Korea Brain Research Institute, Daegu, 41062, Republic of Korea
| | - Gi Jin Kim
- Department of Biomedical Science, CHA University, Seongnam, 13488, Republic of Korea.
| |
Collapse
|
32
|
Nuzzi R, Bergandi L, Zabetta LC, D’Errico L, Riscaldino F, Menegon S, Silvagno F. In vitro generation of primary cultures of human hyalocytes. Mol Vis 2020; 26:818-829. [PMID: 33456301 PMCID: PMC7803295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 12/28/2020] [Indexed: 10/31/2022] Open
Abstract
Purpose A growing number of studies on animal models have demonstrated that some ocular diseases are the result of the interaction between hyalocytes and the ocular inflammatory setting. Endogenous and exogenous substances might alter the structure and behavior of hyalocytes that can contribute to the pathogenesis of some ocular diseases. Obtaining primary cultures of human hyalocytes could help understand the role of these cells in response to different treatments. Methods Hyalocytes were isolated from eyes of 54 patient volunteers subjected to vitrectomy for different clinical reasons. By testing different matrices and growth media, we reproducibly generated primary cultures of hyalocytes that we characterized morphologically and biologically, basally and upon treatment with several agents (basic fibroblast growth factor (bFGF), transforming growth factor beta 1 (TGF-β), platelet-derived growth factor subunit-BB (PDGF-BB), ascorbic acid, dexamethasone, and hydrogen peroxide). Results We were able to generate primary cultures from vitreous human samples, growing the cells on collagen-coated plates in Iscove's modified Dulbecco's medium supplemented with 10% fetal bovine serum; primary cells expressed the hyalocyte markers. Specific cytoskeletal modifications were observed upon treatment with bFGF, TGF-β, PDGF-BB, ascorbic acid, dexamethasone, and hydrogen peroxide. Only bFGF was able to promote cell growth and hyaluronic acid production. Conclusions We describe for the first time the generation and the characterization of primary cultures of human hyalocytes from living donors. Although human hyalocytes share some characteristics with animal hyalocytes, human hyalocytes have their own features typical of the species, confirming how important human experimental models are for investigating human pathologies and their treatments.
Collapse
Affiliation(s)
- Raffaele Nuzzi
- Eye Clinic Section, Department of Surgical Sciences, University of Torino, Torino, Italy
| | | | - Lorenzo Coda Zabetta
- Eye Clinic Section, Department of Surgical Sciences, University of Torino, Torino, Italy
| | - Laura D’Errico
- Department of Oncology, University of Torino, Torino, Italy
| | - Francesco Riscaldino
- Eye Clinic Section, Department of Surgical Sciences, University of Torino, Torino, Italy
| | - Silvia Menegon
- Department of Oncology, University of Torino, Torino, Italy
| | | |
Collapse
|
33
|
Combined Cell Therapy in the Treatment of Neurological Disorders. Biomedicines 2020; 8:biomedicines8120613. [PMID: 33333803 PMCID: PMC7765161 DOI: 10.3390/biomedicines8120613] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/11/2020] [Accepted: 12/12/2020] [Indexed: 02/07/2023] Open
Abstract
Cell therapy of neurological diseases is gaining momentum. Various types of stem/progenitor cells and their derivatives have shown positive therapeutic results in animal models of neurological disorders and in clinical trials. Each tested cell type proved to have its advantages and flaws and unique cellular and molecular mechanism of action, prompting the idea to test combined transplantation of two or more types of cells (combined cell therapy). This review summarizes the results of combined cell therapy of neurological pathologies reported up to this point. The number of papers describing experimental studies or clinical trials addressing this subject is still limited. However, its successful application to the treatment of neurological pathologies including stroke, spinal cord injury, neurodegenerative diseases, Duchenne muscular dystrophy, and retinal degeneration has been reported in both experimental and clinical studies. The advantages of combined cell therapy can be realized by simple summation of beneficial effects of different cells. Alternatively, one kind of cells can support the survival and functioning of the other by enhancing the formation of optimum environment or immunomodulation. No significant adverse events were reported. Combined cell therapy is a promising approach for the treatment of neurological disorders, but further research needs to be conducted.
Collapse
|
34
|
Shearer TR, Hwang TS, Steinkamp PN, Azuma M. Segmenting OCT for detecting drug efficacy in CRAO. PLoS One 2020; 15:e0242920. [PMID: 33306701 PMCID: PMC7732080 DOI: 10.1371/journal.pone.0242920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 11/11/2020] [Indexed: 11/18/2022] Open
Abstract
PURPOSE Thinning of the inner layers of the retina occurs in patients with central retinal artery occlusion (CRAO). The mechanism for such thinning may be partially due to proteolysis by a calcium-activated protease called calpain. Calpain inhibitor SNJ-1945 ameliorated the proteolysis in a past series of model experiments. The purposes of the present retrospective study were to: 1) use segmentation analysis of optical coherence tomography (OCT) images to mathematically model the loss of specific retinal layers in CRAO patients, and 2) predict the number of patients and days of observation needed for clinical trials of inhibitors against CRAO. METHODS A retrospective case control study was conducted by computer-aided search for CRAO (ICD10 H43.1) with at least one OCT procedure (CPT: 92134) in the OHSU Epic patient data base. RESULTS After initial swelling, thinning of the inner retinal layers, especially the ganglion cell (GCL) layer followed exponential decay curves. Using sample size statistics and GCL thickness as a marker in a 30-day clinical trial, 19 eyes/group could theoretically detect a 20% beneficial effect of an inhibitor against CRAO. Other markers, such as the whole retinal thickness and combined inner layers could also be used as less-specific markers. CONCLUSIONS Using thickness changes in the GCL layer to monitor the efficacy of potential inhibitors against CRAO is practical in human trials requiring a reasonable number of patients and relatively short trial period. TRANSLATIONAL RELEVANCE Measurement of GCL thickness would be a useful indicator of CRAO progression in a clinical trial of putative inhibitors.
Collapse
Affiliation(s)
- Thomas R Shearer
- Department of Integrative Biomedical & Diagnostic Sciences, Oregon Health & Science University, Portland, OR, United States of America
| | - Thomas S Hwang
- Department of Ophthalmology-OHSU, Portland, OR, United States of America
| | - Peter N Steinkamp
- Department of Ophthalmology-OHSU, Portland, OR, United States of America
| | - Mitsuyoshi Azuma
- Senju Laboratory of Ocular Sciences, Portland, OR, United States of America
| |
Collapse
|
35
|
Pesaresi M, Bonilla-Pons SA, Sebastian-Perez R, Di Vicino U, Alcoverro-Bertran M, Michael R, Cosma MP. The Chemokine Receptors Ccr5 and Cxcr6 Enhance Migration of Mesenchymal Stem Cells into the Degenerating Retina. Mol Ther 2020; 29:804-821. [PMID: 33264643 DOI: 10.1016/j.ymthe.2020.10.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 10/02/2020] [Accepted: 10/23/2020] [Indexed: 02/07/2023] Open
Abstract
Cell therapy approaches hold great potential for treating retinopathies, which are currently incurable. This study addresses the problem of inadequate migration and integration of transplanted cells into the host retina. To this end, we have identified the chemokines that were most upregulated during retinal degeneration and that could chemoattract mesenchymal stem cells (MSCs). The results were observed using a pharmacological model of ganglion/amacrine cell degeneration and a genetic model of retinitis pigmentosa, from both mice and human retinae. Remarkably, MSCs overexpressing Ccr5 and Cxcr6, which are receptors bound by a subset of the identified chemokines, displayed improved migration after transplantation in the degenerating retina. They also led to enhanced rescue of cell death and to preservation of electrophysiological function. Overall, we show that chemokines released from the degenerating retinae can drive migration of transplanted stem cells, and that overexpression of chemokine receptors can improve cell therapy-based regenerative approaches.
Collapse
Affiliation(s)
- Martina Pesaresi
- Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Sergi A Bonilla-Pons
- Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain; Universitat de Barcelona (UB), Barcelona 08028, Spain
| | - Ruben Sebastian-Perez
- Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Umberto Di Vicino
- Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Marc Alcoverro-Bertran
- Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Ralph Michael
- Institut Universitari Barraquer, Universitat Autónoma de Barcelona, Barcelona 08021, Spain; Centro de Oftalmología Barraquer, Barcelona 08021, Spain
| | - Maria Pia Cosma
- Center for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain; Universitat Pompeu Fabra (UPF), Barcelona 08003, Spain; ICREA, Passeig de Lluis Companys 23, Barcelona 08010, Spain; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China.
| |
Collapse
|
36
|
Ahmadi M, Rezaie J. Ageing and mesenchymal stem cells derived exosomes: Molecular insight and challenges. Cell Biochem Funct 2020; 39:60-66. [PMID: 33164248 DOI: 10.1002/cbf.3602] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 10/24/2020] [Accepted: 10/27/2020] [Indexed: 12/13/2022]
Abstract
Ageing induces a great risk factor that participates in progressing various degenerative diseases morbidities. The main characteristic of ageing is the failure in maintaining homeostasis in the organs with a cellular senescence. Senescence is characterized by reduced cell growth, evade cellular death, and acquiring a senescence-associated secretory phenotype (SASP). Mesenchymal stem cells (MSCs) are advantageous cells in regenerative medicine, exerting pleiotropic functions by producing soluble factors, such as exosomes. MSCs and their exosomes (MSCs-Exo) kinetic are affected by ageing and other aged exosomes. Exosomes biogenesis from aged MSCs is accelerated and their exosomal cargoes, such as miRNAs, vary as compared to those of normal cells. Besides, exosomes from aged MSCs loss their regenerative potential and may negatively influence the function of recipient cells. MSCs-Exo can improve ageing and age-related diseases; however, the detailed mechanisms remain yet elusive. Although exosomes-therapy may serve as a new approach to combat ageing, the translation of preclinical results to clinic needs more extensive investigation on exosomes both on their biology and related techniques. Overall, scrutiny on the effect of ageing on MSCs and vice versa is vital for designing novel therapy using MSCs with focus on the management of older individuals.
Collapse
Affiliation(s)
- Mahdi Ahmadi
- Tuberculosis and lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jafar Rezaie
- Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
37
|
Haghighat M, Iranbakhsh A, Baharara J, Ebadi M, Sotoodehnejadnematalahi F. Effect of β-carotene on the differentiation potential of ciliary epithelium-derived MSCs isolated from mouse eyes on alginate-based scaffolds. Exp Eye Res 2020; 202:108346. [PMID: 33147471 DOI: 10.1016/j.exer.2020.108346] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 10/13/2020] [Accepted: 10/29/2020] [Indexed: 12/19/2022]
Abstract
Retinal degenerative diseases are considered a major challenge all over the world, and stem cell therapy is a promising approach to restore degenerative cells due to RD. MSCs are multipotent stem cells found in a variety of tissues. They are capable of differentiating into various retinal cell types, so it can be a good candidate for various degenerative disorders like retinal degenerations. β-carotene is an antioxidant that could accelerate the stem cell differentiation while using the proper scaffold. In this study, we evaluated the effect of β-carotene on the differentiation potential of ciliary epithelium-derived MSCs isolated from mouse eyes on alginate-based scaffolds. MSCs were isolated from mouse ciliary epithelium, cultured in DMEM medium supplemented with 10% FBS, and identified by detecting their surface antigens. Three 3D culture systems, alginate, alginate/gelatin, and gelatin hydrogels were prepared, and their structures were checked via SEM. MSCs were cultured on 3D and 2D culture system scaffolds following treated with differentiation medium containing 50 μM β-mercaptoethanol, 1 × minimum essential medium-nonessential amino acids and 20% of knockout serum replacement and β-carotene. MSCs viability and differentiation ability were examined by MTT and ICC, respectively. The expression changes of several retinal specific genes (Nestin, RPE65, and Rhodopsin) were also evaluated by qPCR. Over 80% of cells isolated from mouse ciliary epithelium were positive for MSC-specific markers. The viability rates of MSCs grown on all alginate-based scaffolds were above 70%. MSCs cultured on alginate-based scaffold in the differentiation medium containing β-carotene expressed higher levels of rhodopsin protein compared to a 2D culture. Also, the expressions of Nestin, Rhodopsin, and RPE65 genes were upregulated in β-carotene-treated MSCs grown on alginate-based scaffolds. Our results indicate that the addition of β-carotene to the differentiation medium, along with applying alginate-based scaffolds, could induce higher differentiation in mouse ciliary epithelium-derived MSCs into specialized retinal cells.
Collapse
Affiliation(s)
- Mahtab Haghighat
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Alireza Iranbakhsh
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Javad Baharara
- Department of Biology, Applied Biology Research Center, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Mostafa Ebadi
- Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
| | | |
Collapse
|
38
|
Jemni-Damer N, Guedan-Duran A, Cichy J, Lozano-Picazo P, Gonzalez-Nieto D, Perez-Rigueiro J, Rojo F, V Guinea G, Virtuoso A, Cirillo G, Papa M, Armada-Maresca F, Largo-Aramburu C, Aznar-Cervantes SD, Cenis JL, Panetsos F. First steps for the development of silk fibroin-based 3D biohybrid retina for age-related macular degeneration (AMD). J Neural Eng 2020; 17:055003. [PMID: 32947273 DOI: 10.1088/1741-2552/abb9c0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Age-related macular degeneration is an incurable chronic neurodegenerative disease, causing progressive loss of the central vision and even blindness. Up-to-date therapeutic approaches can only slow down he progression of the disease. OBJECTIVE Feasibility study for a multilayered, silk fibroin-based, 3D biohybrid retina. APPROACH Fabrication of silk fibroin-based biofilms; culture of different types of cells: retinal pigment epithelium, retinal neurons, Müller and mesenchymal stem cells ; creation of a layered structure glued with silk fibroin hydrogel. MAIN RESULTS In vitro evidence for the feasibility of layered 3D biohybrid retinas; primary culture neurons grow and develop neurites on silk fibroin biofilms, either alone or in presence of other cells cultivated on the same biomaterial; cell organization and cellular phenotypes are maintained in vitro for the seven days of the experiment. SIGNIFICANCE 3D biohybrid retina can be built using silk silkworm fibroin films and hydrogels to be used in cell replacement therapy for AMD and similar retinal neurodegenerative diseases.
Collapse
Affiliation(s)
- Nahla Jemni-Damer
- Neuro-computing & Neuro-robotics Research Group, Complutense University of Madrid, Spain. Innovation Research Group, Institute for Health Research San Carlos Clinical Hospital (IdISSC), Madrid, Spain. These authors equally contributed to this article
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Antioxidant and Biological Properties of Mesenchymal Cells Used for Therapy in Retinitis Pigmentosa. Antioxidants (Basel) 2020; 9:antiox9100983. [PMID: 33066211 PMCID: PMC7602011 DOI: 10.3390/antiox9100983] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/04/2020] [Accepted: 10/09/2020] [Indexed: 02/07/2023] Open
Abstract
Both tissue repair and regeneration are a priority in regenerative medicine. Retinitis pigmentosa (RP), a complex retinal disease characterized by the progressive loss of impaired photoreceptors, is currently lacking effective therapies: this represents one of the greatest challenges in the field of ophthalmological research. Although this inherited retinal dystrophy is still an incurable genetic disease, the oxidative damage is an important pathogenetic element that may represent a viable target of therapy. In this review, we summarize the current neuroscientific evidence regarding the effectiveness of cell therapies in RP, especially those based on mesenchymal cells, and we focus on their therapeutic action: limitation of both oxidative stress and apoptotic processes triggered by the disease and promotion of cell survival. Cell therapy could therefore represent a feasible therapeutic option in RP.
Collapse
|
40
|
Maria Vingolo E, Contento L, Florido A, Avogaro F, Giuseppe Limoli P. Regenerative Medicine and Eye Diseases. Regen Med 2020. [DOI: 10.5772/intechopen.92749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
41
|
Limoli PG, Limoli CSS, Morales MU, Vingolo EM. Mesenchymal stem cell surgery, rescue and regeneration in retinitis pigmentosa: clinical and rehabilitative prognostic aspects. Restor Neurol Neurosci 2020; 38:223-237. [PMID: 32310198 PMCID: PMC7504992 DOI: 10.3233/rnn-190970] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Purpose: To assess whether treatment with the Limoli Retinal Restoration Technique (LRRT) can be performed in patients with retinitis pigmentosa (RP), grafting the autologous cells in a deep scleral pocket above the choroid of each eye to exert their beneficial effect on the residual retinal cells. Methods: The patients were subjected to a complete ophthalmological examination, including best corrected visual acuity (BCVA), close-up visus measurements, spectral domain-optical coherence tomography (SD-OCT), microperimetry (MY), and electroretinography (ERG). Furthermore, the complete ophthalmological examination was carried out at baseline (T0) and at 6 months (T180) after surgery. The Shapiro–Wilk test was used to assess the normality of distribution of the investigated parameters. A mixed linear regression model was used to analyse the difference in all the studied parameters at T0 and T180, and to compare the mean change between the two groups. All statistical analyses were performed with STATA 14.0 (Collage Station, Texas, USA). Results: LRRT treatment was performed in 34 eyes of 25 RP patients recruited for the study. The eyes were classified in two groups on the basis of foveal thickness (FT) assessed by SD-OCT: 14 eyes in Group A (FT≤190μm) and the remaining 20 ones in Group B (FT > 190μm). Although it had not reached the statistical significance, Group B showed a better improvement in BCVA, residual close-up visus and sensitivity than Group A. Conclusions: Previous studies have described the role of LRRT in slowing down retinal degenerative diseases. Consequently, this surgical procedure could improve the clinical and rehabilitative prognostic parameters in RP patients. On the other hand, further clinical research and studies with longer follow-up will be needed to evaluate its efficacy.
Collapse
Affiliation(s)
| | | | - Marco Ulises Morales
- Division of Clinical Neurosciences, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom
| | - Enzo Maria Vingolo
- Department of Sense Organs, Faculty of Medicine and Odontology, Sapienza University of Rome, p.le A. Moro, Rome, Italy
| |
Collapse
|
42
|
Zhao T, Liang Q, Meng X, Duan P, Wang F, Li S, Liu Y, Yin ZQ. Intravenous Infusion of Umbilical Cord Mesenchymal Stem Cells Maintains and Partially Improves Visual Function in Patients with Advanced Retinitis Pigmentosa. Stem Cells Dev 2020; 29:1029-1037. [PMID: 32679004 DOI: 10.1089/scd.2020.0037] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Retinitis pigmentosa (RP) is a hereditary retinal degeneration disease with no effective therapeutic approaches. Inflammatory and immune disorders are thought to play an important role in the pathogenesis of RP. Human umbilical cord mesenchymal stem cells (UCMSCs), with multiple biological functions such as anti-inflammation and immunoregulation, have been applied in different systemic diseases. We conducted a phase I/II clinical trial aiming to evaluate the safety and efficacy of intravenous administration of UCMSCs in advanced RP patients. All 32 subjects were intravenously infused with one dose of 108 UCMSCs and were followed up for 12 months. No serious local or systemic adverse effects occurred in the whole follow-up. Most patients improved their best corrected visual acuity (BCVA) in the first 3 months. The proportions of patients with improved or maintained BCVA were 96.9%, 95.3%, 93.8%, 95.4%, 90.6%, and 90.6% at the 1st, 2nd, 3rd, 6th, 9th, and 12th month follow-up, respectively. Most of the patients (81.3%) maintained or improved their visual acuities for 12 months. The average NEI VFQ-25 questionnaire scores were significantly improved at the third month (P < 0.05). The average visual field sensitivity and flash visual evoked potential showed no significant difference (P = 0.185, P = 0.711). Our results indicated that the intravenous infusion of UCMSCs was safe for advanced RP patients. Most of the patients improved or maintained their visual functions in a long term. The life qualities were improved significantly in the first 3 months, suggesting that the intravenous infusion of UCMSCs may be a promising therapeutic approach for advanced RP patients.
Collapse
Affiliation(s)
- Tongtao Zhao
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Qingling Liang
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xiaohong Meng
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Ping Duan
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Fang Wang
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Shiying Li
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yong Liu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Zheng Qin Yin
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
43
|
Liu X, Chen F, Chen Y, Lu H, Lu X, Peng X, Kaplan HJ, Dean DC, Gao L, Liu Y. Paracrine effects of intraocularly implanted cells on degenerating retinas in mice. Stem Cell Res Ther 2020; 11:142. [PMID: 32234075 PMCID: PMC7326149 DOI: 10.1186/s13287-020-01651-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 02/18/2020] [Accepted: 03/12/2020] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Retinal degeneration is a leading cause of blindness in the world; its etiology is complex and involves genetic defects and stress-associated aging. In addition to gene therapies for known genetically defective retinal degeneration, cellular therapies have been widely explored for restoring vision in both preclinical animal models and clinical trials. Stem cells of distinct tissue sources and their derived lineages have been tested for treating retinal degeneration; most of them were reported to be effective to some extent in restoring/improving deteriorated vision. Whether this visual improvement is due to a functional integration of grafted cells to substitute for lost retinal neurons in recipients or due to their neuroprotective and neurotrophic effects to retain recipient functional neurons, or both, is still under debate. METHODS We compared the results of subretinal transplantation of various somatic cell types, such as stem cells and differentiated cells, into RhoP23H/+ mice, a retinal degeneration model for human retinitis pigmentosa (RP) by evaluating their optokinetic response (OKR) and retinal histology. We identified some paracrine factors in the media that cultured cells secreted by western blotting (WB) and functionally evaluated the vascular endothelial growth factor Vegfa for its potential neurotrophic and neuroprotective effects on the neuroretina of model animals by intravitreal injection of VEGF antibody. RESULTS We found that live cells, regardless of whether they were stem cells or differentiated cell types, had a positive effect on improving degenerating retinas after subretinal transplantation; the efficacy depended on their survival duration in the host tissue. A few paracrine factors were identified in cell culture media; Vegfa was the most relevant neurotrophic and neuroprotective factor identified by our experiments to extend neuron survival duration in vivo. CONCLUSIONS Cellular therapy-produced benefits for remediating retinal degeneration are mostly, if not completely, due to a paracrine effect of implanted cells on the remaining host retinal neurons.
Collapse
Affiliation(s)
- Xiao Liu
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, 301 E Muhammad Ali Blvd, Louisville, KY, 40202, USA
- Department of Ophthalmology, Second Xiangya Hospital of Central South University, Changsha, China
| | - Fenghua Chen
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, 301 E Muhammad Ali Blvd, Louisville, KY, 40202, USA
- Department of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Yao Chen
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, 301 E Muhammad Ali Blvd, Louisville, KY, 40202, USA
- Department of Ophthalmology, Xiangya Hospital of Central South University, Changsha, China
| | - Huayi Lu
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, 301 E Muhammad Ali Blvd, Louisville, KY, 40202, USA
- Second Hospital of Jilin University, Changchun, Jilin Province, China
| | - Xiaoqin Lu
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, 301 E Muhammad Ali Blvd, Louisville, KY, 40202, USA
| | - Xiaoyan Peng
- Department of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Henry J Kaplan
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, 301 E Muhammad Ali Blvd, Louisville, KY, 40202, USA
| | - Douglas C Dean
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, 301 E Muhammad Ali Blvd, Louisville, KY, 40202, USA.
- James Graham Brown Cancer Center, Louisville, USA.
- Birth Defects Center, University of Louisville School of Medicine, Louisville, KY, USA.
| | - Ling Gao
- Department of Ophthalmology, Second Xiangya Hospital of Central South University, Changsha, China.
| | - Yongqing Liu
- Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, 301 E Muhammad Ali Blvd, Louisville, KY, 40202, USA.
- James Graham Brown Cancer Center, Louisville, USA.
- Birth Defects Center, University of Louisville School of Medicine, Louisville, KY, USA.
| |
Collapse
|
44
|
EXPERIMENTAL RATIONALE OF THE USE OF CELL THERAPY FOR THE TREATMENT OF GLAUCOMA OPTICAL NEUROPATHY. EUREKA: HEALTH SCIENCES 2020. [DOI: 10.21303/2504-5679.2020.001187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Development of new effective treatments for glaucomatous optic neuropathy is one of the most acute aspects of modern ophthalmology.
The aim of the work is to investigate the effectiveness of cell therapy with postnatal multipotent neural crest stem cells (NCSCs) using different cell delivery methods in a model of adrenaline-induced glaucoma.
Materials and methods. Glaucoma was induced in Wistar rats by intraperitoneal injections of 10 μg to 15 μg/100 g body weight of 0.18 % adrenaline hydrotartrate. NCSCs were delivered intravenously (5 million cells), retrobulbarly (0.5 million cells) or parabulbarly (0.5 million cells). Histomorphometric analysis of the retina was performed on stained haematoxylin-eosin sections with a thickness of 5 μm one month after the delivery of NCSCs.
Results. NCSCs transplantation by all modes of delivery caused positive morphological changes to varying degrees. Intravenous administration induced a decrease in edema in all retinal layers and a slight restoration of the cytoarchitectonics of the retinal layers. The parabulbar administration of NCSCs led to a decrease in edema and the restoration of the cytoarchitectonics of the layers, most pronouncedly the ganglion cell layer and the inner retinal layer. After the retrobulbar administration of NCSCs, the reduction in edema and restoration of the cytoarchitectonics of the layers were the most pronounced.
Conclusions. According to the results of the study, the positive effect of NCSCs transplantation in an experimental model of glaucoma was the most pronounced following the retrobulbar injection of cells. Further investigations of the mechanisms of the effect of transplanted NCSCs on retinal structure restoration are needed.
Collapse
|
45
|
Xu H, Zhou Q, Yi Q, Tan B, Tian J, Chen X, Wang Y, Yu X, Zhu J. Islet-1 synergizes with Gcn5 to promote MSC differentiation into cardiomyocytes. Sci Rep 2020; 10:1817. [PMID: 32019948 PMCID: PMC7000709 DOI: 10.1038/s41598-020-58387-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 11/22/2019] [Indexed: 12/26/2022] Open
Abstract
Mesenchymal stem cells (MSCs) specifically differentiate into cardiomyocytes as a potential way to reverse myocardial injury diseases, and uncovering this differentiation mechanism is immensely important. We have previously shown that histone acetylation/methylation and DNA methylation are involved in MSC differentiation into cardiomyocytes induced by islet-1. These modifications regulate cardiac-specific genes by interacting with each other in the promoter regions of these genes, but the molecular mechanism of these interactions remains unknown. In this study, we found that the key enzymes that regulate GATA4/Nkx2.5 expression are Gcn5/HDAC1, G9A, and DNMT-1. When α-methylene-γ-butyrolactone 3 (MB-3) was used to inhibit Gcn5 expression, we observed that the interactions among these key enzymes in the GATA4/Nkx2.5 promoters were blocked, and MSCs could not be induced into cardiomyocytes. Our results indicated that islet-1 could induce Gcn5 binding to GATA4/Nkx2.5 promoter regions and induce the interactions among Gcn5, HDAC1, G9A and DNMT-1, which upregulated GATA4/Nkx2.5 expression and promoted MSC differentiation into cardiomyocytes.
Collapse
Affiliation(s)
- Hao Xu
- Department of Clinical Laboratory; Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders (Chongqing); China International Science and Technology Cooperation base of Child development and Critical Disorders; Children's Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Qin Zhou
- Department of Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders (Chongqing); China International Science and Technology Cooperation base of Child development and Critical Disorders; Children's Hospital of Chongqing Medical University, Chongqing, P.R. China.,Chongqing Key Laboratory of Pediatrics, Chongqing, P.R. China
| | - Qin Yi
- Department of Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders (Chongqing); China International Science and Technology Cooperation base of Child development and Critical Disorders; Children's Hospital of Chongqing Medical University, Chongqing, P.R. China.,Chongqing Key Laboratory of Pediatrics, Chongqing, P.R. China
| | - Bin Tan
- Department of Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders (Chongqing); China International Science and Technology Cooperation base of Child development and Critical Disorders; Children's Hospital of Chongqing Medical University, Chongqing, P.R. China.,Chongqing Key Laboratory of Pediatrics, Chongqing, P.R. China
| | - Jie Tian
- Department of Cardiovascular (Internal Medicine), Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders (Chongqing); China International Science and Technology Cooperation base of Child development and Critical Disorders; Children's Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Xueni Chen
- Department of Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders (Chongqing); China International Science and Technology Cooperation base of Child development and Critical Disorders; Children's Hospital of Chongqing Medical University, Chongqing, P.R. China.,Chongqing Key Laboratory of Pediatrics, Chongqing, P.R. China
| | - Yue Wang
- Department of Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders (Chongqing); China International Science and Technology Cooperation base of Child development and Critical Disorders; Children's Hospital of Chongqing Medical University, Chongqing, P.R. China.,Chongqing Key Laboratory of Pediatrics, Chongqing, P.R. China
| | - Xia Yu
- Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, P.R. China
| | - Jing Zhu
- Department of Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders (Chongqing); China International Science and Technology Cooperation base of Child development and Critical Disorders; Children's Hospital of Chongqing Medical University, Chongqing, P.R. China. .,Chongqing Key Laboratory of Pediatrics, Chongqing, P.R. China.
| |
Collapse
|
46
|
Limoli PG, Vingolo EM, Limoli C, Nebbioso M. Stem Cell Surgery and Growth Factors in Retinitis Pigmentosa Patients: Pilot Study after Literature Review. Biomedicines 2019; 7:biomedicines7040094. [PMID: 31801246 PMCID: PMC6966474 DOI: 10.3390/biomedicines7040094] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 11/23/2019] [Accepted: 11/26/2019] [Indexed: 01/03/2023] Open
Abstract
To evaluate whether grafting of autologous mesenchymal cells, adipose-derived stem cells, and platelet-rich plasma into the supracoroideal space by surgical treatment with the Limoli retinal restoration technique (LRRT) can exert a beneficial effect in retinitis pigmentosa (RP) patients. Twenty-one eyes underwent surgery and were divided based on retinal foveal thickness (FT) ≤ 190 or > 190 µm into group A-FT and group B-FT, respectively. The specific LRRT triad was grafted in a deep scleral pocket above the choroid of each eye. At 6-month follow-up, group B showed a non-significant improvement in residual close-up visus and sensitivity at microperimetry compared to group A. After an in-depth review of molecular biology studies concerning degenerative phenomena underlying the etiopathogenesis of retinitis pigmentosa (RP), it was concluded that further research is needed on tapeto-retinal degenerations, both from a clinical and molecular point of view, to obtain better functional results. In particular, it is necessary to increase the number of patients, extend observation timeframes, and treat subjects in the presence of still trophic retinal tissue to allow adequate biochemical and functional catering.
Collapse
Affiliation(s)
- Paolo Giuseppe Limoli
- Low Vision Research Centre of Milan, p.zza Sempione 3, 20145 Milan, Italy; (P.G.L.); (C.L.)
| | - Enzo Maria Vingolo
- Department of Sense Organs, Faculty of Medicine and Odontology, Sapienza University of Rome, p.le A. Moro 5, 00185 Rome, Italy;
| | - Celeste Limoli
- Low Vision Research Centre of Milan, p.zza Sempione 3, 20145 Milan, Italy; (P.G.L.); (C.L.)
| | - Marcella Nebbioso
- Department of Sense Organs, Faculty of Medicine and Odontology, Sapienza University of Rome, p.le A. Moro 5, 00185 Rome, Italy;
- Correspondence: ; Tel.: +39-06-49975422; Fax: +39-06-49975425
| |
Collapse
|
47
|
Holan V, Hermankova B, Krulova M, Zajicova A. Cytokine interplay among the diseased retina, inflammatory cells and mesenchymal stem cells - a clue to stem cell-based therapy. World J Stem Cells 2019; 11:957-967. [PMID: 31768222 PMCID: PMC6851013 DOI: 10.4252/wjsc.v11.i11.957] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 09/02/2019] [Accepted: 09/14/2019] [Indexed: 02/06/2023] Open
Abstract
Retinal degenerative disorders, such as diabetic retinopathy, retinitis pigmentosa, age-related macular degeneration or glaucoma, represent the most common causes of loss of vision and blindness. In spite of intensive research, treatment options to prevent, stop or cure these diseases are limited. Newer therapeutic approaches are offered by stem cell-based therapy. To date, various types of stem cells have been evaluated in a range of models. Among them, mesenchymal stem/stromal cells (MSCs) derived from bone marrow or adipose tissue and used as autologous cells have been proposed to have the potential to attenuate the negative manifestations of retinal diseases. MSCs delivered to the vicinity of the diseased retina can exert local anti-inflammatory and repair-promoting/regenerative effects on retinal cells. However, MSCs also produce numerous factors that could have negative impacts on retinal regeneration. The secretory activity of MSCs is strongly influenced by the cytokine environment. Therefore, the interactions among the molecules produced by the diseased retina, cytokines secreted by inflammatory cells and factors produced by MSCs will decide the development and propagation of retinal diseases. Here we discuss the interactions among cytokines and other factors in the environment of the diseased retina treated by MSCs, and we present results supporting immunoregulatory and trophic roles of molecules secreted in the vicinity of the retina during MSC-based therapy.
Collapse
Affiliation(s)
- Vladimir Holan
- Department of Transplantation Immunology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague 14220, Czech Republic
- Department of Cell Biology, Faculty of Science, Charles University, Prague 12843, Czech Republic
| | - Barbora Hermankova
- Department of Transplantation Immunology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague 14220, Czech Republic
- Department of Cell Biology, Faculty of Science, Charles University, Prague 12843, Czech Republic
| | - Magdalena Krulova
- Department of Transplantation Immunology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague 14220, Czech Republic
- Department of Cell Biology, Faculty of Science, Charles University, Prague 12843, Czech Republic
| | - Alena Zajicova
- Department of Transplantation Immunology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague 14220, Czech Republic
| |
Collapse
|
48
|
Li XX, Yuan XJ, Zhai Y, Yu S, Jia RX, Yang LP, Ma ZZ, Zhao YM, Wang YX, Ge LH. Treatment with Stem Cells from Human Exfoliated Deciduous Teeth and Their Derived Conditioned Medium Improves Retinal Visual Function and Delays the Degeneration of Photoreceptors. Stem Cells Dev 2019; 28:1514-1526. [PMID: 31544584 DOI: 10.1089/scd.2019.0158] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Retinitis pigmentosa (RP) is a hereditary disease characterized by degeneration and the loss of photoreceptors. Stem cell-based therapy has emerged as a promising strategy for treating RP. Stem cells from exfoliated deciduous teeth (SHEDs), a type of mesenchymal stem cell from human exfoliated deciduous teeth, have the potential to differentiate into photoreceptor-like cells under specific induction in vitro. It has been confirmed that through paracrine secreta, SHEDs exert neurotrophic, angiogenic, immunoregulatory, and antiapoptotic functions in injured tissues. This study was designed to determine whether retinal-differentiated SHEDs and the conditioned medium derived from SHEDs (SHEDs-CM) have therapeutic effects in a mouse model of RP. The results showed that both SHEDs and SHEDs-CM improved electroretinogram responses, ameliorated photoreceptor degeneration, and maintained the structure of the outer segments of photoreceptors. The therapeutic effects were related to antiapoptotic activity of SHEDs and SHEDs-CM. Thus, SHEDs may be a promising stem cell source for treating retinal degeneration.
Collapse
Affiliation(s)
- Xiao-Xia Li
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, and Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Xiao-Jing Yuan
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, and Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Yue Zhai
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, and Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Shi Yu
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, and Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Rui-Xuan Jia
- Institute of Systems Biomedicine and Department of Ophthalmology, School of Basic Medical Sciences, Peking University Third Hospital, Beijing, China
| | - Li-Ping Yang
- Institute of Systems Biomedicine and Department of Ophthalmology, School of Basic Medical Sciences, Peking University Third Hospital, Beijing, China
| | - Zhi-Zhong Ma
- Institute of Systems Biomedicine and Department of Ophthalmology, School of Basic Medical Sciences, Peking University Third Hospital, Beijing, China.,Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, Beijing, China
| | - Yu-Ming Zhao
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, and Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Yi-Xiang Wang
- Central Laboratory, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, and Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Li-Hong Ge
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, and Beijing Key Laboratory of Digital Stomatology, Beijing, China
| |
Collapse
|
49
|
Therapeutic Strategies for Attenuation of Retinal Ganglion Cell Injury in Optic Neuropathies: Concepts in Translational Research and Therapeutic Implications. BIOMED RESEARCH INTERNATIONAL 2019; 2019:8397521. [PMID: 31828134 PMCID: PMC6885158 DOI: 10.1155/2019/8397521] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/07/2019] [Accepted: 10/28/2019] [Indexed: 12/19/2022]
Abstract
Retinal ganglion cell (RGC) death is the central and irreversible endpoint of optic neuropathies. Current management of optic neuropathies and glaucoma focuses on intraocular pressure-lowering treatment which is insufficient. As such, patients are effectively condemned to irreversible visual impairment. This review summarizes experimental treatments targeting RGCs over the last decade. In particular, we examine the various treatment modalities and determine their viability and limitations in translation to clinical practice. Experimental RGC treatment can be divided into (1) cell replacement therapy, (2) neuroprotection, and (3) gene therapy. For cell replacement therapy, difficulties remain in successfully integrating transplanted RGCs from various sources into the complex neural network of the human retina. However, there is significant potential for achieving full visual restoration with this technique. Neuroprotective strategies, in the form of pharmacological agents, nutritional supplementation, and neurotrophic factors, are viable strategies with encouraging results from preliminary noncomparative interventional case series. It is important to note, however, that most published studies are focused on glaucoma, with few treating optic neuropathies of other etiologies. Gene therapy, through the use of viral vectors, has shown promising results in clinical trials, particularly for diseases with specific genetic mutations like Leber's hereditary optic neuropathy. This treatment technique can be further extended to nonhereditary diseases, through transfer of genes promoting cell survival and neuroprotection. Crucially though, for gene therapy, teratogenicity remains a significant issue in translation to clinical practice.
Collapse
|
50
|
Brown C, McKee C, Bakshi S, Walker K, Hakman E, Halassy S, Svinarich D, Dodds R, Govind CK, Chaudhry GR. Mesenchymal stem cells: Cell therapy and regeneration potential. J Tissue Eng Regen Med 2019; 13:1738-1755. [PMID: 31216380 DOI: 10.1002/term.2914] [Citation(s) in RCA: 373] [Impact Index Per Article: 62.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 05/15/2019] [Accepted: 06/07/2019] [Indexed: 12/12/2022]
Abstract
Rapid advances in the isolation of multipotent progenitor cells, routinely called mesenchymal stromal/stem cells (MSCs), from various human tissues and organs have provided impetus to the field of cell therapy and regenerative medicine. The most widely studied sources of MSCs include bone marrow, adipose, muscle, peripheral blood, umbilical cord, placenta, fetal tissue, and amniotic fluid. According to the standard definition of MSCs, these clonal cells adhere to plastic, express cluster of differentiation (CD) markers such as CD73, CD90, and CD105 markers, and can differentiate into adipogenic, chondrogenic, and osteogenic lineages in vitro. However, isolated MSCs have been reported to vary in their potency and self-renewal potential. As a result, the MSCs used for clinical applications often lead to variable or even conflicting results. The lack of uniform characterization methods both in vitro and in vivo also contributes to this confusion. Therefore, the name "MSCs" itself has been increasingly questioned lately. As the use of MSCs is expanding rapidly, there is an increasing need to understand the potential sources and specific potencies of MSCs. This review discusses and compares the characteristics of MSCs and suggests that the variations in their distinctive features are dependent on the source and method of isolation as well as epigenetic changes during maintenance and growth. We also discuss the potential opportunities and challenges of MSC research with the hope to stimulate their use for therapeutic and regenerative medicine.
Collapse
Affiliation(s)
- Christina Brown
- Department of Biological Sciences, Oakland University, Rochester, MI, USA
- OU-WB Institute for Stem Cell and Regenerative Medicine, Oakland University, Rochester, MI, USA
| | - Christina McKee
- Department of Biological Sciences, Oakland University, Rochester, MI, USA
- OU-WB Institute for Stem Cell and Regenerative Medicine, Oakland University, Rochester, MI, USA
| | - Shreeya Bakshi
- Department of Biological Sciences, Oakland University, Rochester, MI, USA
- OU-WB Institute for Stem Cell and Regenerative Medicine, Oakland University, Rochester, MI, USA
| | - Keegan Walker
- Department of Biological Sciences, Oakland University, Rochester, MI, USA
- OU-WB Institute for Stem Cell and Regenerative Medicine, Oakland University, Rochester, MI, USA
| | - Eryk Hakman
- Department of Obstetrics and Gynecology, Ascension Providence Hospital, Southfield, MI, USA
| | - Sophia Halassy
- Department of Obstetrics and Gynecology, Ascension Providence Hospital, Southfield, MI, USA
| | - David Svinarich
- Department of Obstetrics and Gynecology, Ascension Providence Hospital, Southfield, MI, USA
- Ascension Providence Hospital, Southfield, MI, USA
| | - Robert Dodds
- Department of Obstetrics and Gynecology, Ascension Providence Hospital, Southfield, MI, USA
| | - Chhabi K Govind
- Department of Biological Sciences, Oakland University, Rochester, MI, USA
- OU-WB Institute for Stem Cell and Regenerative Medicine, Oakland University, Rochester, MI, USA
| | - G Rasul Chaudhry
- Department of Biological Sciences, Oakland University, Rochester, MI, USA
- OU-WB Institute for Stem Cell and Regenerative Medicine, Oakland University, Rochester, MI, USA
| |
Collapse
|