1
|
Kalra P, Grewal AK, Khan H, Singh TG. Unscrambling the cellular and molecular threads of Neuroplasticity: Insights into Alzheimer's disease pathogenesis. Neuroscience 2025; 571:74-88. [PMID: 39970983 DOI: 10.1016/j.neuroscience.2025.02.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/14/2025] [Accepted: 02/15/2025] [Indexed: 02/21/2025]
Abstract
Alzheimer's disease (AD) is predominantly the most recurring and devastating neurological condition among the elderly population, characterized by the accumulation of amyloid-β (Aβ) and phosphorylated tau proteins, and is accompanied by progressive decline of learning and memory. Due to its complex and multifactorial etiology, a wide variety of therapeutic interventions have been developed. Despite constant advancements in the field, effective treatments that ameliorate the severity of Alzheimer's symptoms or cease their progression are still insufficient. Mounting evidence suggests that synaptic dysfunction could be an essential component of AD pathogenesis as synapse signaling is impaired in the aging brain, which contributes to synaptic decline. Therefore, improving neuroplasticity such as synaptic plasticity or neurogenesis could be a promising therapeutic approach for alleviating the effects of AD. This article reviews the cellular and molecular threads of neuroplasticity as well as targets that restore neuronal survival and plasticity to provide functional recoveries, including receptors, downstream signaling pathways, ion channels, transporters, enzymes, and neurotrophic factors.
Collapse
Affiliation(s)
- Palak Kalra
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India; University School of Pharmaceutical Sciences, Rayat Bahra University, Mohali, Punjab 140103, India
| | - Amarjot Kaur Grewal
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India.
| | - Heena Khan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India.
| |
Collapse
|
2
|
Attia FM, Kassab RB, Ahmed-Farid OA, Abdel Moneim AE, El-Yamany NA. Zinc Oxide Nanoparticles Attenuated Neurochemical and Histopathological Alterations Associated with Aluminium Chloride Intoxication in Rats. Biol Trace Elem Res 2025; 203:2058-2071. [PMID: 38963645 DOI: 10.1007/s12011-024-04292-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 06/25/2024] [Indexed: 07/05/2024]
Abstract
The present investigation explored the potential neuroprotective role of zinc oxide nanoparticles (ZnONPs) on aluminum chloride (AlCl3)-mediated Alzheimer's disease (AD)-like symptoms. Rats were distributed into four treatment groups equally: control, ZnONPs (4 mg/kg b.wt.), AlCl3 (100 mg/kg b.wt.), and ZnONPs + AlCl3 groups. Rats were treated for 42 consecutive days. ZnONPs injection into AlCl3-treated rats suppressed the development of oxidative challenge in the cortical and hippocampal tissues, as demonstrated by the decreased neuronal pro-oxidants (malondialdehyde and nitric oxide), and the increased glutathione and catalase levels. Additionally, ZnONPs injection showed anti-inflammatory potency in response to AlCl3 by decreasing levels of tumor necrosis factor-α and interleukin-1β. Moreover, pretreatment with ZnONPs prevented neuronal cell loss by decreasing the level of pro-apoptotic caspase-3 and enhancing the anti-apoptotic B cell lymphoma 2. Furthermore, ZnONPs ameliorated the disturbed acetylcholinesterase activity, monoamines (norepinephrine, dopamine, and serotonin), excitatory (glutamic and aspartic acids), and inhibitory amino acids (GABA and glycine) in response to AlCl3 exposure. These findings indicate that ZnONPs may have the potential as an alternative therapy to minimize or prevent the neurological deficits in AD model by exhibiting antioxidative, anti-inflammation, anti-apoptosis, and neuromodulatory effects.
Collapse
Affiliation(s)
- Fatma M Attia
- Zoology and Entomology Department, Faculty of Science, Helwan University, Cairo, Egypt
| | - Rami B Kassab
- Zoology and Entomology Department, Faculty of Science, Helwan University, Cairo, Egypt.
- Biology Department, Faculty of Science and Arts, Almakhwah, Al Baha University, Al Baha, Saudi Arabia.
| | | | - Ahmed E Abdel Moneim
- Zoology and Entomology Department, Faculty of Science, Helwan University, Cairo, Egypt
| | - Nabil A El-Yamany
- Zoology and Entomology Department, Faculty of Science, Helwan University, Cairo, Egypt
| |
Collapse
|
3
|
Cai J, Liu Y, Fan H. Review on pathogenesis and treatment of Alzheimer's disease. Dev Dyn 2025; 254:296-309. [PMID: 39651698 DOI: 10.1002/dvdy.762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 11/16/2024] [Accepted: 11/21/2024] [Indexed: 12/11/2024] Open
Abstract
The rising incidence of Alzheimer's disease (AD) and the associated economic impacts has prompted a global focus in the field. In recent years, there has been a growing understanding of the pathogenic mechanisms of AD, including the aggregation of β-amyloid, hyperphosphorylated tau, and neuroinflammation. These processes collectively lead to neurodegeneration and cognitive decline, which ultimately results in the loss of autonomy in patients. Currently, there are three main types of AD treatments: clinical tools, pharmacological treatment, and material interventions. This review provides a comprehensive analysis of the underlying etiology and pathogenesis of AD, as well as an overview of the current prevalence of AD treatments. We believe this article can help deepen our understanding of the AD mechanism, and facilitate the clinical translation of scientific research or therapies, to address this global problem of AD.
Collapse
Affiliation(s)
- Jinxia Cai
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, China
| | - Yanqing Liu
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, China
| | - Haojun Fan
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, China
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, China
| |
Collapse
|
4
|
Hwang SM, Rahman MM, Go EJ, Roh J, Park R, Lee SG, Nahm M, Berta T, Kim YH, Park CK. Modulation of pain sensitivity by Ascl1- and Lhx6-dependent GABAergic neuronal function in streptozotocin diabetic mice. Mol Ther 2025; 33:786-804. [PMID: 39741412 PMCID: PMC11852955 DOI: 10.1016/j.ymthe.2024.12.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 11/24/2024] [Accepted: 12/27/2024] [Indexed: 01/03/2025] Open
Abstract
Painful diabetic neuropathy commonly affects the peripheral nervous system in individuals with diabetes. However, the pathological processes and mechanisms underlying diabetic neuropathic pain remain unclear. We aimed to identify the overall profiles and screen for genes potentially involved in pain mechanisms using transcriptome analysis of the dorsal root ganglion of diabetic mice treated with streptozotocin (STZ). Using RNA sequencing, we identified differentially expressed genes between streptozotocin-treated diabetic mice and controls, focusing on altered GABAergic neuron-related genes and inflammatory pathways. Behavioral and molecular analyses revealed a marked reduction in GABAergic neuronal markers (GAD65, GAD67, VGAT) and increased pro-inflammatory cytokines (TNF-α, IL-1β, IL-6) in the diabetic group compared with controls. Intrathecal administration of lentiviral vectors expressing transcription factors Ascl1 and Lhx6 reversed pain hypersensitivity and restored normal expression of GABAergic genes and inflammatory mediators. Protein-protein interaction network analysis revealed five key proteins influenced by Ascl1 and Lhx6 treatment, including those in the JunD/FosB/C-fos signaling pathway. These findings suggest that Ascl1 and Lhx6 mitigate diabetic neuropathic pain by modulating GABAergic neuronal function, pro-inflammatory responses, and pain-related channels (TRPV1, Nav1.7). These results provide a basis for developing transcription factor-based therapies targeting GABAergic neurons for diabetic neuropathic pain relief.
Collapse
Affiliation(s)
- Sung-Min Hwang
- Gachon Pain Center and Department of Physiology, Gachon University College of Medicine, Incheon, Republic of Korea
| | - Md Mahbubur Rahman
- Gachon Pain Center and Department of Physiology, Gachon University College of Medicine, Incheon, Republic of Korea
| | - Eun Jin Go
- Gachon Pain Center and Department of Physiology, Gachon University College of Medicine, Incheon, Republic of Korea
| | - Jueun Roh
- Gachon Pain Center and Department of Physiology, Gachon University College of Medicine, Incheon, Republic of Korea
| | - Rayoung Park
- Bio-IT Foundry Center of Chonnam National University and FromDATA, Buk-Gu, Gwangju, South Korea
| | - Sung-Gwon Lee
- Section of Genetics and Physiology, Laboratory of Molecular and Cellular Biology, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Minyeop Nahm
- Dementia Research Group, Korea Brain Research Institute, Daegu, Republic of Korea
| | - Temugin Berta
- Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, Cincinnati, OH, USA
| | - Yong Ho Kim
- Gachon Pain Center and Department of Physiology, Gachon University College of Medicine, Incheon, Republic of Korea.
| | - Chul-Kyu Park
- Gachon Pain Center and Department of Physiology, Gachon University College of Medicine, Incheon, Republic of Korea.
| |
Collapse
|
5
|
Jantsch J, da Silva Rodrigues F, Silva Dias V, de Farias Fraga G, Eller S, Giovenardi M, Guedes RP. Calorie Restriction Attenuates Memory Impairment and Reduces Neuroinflammation in Obese Aged Rats. Mol Neurobiol 2025; 62:1788-1799. [PMID: 39037530 DOI: 10.1007/s12035-024-04360-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 07/09/2024] [Indexed: 07/23/2024]
Abstract
Obesity and aging collectively potentiate inflammatory responses, particularly within the central nervous system. Managing obesity presents a significant challenge, even more so considering the context of aging. Caloric restriction (CR) has been extensively documented in the literature for its multiple health benefits. Motivated by these findings, we hypothesized that CR could serve as a valuable intervention to address the brain alterations and cognitive decline associated with obesity in aged rats. Our investigation revealed that cafeteria diet increased hippocampal and hypothalamic transcripts related to neuroinflammation, along with cognitive deficits determined in the object recognition test in 18-month-old male rats. Western blot data indicate that the obesogenic diet may disrupt the blood-brain barrier and lead to an increase in Toll-like receptor 4 in the hippocampus, events that could contribute to the cognitive deficits observed. Implementing CR after the onset of obesity mitigated neuroinflammatory changes and cognitive impairments. We found that CR increases GABA levels in the hippocampus of aged animals, as demonstrated by liquid chromatography coupled with mass spectrometry analysis. These findings underscore the potential of CR as a therapeutic opportunity to ameliorate the neuroinflammatory and cognitive alterations of obesity, especially in the context of aging.
Collapse
Affiliation(s)
- Jeferson Jantsch
- Graduate Program in Biosciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, 90050-170, Brazil
| | - Fernanda da Silva Rodrigues
- Graduate Program in Biosciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, 90050-170, Brazil
| | - Victor Silva Dias
- Biomedical Science Undergraduate Program, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, 90050-170, Brazil
| | - Gabriel de Farias Fraga
- Graduate Program in Biosciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, 90050-170, Brazil
| | - Sarah Eller
- Graduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, 90050-170, Brazil
| | - Márcia Giovenardi
- Graduate Program in Biosciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, 90050-170, Brazil
- Graduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, 90050-170, Brazil
| | - Renata Padilha Guedes
- Graduate Program in Biosciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, 90050-170, Brazil.
- Graduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, 90050-170, Brazil.
| |
Collapse
|
6
|
Zhao H, Mu Y, Liang A, Wei J, Lai S, Li X, Chen P, Li H, He H, Liu X, Liu H. Suppressing DUSP16 overexpression induced by ELK1 promotes neural progenitor cell differentiation in mouse models of Alzheimer's disease. Aging Cell 2025; 24:e14372. [PMID: 39434411 PMCID: PMC11822628 DOI: 10.1111/acel.14372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 09/19/2024] [Accepted: 09/24/2024] [Indexed: 10/23/2024] Open
Abstract
Emerged evidence indicated that stimulating hippocampal neurogenesis is a potential strategy for restoring cognition in AD. Mitogen-activated protein kinases (MAPKs) play an essential role in neurogenesis. Meanwhile, the enzymatic power of the phosphatases is much greater than that of kinases. Dual-specificity phosphatase 16 (DUSP16), known to as a phosphatase negatively regulate MAPKs, may be implicated in neural differentiation. Nevertheless, the effect of DUSP16 on cognitive disorders by stimulating neural progenitor cell (NPC) differentiation in AD mice remains unclear. Our study demonstrates an association between DUSP16 SNPs and clinical progression in individuals with mild cognitive impairment (MCI). Besides, increased DUSP16 expression was detected in both 3xTg and SAMP8 mouse models of AD, accompanied by NPC neural differentiation impairments. By silencing DUSP16, the induction of neural differentiation, synaptic transmission, and cognitive benefits were observed in both AD mice. Furthermore, DUSP16 was involved in the process of NPC differentiation through regulating c-Jun N-terminal kinase (JNK) phosphorylation and SOX2 expression. Moreover, ETS transcription factor (ELK1) was involved in the DUSP16 transcription, which resulted in the upregulation of DUSP16 at the state of AD. Our data uncovers a potential regulatory role for DUSP16 in adult hippocampal neurogenesis (AHN) and provides a possibility to find a novel strategy for AD intervention.
Collapse
Affiliation(s)
- Huimin Zhao
- Center of Drug Metabolism and PharmacokineticsChina Pharmaceutical UniversityNanjingChina
| | - Yao Mu
- Center of Drug Metabolism and PharmacokineticsChina Pharmaceutical UniversityNanjingChina
| | - Anqi Liang
- Center of Drug Metabolism and PharmacokineticsChina Pharmaceutical UniversityNanjingChina
| | - Jie Wei
- Center of Drug Metabolism and PharmacokineticsChina Pharmaceutical UniversityNanjingChina
| | - Sixian Lai
- Center of Drug Metabolism and PharmacokineticsChina Pharmaceutical UniversityNanjingChina
| | - Xin Li
- Center of Drug Metabolism and PharmacokineticsChina Pharmaceutical UniversityNanjingChina
| | - Peipei Chen
- Center of Drug Metabolism and PharmacokineticsChina Pharmaceutical UniversityNanjingChina
| | - Hao Li
- Acupuncture and Moxibustion DepartmentJiangsu Provincial Second Chinese Medicine Hospital/the Second Affiliated Hospital of Nanjing University of Chinese MedicineNanjingChina
| | - Hua He
- Center of Drug Metabolism and PharmacokineticsChina Pharmaceutical UniversityNanjingChina
| | - Xiaoquan Liu
- Center of Drug Metabolism and PharmacokineticsChina Pharmaceutical UniversityNanjingChina
| | - Haochen Liu
- Center of Drug Metabolism and PharmacokineticsChina Pharmaceutical UniversityNanjingChina
| |
Collapse
|
7
|
Aliabadi M, Valizadegan F, Seyedalipour B, Yaqubi S, Nazifi E. A promising therapeutic potential of Origanum vulgare extract in mitigating ethanol-induced working memory impairments and hippocampal oxidative stress in rats. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024:1-14. [PMID: 39676694 DOI: 10.1080/09603123.2024.2440898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 12/06/2024] [Indexed: 12/17/2024]
Abstract
This study explored the therapeutic potential hydroalcoholic extract derived from Origanum vulgare leaf in mitigating ethanol-induced working memory impairments and hippocampal oxidative stress in rats. Eight groups, including controls, ethanol-exposed rats, and those treated with extract (100, 200, and 300 mg/kg) alone or combined with ethanol, were assessed using the radial arm maze (RAM) for behavioral tests. Ethanol increased working memory errors and time spent in error zones, effects notably reduced by the extract, especially at 300 mg/kg dose (P≤0.001). Biochemical tests showed ethanol suppressed catalase (CAT), superoxide dismutase (SOD), and acetylcholinesterase (AChE) activities within the hippocampus and cortex. while the extract elevated CAT and SOD activities and reduced AChE activity. These results suggest the extract's neuroprotective properties, including oxidative stress reduction and neurotransmitter modulation, which mitigate ethanol-induced hippocampal damage. This highlights Origanum vulgare extract potential as a therapeutic adjunct for memory deficits and oxidative stress-related conditions.
Collapse
Affiliation(s)
- Maryam Aliabadi
- Department of Animal Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran
| | - Farhad Valizadegan
- Department of Animal Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran
| | - Bagher Seyedalipour
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran
| | - Sahar Yaqubi
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran
| | - Ehsan Nazifi
- Department of Plant Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran
| |
Collapse
|
8
|
O'Connell A, Quinlan L, Kwakowsky A. β-amyloid's neurotoxic mechanisms as defined by in vitro microelectrode arrays: a review. Pharmacol Res 2024; 209:107436. [PMID: 39369863 DOI: 10.1016/j.phrs.2024.107436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/12/2024] [Accepted: 09/24/2024] [Indexed: 10/08/2024]
Abstract
Alzheimer's disease is characterized by the aggregation of β-amyloid, a pathological feature believed to drive the neuronal loss and cognitive decline commonly seen in the disease. Given the growing prevalence of this progressive neurodegenerative disease, understanding the exact mechanisms underlying this process has become a top priority. Microelectrode arrays are commonly used for chronic, non-invasive recording of both spontaneous and evoked neuronal activity from diverse in vitro disease models and to evaluate therapeutic or toxic compounds. To date, microelectrode arrays have been used to investigate β-amyloids' toxic effects, β-amyloids role in specific pathological features and to assess pharmacological approaches to treat Alzheimer's disease. The versatility of microelectrode arrays means these studies use a variety of methods and investigate different disease models and brain regions. This review provides an overview of these studies, highlighting their disparities and presenting the status of the current literature. Despite methodological differences, the current literature indicates that β-amyloid has an inhibitory effect on synaptic plasticity and induces network connectivity disruptions. β-amyloid's effect on spontaneous neuronal activity appears more complex. Overall, the literature corroborates the theory that β-amyloid induces neurotoxicity, having a progressive deleterious effect on neuronal signaling and plasticity. These studies also confirm that microelectrode arrays are valuable tools for investigating β-amyloid pathology from a functional perspective, helping to bridge the gap between cellular and network pathology and disease symptoms. The use of microelectrode arrays provides a functional insight into Alzheimer's disease pathology which will aid in the development of novel therapeutic interventions.
Collapse
Affiliation(s)
- Aoife O'Connell
- Pharmacology and Therapeutics, School of Medicine, Galway Neuroscience Centre, University of Galway, Ireland
| | - Leo Quinlan
- Physiology, School of Medicine, Regenerative Medicine Institute, University of Galway, Ireland
| | - Andrea Kwakowsky
- Pharmacology and Therapeutics, School of Medicine, Galway Neuroscience Centre, University of Galway, Ireland.
| |
Collapse
|
9
|
Li J, Liu Y, Yin C, Zeng Y, Mei Y. Structural and functional remodeling of neural networks in β-amyloid driven hippocampal hyperactivity. Ageing Res Rev 2024; 101:102468. [PMID: 39218080 DOI: 10.1016/j.arr.2024.102468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Early detection of Alzheimer's disease (AD) is essential for improving the patients outcomes and advancing our understanding of disease, allowing for timely intervention and treatment. However, accurate biomarkers are still lacking. Recent evidence indicates that hippocampal hyperexcitability precedes the diagnosis of AD decades ago, can predict cognitive decline. Thus, could hippocampal hyperactivity be a robust biomarker for early-AD, and what drives hippocampal hyperactivity in early-AD? these critical questions remain to be answered. Increasing clinical and experimental studies suggest that early hippocampal activation is closely associated with longitudinal β-amyloid (Aβ) accumulation, Aβ aggregates, in turn, enhances hippocampal activity. Therefore, in this narrative review, we discuss the role of Aβ-induced altered intrinsic neuronal properties as well as structural and functional remodeling of glutamatergic, GABAergic, cholinergic, noradrenergic, serotonergic circuits in hippocampal hyperactivity. In addition, we analyze the available therapies and trials that can potentially be used clinically to attenuate hippocampal hyperexcitability in AD. Overall, the present review sheds lights on the mechanism behind Aβ-induced hippocampal hyperactivity, and highlights that hippocampal hyperactivity could be a robust biomarker and therapeutic target in prodromal AD.
Collapse
Affiliation(s)
- Jinquan Li
- Hubei Clinical Research Center for Alzheimer's Disease, Brain Science and Advanced Technology Institute, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Yanjun Liu
- Hubei Clinical Research Center for Alzheimer's Disease, Brain Science and Advanced Technology Institute, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Chuhui Yin
- Hubei Clinical Research Center for Alzheimer's Disease, Brain Science and Advanced Technology Institute, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Yan Zeng
- Hubei Clinical Research Center for Alzheimer's Disease, Brain Science and Advanced Technology Institute, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China.
| | - Yufei Mei
- Hubei Clinical Research Center for Alzheimer's Disease, Brain Science and Advanced Technology Institute, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China.
| |
Collapse
|
10
|
Brezolin ÉC, Gayger-Dias V, Da Silva VF, Cigerce A, Schultz B, Sobottka TM, Nardin P, de Assis AM, Leite MC, Quincozes-Santos A, Bobermin LD, Gonçalves CA. Astrocyte dysfunction alters GABAergic communication and ammonia metabolism in the streptozotocin-induced sporadic Alzheimer's disease model. J Alzheimers Dis Rep 2024; 8:1381-1393. [PMID: 40034350 PMCID: PMC11863748 DOI: 10.1177/25424823241289036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 09/04/2024] [Indexed: 03/05/2025] Open
Abstract
Background In the sporadic model of Alzheimer's disease (AD), induced by intracerebroventricular streptozotocin (STZ) administration, cognitive impairment is accompanied by specific astrocytic changes in the hippocampus prior to amyloid deposition. Objective Hypothesizing that the synthesis of GABA, via MAO-B, contributes to ammonia elevation, thereby compromising antioxidant defense and ATP synthesis, and possibly contributing to cognitive damage, we determined the hippocampal levels of glutamine synthetase (GS), monoamine oxidase B (MAO-B) and other enzymes related to GABA metabolism. Methods Immunoblotting and RT-PCR assays were carried out in hippocampal samples of Wistar rats, at 4 and 16 weeks post-STZ, in the sporadic STZ-induced AD model, corresponding to the pre-amyloid and amyloid phases, respectively. Results We observed a reduction in GS activity and increased MAO-B content, both in 4 weeks and in 16 weeks, reinforcing the idea that astroglial dysfunction precedes the amyloid phase. These alterations were accompanied by an increase in the content of ornithine decarboxylase 1 (ODC1), which catalyzes the synthesis of putrescine (substrate for GABA synthesis, via MAO-B), and a reduction in the gene expression of arginine-glycine amidinotransferase (AGAT), an enzyme involved in the synthesis of creatine, and in the generation of GABA agonists. These changes were only seen in the amyloid phase of the AD model. Conclusions Our findings contribute to explain the greater damage that occurs in energy metabolism at this stage, in addition to the greater GABAergic loss. The changes reinforce the importance of the STZ model and further our understanding of the changes in both AD phases.
Collapse
Affiliation(s)
- Éverton Carlos Brezolin
- Graduate Program in Neuroscience, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Vitor Gayger-Dias
- Graduate Program in Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Vanessa-Fernanda Da Silva
- Graduate Program in Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Anderson Cigerce
- Graduate Program in Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Bruna Schultz
- Graduate Program in Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Thomas Michel Sobottka
- Graduate Program in Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Patrícia Nardin
- Health School, Universidade do Vale do Rio dos Sinos, São Leopoldo, Brazil
| | | | - Marina Concli Leite
- Graduate Program in Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - André Quincozes-Santos
- Graduate Program in Neuroscience, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Graduate Program in Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Larissa Daniele Bobermin
- Graduate Program in Neuroscience, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Carlos-Alberto Gonçalves
- Graduate Program in Neuroscience, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Graduate Program in Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
11
|
Kaur K, Narang RK, Singh S. Neuroprotective potential of Betulinic acid against TIO 2NP induced neurotoxicity in zebrafish. Int Immunopharmacol 2024; 138:112604. [PMID: 38968863 DOI: 10.1016/j.intimp.2024.112604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/04/2024] [Accepted: 06/29/2024] [Indexed: 07/07/2024]
Abstract
Betulinic acid (BA) is a natural triterpenoid extracted from Bacopa monnieri. BA has been reported to be used as a neuroprotective agent, but their molecular mechanisms are still unknown. Therefore, in this study, we attempted to investigate the precise mechanism of BA for its protective effect against Titanium dioxide nanoparticles (TiO2NP) induced neurotoxicity in zebrafish. Hence, our study observation showed that 10 µg/ml dose of TiO2NP caused a rigorous behavioral deficit in zebrafish. Further, biochemical analysis revealed TiO2NP significantly decreased GSH, and SOD, and increased MDA, AChE, TNF-α, IL-1β, and IL-6 levels, suggesting it triggers oxidative stress and neuroinflammation. However, BA at doses of 2.5,5,10 mg/kg improved behavioral as well as biochemical changes in zebrafish brain. Moreover, BA also significantly raised the levels of DA, NE, 5-HT, and GABA and decreased glutamate levels in TiO2NP-treated zebrafish brain. Our histopathological analysis proved that TiO2NP causes morphological changes in the brain. These changes were expressed by increasing pyknotic neurons, which were dose-dependently reduced by Betulinic acid. Likewise, BA upregulated the levels of NRF-2 and HO-1, which can reduce oxidative stress and neuroinflammation. Thus, our study provides evidence for the molecular mechanism behind the neuroprotective effect of Betulinic acid. Rendering to the findings, we can consider BA as a suitable applicant for the treatment of AD-like symptoms.
Collapse
Affiliation(s)
- Karamjeet Kaur
- Research Scholar, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India, 142001; Research Scholar, I.K. Gujral Punjab Technical University, Jalandhar Punjab, India, 144603
| | - R K Narang
- Nanomedicine Research Centre, Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, India, 142001
| | - Shamsher Singh
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India, 142001.
| |
Collapse
|
12
|
Damborsky JC, Yakel JL. Regulation of Hippocamposeptal Synaptic Transmission by GABA BRs Is Altered in 5XFAD Mice in a Sex- and Age-Dependent Manner. J Mol Neurosci 2024; 74:82. [PMID: 39212758 PMCID: PMC11364565 DOI: 10.1007/s12031-024-02260-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Hippocamposeptal (HS) neurons send GABAergic projections from the hippocampus to the medial septum/diagonal band of Broca (MS/DBB) as part of a reciprocal loop that is critical for memory. HS neurons are proposed to be particularly sensitive to the deleterious effects of pathological exposure to amyloid-β (Aβ), as would occur during Alzheimer's disease (AD). However, it is not known how HS GABA release in the MS/DBB is altered during the progression of AD. To target HS neurons in a mouse model of AD, we crossed SST-Cre mice to 5XFAD mice and performed stereotaxic injections of Cre-dependent AAV containing mCherry/channelrhodopsin-2 (ChR2) into the hippocampus of offspring at 4, 6, 9, and 12 months. We used optogenetics to selectively stimulate HS terminals while performing whole-cell patch-clamp recordings from MS/DBB neurons in slices. There was a transient reduction in HS-inhibitory postsynaptic current (IPSC) amplitude in female 5XFAD mice at 6 months, but no difference in males at any age, and no difference in paired-pulse ratio in either sex at any age. When bath applying the GABABR agonist, baclofen, we found a larger decrease in HS-IPSC amplitude in 5XFAD females at 9 months and 5XFAD males at 12 months. In 12-month-old 5XFAD females, response to baclofen was significantly reduced. These data suggest that there is a transient increase in responsiveness to GABABR activation in 5XFAD mice that occurs earlier in females than in males. These sex-specific changes to HS function are likely to impact the relay of information between the hippocampus and MS/DBB.
Collapse
Affiliation(s)
- Joanne C Damborsky
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 TW Alexander Dr., P.O. Box 12233, Mail Drop F2-08, Research Triangle Park, NC, 27709, USA
| | - Jerrel L Yakel
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 TW Alexander Dr., P.O. Box 12233, Mail Drop F2-08, Research Triangle Park, NC, 27709, USA.
| |
Collapse
|
13
|
Li H, Cui X, Lin Y, Huang F, Tian A, Zhang R. Gut microbiota changes in patients with Alzheimer's disease spectrum based on 16S rRNA sequencing: a systematic review and meta-analysis. Front Aging Neurosci 2024; 16:1422350. [PMID: 39175809 PMCID: PMC11338931 DOI: 10.3389/fnagi.2024.1422350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/22/2024] [Indexed: 08/24/2024] Open
Abstract
Background The gut microbiota (GM) is hypothesized to play roles in Alzheimer's disease (AD) pathogenesis. In recent years, many GM composition and abundance investigations in AD patients have been conducted; however, despite this work, some results remain controversial. Therefore, we conducted a systematic review and meta-analysis using 16S ribosomal RNA (16S rRNA) sequencing to explore GM alterations between patients with AD spectrum and healthy controls (HCs). Methods A systematic and comprehensive literature search of PubMed, Web of Science, Embase, the Cochrane Library, China National Knowledge Infrastructure, China Biology Medicine disc database, WanFang database and Social Sciences Citation Index databases was conducted from inception to January 2023. Inclusion and exclusion criteria were strictly defined, and two researchers independently screened and extracted information from selected studies. Data quality were evaluated according to the "Cochrane system evaluator manual" and pooled data were comprehensively analyzed using Stata 14 software with standardized mean differences (SMDs) and 95% confidence intervals (95% CIs) used to measure effect sizes. Also, geographical heterogeneity effects (related to cohorts) on GM abundance were examined based on subgroup meta-analyses if sufficient studies reported outcomes. Finally, publication bias was assessed using funnel plots. Results Out of 1566 articles, 13 studies involving 581 patients with AD spectrum and 445 HCs were deemed eligible and included in our analysis. In summary, a decreased microbiota alpha diversity and a significantly distinct pattern of clustering with regard to beta diversity were observed in AD spectrum patients when compared with HCs. Comparative analyses revealed a decreased Ruminococcus, Faecalibacterium, Lachnospira, Dialister, Lachnoclostridium, and Roseburia abundance in AD spectrum patients while Phascolarctobacterium, Lactobacillus, and Akkermansia muciniphila were more enriched in patients when compared to HCs. Furthermore, regional variations may have been in play for intestinal microbes such as Bacteroides, Bifidobacterium, and Alistipes. Conclusion Our meta-analysis identified alterations in GM abundance in patients with AD spectrum, with 12 genera from four major phyla significantly associated with AD. Moreover, we provided evidence for region-specific alterations in Bacteroides, Bifidobacterium, and Alistipes abundance. These findings may have profound implications for the development of innovative GM-based strategies to prevent and treat AD. Systematic review registration https://doi.org/10.37766/inplasy2024.6.0067, identifier INPLASY202460067.
Collapse
Affiliation(s)
- Hui Li
- Department of Gerontology and Geriatrics, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xiaopan Cui
- Department of Gerontology and Geriatrics, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yuxiu Lin
- Department of Gerontology and Geriatrics, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Fengqiong Huang
- Department of Gerontology and Geriatrics, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Ayong Tian
- Department of Anesthesiology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Rongwei Zhang
- Department of Gerontology and Geriatrics, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
14
|
Ganesh A, Choudhury W, Coutellier L. Early spatial recognition memory deficits in 5XFAD female mice are associated with disruption of prefrontal parvalbumin neurons. Brain Res 2024; 1841:149122. [PMID: 39009061 DOI: 10.1016/j.brainres.2024.149122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 07/17/2024]
Abstract
Women have a two-fold increased risk of developing Alzheimer's disease (AD) than men, yet the underlying mechanisms of this sex-specific vulnerability remain unknown. Here, we aimed at determining in the 5XFAD mouse model whether deficits in prefrontal-dependent cognitive functions, which are impacted in the preclinical stages of AD, appear earlier in females, and whether these cognitive deficits are associated with alterations in the activity of prefrontal parvalbumin (PV)-neurons that regulate prefrontal circuits activity. We observed that 3.5-month-old 5XFAD females, but not males, display impairments in spatial short-term recognition memory, a function that relies on the integrity of the prefrontal cortex. Hippocampal-dependent cognitive functions were intact in both sexes. We then observed that 5XFAD females have more prefrontal PV neurons expressing the marker of chronic activity FosB; this was inversely correlated with prefrontal-dependent cognitive performances. Our findings show for the first time sex-specific, early deregulation of prefrontal PV neurons activity, which is associated with early appearance of prefrontal-dependent cognitive functions in 5XFAD females providing a potential novel mechanism to the increased risk to AD in females.
Collapse
Affiliation(s)
- Anish Ganesh
- Department of Psychology, The Ohio State University, Columbus, OH, USA
| | - Wajih Choudhury
- Department of Psychology, The Ohio State University, Columbus, OH, USA
| | - Laurence Coutellier
- Department of Psychology, The Ohio State University, Columbus, OH, USA; Department of Neuroscience, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
15
|
Leong VS, Yu J, Castor K, Al-Ezzi A, Arakaki X, Fonteh AN. Associations of Plasma Glutamatergic Metabolites with Alpha Desynchronization during Cognitive Interference and Working Memory Tasks in Asymptomatic Alzheimer's Disease. Cells 2024; 13:970. [PMID: 38891102 PMCID: PMC11171970 DOI: 10.3390/cells13110970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Electroencephalogram (EEG) studies have suggested compensatory brain overactivation in cognitively healthy (CH) older adults with pathological beta-amyloid(Aβ42)/tau ratios during working memory and interference processing. However, the association between glutamatergic metabolites and brain activation proxied by EEG signals has not been thoroughly investigated. We aim to determine the involvement of these metabolites in EEG signaling. We focused on CH older adults classified under (1) normal CSF Aβ42/tau ratios (CH-NATs) and (2) pathological Aβ42/tau ratios (CH-PATs). We measured plasma glutamine, glutamate, pyroglutamate, and γ-aminobutyric acid concentrations using tandem mass spectrometry and conducted a correlational analysis with alpha frequency event-related desynchronization (ERD). Under the N-back working memory paradigm, CH-NATs presented negative correlations (r = ~-0.74--0.96, p = 0.0001-0.0414) between pyroglutamate and alpha ERD but positive correlations (r = ~0.82-0.95, p = 0.0003-0.0119) between glutamine and alpha ERD. Under Stroop interference testing, CH-NATs generated negative correlations between glutamine and left temporal alpha ERD (r = -0.96, p = 0.037 and r = -0.97, p = 0.027). Our study demonstrated that glutamine and pyroglutamate levels were associated with EEG activity only in CH-NATs. These results suggest cognitively healthy adults with amyloid/tau pathology experience subtle metabolic dysfunction that may influence EEG signaling during cognitive challenge. A longitudinal follow-up study with a larger sample size is needed to validate these pilot studies.
Collapse
Affiliation(s)
- Vincent Sonny Leong
- Cognition and Brain Integration Laboratory, Neurosciences Department, Huntington Medical Research Institutes, Pasadena, CA 91105, USA (X.A.)
| | - Jiaquan Yu
- Biomarker and Neuro-Disease Mechanism Laboratory, Neurosciences Department, Huntington Medical Research Institutes, Pasadena, CA 91105, USA
| | - Katherine Castor
- Biomarker and Neuro-Disease Mechanism Laboratory, Neurosciences Department, Huntington Medical Research Institutes, Pasadena, CA 91105, USA
| | - Abdulhakim Al-Ezzi
- Cognition and Brain Integration Laboratory, Neurosciences Department, Huntington Medical Research Institutes, Pasadena, CA 91105, USA (X.A.)
| | - Xianghong Arakaki
- Cognition and Brain Integration Laboratory, Neurosciences Department, Huntington Medical Research Institutes, Pasadena, CA 91105, USA (X.A.)
| | - Alfred Nji Fonteh
- Biomarker and Neuro-Disease Mechanism Laboratory, Neurosciences Department, Huntington Medical Research Institutes, Pasadena, CA 91105, USA
| |
Collapse
|
16
|
Palacios N, Gordon S, Wang T, Burk R, Qi Q, Huttenhower C, Gonzalez HM, Knight R, De Carli C, Daviglus M, Lamar M, Telavera G, Tarraf W, Kosciolek T, Cai J, Kaplan RC. Gut Microbiome Multi-Omics and Cognitive Function in the Hispanic Community Health Study/Study of Latinos- Investigation of Neurocognitive Aging. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.17.24307533. [PMID: 38798527 PMCID: PMC11118626 DOI: 10.1101/2024.05.17.24307533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
INTRODUCTION We conducted a study within the Hispanic Community Health Study/Study of Latinos- Investigation of Neurocognitive Aging (HCHS/SOL-INCA) cohort to examine the association between gut microbiome and cognitive function. METHODS We analyzed the fecal metagenomes of 2,471 HCHS/SOL-INCA participants to, cross-sectionally, identify microbial taxonomic and functional features associated with global cognitive function. Omnibus (PERMANOVA) and feature-wise analyses (MaAsLin2) were conducted to identify microbiome-cognition associations, and specific microbial species and pathways (Kyoto Encyclopedia of Genes and Genomes (KEGG modules) associated with cognition. RESULTS Eubacterium species( E. siraeum and E. eligens ), were associated with better cognition. Several KEGG modules, most strongly Ornithine, Serine biosynthesis and Urea Cycle, were associated with worse cognition. DISCUSSION In a large Hispanic/Latino cohort, we identified several microbial taxa and KEGG pathways associated with cognition.
Collapse
|
17
|
Onisiforou A, Christodoulou CC, Zamba-Papanicolaou E, Zanos P, Georgiou P. Transcriptomic analysis reveals sex-specific patterns in the hippocampus in Alzheimer's disease. Front Endocrinol (Lausanne) 2024; 15:1345498. [PMID: 38689734 PMCID: PMC11058985 DOI: 10.3389/fendo.2024.1345498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 04/02/2024] [Indexed: 05/02/2024] Open
Abstract
Background The hippocampus, vital for memory and learning, is among the first brain regions affected in Alzheimer's Disease (AD) and exhibits adult neurogenesis. Women face twice the risk of developing AD compare to men, making it crucial to understand sex differences in hippocampal function for comprehending AD susceptibility. Methods We conducted a comprehensive analysis of bulk mRNA postmortem samples from the whole hippocampus (GSE48350, GSE5281) and its CA1 and CA3 subfields (GSE29378). Our aim was to perform a comparative molecular signatures analysis, investigating sex-specific differences and similarities in the hippocampus and its subfields in AD. This involved comparing the gene expression profiles among: (a) male controls (M-controls) vs. female controls (F-controls), (b) females with AD (F-AD) vs. F-controls, (c) males with AD (M-AD) vs. M-controls, and (d) M-AD vs. F-AD. Furthermore, we identified AD susceptibility genes interacting with key targets of menopause hormone replacement drugs, specifically the ESR1 and ESR2 genes, along with GPER1. Results The hippocampal analysis revealed contrasting patterns between M-AD vs. M-controls and F-AD vs. F-controls, as well as M-controls vs. F-controls. Notably, BACE1, a key enzyme linked to amyloid-beta production in AD pathology, was found to be upregulated in M-controls compared to F-controls in both CA1 and CA3 hippocampal subfields. In M-AD vs. M-controls, the GABAergic synapse was downregulated, and the Estrogen signaling pathway was upregulated in both subfields, unlike in F-AD vs. F-controls. Analysis of the whole hippocampus also revealed upregulation of the GABAergic synapse in F-AD vs. F-controls. While direct comparison of M-AD vs. F-AD, revealed a small upregulation of the ESR1 gene in the CA1 subfield of males. Conversely, F-AD vs. F-controls exhibited downregulation of the Dopaminergic synapse in both subfields, while the Calcium signaling pathway showed mixed regulation, being upregulated in CA1 but downregulated in CA3, unlike in M-AD vs. M-controls. The upregulated Estrogen signaling pathway in M-AD, suggests a compensatory response to neurodegenerative specifically in males with AD. Our results also identified potential susceptibility genes interacting with ESR1 and ESR2, including MAPK1, IGF1, AKT1, TP53 and CD44. Conclusion These findings underscore the importance of sex-specific disease mechanisms in AD pathogenesis. Region-specific analysis offers a more detailed examination of localized changes in the hippocampus, enabling to capture sex-specific molecular patterns in AD susceptibility and progression.
Collapse
Affiliation(s)
- Anna Onisiforou
- Translational Neuropharmacology Laboratory, Department of Psychology, University of Cyprus, Nicosia, Cyprus
| | | | | | - Panos Zanos
- Translational Neuropharmacology Laboratory, Department of Psychology, University of Cyprus, Nicosia, Cyprus
| | - Polymnia Georgiou
- Laboratory of Epigenetics and Gene Regulation, Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
- Psychoneuroendocrinology Laboratory, Department of Psychology, University of Wisconsin Milwaukee, Milwaukee, WI, United States
| |
Collapse
|
18
|
Pariyani R, Zhang Y, Haraldsson GG, Chen K, Linderborg KM, Yang B. Metabolomic Investigation of Brain and Liver in Rats Fed Docosahexaenoic Acid in Regio- and Enantiopure Triacylglycerols. Mol Nutr Food Res 2024; 68:e2300341. [PMID: 38396161 DOI: 10.1002/mnfr.202300341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 12/30/2023] [Indexed: 02/25/2024]
Abstract
SCOPE N-3 polyunsaturated fatty acids (n-3 PUFAs) play important roles in cognitive functions. However, there is a lack of knowledge on the metabolic impact of regio- and stereo-specific positioning of n-3 PUFAs in dietary triacylglycerols. METHODS AND RESULTS Rats in a state of mild n-3 PUFA deficiency are fed daily with 360 mg triacylglycerols containing DHA (docosahexaenoic acid) at sn (stereospecific numbering)-1, 2, or 3 positions and 18:0 at remaining positions, or an equal amount of tristearin for 5 days. Groups fed with n-3 deficient diet and normal n-3 adequate diet are included as controls. The metabolic profiles of the brain and liver are studied using NMR (nuclear magnetic resonance)-based metabolomics. Several metabolites of significance in membrane integrity and neurotransmission, and glutamate, in particular, are significantly lower in the brain of the groups fed with sn-1 and sn-3 DHA compared to the sn-2 DHA group. Further, the tristearin and DHA groups show a lower lactate level compared to the groups fed on normal or n-3 deficient diet, suggesting a prominent role of C18:0 in regulating energy metabolism. CONCLUSION This study sheds light on the impact of stereospecific positioning of DHA in triacylglycerols and the role of dietary stearic acid on metabolism in the brain and liver.
Collapse
Affiliation(s)
- Raghunath Pariyani
- Food Sciences, Department of Life Technologies, University of Turku, Turku, 20014, Finland
| | - Yumei Zhang
- Department of Nutrition & Food Hygiene, School of Public Health, Peking University, Beijing, 100191, China
| | | | - Kang Chen
- Food Sciences, Department of Life Technologies, University of Turku, Turku, 20014, Finland
| | - Kaisa M Linderborg
- Food Sciences, Department of Life Technologies, University of Turku, Turku, 20014, Finland
| | - Baoru Yang
- Food Sciences, Department of Life Technologies, University of Turku, Turku, 20014, Finland
| |
Collapse
|
19
|
He Z, Zhang H, Li X, Shen L, Li N, Cheng S, Liu Q. Comparative proteomic analysis of cerebral cortex revealed neuroprotective mechanism of esculentoside A on Alzheimer's disease. Eur J Pharmacol 2024; 964:176226. [PMID: 38128868 DOI: 10.1016/j.ejphar.2023.176226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/09/2023] [Accepted: 11/24/2023] [Indexed: 12/23/2023]
Abstract
Esculentoside A (EsA), isolated from phytolacca esculenta, is a saponin showing neuroprotective effect in the mouse models of Alzheimer's disease (AD). To investigate its action target and underlying mechanism, this study used the proteomics technique of isobaric tags for relative and absolute quantification (iTRAQ) to analyze the differentially expressed proteins (DEPs) in the cerebral cortex of EsA-treated and untreated triple-transgenic 3 × Tg-AD model mice. Proteomic comparison revealed 250, 436, and 903 DEPs in three group pairs, i.e. AD/Wild-type (WT), AD+5 mg/kg EsA/AD, AD+10 mg/kg EsA/AD, respectively. Among them 28 DEPs were commonly shared by three group pairs, and 25 of them showed reversed expression levels in the diseased group under the treatment of both doses of EsA. Bioinformatics analysis revealed that these DEPs were mainly linked to metabolism, synapses, apoptosis, learning and memory. EsA treatment restored the expression of these proteins, including amyloid precursor protein (APP), cathepsin B (Cstb), 4-aminobutyrate aminotransferase (Abat), 3-phosphoinositide-dependent protein kinase-1 (PDK1), carnitine palmitoyltransferase1 (Cpt1) and synaptotagmin 17 (Syt17), thereby ameliorated the spatial learning and memory of AD mice. Collectively, this study reveals for the first time the profound effect of EsA on the cerebral cortex of AD mice, which might be a potential therapeutic agent for the treatment of AD.
Collapse
Affiliation(s)
- Zhijun He
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518055, China; National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Huajie Zhang
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Xiaoqian Li
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Liming Shen
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Nan Li
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518055, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, 518055, China
| | - Shuiyuan Cheng
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, China.
| | - Qiong Liu
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518055, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, 518055, China.
| |
Collapse
|
20
|
Freyssin A, Carles A, Guehairia S, Rubinstenn G, Maurice T. Fluoroethylnormemantine (FENM) shows synergistic protection in combination with a sigma-1 receptor agonist in a mouse model of Alzheimer's disease. Neuropharmacology 2024; 242:109733. [PMID: 37844867 DOI: 10.1016/j.neuropharm.2023.109733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/14/2023] [Accepted: 09/25/2023] [Indexed: 10/18/2023]
Abstract
Fluoroethylnormemantine (FENM) is a Memantine derivative with anti-amnesic and neuroprotective activities showed in the Aβ25-35 pharmacological mouse model of Alzheimer's disease (AD). As AD is a complex multi-factorial neurodegenerative pathology, combination therapies relying on drugs acting through different pathways, have been suggested to more adequately address neuroprotection. As several agonists of the sigma-1 receptor (S1R), an intracellular chaperone, are presently in phase 2 or 3 clinical trials in neurodegenetrative diseases including AD, we examined the potentialities of S1R drug-based combinations with FENM, or Memantine. Aβ25-35-treated mice were treated with S1R agonists (PRE-084, Igmesine, Cutamesine) and/or FENM, or Memantine, during 7 days after intracerebroventricular administration of oligomerized Aβ25-35. Mice were then tested for spatial short-term memory on day 8 and non-spatial long-term memory on days 9-10, using the spontaneous alternation or passive avoidance tests, respectively. The FENM or Memantine combination with Donepezil, that non-selectively inhibits acetylcholinesterase and activates S1R, was also tested. The efficacy of combinations using maximal non-active or minimal active doses of S1R agonist or FENM was analyzed using calculations of the combination index, based on simple isobologram representation. Data showed that most of the FENM-based combinations led to synergistic protection against Aβ25-35-induced learning deficits, for both long- and short-term memory responses, with a higher efficiency on the latter. Memantine led to synergistic combination in short-term memory but poorly in long-term memory responses, with either PRE-084 or Donepezil. These study showed that drug combinations based on FENM and S1R agonists may lead to highly effective and synergistic protection in AD, particularly on short-term memory.
Collapse
Affiliation(s)
- Aline Freyssin
- MMDN, Univ Montpellier, INSERM, EPHE, Montpellier, France; ReST Therapeutics, Montpellier, France
| | - Allison Carles
- MMDN, Univ Montpellier, INSERM, EPHE, Montpellier, France
| | | | | | - Tangui Maurice
- MMDN, Univ Montpellier, INSERM, EPHE, Montpellier, France.
| |
Collapse
|
21
|
Chen Y, Ji X, Bao Z. Identification of the Shared Gene Signatures Between Alzheimer's Disease and Diabetes-Associated Cognitive Dysfunction by Bioinformatics Analysis Combined with Biological Experiment. J Alzheimers Dis 2024; 101:611-625. [PMID: 39213070 PMCID: PMC11492114 DOI: 10.3233/jad-240353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2024] [Indexed: 09/04/2024]
Abstract
Background The connection between diabetes-associated cognitive dysfunction (DACD) and Alzheimer's disease (AD) has been shown in several observational studies. However, it remains controversial as to how the two related. Objective To explore shared genes and pathways between DACD and AD using bioinformatics analysis combined with biological experiment. Methods We analyzed GEO microarray data to identify DEGs in AD and type 2 diabetes mellitus (T2DM) induced-DACD datasets. Weighted gene co-expression network analysis was used to find modules, while R packages identified overlapping genes. A robust protein-protein interaction network was constructed, and hub genes were identified with Gene ontology enrichment and Kyoto Encyclopedia of Genome and Genome pathway analyses. HT22 cells were cultured under high glucose and amyloid-β 25-35 (Aβ25-35) conditions to establish DACD and AD models. Quantitative polymerase chain reaction with reverse transcription verification analysis was then performed on intersection genes. Results Three modules each in AD and T2DM induced-DACD were identified as the most relevant and 10 hub genes were screened, with analysis revealing enrichment in pathways such as synaptic vesicle cycle and GABAergic synapse. Through biological experimentation verification, 6 key genes were identified. Conclusions This study is the first to use bioinformatics tools to uncover the genetic link between AD and DACD. GAD1, UCHL1, GAP43, CARNS1, TAGLN3, and SH3GL2 were identified as key genes connecting AD and DACD. These findings offer new insights into the diseases' pathogenesis and potential diagnostic and therapeutic targets.
Collapse
Affiliation(s)
- Yixin Chen
- Department of Gerontology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
- Research Center on Aging and Medicine, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai, China, Fudan University, Shanghai, China
| | - Xueying Ji
- Department of General Practice, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Zhijun Bao
- Department of Gerontology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
- Research Center on Aging and Medicine, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai, China, Fudan University, Shanghai, China
| |
Collapse
|
22
|
Nagori K, Pradhan M, Sharma M, Ajazuddin, Badwaik HR, Nakhate KT. Current Progress on Central Cholinergic Receptors as Therapeutic Targets for Alzheimer's Disease. Curr Alzheimer Res 2024; 21:50-68. [PMID: 38529600 DOI: 10.2174/0115672050306008240321034006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 03/27/2024]
Abstract
Acetylcholine (ACh) is ubiquitously present in the nervous system and has been involved in the regulation of various brain functions. By modulating synaptic transmission and promoting synaptic plasticity, particularly in the hippocampus and cortex, ACh plays a pivotal role in the regulation of learning and memory. These procognitive actions of ACh are mediated by the neuronal muscarinic and nicotinic cholinergic receptors. The impairment of cholinergic transmission leads to cognitive decline associated with aging and dementia. Therefore, the cholinergic system has been of prime focus when concerned with Alzheimer's disease (AD), the most common cause of dementia. In AD, the extensive destruction of cholinergic neurons occurs by amyloid-β plaques and tau protein-rich neurofibrillary tangles. Amyloid-β also blocks cholinergic receptors and obstructs neuronal signaling. This makes the central cholinergic system an important target for the development of drugs for AD. In fact, centrally acting cholinesterase inhibitors like donepezil and rivastigmine are approved for the treatment of AD, although the outcome is not satisfactory. Therefore, identification of specific subtypes of cholinergic receptors involved in the pathogenesis of AD is essential to develop future drugs. Also, the identification of endogenous rescue mechanisms to the cholinergic system can pave the way for new drug development. In this article, we discussed the neuroanatomy of the central cholinergic system. Further, various subtypes of muscarinic and nicotinic receptors involved in the cognition and pathophysiology of AD are described in detail. The article also reviewed primary neurotransmitters that regulate cognitive processes by modulating basal forebrain cholinergic projection neurons.
Collapse
Affiliation(s)
- Kushagra Nagori
- Department of Pharmaceutical Chemistry, Rungta College of Pharmaceutical Sciences and Research, Kurud Road, Kohka, Bhilai 490024, Chhattisgarh, India
| | - Madhulika Pradhan
- Department of Pharmaceutical Technology, Gracious College of Pharmacy, Abhanpur 493661, Chhattisgarh, India
| | - Mukesh Sharma
- Department of Pharmacognosy, Rungta College of Pharmaceutical Sciences and Research, Kurud Road, Kohka, Bhilai 490024, Chhattisgarh, India
| | - Ajazuddin
- Department of Pharmaceutics, Rungta College of Pharmaceutical Sciences and Research, Kurud Road, Kohka, Bhilai 490024, Chhattisgarh, India
| | - Hemant R Badwaik
- Department of Pharmaceutical Chemistry, Shri Shankaracharya Institute of Pharmaceutical Sciences and Research, Junwani, Bhilai 490020, Chhattisgarh, India
| | - Kartik T Nakhate
- Department of Pharmacology, Shri Vile Parle Kelavani Mandal's Institute of Pharmacy, Dhule 424001, Maharashtra, India
| |
Collapse
|
23
|
Shen L, Tang X, Zhang H, Zhuang H, Lin J, Zhao Y, Liu X. Targeted Metabolomic Analysis of the Eye Tissue of Triple Transgenic Alzheimer's Disease Mice at an Early Pathological Stage. Mol Neurobiol 2023; 60:7309-7328. [PMID: 37553545 DOI: 10.1007/s12035-023-03533-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 07/22/2023] [Indexed: 08/10/2023]
Abstract
Alzheimer's disease (AD) is a severe neurodegenerative disease in older people. Despite some consensus on pathogenesis of AD established by previous researches, further elucidation is still required for better understanding. This study analyzed the eye tissues of 2- and 6-month-old triple transgenic AD (3 × Tg-AD) male mice and age-sex-matched wild-type (WT) mice using a targeted metabolomics approach. Compared with WT mice, 20 and 44 differential metabolites were identified in 2- and 6-month-old AD mice, respectively. They were associated with purine metabolism, pantothenate and CoA biosynthesis, pyruvate metabolism, lysine degradation, glycolysis/gluconeogenesis, and pyrimidine metabolism pathways. Among them, 8 metabolites presented differences in both the two groups, and 5 of them showed constant trend of change. The results indicated that the eye tissues of 3 × Tg-AD mice underwent changes in the early stages of the disease, with changes in metabolites observed at 2 months of age and more pronounced at 6 months of age, which is consistent with our previous studies on hippocampal targeted metabolomics in 3 × Tg-AD mice. Therefore, a joint analysis of data from this study and previous hippocampal study was performed, and the differential metabolites and their associated mechanisms were similar in eye and hippocampal tissues, but with tissue specificity.
Collapse
Affiliation(s)
- Liming Shen
- College of Life Science and Oceanography, Shenzhen University, Xueyuan Ave 1688, Shenzhen, 518060, People's Republic of China
- Shenzhen Bay Laboratory, Shenzhen, People's Republic of China
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, People's Republic of China
- Shenzhen Key Laboratory of Marine, Biotechnology, and Ecology, Shenzhen, People's Republic of China
| | - Xiaoxiao Tang
- College of Life Science and Oceanography, Shenzhen University, Xueyuan Ave 1688, Shenzhen, 518060, People's Republic of China
| | - Huajie Zhang
- College of Life Science and Oceanography, Shenzhen University, Xueyuan Ave 1688, Shenzhen, 518060, People's Republic of China
| | - Hongbin Zhuang
- College of Life Science and Oceanography, Shenzhen University, Xueyuan Ave 1688, Shenzhen, 518060, People's Republic of China
| | - Jing Lin
- College of Life Science and Oceanography, Shenzhen University, Xueyuan Ave 1688, Shenzhen, 518060, People's Republic of China
| | - Yuxi Zhao
- College of Life Science and Oceanography, Shenzhen University, Xueyuan Ave 1688, Shenzhen, 518060, People's Republic of China
| | - Xukun Liu
- College of Life Science and Oceanography, Shenzhen University, Xueyuan Ave 1688, Shenzhen, 518060, People's Republic of China.
| |
Collapse
|
24
|
Carello-Collar G, Bellaver B, Ferreira PCL, Ferrari-Souza JP, Ramos VG, Therriault J, Tissot C, De Bastiani MA, Soares C, Pascoal TA, Rosa-Neto P, Souza DO, Zimmer ER. The GABAergic system in Alzheimer's disease: a systematic review with meta-analysis. Mol Psychiatry 2023; 28:5025-5036. [PMID: 37419974 DOI: 10.1038/s41380-023-02140-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 05/17/2023] [Accepted: 06/16/2023] [Indexed: 07/09/2023]
Abstract
The γ-aminobutyric acid (GABA)ergic system is the primary inhibitory neurotransmission system in the mammalian brain. Its dysregulation has been shown in multiple brain conditions, but in Alzheimer's disease (AD) studies have provided contradictory results. Here, we conducted a systematic review with meta-analysis to investigate whether the GABAergic system is altered in AD patients compared to healthy controls (HC), following the PRISMA 2020 Statement. We searched PubMed and Web of Science from database inception to March 18th, 2023 for studies reporting GABA, glutamate decarboxylase (GAD) 65/67, GABAA, GABAB, and GABAC receptors, GABA transporters (GAT) 1-3 and vesicular GAT in the brain, and GABA levels in the cerebrospinal fluid (CSF) and blood. Heterogeneity was estimated using the I2 index, and the risk of bias was assessed with an adapted questionnaire from the Joanna Briggs Institute Critical Appraisal Tools. The search identified 3631 articles, and 48 met the final inclusion criteria (518 HC, mean age 72.2, and 603 AD patients, mean age 75.6). Random-effects meta-analysis [standardized mean difference (SMD)] revealed that AD patients presented lower GABA levels in the brain (SMD = -0.48 [95% CI = -0.7, -0.27], adjusted p value (adj. p) < 0.001) and in the CSF (-0.41 [-0.72, -0.09], adj. p = 0.042), but not in the blood (-0.63 [-1.35, 0.1], adj. p = 0.176). In addition, GAD65/67 (-0.67 [-1.15, -0.2], adj. p = 0.006), GABAA receptor (-0.51 [-0.7, -0.33], adj. p < 0.001), and GABA transporters (-0.51 [-0.92, -0.09], adj. p = 0.016) were lower in the AD brain. Here, we showed a global reduction of GABAergic system components in the brain and lower GABA levels in the CSF of AD patients. Our findings suggest the GABAergic system is vulnerable to AD pathology and should be considered a potential target for developing pharmacological strategies and novel AD biomarkers.
Collapse
Affiliation(s)
- Giovanna Carello-Collar
- Graduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Institute of Health Basic Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, 90035-003, Brazil
| | - Bruna Bellaver
- Graduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Institute of Health Basic Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, 90035-003, Brazil
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Pamela C L Ferreira
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - João Pedro Ferrari-Souza
- Graduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Institute of Health Basic Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, 90035-003, Brazil
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Vanessa G Ramos
- Graduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Institute of Health Basic Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, 90035-003, Brazil
| | - Joseph Therriault
- McGill Centre for Studies in Aging, McGill University, Montreal, QC, H4H 1R3, Canada
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, McGill University, Montreal, QC, H4H 1R3, Canada
- Departments of Neurology and Neurosurgery, McGill University, Montreal, QC, H3A 1A1, Canada
| | - Cécile Tissot
- McGill Centre for Studies in Aging, McGill University, Montreal, QC, H4H 1R3, Canada
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, McGill University, Montreal, QC, H4H 1R3, Canada
- Departments of Neurology and Neurosurgery, McGill University, Montreal, QC, H3A 1A1, Canada
| | - Marco A De Bastiani
- Department of Pharmacology, Institute of Health Basic Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, 90035-003, Brazil
| | - Carolina Soares
- Graduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Institute of Health Basic Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, 90035-003, Brazil
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Tharick A Pascoal
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Pedro Rosa-Neto
- McGill Centre for Studies in Aging, McGill University, Montreal, QC, H4H 1R3, Canada
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, McGill University, Montreal, QC, H4H 1R3, Canada
- Departments of Neurology and Neurosurgery, McGill University, Montreal, QC, H3A 1A1, Canada
- Montreal Neurological Institute, McGill University, Montreal, QC, H3A 2B4, Canada
| | - Diogo O Souza
- Graduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Institute of Health Basic Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, 90035-003, Brazil
- Department of Biochemistry, Institute of Health Basic Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, 90035-003, Brazil
| | - Eduardo R Zimmer
- Graduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Institute of Health Basic Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, 90035-003, Brazil.
- McGill Centre for Studies in Aging, McGill University, Montreal, QC, H4H 1R3, Canada.
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, McGill University, Montreal, QC, H4H 1R3, Canada.
- Department of Pharmacology, Institute of Health Basic Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, 90035-003, Brazil.
- Graduate Program in Biological Sciences: Pharmacology and Therapeutics, Department of Pharmacology, Institute of Health Basic Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, 90035-003, Brazil.
- Brain Institute of Rio Grande Do Sul, Pontifical Catholic University of Rio Grande Do Sul, Porto Alegre, RS, 90610-000, Brazil.
| |
Collapse
|
25
|
Dastgheib ZA, Lithgow BJ, Moussavi ZK. Evaluating the Diagnostic Value of Electrovestibulography (EVestG) in Alzheimer's Patients with Mixed Pathology: A Pilot Study. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:2091. [PMID: 38138194 PMCID: PMC10744488 DOI: 10.3390/medicina59122091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/24/2023] [Accepted: 11/26/2023] [Indexed: 12/24/2023]
Abstract
Background and Objectives: Diagnosis of dementia subtypes caused by different brain pathophysiologies, particularly Alzheimer's disease (AD) from AD mixed with levels of cerebrovascular disease (CVD) symptomology (AD-CVD), is challenging due to overlapping symptoms. In this pilot study, the potential of Electrovestibulography (EVestG) for identifying AD, AD-CVD, and healthy control populations was investigated. Materials and Methods: A novel hierarchical multiclass diagnostic algorithm based on the outcomes of its lower levels of binary classifications was developed using data of 16 patients with AD, 13 with AD-CVD, and 24 healthy age-matched controls, and then evaluated on a blind testing dataset made up of a new population of 12 patients diagnosed with AD, 9 with AD-CVD, and 8 healthy controls. Multivariate analysis was run to test the between population differences while controlling for sex and age covariates. Results: The accuracies of the multiclass diagnostic algorithm were found to be 85.7% and 79.6% for the training and blind testing datasets, respectively. While a statistically significant difference was found between the populations after accounting for sex and age, no significant effect was found for sex or age covariates. The best characteristic EVestG features were extracted from the upright sitting and supine up/down stimulus responses. Conclusions: Two EVestG movements (stimuli) and their most informative features that are best selective of the above-populations' separations were identified, and a hierarchy diagnostic algorithm was developed for three-way classification. Given that the two stimuli predominantly stimulate the otholithic organs, physiological and experimental evidence supportive of the results are presented. Disruptions of inhibition associated with GABAergic activity might be responsible for the changes in the EVestG features.
Collapse
Affiliation(s)
| | | | - Zahra K. Moussavi
- Diagnostic and Neurological Processing Research Laboratory, Biomedical Engineering Program, University of Manitoba, Riverview Health Centre, Winnipeg, MB R3L 2P4, Canada; (Z.A.D.); (B.J.L.)
| |
Collapse
|
26
|
Weiler M, Stieger KC, Shroff K, Klein JP, Wood WH, Zhang Y, Chandrasekaran P, Lehrmann E, Camandola S, Long JM, Mattson MP, Becker KG, Rapp PR. Transcriptional changes in the rat brain induced by repetitive transcranial magnetic stimulation. Front Hum Neurosci 2023; 17:1215291. [PMID: 38021223 PMCID: PMC10679736 DOI: 10.3389/fnhum.2023.1215291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 10/03/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Transcranial Magnetic Stimulation (TMS) is a noninvasive technique that uses pulsed magnetic fields to affect the physiology of the brain and central nervous system. Repetitive TMS (rTMS) has been used to study and treat several neurological conditions, but its complex molecular basis is largely unexplored. Methods Utilizing three experimental rat models (in vitro, ex vivo, and in vivo) and employing genome-wide microarray analysis, our study reveals the extensive impact of rTMS treatment on gene expression patterns. Results These effects are observed across various stimulation protocols, in diverse tissues, and are influenced by time and age. Notably, rTMS-induced alterations in gene expression span a wide range of biological pathways, such as glutamatergic, GABAergic, and anti-inflammatory pathways, ion channels, myelination, mitochondrial energetics, multiple neuron-and synapse-specific genes. Discussion This comprehensive transcriptional analysis induced by rTMS stimulation serves as a foundational characterization for subsequent experimental investigations and the exploration of potential clinical applications.
Collapse
Affiliation(s)
- Marina Weiler
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Kevin C. Stieger
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Kavisha Shroff
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Jessie P. Klein
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - William H. Wood
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Yongqing Zhang
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Prabha Chandrasekaran
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Elin Lehrmann
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Simonetta Camandola
- Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Jeffrey M. Long
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Mark P. Mattson
- Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Kevin G. Becker
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Peter R. Rapp
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| |
Collapse
|
27
|
Dilmore AH, Martino C, Neth BJ, West KA, Zemlin J, Rahman G, Panitchpakdi M, Meehan MJ, Weldon KC, Blach C, Schimmel L, Kaddurah-Daouk R, Dorrestein PC, Knight R, Craft S. Effects of a ketogenic and low-fat diet on the human metabolome, microbiome, and foodome in adults at risk for Alzheimer's disease. Alzheimers Dement 2023; 19:4805-4816. [PMID: 37017243 PMCID: PMC10551050 DOI: 10.1002/alz.13007] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 01/17/2023] [Accepted: 01/23/2023] [Indexed: 04/06/2023]
Abstract
INTRODUCTION The ketogenic diet (KD) is an intriguing therapeutic candidate for Alzheimer's disease (AD) given its protective effects against metabolic dysregulation and seizures. Gut microbiota are essential for KD-mediated neuroprotection against seizures as well as modulation of bile acids, which play a major role in cholesterol metabolism. These relationships motivated our analysis of gut microbiota and metabolites related to cognitive status following a controlled KD intervention compared with a low-fat-diet intervention. METHODS Prediabetic adults, either with mild cognitive impairment (MCI) or cognitively normal (CN), were placed on either a low-fat American Heart Association diet or high-fat modified Mediterranean KD (MMKD) for 6 weeks; then, after a 6-week washout period, they crossed over to the alternate diet. We collected stool samples for shotgun metagenomics and untargeted metabolomics at five time points to investigate individuals' microbiome and metabolome throughout the dietary interventions. RESULTS Participants with MCI on the MMKD had lower levels of GABA-producing microbes Alistipes sp. CAG:514 and GABA, and higher levels of GABA-regulating microbes Akkermansia muciniphila. MCI individuals with curcumin in their diet had lower levels of bile salt hydrolase-containing microbes and an altered bile acid pool, suggesting reduced gut motility. DISCUSSION Our results suggest that the MMKD may benefit adults with MCI through modulation of GABA levels and gut-transit time.
Collapse
Affiliation(s)
- Amanda Hazel Dilmore
- Department of Pediatrics, University of California San Diego, La Jolla, CA
- Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, CA
| | - Cameron Martino
- Department of Pediatrics, University of California San Diego, La Jolla, CA
- Bioinformatics and Systems Biology Graduate Program, University of California San Diego, La Jolla, CA
- Center for Microbiome Innovation, Joan and Irwin Jacobs School of Engineering, University of California San Diego, La Jolla, CA
| | | | - Kiana A. West
- Collaborative Mass Spectrometry Innovation Center, University of California San Diego, La Jolla, CA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA
| | - Jasmine Zemlin
- Center for Microbiome Innovation, Joan and Irwin Jacobs School of Engineering, University of California San Diego, La Jolla, CA
- Collaborative Mass Spectrometry Innovation Center, University of California San Diego, La Jolla, CA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA
| | - Gibraan Rahman
- Department of Pediatrics, University of California San Diego, La Jolla, CA
- Bioinformatics and Systems Biology Graduate Program, University of California San Diego, La Jolla, CA
| | - Morgan Panitchpakdi
- Collaborative Mass Spectrometry Innovation Center, University of California San Diego, La Jolla, CA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA
| | - Michael J. Meehan
- Collaborative Mass Spectrometry Innovation Center, University of California San Diego, La Jolla, CA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA
| | - Kelly C. Weldon
- Center for Microbiome Innovation, Joan and Irwin Jacobs School of Engineering, University of California San Diego, La Jolla, CA
- Collaborative Mass Spectrometry Innovation Center, University of California San Diego, La Jolla, CA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA
| | - Colette Blach
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC
- Department of Medicine, Duke University, Durham, NC
- Duke Institute of Brain Sciences, Duke University, Durham, NC
| | - Leyla Schimmel
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC
- Department of Medicine, Duke University, Durham, NC
- Duke Institute of Brain Sciences, Duke University, Durham, NC
| | - Rima Kaddurah-Daouk
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC
- Department of Medicine, Duke University, Durham, NC
- Duke Institute of Brain Sciences, Duke University, Durham, NC
| | - Pieter C Dorrestein
- Center for Microbiome Innovation, Joan and Irwin Jacobs School of Engineering, University of California San Diego, La Jolla, CA
- Collaborative Mass Spectrometry Innovation Center, University of California San Diego, La Jolla, CA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA
| | - Rob Knight
- Department of Pediatrics, University of California San Diego, La Jolla, CA
- Center for Microbiome Innovation, Joan and Irwin Jacobs School of Engineering, University of California San Diego, La Jolla, CA
- Department of Bioengineering, University of California San Diego, La Jolla, CA
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA
| | - Suzanne Craft
- Department of Internal Medicine, Section on Geriatrics and Gerontology, Wake Forest School of Medicine, Winston-Salem, NC
| | - Alzheimer’s Gut Microbiome Project Consortium
- Department of Pediatrics, University of California San Diego, La Jolla, CA
- Department of Medicine, Duke University, Durham, NC
- Department of Internal Medicine, Section on Geriatrics and Gerontology, Wake Forest School of Medicine, Winston-Salem, NC
| |
Collapse
|
28
|
Terstege DJ, Epp JR. Parvalbumin as a sex-specific target in Alzheimer's disease research - A mini-review. Neurosci Biobehav Rev 2023; 153:105370. [PMID: 37619647 DOI: 10.1016/j.neubiorev.2023.105370] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/14/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023]
Abstract
Alzheimer's disease (AD) is the most common form of dementia, and both the incidence of this disease and its associated cognitive decline disproportionally effect women. While the etiology of AD is unknown, recent work has demonstrated that the balance of excitatory and inhibitory activity across the brain may serve as a strong predictor of cognitive impairments in AD. Across the cortex, the most prominent source of inhibitory signalling is from a class of parvalbumin-expressing interneurons (PV+). In this mini-review, the impacts of sex- and age-related factors on the function of PV+ neurons are examined within the context of vulnerability to AD pathology. These primary factors of influence include changes in brain metabolism, circulating sex hormone levels, and inflammatory response. In addition to positing the increased vulnerability of PV+ neurons to dysfunction in AD, this mini-review highlights the critical importance of presenting sex stratified data in the study of AD.
Collapse
Affiliation(s)
- Dylan J Terstege
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada
| | - Jonathan R Epp
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada.
| |
Collapse
|
29
|
Dong R, Lu Q, Kang H, Suridjan I, Kollmorgen G, Wild N, Deming Y, Van Hulle CA, Anderson RM, Zetterberg H, Blennow K, Carlsson CM, Asthana S, Johnson SC, Engelman CD. CSF metabolites associated with biomarkers of Alzheimer's disease pathology. Front Aging Neurosci 2023; 15:1214932. [PMID: 37719875 PMCID: PMC10499619 DOI: 10.3389/fnagi.2023.1214932] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 07/17/2023] [Indexed: 09/19/2023] Open
Abstract
Introduction Metabolomics technology facilitates studying associations between small molecules and disease processes. Correlating metabolites in cerebrospinal fluid (CSF) with Alzheimer's disease (AD) CSF biomarkers may elucidate additional changes that are associated with early AD pathology and enhance our knowledge of the disease. Methods The relative abundance of untargeted metabolites was assessed in 161 individuals from the Wisconsin Registry for Alzheimer's Prevention. A metabolome-wide association study (MWAS) was conducted between 269 CSF metabolites and protein biomarkers reflecting brain amyloidosis, tau pathology, neuronal and synaptic degeneration, and astrocyte or microglial activation and neuroinflammation. Linear mixed-effects regression analyses were performed with random intercepts for sample relatedness and repeated measurements and fixed effects for age, sex, and years of education. The metabolome-wide significance was determined by a false discovery rate threshold of 0.05. The significant metabolites were replicated in 154 independent individuals from then Wisconsin Alzheimer's Disease Research Center. Mendelian randomization was performed using genome-wide significant single nucleotide polymorphisms from a CSF metabolites genome-wide association study. Results Metabolome-wide association study results showed several significantly associated metabolites for all the biomarkers except Aβ42/40 and IL-6. Genetic variants associated with metabolites and Mendelian randomization analysis provided evidence for a causal association of metabolites for soluble triggering receptor expressed on myeloid cells 2 (sTREM2), amyloid β (Aβ40), α-synuclein, total tau, phosphorylated tau, and neurogranin, for example, palmitoyl sphingomyelin (d18:1/16:0) for sTREM2, and erythritol for Aβ40 and α-synuclein. Discussion This study provides evidence that CSF metabolites are associated with AD-related pathology, and many of these associations may be causal.
Collapse
Affiliation(s)
- Ruocheng Dong
- Department of Population Health Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Qiongshi Lu
- Department of Biostatistics and Medical Informatics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Hyunseung Kang
- Department of Biostatistics and Medical Informatics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | | | | | | | - Yuetiva Deming
- Department of Population Health Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
- Wisconsin Alzheimer’s Disease Research Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Carol A. Van Hulle
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
- Wisconsin Alzheimer’s Disease Research Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Rozalyn M. Anderson
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
- Geriatrics Research Education and Clinical Center, Middleton VA Hospital, Madison, WI, United States
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- UK Dementia Research Institute at UCL, London, United Kingdom
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, United Kingdom
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, Hong Kong SAR, China
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Cynthia M. Carlsson
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
- Wisconsin Alzheimer’s Disease Research Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
- Geriatrics Research Education and Clinical Center, Middleton VA Hospital, Madison, WI, United States
| | - Sanjay Asthana
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
- Wisconsin Alzheimer’s Disease Research Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
- Geriatrics Research Education and Clinical Center, Middleton VA Hospital, Madison, WI, United States
| | - Sterling C. Johnson
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
- Wisconsin Alzheimer’s Disease Research Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
- Geriatrics Research Education and Clinical Center, Middleton VA Hospital, Madison, WI, United States
- Wisconsin Alzheimer’s Institute, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Corinne D. Engelman
- Department of Population Health Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
- Wisconsin Alzheimer’s Disease Research Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
- Wisconsin Alzheimer’s Institute, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
30
|
Baumgartner TJ, Haghighijoo Z, Goode NA, Dvorak NM, Arman P, Laezza F. Voltage-Gated Na + Channels in Alzheimer's Disease: Physiological Roles and Therapeutic Potential. Life (Basel) 2023; 13:1655. [PMID: 37629512 PMCID: PMC10455313 DOI: 10.3390/life13081655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/11/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
Alzheimer's disease (AD) is the most common cause of dementia and is classically characterized by two major histopathological abnormalities: extracellular plaques composed of amyloid beta (Aβ) and intracellular hyperphosphorylated tau. Due to the progressive nature of the disease, it is of the utmost importance to develop disease-modifying therapeutics that tackle AD pathology in its early stages. Attenuation of hippocampal hyperactivity, one of the earliest neuronal abnormalities observed in AD brains, has emerged as a promising strategy to ameliorate cognitive deficits and abate the spread of neurotoxic species. This aberrant hyperactivity has been attributed in part to the dysfunction of voltage-gated Na+ (Nav) channels, which are central mediators of neuronal excitability. Therefore, targeting Nav channels is a promising strategy for developing disease-modifying therapeutics that can correct aberrant neuronal phenotypes in early-stage AD. This review will explore the role of Nav channels in neuronal function, their connections to AD pathology, and their potential as therapeutic targets.
Collapse
Affiliation(s)
| | | | | | | | | | - Fernanda Laezza
- Department of Pharmacology & Toxicology, The University of Texas Medical Branch, Galveston, TX 77555, USA; (T.J.B.); (Z.H.); (N.A.G.); (N.M.D.); (P.A.)
| |
Collapse
|
31
|
Buss SS, Fried PJ, Macone J, Zeng V, Zingg E, Santarnecchi E, Pascual-Leone A, Bartrés-Faz D. Greater cognitive reserve is related to lower cortical excitability in healthy cognitive aging, but not in early clinical Alzheimer's disease. Front Hum Neurosci 2023; 17:1193407. [PMID: 37576473 PMCID: PMC10413110 DOI: 10.3389/fnhum.2023.1193407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/05/2023] [Indexed: 08/15/2023] Open
Abstract
Objective To investigate the relationship between cortico-motor excitability and cognitive reserve (CR) in cognitively unimpaired older adults (CU) and in older adults with mild cognitive impairment or mild dementia due to Alzheimer's disease (AD). Methods Data were collected and analyzed from 15 CU and 24 amyloid-positive AD participants aged 50-90 years. A cognitive reserve questionnaire score (CRQ) assessed education, occupation, leisure activities, physical activities, and social engagement. Cortical excitability was quantified as the average amplitude of motor evoked potentials (MEP amplitude) elicited with single-pulse transcranial magnetic stimulation delivered to primary motor cortex. A linear model compared MEP amplitudes between groups. A linear model tested for an effect of CRQ on MEP amplitude across all participants. Finally, separate linear models tested for an effect of CRQ on MEP amplitude within each group. Exploratory analyses tested for effect modification of demographics, cognitive scores, atrophy measures, and CSF measures within each group using nested regression analysis. Results There was no between-group difference in MEP amplitude after accounting for covariates. The primary model showed a significant interaction term of group*CRQ (R2adj = 0.18, p = 0.013), but no main effect of CRQ. Within the CU group, higher CRQ was significantly associated with lower MEP amplitude (R2adj = 0.45, p = 0.004). There was no association in the AD group. Conclusion Lower cortico-motor excitability is related to greater CRQ in CU, but not in AD. Lower MEP amplitudes may reflect greater neural efficiency in cognitively unimpaired older adults. The lack of association seen in AD participants may reflect disruption of the protective effects of CR. Future work is needed to better understand the neurophysiologic mechanisms leading to the protective effects of CR in older adults with and without neurodegenerative disorders.
Collapse
Affiliation(s)
- Stephanie S. Buss
- Division of Cognitive Neurology, Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Boston, MA, United States
- Department of Neurology, Harvard Medical School, Boston, MA, United States
| | - Peter J. Fried
- Division of Cognitive Neurology, Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Boston, MA, United States
- Department of Neurology, Harvard Medical School, Boston, MA, United States
| | - Joanna Macone
- Division of Cognitive Neurology, Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Boston, MA, United States
- Department of Neurology, Harvard Medical School, Boston, MA, United States
| | - Victor Zeng
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Emma Zingg
- Division of Cognitive Neurology, Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Boston, MA, United States
- Program of All-inclusive Care for the Elderly (PACE), Cambridge Health Alliance, Cambridge, MA, United States
| | - Emiliano Santarnecchi
- Division of Cognitive Neurology, Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Boston, MA, United States
- Department of Neurology, Harvard Medical School, Boston, MA, United States
- Precision Neuromodulation Program, Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Alvaro Pascual-Leone
- Department of Neurology, Harvard Medical School, Boston, MA, United States
- Deanna and Sidney Wolk Center for Memory Health, Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, MA, United States
| | - David Bartrés-Faz
- Division of Cognitive Neurology, Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, Boston, MA, United States
- Department of Medicine, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| |
Collapse
|
32
|
Mao R, Xu S, Sun G, Yu Y, Zuo Z, Wang Y, Yang K, Zhang Z, Yang W. Triptolide injection reduces Alzheimer's disease-like pathology in mice. Synapse 2023; 77:e22261. [PMID: 36633502 DOI: 10.1002/syn.22261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 12/21/2022] [Accepted: 01/08/2023] [Indexed: 01/13/2023]
Abstract
Triptolide is an epoxidized diterpene lactone isolated from Tripterygium wilfordii. Studies have shown that triptolide exerts organ-protective effects. However, it remains unknown whether triptolide improves Alzheimer's disease (AD)-like presentations. Thirty healthy 8-week-old male C57BL/6J mice were randomly divided into control (n = 10), model (n = 10), and triptolide (n = 10) groups. Amyloid-β (Aβ)42 was injected bilaterally into the ventricles of mice in the model group. Triptolide was injected intraperitoneally daily after injecting Aβ42 (a total of 30 days) in the triptolide group. Learning and memory were tested using the Morris water maze test. The deposition of Aβ42 in the hippocampus was detected using immunohistochemical staining. In the hippocampus, three synaptic-associated proteins-gephyrin, collybistin, and GABRA1 -were detected by western blotting. Furthermore, we used ELISA to detect proinflammatory cytokines, including TNF-α and IL-1β, in the blood and hippocampus. Moreover, superoxide dismutase (SOD), malondialdehyde (MDA), and GSH levels were measured using the corresponding kits. We found that triptolide improved spatial learning and memory in AD-like mice. Additionally, triptolide maintained the expression of gephyrin, collybistin, and GABRA1 and reduced Aβ in these mice. Additionally, triptolide reduced the expression of inflammatory cytokines and decreased oxidative damage in AD-like mice. Our study suggests that triptolide attenuates AD-like changes in the mouse brain.
Collapse
Affiliation(s)
- Rui Mao
- Department of Neurology, Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Shihao Xu
- Department of Neurology, Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Guangwen Sun
- Department of Neurology, Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, Hubei, China
- Department of Neurology, Sinopharm Dongfeng General Hospital, Jinzhou Medical University Union Training Base, Jinzhou, China
| | - Yingying Yu
- Department of Neurology, Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, Hubei, China
- Department of Neurology, Sinopharm Dongfeng General Hospital, Jinzhou Medical University Union Training Base, Jinzhou, China
| | - Zhiyi Zuo
- Department of Anesthesiology, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Yuanyuan Wang
- Department of Neurology, Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Kun Yang
- Department of Anesthesiology, Sinopharm Dongfeng General Hospital, Jinzhou Medical University Union Training Base, Jinzhou, China
| | - Zhen Zhang
- Department of Orthopedics, Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Wenqiong Yang
- Department of Neurology, Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| |
Collapse
|
33
|
Tang Y, Yan Y, Mao J, Ni J, Qing H. The hippocampus associated GABAergic neural network impairment in early-stage of Alzheimer's disease. Ageing Res Rev 2023; 86:101865. [PMID: 36716975 DOI: 10.1016/j.arr.2023.101865] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/13/2023] [Accepted: 01/25/2023] [Indexed: 01/29/2023]
Abstract
Alzheimer's disease (AD) is the commonest neurodegenerative disease with slow progression. Pieces of evidence suggest that the GABAergic system is impaired in the early stage of AD, leading to hippocampal neuron over-activity and further leading to memory and cognitive impairment in patients with AD. However, the precise impairment mechanism of the GABAergic system on the pathogenesis of AD is still unclear. The impairment of neural networks associated with the GABAergic system is tightly associated with AD. Therefore, we describe the roles played by hippocampus-related GABAergic circuits and their impairments in AD neuropathology. In addition, we give our understand on the process from GABAergic circuit impairment to cognitive and memory impairment, since recent studies on astrocyte in AD plays an important role behind cognition dysfunction caused by GABAergic circuit impairment, which helps better understand the GABAergic system and could open up innovative AD therapy.
Collapse
Affiliation(s)
- Yuanhong Tang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Yan Yan
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Jian Mao
- Zhengzhou Tobacco Institute of China National Tobacco Company, Zhengzhou 450001, China
| | - Junjun Ni
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China.
| | - Hong Qing
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China; Department of Biology, Shenzhen MSU-BIT University, Shenzhen 518172, China.
| |
Collapse
|
34
|
Kuhse J, Groeneweg F, Kins S, Gorgas K, Nawrotzki R, Kirsch J, Kiss E. Loss of Extrasynaptic Inhibitory Glycine Receptors in the Hippocampus of an AD Mouse Model Is Restored by Treatment with Artesunate. Int J Mol Sci 2023; 24:ijms24054623. [PMID: 36902054 PMCID: PMC10002537 DOI: 10.3390/ijms24054623] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/14/2023] [Accepted: 02/22/2023] [Indexed: 03/06/2023] Open
Abstract
Alzheimer's disease (AD) is characterized by synaptic failure and neuronal loss. Recently, we demonstrated that artemisinins restored the levels of key proteins of inhibitory GABAergic synapses in the hippocampus of APP/PS1 mice, a model of cerebral amyloidosis. In the present study, we analyzed the protein levels and subcellular localization of α2 and α3 subunits of GlyRs, indicated as the most abundant receptor subtypes in the mature hippocampus, in early and late stages of AD pathogenesis, and upon treatment with two different doses of artesunate (ARS). Immunofluorescence microscopy and Western blot analysis demonstrated that the protein levels of both α2 and α3 GlyRs are considerably reduced in the CA1 and the dentate gyrus of 12-month-old APP/PS1 mice when compared to WT mice. Notably, treatment with low-dose ARS affected GlyR expression in a subunit-specific way; the protein levels of α3 GlyR subunits were rescued to about WT levels, whereas that of α2 GlyRs were not affected significantly. Moreover, double labeling with a presynaptic marker indicated that the changes in GlyR α3 expression levels primarily involve extracellular GlyRs. Correspondingly, low concentrations of artesunate (≤1 µM) also increased the extrasynaptic GlyR cluster density in hAPPswe-transfected primary hippocampal neurons, whereas the number of GlyR clusters overlapping presynaptic VIAAT immunoreactivities remained unchanged. Thus, here we provide evidence that the protein levels and subcellular localization of α2 and α3 subunits of GlyRs show regional and temporal alterations in the hippocampus of APP/PS1 mice that can be modulated by the application of artesunate.
Collapse
Affiliation(s)
- Jochen Kuhse
- Institute of Anatomy and Cell Biology, University of Heidelberg, 69117 Heidelberg, Germany
| | - Femke Groeneweg
- Institute of Anatomy and Cell Biology, University of Heidelberg, 69117 Heidelberg, Germany
- Institute of Neuroanatomy, Medical Faculty Mannheim, University Heidelberg, 68167 Mannheim, Germany
| | - Stefan Kins
- Department of Human Biology and Human Genetics, University of Kaiserslautern-Landau, 67663 Kaiserslautern, Germany
| | - Karin Gorgas
- Institute of Anatomy and Cell Biology, University of Heidelberg, 69117 Heidelberg, Germany
| | - Ralph Nawrotzki
- Institute of Anatomy and Cell Biology, University of Heidelberg, 69117 Heidelberg, Germany
| | - Joachim Kirsch
- Institute of Anatomy and Cell Biology, University of Heidelberg, 69117 Heidelberg, Germany
| | - Eva Kiss
- Institute of Anatomy and Cell Biology, University of Heidelberg, 69117 Heidelberg, Germany
- Department of Cellular and Molecular Biology, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540142 Târgu Mures, Romania
- Correspondence:
| |
Collapse
|
35
|
NMDA Receptor Activation and Ca 2+/PKC Signaling in Nicotine-Induced GABA Transport Shift in Embryonic Chick Retina. Neurochem Res 2023; 48:2104-2115. [PMID: 36792758 DOI: 10.1007/s11064-023-03870-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 12/23/2022] [Accepted: 01/21/2023] [Indexed: 02/17/2023]
Abstract
Nicotinic receptors are present in the retina of different vertebrates, and in the chick retina, it is present during early development throughout to post-hatching. These receptors are activated by nicotine, an alkaloid with addictive and neurotransmitter release modulation properties, such as GABA signaling. Here we evaluated the mechanisms of nicotine signaling in the avian retina during the development of neuron-glia cells at a stage where synapses are peaking. Nicotine almost halved [3H]-GABA uptake, reducing it by 45% whilst increasing more than two-fold [3H]-GABA release in E12 embryonic chick retinas. Additionally, nicotine mediated a 33% increase in [3H]-D-aspartate release. MK-801 50 μM blocked 66% of nicotine-induced [3H]-GABA release and Gö 6983 100 nM prevented the nicotine-induced reduction in [3H]-GABA uptake by rescuing 40% of this neurotransmitter uptake, implicating NMDAR and PKC (respectively) in the nicotinic responses. In addition, NO-711 prevented [3H]-GABA uptake and release induced by nicotine. Furthermore, the relevance of calcium influx for PKC activation was evidenced through fura-2 imaging. We conclude that the shift of GABA transport mediated by nicotine promotes GABA release by inducing transporter reversal via nicotine-induced EAA release through EAATs, or by a direct effect of nicotine in activating nicotinic receptors permeable to calcium and promoting PKC pathway activation and shifting GAT-1 activity, both prompting calcium influx, and activation of the PKC pathway and shifting GAT-1 activity.
Collapse
|
36
|
Lam P, Newland J, Faull RLM, Kwakowsky A. Cation-Chloride Cotransporters KCC2 and NKCC1 as Therapeutic Targets in Neurological and Neuropsychiatric Disorders. Molecules 2023; 28:1344. [PMID: 36771011 PMCID: PMC9920462 DOI: 10.3390/molecules28031344] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/21/2023] [Accepted: 01/25/2023] [Indexed: 02/04/2023] Open
Abstract
Neurological diseases including Alzheimer's, Huntington's disease, Parkinson's disease, Down syndrome and epilepsy, and neuropsychiatric disorders such as schizophrenia, are conditions that affect not only individuals but societies on a global scale. Current therapies offer a means for small symptomatic relief, but recently there has been increasing demand for therapeutic alternatives. The γ-aminobutyric acid (GABA)ergic signaling system has been investigated for developing new therapies as it has been noted that any dysfunction or changes to this system can contribute to disease progression. Expression of the K-Cl-2 (KCC2) and N-K-C1-1 (NKCC1) cation-chloride cotransporters (CCCs) has recently been linked to the disruption of GABAergic activity by affecting the polarity of GABAA receptor signaling. KCC2 and NKCC1 play a part in multiple neurological and neuropsychiatric disorders, making them a target of interest for potential therapies. This review explores current research suggesting the pathophysiological role and therapeutic importance of KCC2 and NKCC1 in neuropsychiatric and neurological disorders.
Collapse
Affiliation(s)
- Patricia Lam
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand
| | - Julia Newland
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand
| | - Richard L. M. Faull
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand
| | - Andrea Kwakowsky
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand
- Pharmacology and Therapeutics, School of Medicine, Galway Neuroscience Centre, University of Galway, H91 W5P7 Galway, Ireland
| |
Collapse
|
37
|
The Effect of γ-Aminobutyric Acid Addition on In Vitro Ruminal Fermentation Characteristics and Methane Production of Diets Differing in Forage-to-Concentrate Ratio. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9020105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Gamma-aminobutyric acid (GABA), known as the most abundant inhibitory neurotransmitter in the mammalian brain, can permeate ruminal epithelia by passive diffusion and enrich in the rumen environment. To explore whether the addition of GABA can regulate rumen fermentation characteristics as well as methane production, a 2 × 6 factorial in vitro rumen batch culture was conducted to determine the supplemental effect of GABA at inclusion levels of 0 (Control), 10, 20, 30, 40 and 50 mg in culture fluids on rumen fermentation of two total mixed rations (HF—a high-fiber ration consisted of 70% corn silage and 30% concentrate; and LF—a low-fiber ration consisted of 30% corn silage and 70% concentrate). After 72 h in vitro incubation of two rations with mixed rumen microoganisms obtained from five rumen-cannulated lactating Holstein dairy cows, increasing GABA addition linearly increased cumulative gas production in the LF group, though in vitro dry matter digestibility was not affected in either the LF or HF group. Kinetic gas production analysis noted that increasing GABA addition mostly decreased the gas production rate (i.e., RmaxG), as well as the ration digestion rate (RmaxS) to reach maximum fermentation. The GABA addition did not affect pH or microbial growth (i.e., MCP). However, total volatile fatty acid production in both LF and HF groups all linearly increased with the increase in GABA addition. Along with the increase in GABA addition in both LF and HF groups, the ratio of non-glucogenic to glucogenic volatile fatty acids both increased, while the molar proportions of propionate and valerate were significantly decreased, and the acetate and butyrate proportions were increased after 72 h in vitro rumen fermentation. The time-course change of fermentation end-products generally showed that carbon dioxide declined from approximately 89% to 74%, and methane increased from approximately 11% to 26%. After 72 h in vitro fermentation, molar methane proportion was greater in the LF than in the HF group, and increasing GABA addition quadratically increased methane production in the LF group while a slight increase occurred in the HF group.
Collapse
|
38
|
Li D, Yang H, Lyu M, Wang J, Xu W, Wang Y. Acupuncture Therapy on Dementia: Explained with an Integrated Analysis on Therapeutic Targets and Associated Mechanisms. J Alzheimers Dis 2023; 94:S141-S158. [PMID: 36776063 PMCID: PMC10473135 DOI: 10.3233/jad-221018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2023] [Indexed: 02/10/2023]
Abstract
BACKGROUND Dementia, mainly Alzheimer's disease (AD) and vascular dementia (VaD), remains a global health challenge. Previous studies have demonstrated the benefits of acupuncture therapy (AT) in improving dementia. Nevertheless, the therapeutic targets and integrated biological mechanisms involved remain ambiguous. OBJECTIVE To identify therapeutic targets and biological mechanisms of AT in treating dementia by integrated analysis strategy. METHODS By the identification of differentially expressed genes (DEGs) of AD, VaD, and molecular targets of AT active components, the acupuncture therapeutic targets associated with the biological response to AD and VaD were extracted. Therapeutic targets-based functional enrichment analysis was conducted, and multiple networks were constructed. AT-therapeutic crucial targets were captured by weighted gene co-expression network analysis (WGCNA). The interactions between crucial targets with AT active components were verified by molecular docking. RESULTS Our results demonstrated that 132 and 76 acupuncture therapeutic targets were associated with AD and VaD. AT-therapeutic crucial targets including 58 for AD and 24 for VaD were captured by WGCNA, with 11 in shared, including NMU, GRP, TAC1, ADRA1D, and SST. In addition, 35 and 14 signaling pathways were significantly enriched by functional enrichment analysis, with 6 mutual pathways including neuroactive ligand-receptor interaction, GABAergic synapse, calcium signaling pathway, cAMP signaling pathway, chemokine signaling pathway, and inflammatory mediator regulation of TRP channels. CONCLUSION The improvement of AD and VaD by AT was associated with modulation of synaptic function, immunity, inflammation, and apoptosis. Our study clarified the therapeutic targets of AT on dementia, providing valuable clues for complementing and combining pharmacotherapy.
Collapse
Affiliation(s)
- Dun Li
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hongxi Yang
- School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Mingqian Lyu
- Department of Computer Science, RWTH Aachen University, Aachen, Germany
| | - Ju Wang
- School of Biomedical Engineering, Tianjin Medical University, Tianjin, China
| | - Weili Xu
- Aging Research Center, Department of Neurobiology, Health Care Sciences and Society Karolinska Institutet and Stockholm University, Stockholm, Sweden
| | - Yaogang Wang
- School of Integrative Medicine, Public Health Science and Engineering College, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Public Health, Tianjin Medical University, Tianjin, China
| |
Collapse
|
39
|
Modifiable risk factors of dementia linked to excitation-inhibition imbalance. Ageing Res Rev 2023; 83:101804. [PMID: 36410620 DOI: 10.1016/j.arr.2022.101804] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 11/04/2022] [Accepted: 11/16/2022] [Indexed: 11/23/2022]
Abstract
Recent evidence identifies 12 potentially modifiable risk factors for dementia to which 40% of dementia cases are attributed. While the recognition of these risk factors has paved the way for the development of new prevention measures, the link between these risk factors and the underlying pathophysiology of dementia is yet not well understood. A growing number of recent clinical and preclinical studies support a role of Excitation-Inhibition (E-I) imbalance in the pathophysiology of dementia. In this review, we aim to propose a conceptual model on the links between the modifiable risk factors and the E-I imbalance in dementia. This model, which aims to address the current gap in the literature, is based on 12 mediating common mechanisms: the hypothalamic-pituitary-adrenal (HPA) axis dysfunction, neuroinflammation, oxidative stress, mitochondrial dysfunction, cerebral hypo-perfusion, blood-brain barrier (BBB) dysfunction, beta-amyloid deposition, elevated homocysteine level, impaired neurogenesis, tau tangles, GABAergic dysfunction, and glutamatergic dysfunction. We believe this model serves as a framework for future studies in this field and facilitates future research on dementia prevention, discovery of new biomarkers, and developing new interventions.
Collapse
|
40
|
Kwakowsky A, Prasad AA, Peña-Ortega F, Lim SAO. Editorial: Neuronal network dysfunction in neurodegenerative disorders. Front Neurosci 2023; 17:1151156. [PMID: 36908801 PMCID: PMC9998973 DOI: 10.3389/fnins.2023.1151156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 02/08/2023] [Indexed: 03/14/2023] Open
Affiliation(s)
- Andrea Kwakowsky
- Pharmacology and Therapeutics, School of Medicine, Galway Neuroscience Centre, Ollscoil na Gaillimhe - University of Galway, Galway, Ireland.,Department of Anatomy and Medical Imaging, Centre for Brain Research, Faculty of Medical and Health Science, University of Auckland, Auckland, New Zealand
| | - Asheeta A Prasad
- Faculty of Medicine and Health, School of Medical Sciences, University of Sydney, Sydney, NSW, Australia
| | - Fernando Peña-Ortega
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Sean Austin Ong Lim
- Neuroscience Program, College of Science and Health, DePaul University, Chicago, IL, United States
| |
Collapse
|
41
|
He Y, Xu D, Yan Z, Wu Y, Zhang Y, Tian X, Zhu J, Liu Z, Cheng W, Zheng K, Yang X, Yu Y, Pan W. A metabolite attenuates neuroinflammation, synaptic loss and cognitive deficits induced by chronic infection of Toxoplasma gondii. Front Immunol 2022; 13:1043572. [PMID: 36618398 PMCID: PMC9815861 DOI: 10.3389/fimmu.2022.1043572] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Background Neurodegenerative diseases including AD is currently one of intractable problems globally due to the insufficiency of intervention strategies. Long-term infection of Toxoplasma gondii (T. gondii) can induce cognitive impairment in hosts, which is closely implicated in the pathogenesis of neurodegenerative diseases. Aconitate decarboxylase 1 (Acod1) and its produced metabolite itaconate (termed Acod1/itaconate axis), have recently attracted extensive interests due to its anti-inflammatory role in macrophages. However, whether the axis can influence cognitive function remains unknown. Methods A chronic T. gondii-infected mice (C57BL/6J) model was established via administration of cysts by gavage. Novel location (NL), novel object recognition (NOR), Y-maze spatial memory and nest building tests were used to evaluate the behavior performance. Transmission electron microscopy, immunofluorescence, RT-PCR, western-blotting and RNA sequencing were utilized to determine the pathological changes, neuroinflammation and transcription profile in hippocampus tissues post infection, respectively. Moreover, the protective effect of Acod1/itaconate axis in T. gondii-induced cognitive deficits was evaluated. Results We found that the latent infection of the parasite impaired the cognitive function, which was assessed behaviorally by novel location (NL), novel object recognition (NOR), Y-maze spatial memory and nest building tests. RNA sequencing of hippocampus showed that the infection downregulated the expression of genes related to synaptic plasticity, transmission and cognitive behavior. To our attention, the infection robustly upregulated the expression of genes associated with pro-inflammatory responses, which was characterized by microglia activation and disorder of Acod1/itaconate axis. Interestingly, administration of dimethyl itaconate (DI, an itaconate derivative with cell membrane permeability) could significantly ameliorate the cognitive deficits induced by T. gondii, which was proved by improvement of behavior performance and synaptic ultrastructure impairment, and lower accumulation of pro-inflammatory microglia. Notably, DI administration had a potential therapeutic effect on the cognitive deficits and synaptic impairment induced by the parasitic infection. Conclusions Overall, these findings provide a novel insight for the pathogenesis of T. gondii-related cognitive deficits in hosts, and also provide a novel clue for the potential therapeutic strategies.
Collapse
Affiliation(s)
- Yan He
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China,The First Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu, China,National Experimental Teaching Demonstration Center of Basic Medicine (Xuzhou Medical University), Xuzhou, Jiangsu, China
| | - Daxiang Xu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ziyi Yan
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China,The First Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu, China,National Experimental Teaching Demonstration Center of Basic Medicine (Xuzhou Medical University), Xuzhou, Jiangsu, China
| | - Yongshuai Wu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China,The First Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu, China,National Experimental Teaching Demonstration Center of Basic Medicine (Xuzhou Medical University), Xuzhou, Jiangsu, China
| | - Yongsheng Zhang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China,The First Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu, China,National Experimental Teaching Demonstration Center of Basic Medicine (Xuzhou Medical University), Xuzhou, Jiangsu, China
| | - Xiaokang Tian
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China,The First Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu, China,National Experimental Teaching Demonstration Center of Basic Medicine (Xuzhou Medical University), Xuzhou, Jiangsu, China
| | - Jinhang Zhu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China,National Experimental Teaching Demonstration Center of Basic Medicine (Xuzhou Medical University), Xuzhou, Jiangsu, China,The Second Clinical Medical College, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zhuanzhuan Liu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Wanpeng Cheng
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Kuiyang Zheng
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiaoying Yang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China,*Correspondence: Wei Pan, ; Yinghua Yu, ; Xiaoying Yang,
| | - Yinghua Yu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China,*Correspondence: Wei Pan, ; Yinghua Yu, ; Xiaoying Yang,
| | - Wei Pan
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China,*Correspondence: Wei Pan, ; Yinghua Yu, ; Xiaoying Yang,
| |
Collapse
|
42
|
Kumar S, Orlov E, Gowda P, Bose C, Swerdlow RH, Lahiri DK, Reddy PH. Synaptosome microRNAs regulate synapse functions in Alzheimer's disease. NPJ Genom Med 2022; 7:47. [PMID: 35941185 PMCID: PMC9359989 DOI: 10.1038/s41525-022-00319-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 07/15/2022] [Indexed: 01/05/2023] Open
Abstract
MicroRNAs (miRNAs) are found in nerve terminals, synaptic vesicles, and synaptosomes, but it is unclear whether synaptic and cytosolic miRNA populations differ in Alzheimer's disease (AD) or if synaptosomal miRNAs affect AD synapse activity. To address these questions, we generated synaptosomes and cytosolic fractions from postmortem brains of AD and unaffected control (UC) samples and analyzed them using a global Affymetrix miRNAs microarray platform. A group of miRNAs significantly differed (P < 0.0001) with high fold changes variance (+/- >200-fold) in their expressions in different comparisons: (1) UC synaptosome vs UC cytosol, (2) AD synaptosomes vs AD cytosol, (3) AD cytosol vs UC cytosol, and (4) AD synaptosomes vs UC synaptosomes. MiRNAs data analysis revealed that some potential miRNAs were consistently different across sample groups. These differentially expressed miRNAs were further validated using AD postmortem brains, brains of APP transgenic (Tg2576), Tau transgenic (P301L), and wild-type mice. The miR-501-3p, miR-502-3p, and miR-877-5p were identified as potential synaptosomal miRNAs upregulated with disease progression based on AD Braak stages. Gene Ontology Enrichment and Ingenuity Pathway Analysis of synaptosomal miRNAs showed the involvement of miRNAs in nervous system development, cell junction organization, synapse assembly formation, and function of GABAergic synapse. This is the first description of synaptic versus cytosolic miRNAs in AD and their significance in synapse function.
Collapse
Affiliation(s)
- Subodh Kumar
- grid.416992.10000 0001 2179 3554Center of Emphasis in Neuroscience, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center, 5001 El Paso Drive, El Paso, TX 79905 USA ,grid.416992.10000 0001 2179 3554Internal Medicine Department, Texas Tech University Health Sciences Center, 3601 4th Street STOP 9410, Lubbock, TX 79430 USA ,grid.416992.10000 0001 2179 3554Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, 5001 El Paso Drive, El Paso, TX 79905, USA
| | - Erika Orlov
- grid.416992.10000 0001 2179 3554Internal Medicine Department, Texas Tech University Health Sciences Center, 3601 4th Street STOP 9410, Lubbock, TX 79430 USA
| | - Prashanth Gowda
- grid.416992.10000 0001 2179 3554Internal Medicine Department, Texas Tech University Health Sciences Center, 3601 4th Street STOP 9410, Lubbock, TX 79430 USA
| | - Chhanda Bose
- grid.416992.10000 0001 2179 3554Internal Medicine Department, Texas Tech University Health Sciences Center, 3601 4th Street STOP 9410, Lubbock, TX 79430 USA
| | - Russell H. Swerdlow
- grid.266515.30000 0001 2106 0692Department of Neurology, the University of Kansas Medical Center, University of Kansas Alzheimer’s Disease Research Center, Fairway, KS 66205 USA
| | - Debomoy K. Lahiri
- grid.257413.60000 0001 2287 3919Laboratory of Molecular Neurogenetics’ Departments of Psychiatry and Medical & Molecular Genetics, Indiana University School of Medicine’ Indiana Alzheimer’s Disease Research Center, Stark Neuroscience Research Institute, Indianapolis, IN 46202 USA
| | - P. Hemachandra Reddy
- grid.416992.10000 0001 2179 3554Internal Medicine Department, Texas Tech University Health Sciences Center, 3601 4th Street STOP 9410, Lubbock, TX 79430 USA ,grid.416992.10000 0001 2179 3554Department of Pharmacology & Neuroscience, Texas Tech University Health Sciences Center, 3601 4th Street STOP 9410, Lubbock, TX 79430 USA ,grid.416992.10000 0001 2179 3554Department of Neurology, Texas Tech University Health Sciences Center, 3601 4th Street STOP 9410, Lubbock, TX 79430 USA ,grid.416992.10000 0001 2179 3554Department of Public Health, Texas Tech University Health Sciences Center, 3601 4th Street STOP 9410, Lubbock, TX 79430 USA
| |
Collapse
|
43
|
Monteverdi A, Palesi F, Costa A, Vitali P, Pichiecchio A, Cotta Ramusino M, Bernini S, Jirsa V, Gandini Wheeler-Kingshott CAM, D’Angelo E. Subject-specific features of excitation/inhibition profiles in neurodegenerative diseases. Front Aging Neurosci 2022; 14:868342. [PMID: 35992607 PMCID: PMC9391060 DOI: 10.3389/fnagi.2022.868342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 07/05/2022] [Indexed: 11/26/2022] Open
Abstract
Brain pathologies are characterized by microscopic changes in neurons and synapses that reverberate into large scale networks altering brain dynamics and functional states. An important yet unresolved issue concerns the impact of patients' excitation/inhibition profiles on neurodegenerative diseases including Alzheimer's Disease, Frontotemporal Dementia, and Amyotrophic Lateral Sclerosis. In this work, we used The Virtual Brain (TVB) simulation platform to simulate brain dynamics in healthy and neurodegenerative conditions and to extract information about the excitatory/inhibitory balance in single subjects. The brain structural and functional connectomes were extracted from 3T-MRI (Magnetic Resonance Imaging) scans and TVB nodes were represented by a Wong-Wang neural mass model endowing an explicit representation of the excitatory/inhibitory balance. Simulations were performed including both cerebral and cerebellar nodes and their structural connections to explore cerebellar impact on brain dynamics generation. The potential for clinical translation of TVB derived biophysical parameters was assessed by exploring their association with patients' cognitive performance and testing their discriminative power between clinical conditions. Our results showed that TVB biophysical parameters differed between clinical phenotypes, predicting higher global coupling and inhibition in Alzheimer's Disease and stronger N-methyl-D-aspartate (NMDA) receptor-dependent excitation in Amyotrophic Lateral Sclerosis. These physio-pathological parameters allowed us to perform an advanced analysis of patients' conditions. In backward regressions, TVB-derived parameters significantly contributed to explain the variation of neuropsychological scores and, in discriminant analysis, the combination of TVB parameters and neuropsychological scores significantly improved the discriminative power between clinical conditions. Moreover, cluster analysis provided a unique description of the excitatory/inhibitory balance in individual patients. Importantly, the integration of cerebro-cerebellar loops in simulations improved TVB predictive power, i.e., the correlation between experimental and simulated functional connectivity in all pathological conditions supporting the cerebellar role in brain function disrupted by neurodegeneration. Overall, TVB simulations reveal differences in the excitatory/inhibitory balance of individual patients that, combined with cognitive assessment, can promote the personalized diagnosis and therapy of neurodegenerative diseases.
Collapse
Affiliation(s)
- Anita Monteverdi
- Brain Connectivity Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Fulvia Palesi
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Alfredo Costa
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Unit of Behavioral Neurology, IRCCS Mondino Foundation, Pavia, Italy
| | - Paolo Vitali
- Department of Radiology, IRCCS Policlinico San Donato, Milan, Italy
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Anna Pichiecchio
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Advanced Imaging and Radiomic Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Matteo Cotta Ramusino
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Unit of Behavioral Neurology, IRCCS Mondino Foundation, Pavia, Italy
| | - Sara Bernini
- Dementia Research Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Viktor Jirsa
- Institut de Neurosciences des Systèmes, INSERM, INS, Aix-Marseille University, Marseille, France
| | - Claudia A. M. Gandini Wheeler-Kingshott
- Brain Connectivity Center, IRCCS Mondino Foundation, Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- NMR Research Unit, Department of Neuroinflammation, Queen Square MS Centre, University College London (UCL) Queen Square Institute of Neurology, London, United Kingdom
| | - Egidio D’Angelo
- Brain Connectivity Center, IRCCS Mondino Foundation, Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
44
|
Chen P, Chen G, Zhong S, Chen F, Ye T, Gong J, Tang G, Pan Y, Luo Z, Qi Z, Huang L, Wang Y. Thyroid hormones disturbances, cognitive deficits and abnormal dynamic functional connectivity variability of the amygdala in unmedicated bipolar disorder. J Psychiatr Res 2022; 150:282-291. [PMID: 35429738 DOI: 10.1016/j.jpsychires.2022.03.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/16/2022] [Accepted: 03/21/2022] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Accumulating evidence suggests that hypothalamus-pituitary-thyroid (HPT) axis dysfunction is relevant to the neuropsychological and pathophysiology functions of bipolar disorder (BD). However, no research has investigated the inter-relationships among thyroid hormones disturbance, neurocognitive deficits, and aberrant brain function (particularly in the amygdala) in patients with BD. MATERIALS AND METHODS Data of dynamic resting-state functional connectivity (rs-dFC) were gathered from 59 patients with unmedicated BD II during depressive episodes and 52 healthy controls (HCs). Four seeds were selected (the bilateral lateral amygdala and the bilateral medial amygdala). The sliding-window analysis was applied to investigate dynamic functional connectivity (dFC). Additionally, the serum thyroid hormone (free tri-iodothyronine (FT3), total tri-iodothyronine (TT3), free thyroxin (FT4), total thyroxin (TT4) and thyroid-stimulating hormone (TSH)) levels, and cognitive scores on the MATRICS Consensus Cognitive Battery (MCCB) in patients and HCs were detected. RESULTS The BD group exhibited increased dFC variability between the left medial amygdala and right medial prefrontal cortex (mPFC) when compared with the HC group. Additionally, the BD group showed lower FT3, TT3, and TSH level, higher FT4 level, and poorer cognitive score. Moreover, a significant negative correlation was observed between the dFC variability of the left medial amygdala-right mPFC and TSH level, or reasoning and problem solving of MCCB score in BD group. Multiple regression analysis showed that the TSH level × dFC variability of the medial amygdala-mPFC was an independent predictor for cognitive processing speed in BD group. CONCLUSIONS This study revealed patients with BD II depression had excessive variability in dFC between the medial amygdala and mPFC. Moreover, both HPT axis dysfunction and abnormal dFC of the amygdala-mPFC might be implicated in cognitive impairment in the early stages of BD.
Collapse
Affiliation(s)
- Pan Chen
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, 510630, China; Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, 510630, China
| | - Guanmao Chen
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, 510630, China; Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, 510630, China
| | - Shuming Zhong
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Feng Chen
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, 510630, China; Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, 510630, China
| | - Tao Ye
- Clinical Laboratory Center, First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - JiaYing Gong
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, 510630, China; Department of Radiology, Six Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510655, China
| | - Guixian Tang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, 510630, China; Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, 510630, China
| | - Youling Pan
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, 510630, China; Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, 510630, China
| | - Zhenye Luo
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, 510630, China; Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, 510630, China
| | - Zhangzhang Qi
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, 510630, China; Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, 510630, China
| | - Li Huang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, 510630, China; Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, 510630, China
| | - Ying Wang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, 510630, China; Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, 510630, China.
| |
Collapse
|
45
|
Morrone CD, Lai AY, Bishay J, Hill ME, McLaurin J. Parvalbumin neuroplasticity compensates for somatostatin impairment, maintaining cognitive function in Alzheimer's disease. Transl Neurodegener 2022; 11:26. [PMID: 35501886 PMCID: PMC9063209 DOI: 10.1186/s40035-022-00300-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 03/31/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Patient-to-patient variability in the degree to which β-amyloid, tau and neurodegeneration impact cognitive decline in Alzheimer's disease (AD) complicates disease modeling and treatment. However, the underlying mechanisms leading to cognitive resilience are not resolved. We hypothesize that the variability in cognitive function and loss relates to neuronal resilience of the hippocampal GABAergic network. METHODS We compared TgF344-AD and non-transgenic littermate rats at 9, 12, and 15 months of age. Neurons, β-amyloid plaques and tau inclusions were quantified in hippocampus and entorhinal cortex. Somatostatin (SST) and parvalbumin (PVB) interneurons were traced to examine hippocampal neuroplasticity and cognition was tested in the Barnes maze. RESULTS The 9-month-old TgF344-AD rats exhibited loss of neurons in the entorhinal cortex and hippocampus. Hippocampal neuronal compensation was observed in 12-month TgF344-AD rats, with upregulation of GABAergic interneuronal marker. By 15 months, the TgF344-AD rats had robust loss of excitatory and inhibitory neurons. β-Amyloid and tau pathology accumulated continuously across age. SST interneurons exhibited tau inclusions and atrophy from 9 months, whereas PVB interneurons were resilient until 15 months. The hippocampal PVB circuit underwent neuroplastic reorganization with increased dendritic length and complexity in 9- and 12-month-old TgF344-AD rats, before atrophy at 15 months. Strikingly, 12-month-old TgF344-AD rats were resilient in executive function and cognitive flexibility. Cognitive resilience in TgF344-AD rats occurred as maintenance of function between 9 and 12 months of age despite progressive spatial memory deficits, and was sustained by PVB neuroplasticity. CONCLUSIONS Our results demonstrate the inherent neuronal processes leading to cognitive maintenance, and describe a novel finding of endogenous cognitive resilience in an AD model.
Collapse
Affiliation(s)
| | - Aaron Yenhsin Lai
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON M4N 3M5 Canada
| | - Jossana Bishay
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON M4N 3M5 Canada
| | - Mary Elizabeth Hill
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON M4N 3M5 Canada
| | - JoAnne McLaurin
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON M4N 3M5 Canada
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8 Canada
| |
Collapse
|
46
|
Lam P, Vinnakota C, Guzmán BCF, Newland J, Peppercorn K, Tate WP, Waldvogel HJ, Faull RLM, Kwakowsky A. Beta-Amyloid (Aβ 1-42) Increases the Expression of NKCC1 in the Mouse Hippocampus. Molecules 2022; 27:2440. [PMID: 35458638 PMCID: PMC9027496 DOI: 10.3390/molecules27082440] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/22/2022] [Accepted: 04/06/2022] [Indexed: 11/16/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder with an increasing need for developing disease-modifying treatments as current therapies only provide marginal symptomatic relief. Recent evidence suggests the γ-aminobutyric acid (GABA) neurotransmitter system undergoes remodeling in AD, disrupting the excitatory/inhibitory (E/I) balance in the brain. Altered expression levels of K-Cl-2 (KCC2) and N-K-Cl-1 (NKCC1), which are cation-chloride cotransporters (CCCs), have been implicated in disrupting GABAergic activity by regulating GABAA receptor signaling polarity in several neurological disorders, but these have not yet been explored in AD. NKCC1 and KCC2 regulate intracellular chloride [Cl-]i by accumulating and extruding Cl-, respectively. Increased NKCC1 expression in mature neurons has been reported in these disease conditions, and bumetanide, an NKCC1 inhibitor, is suggested to show potential therapeutic benefits. This study used primary mouse hippocampal neurons to explore if KCC2 and NKCC1 expression levels are altered following beta-amyloid (Aβ1-42) treatment and the potential neuroprotective effects of bumetanide. KCC2 and NKCC1 expression levels were also examined in 18-months-old male C57BL/6 mice following bilateral hippocampal Aβ1-42 stereotaxic injection. No change in KCC2 and NKCC1 expression levels were observed in mouse hippocampal neurons treated with 1 nM Aβ1-42, but NKCC1 expression increased 30-days post-Aβ1-42-injection in the CA1 region of the mouse hippocampus. Primary mouse hippocampal cultures were treated with 1 nM Aβ1-42 alone or with various concentrations of bumetanide (1 µM, 10 µM, 100 µM, 1 mM) to investigate the effect of the drug on cell viability. Aβ1-42 produced 53.1 ± 1.4% cell death after 5 days, and the addition of bumetanide did not reduce this. However, the drug at all concentrations significantly reduced cell viability, suggesting bumetanide is highly neurotoxic. In summary, these results suggest that chronic exposure to Aβ1-42 alters the balance of KCC2 and NKCC1 expression in a region-and layer-specific manner in mouse hippocampal tissue; therefore, this process most likely contributes to altered hippocampal E/I balance in this model. Furthermore, bumetanide induces hippocampal neurotoxicity, thus questioning its suitability for AD therapy. Further investigations are required to examine the effects of Aβ1-42 on KCC2 and NKCC1 expression and whether targeting CCCs might offer a therapeutic approach for AD.
Collapse
Affiliation(s)
- Patricia Lam
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand; (P.L.); (C.V.); (B.C.-F.G.); (J.N.); (H.J.W.); (R.L.M.F.)
| | - Chitra Vinnakota
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand; (P.L.); (C.V.); (B.C.-F.G.); (J.N.); (H.J.W.); (R.L.M.F.)
| | - Beatriz Calvo-Flores Guzmán
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand; (P.L.); (C.V.); (B.C.-F.G.); (J.N.); (H.J.W.); (R.L.M.F.)
| | - Julia Newland
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand; (P.L.); (C.V.); (B.C.-F.G.); (J.N.); (H.J.W.); (R.L.M.F.)
| | - Katie Peppercorn
- Department of Biochemistry, University of Otago, Dunedin 9054, New Zealand; (K.P.); (W.P.T.)
| | - Warren P. Tate
- Department of Biochemistry, University of Otago, Dunedin 9054, New Zealand; (K.P.); (W.P.T.)
| | - Henry J. Waldvogel
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand; (P.L.); (C.V.); (B.C.-F.G.); (J.N.); (H.J.W.); (R.L.M.F.)
| | - Richard L. M. Faull
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand; (P.L.); (C.V.); (B.C.-F.G.); (J.N.); (H.J.W.); (R.L.M.F.)
| | - Andrea Kwakowsky
- Centre for Brain Research, Department of Anatomy and Medical Imaging, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand; (P.L.); (C.V.); (B.C.-F.G.); (J.N.); (H.J.W.); (R.L.M.F.)
- Pharmacology and Therapeutics, Galway Neuroscience Centre, School of Medicine, National University of Ireland Galway, H91 W5P7 Galway, Ireland
| |
Collapse
|
47
|
Hartley N, McLachlan CS. Aromas Influencing the GABAergic System. Molecules 2022; 27:molecules27082414. [PMID: 35458615 PMCID: PMC9026314 DOI: 10.3390/molecules27082414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/31/2022] [Accepted: 04/02/2022] [Indexed: 02/07/2023] Open
Abstract
Aromas have a powerful influence in our everyday life and are known to exhibit an array of pharmacological properties, including anxiolytic, anti-stress, relaxing, and sedative effects. Numerous animal and human studies support the use of aromas and their constituents to reduce anxiety-related symptoms and/or behaviours. Although the exact mechanism of how these aromas exert their anxiolytic effects is not fully understood, the GABAergic system is thought to be primarily involved. The fragrance emitted from a number of plant essential oils has shown promise in recent studies in modulating GABAergic neurotransmission, with GABAA receptors being the primary therapeutic target. This review will explore the anxiolytic and sedative properties of aromas found in common beverages, such as coffee, tea, and whisky as well aromas found in food, spices, volatile organic compounds, and popular botanicals and their constituents. In doing so, this review will focus on these aromas and their influence on the GABAergic system and provide greater insight into viable anxiety treatment options.
Collapse
Affiliation(s)
- Neville Hartley
- Department of Naturopathy and Western Herbal Medicine, Health Faculty, Fortitude Valley Campus, Torrens University Australia, Brisbane, QLD 4006, Australia
- Correspondence:
| | - Craig S. McLachlan
- Centre for Healthy Futures, Health Faculty, Surry Hills Campus, Torrens University Australia, Sydney, NSW 2010, Australia;
| |
Collapse
|
48
|
Therapeutic Anti-Depressant Potential of Microbial GABA Produced by Lactobacillus rhamnosus Strains for GABAergic Signaling Restoration and Inhibition of Addiction-Induced HPA Axis Hyperactivity. Curr Issues Mol Biol 2022; 44:1434-1451. [PMID: 35723354 PMCID: PMC9164062 DOI: 10.3390/cimb44040096] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/18/2022] [Accepted: 02/24/2022] [Indexed: 11/26/2022] Open
Abstract
The role of the microbiota–gut–brain (MGB) axis in mood regulation and depression treatment has gained attention in recent years, as evidenced by the growing number of animal and human studies that have reported the anti-depressive and associated gamma-aminobutyric acid-ergic (GABAergic) effects of probiotics developed from Lactobacillus rhamnosus bacterial strains in the gut microbiome. The depressive states attenuated by these probiotics in patients suffering from clinical depression also characterize the severe and relapse-inducing withdrawal phase of the addiction cycle, which has been found to arise from the intoxication-enabled hyperregulation of the hypothalamic–pituitary–adrenal (HPA) axis, the body’s major stress response system, and a corresponding attenuation of its main inhibitory system, the gamma-aminobutyric acid (GABA) signaling system. Therefore, the use of probiotics in the treatment of general cases of depression provides hope for a novel therapeutic approach to withdrawal depression remediation. This review discusses potential therapeutic avenues by which probiotic application of Lactobacillus rhamnosus strains can be used to restore the central GABAergic activity responsible for attenuating the depression-inducing HPA axis hyperactivity in addiction withdrawal. Also, information is provided on brain GABAergic signaling from other known GABA-producing strains of gut microbiota.
Collapse
|
49
|
Ju Y, Tam KY. Pathological mechanisms and therapeutic strategies for Alzheimer's disease. Neural Regen Res 2022; 17:543-549. [PMID: 34380884 PMCID: PMC8504384 DOI: 10.4103/1673-5374.320970] [Citation(s) in RCA: 190] [Impact Index Per Article: 63.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/29/2021] [Accepted: 03/30/2021] [Indexed: 11/04/2022] Open
Abstract
Alzheimer's disease is a rather complex neurodegenerative disease, which is attributed to a combination of multiple factors. Among the many pathological pathways, synaptic dysfunctions, such as synapses loss and deficits in synaptic plasticity, were thought to be strongly associated with cognitive decline. The deficiencies in various sorts of neurotransmissions are responsible for the multifarious neurodegenerative symptoms in Alzheimer's disease, for example, the cholinergic and glutamatergic deficits for cognitive decline, the excitatory and inhibitory neurotransmission dyshomeostasis for synaptic plasticity deficits and epileptiform symptoms, and the monoamine neurotransmission for neuropsychiatric symptoms. Amyloid cascade hypothesis is the most popular pathological theory to explain Alzheimer's disease pathogenesis and attracts considerable attention. Multiple lines of genetic and pathological evidence support the predominant role of amyloid beta in Alzheimer's disease pathology. Neurofibrillary tangles assembled by microtubule-associated protein tau are other important histopathological characteristics in Alzheimer's disease brains. Cascade of tau toxicity was proved to lead to neuron damage, neuroinflammation and oxidative stress in brain. Ageing is the main risk factor of neurodegenerative diseases, and is associated with inflammation, oxidative stress, reduced metabolism, endocrine insufficiencies and organ failures. These aging related risk factors were also proved to be some of the risk factors contributing to Alzheimer's disease. In Alzheimer's disease drug development, many good therapeutic strategies have been investigated in clinical evaluations. However, complex mechanism of Alzheimer's disease and the interplay among different pathological factors call for the come out of all-powerful therapies with multiple curing functions. This review seeks to summarize some of the representative treatments targeting different pathological pathways currently under clinical evaluations. Multi-target therapies as an emerging strategy for Alzheimer's disease treatment will be highlighted.
Collapse
Affiliation(s)
- Yaojun Ju
- Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau Special Adiministrative Region, China
| | - Kin Yip Tam
- Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau Special Adiministrative Region, China
| |
Collapse
|
50
|
Abstract
Dementia-related psychosis (DRP) is prevalent across dementias and typically manifests as delusions and/or hallucinations. The mechanisms underlying psychosis in dementia are unknown; however, neurobiological and pharmacological evidence has implicated multiple signaling pathways and brain regions. Despite differences in dementia pathology, the neurobiology underlying psychosis appears to involve dysregulation of a cortical and limbic pathway involving serotonergic, gamma-aminobutyric acid ergic, glutamatergic, and dopaminergic signaling. Thus, an imbalance in cortical and mesolimbic excitatory tone may drive symptoms of psychosis. Delusions and hallucinations may result from (1) hyperactivation of pyramidal neurons within the visual cortex, causing visual hallucinations and (2) hyperactivation of the mesolimbic pathway, causing both delusions and hallucinations. Modulation of the 5-HT2A receptor may mitigate hyperactivity at both psychosis-associated pathways. Pimavanserin, an atypical antipsychotic, is a selective serotonin inverse agonist/antagonist at 5-HT2A receptors. Pimavanserin may prove beneficial in treating the hallucinations and delusions of DRP without worsening cognitive or motor function.
Collapse
Affiliation(s)
- Jeffery L. Cummings
- Chambers-Grundy Center for Transformative Neuroscience,
Department of Brain Health, School of Integrated Health Sciences, University of
Nevada at Las Vegas (UNLV) and Cleveland Clinic, Lou Ruvo Center for Brain Health,
Las Vegas, Nevada, USA
| | - D. P. Devanand
- Department of Psychiatry, Columbia University Medical
Center, New York, New York, USA
| | - Stephen M. Stahl
- Department of Psychiatry, University of California, San
Diego, La Jolla, California, USA
| |
Collapse
|