1
|
Zhang J, Song L, Li G, Liang A, Cai X, Huang Y, Zhu X, Zhou X. Comprehensive assessment of base excision repair (BER)-related lncRNAs as prognostic and functional biomarkers in lung adenocarcinoma: implications for personalized therapeutics and immunomodulation. J Cancer Res Clin Oncol 2023; 149:17199-17213. [PMID: 37789154 DOI: 10.1007/s00432-023-05435-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 09/17/2023] [Indexed: 10/05/2023]
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) is the most prevalent subtype of lung cancer, and comprehending its molecular mechanisms is pivotal for advancing treatment efficacy. This study aims to explore the prognostic and functional significance of base excision repair (BER)-related long non-coding RNAs (BERLncs) in LUAD. METHODS A risk score model for BERLncs was developed using the least absolute shrinkage and selection operator regression and Cox regression analysis. Model validation and prognostic evaluation were performed using Kaplan-Meier and receiver-operating characteristic curve analyses. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses were conducted to elucidate the potential biological functions of BERLncs. Comparative analyses were carried out to investigate disparities in tumor mutation burden (TMB), immune infiltration, tumor immune dysfunction and exclusion (TIDE) score, chemosensitivity, and immune checkpoint gene expression between the two risk groups. RESULTS A predictive risk score model comprising 19 BERLncs was successfully developed. Patients were divided into high-risk and low-risk groups according to the median risk score. The high-risk subgroup exhibited significantly inferior overall survival. Functional enrichment analysis revealed pathways associated with lung cancer development, notably the neuroactive ligand-receptor interaction pathway. High-risk patients demonstrated elevated TMB, diminished TIDE scores, and an immunosuppressive tumor microenvironment, while low-risk patients displayed potential benefits from immunotherapy. Additionally, the risk model identified potential anticancer agents. CONCLUSION The risk score model based on BERLncs shows promise as a prognostic biomarker for LUAD patients, providing valuable insights for clinical decision-making, therapeutic strategies, and understanding of underlying biological mechanisms.
Collapse
Affiliation(s)
- Junzheng Zhang
- Department of Immunology, School of Medicine, Nantong University, Nantong, China
- Computational Systems Biology Lab (CSBL), The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China
| | - Lu Song
- Department of Clinical Laboratory, Qingdao City Sixth People's Hospital, Qingdao, China
| | - Guanrong Li
- Computational Systems Biology Lab (CSBL), The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China
| | - Anqi Liang
- Computational Systems Biology Lab (CSBL), The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China
| | - Xiaoting Cai
- Computational Systems Biology Lab (CSBL), The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China
| | - Yaqi Huang
- Computational Systems Biology Lab (CSBL), The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China
| | - Xiao Zhu
- Computational Systems Biology Lab (CSBL), The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, China.
- Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou Medical College, Hangzhou, China.
| | - Xiaorong Zhou
- Department of Immunology, School of Medicine, Nantong University, Nantong, China.
| |
Collapse
|
2
|
Pelissier A, Stratigopoulou M, Donner N, Dimitriadis E, Bende RJ, Guikema JE, Rodriguez Martinez M, van Noesel CJ. Convergent evolution and B-cell recirculation in germinal centers in a human lymph node. Life Sci Alliance 2023; 6:e202301959. [PMID: 37640448 PMCID: PMC10462906 DOI: 10.26508/lsa.202301959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 07/31/2023] [Accepted: 08/02/2023] [Indexed: 08/31/2023] Open
Abstract
Germinal centers (GCs) play a central role in generating an effective immune response against infectious pathogens, and failures in their regulating mechanisms can lead to the development of autoimmune diseases and cancer. Although previous works study experimental systems of the immune response with mouse models that are immunized with specific antigens, our study focused on a real-life situation, with an ongoing GC response in a human lymph node (LN) involving multiple asynchronized GCs reacting simultaneously to unknown antigens. We combined laser capture microdissection of individual GCs from human LN with next-generation repertoire sequencing to characterize individual GCs as distinct evolutionary spaces. In line with well-characterized GC responses in mice, elicited by immunization with model antigens, we observe a heterogeneous clonal diversity across individual GCs from the same human LN. Still, we identify shared clones in several individual GCs, and phylogenetic tree analysis combined with paratope modeling suggest the re-engagement and rediversification of B-cell clones across GCs and expanded clones exhibiting shared antigen responses across distinct GCs, indicating convergent evolution of the GCs.
Collapse
Affiliation(s)
- Aurelien Pelissier
- IBM Research Europe, Rüschlikon, Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Maria Stratigopoulou
- Department of Pathology, Amsterdam University Medical Centers, Location AMC, Lymphoma and Myeloma Center Amsterdam, Amsterdam, Netherlands
| | - Naomi Donner
- Department of Pathology, Amsterdam University Medical Centers, Location AMC, Lymphoma and Myeloma Center Amsterdam, Amsterdam, Netherlands
| | | | - Richard J Bende
- Department of Pathology, Amsterdam University Medical Centers, Location AMC, Lymphoma and Myeloma Center Amsterdam, Amsterdam, Netherlands
| | - Jeroen E Guikema
- Department of Pathology, Amsterdam University Medical Centers, Location AMC, Lymphoma and Myeloma Center Amsterdam, Amsterdam, Netherlands
| | | | - Carel Jm van Noesel
- Department of Pathology, Amsterdam University Medical Centers, Location AMC, Lymphoma and Myeloma Center Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
3
|
Xu Y, Nowsheen S, Deng M. DNA Repair Deficiency Regulates Immunity Response in Cancers: Molecular Mechanism and Approaches for Combining Immunotherapy. Cancers (Basel) 2023; 15:cancers15051619. [PMID: 36900418 PMCID: PMC10000854 DOI: 10.3390/cancers15051619] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/26/2023] [Accepted: 03/04/2023] [Indexed: 03/09/2023] Open
Abstract
Defects in DNA repair pathways can lead to genomic instability in multiple tumor types, which contributes to tumor immunogenicity. Inhibition of DNA damage response (DDR) has been reported to increase tumor susceptibility to anticancer immunotherapy. However, the interplay between DDR and the immune signaling pathways remains unclear. In this review, we will discuss how a deficiency in DDR affects anti-tumor immunity, highlighting the cGAS-STING axis as an important link. We will also review the clinical trials that combine DDR inhibition and immune-oncology treatments. A better understanding of these pathways will help exploit cancer immunotherapy and DDR pathways to improve treatment outcomes for various cancers.
Collapse
Affiliation(s)
- Yi Xu
- State Key Laboratory of Molecular Oncology and Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Somaira Nowsheen
- Department of Dermatology, University of California San Diego, San Diego, CA 92122, USA
- Correspondence: (S.N.); (M.D.)
| | - Min Deng
- State Key Laboratory of Molecular Oncology and Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- Correspondence: (S.N.); (M.D.)
| |
Collapse
|
4
|
Lacroix M, Beauchemin H, Khandanpour C, Möröy T. The RNA helicase DDX3 and its role in c-MYC driven germinal center-derived B-cell lymphoma. Front Oncol 2023; 13:1148936. [PMID: 37035206 PMCID: PMC10081492 DOI: 10.3389/fonc.2023.1148936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/06/2023] [Indexed: 04/11/2023] Open
Abstract
DDX3X is an RNA helicase with many functions in RNA metabolism such as mRNA translation, alternative pre-mRNA splicing and mRNA stability, but also plays a role as a regulator of transcription as well as in the Wnt/beta-catenin- and Nf-κB signaling pathways. The gene encoding DDX3X is located on the X-chromosome, but escapes X-inactivation. Hence females have two active copies and males only one. However, the Y chromosome contains the gene for the male DDX3 homologue, called DDX3Y, which has a very high sequence similarity and functional redundancy with DDX3X, but shows a more restricted protein expression pattern than DDX3X. High throughput sequencing of germinal center (GC)-derived B-cell malignancies such as Burkitt Lymphoma (BL) and Diffuse large B-cell lymphoma (DLBCL) samples showed a high frequency of loss-of-function (LOF) mutations in the DDX3X gene revealing several features that distinguish this gene from others. First, DDX3X mutations occur with high frequency particularly in those GC-derived B-cell lymphomas that also show translocations of the c-MYC proto-oncogene, which occurs in almost all BL and a subset of DLBCL. Second, DDX3X LOF mutations occur almost exclusively in males and is very rarely found in females. Third, mutations in the male homologue DDX3Y have never been found in any type of malignancy. Studies with human primary GC B cells from male donors showed that a loss of DDX3X function helps the initial process of B-cell lymphomagenesis by buffering the proteotoxic stress induced by c-MYC activation. However, full lymphomagenesis requires DDX3 activity since an upregulation of DDX3Y expression is invariably found in GC derived B-cell lymphoma with DDX3X LOF mutation. Other studies with male transgenic mice that lack Ddx3x, but constitutively express activated c-Myc transgenes in B cells and are therefore prone to develop B-cell malignancies, also showed upregulation of the DDX3Y protein expression during the process of lymphomagenesis. Since DDX3Y is not expressed in normal human cells, these data suggest that DDX3Y may represent a new cancer cell specific target to develop adjuvant therapies for male patients with BL and DLBCL and LOF mutations in the DDX3X gene.
Collapse
Affiliation(s)
- Marion Lacroix
- Institut de Recherches Cliniques de Montréal, IRCM, Montréal, QC, Canada
- Division of Experimental Medicine, McGill University, Montréal, QC, Canada
| | - Hugues Beauchemin
- Institut de Recherches Cliniques de Montréal, IRCM, Montréal, QC, Canada
| | - Cyrus Khandanpour
- Klinik für Hämatologie und Onkologie, University Hospital Schleswig Holstein, University Lübeck, Lübeck, Germany
- *Correspondence: Tarik Möröy, ; Cyrus Khandanpour,
| | - Tarik Möröy
- Institut de Recherches Cliniques de Montréal, IRCM, Montréal, QC, Canada
- Division of Experimental Medicine, McGill University, Montréal, QC, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, Canada
- *Correspondence: Tarik Möröy, ; Cyrus Khandanpour,
| |
Collapse
|
5
|
Soikkeli AI, Kyläniemi MK, Sihto H, Alinikula J. Oncogenic Merkel Cell Polyomavirus T Antigen Truncating Mutations are Mediated by APOBEC3 Activity in Merkel Cell Carcinoma. CANCER RESEARCH COMMUNICATIONS 2022; 2:1344-1354. [PMID: 36970060 PMCID: PMC10035372 DOI: 10.1158/2767-9764.crc-22-0211] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/17/2022] [Accepted: 09/28/2022] [Indexed: 11/06/2022]
Abstract
Merkel cell carcinoma (MCC) is an aggressive skin cancer, which is frequently caused by Merkel cell polyomavirus (MCPyV). Mutations of MCPyV tumor (T) antigens are major pathologic events of virus-positive (MCPyV+) MCCs, but their source is unclear. Activation-induced cytidine deaminase (AID)/APOBEC family cytidine deaminases contribute to antiviral immunity by mutating viral genomes and are potential carcinogenic mutators. We studied the contribution of AID/APOBEC cytidine deaminases to MCPyV large T (LT) truncation events. The MCPyV LT area in MCCs was enriched with cytosine-targeting mutations, and a strong APOBEC3 mutation signature was observed in MCC sequences. AICDA and APOBEC3 expression were detected in the Finnish MCC sample cohort, and LT expression correlated with APOBEC3H and APOBEC3G. Marginal but statistically significant somatic hypermutation targeting activity was detected in the MCPyV regulatory region. Our results suggest that APOBEC3 cytidine deaminases are a plausible cause of the LT truncating mutations in MCPyV+ MCC, while the role of AID in MCC carcinogenesis is unlikely.
Significance:
We uncover APOBEC3 mutation signature in MCPyV LT that reveals the likely cause of mutations underlying MCPyV+ MCC. We further reveal an expression pattern of APOBECs in a large Finnish MCC sample cohort. Thus, the findings presented here suggest a molecular mechanism underlying an aggressive carcinoma with poor prognosis.
Collapse
Affiliation(s)
- Anni I. Soikkeli
- 1Unit of Infection and Immunity, Institute of Biomedicine, University of Turku, Turku, Finland
- 2Turku Doctoral Programme of Molecular Medicine, University of Turku, Turku, Finland
| | - Minna K. Kyläniemi
- 3Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Harri Sihto
- 4Department of Pathology, University of Helsinki, Helsinki, Finland
| | - Jukka Alinikula
- 1Unit of Infection and Immunity, Institute of Biomedicine, University of Turku, Turku, Finland
| |
Collapse
|
6
|
Lacroix M, Beauchemin H, Fraszczak J, Ross J, Shooshtarizadeh P, Chen R, Moroy T. The X-linked helicase DDX3X is required for lymphoid differentiation and MYC-driven lymphomagenesis. Cancer Res 2022; 82:3172-3186. [PMID: 35815807 DOI: 10.1158/0008-5472.can-21-2454] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 03/29/2022] [Accepted: 06/29/2022] [Indexed: 11/16/2022]
Abstract
The X-linked gene DDX3X encodes an RNA helicase that is mutated at high frequencies in several types of human B-cell lymphoma. Females have two active DDX3X alleles and males carry a DDX3Y homolog on the Y chromosome. We show here that pan-hematopoietic, homozygous deletion of Ddx3x in female mice perturbs erythropoiesis, causing early developmental arrest. However, both hemizygous male and heterozygous female embryos develop normally, suggesting that one Ddx3x allele is sufficient for fetal hematopoietic development in females and that the Ddx3y allele can compensate for the loss of Ddx3x in males. In adult mice, DDX3X deficiency altered hematopoietic progenitors, early lymphoid development, marginal zone and germinal center B-cells, and lymphomagenesis in a sex-dependent manner. Loss of both Ddx3x alleles abrogated MYC-driven lymphomagenesis in females, while Ddx3x-deletion in males did not affect the formation of B-cell lymphoma in both mouse models. Moreover, tumors that appeared in male mice lacking DDX3X showed upregulated expression of DDX3Y, indicating a critical requirement for DDX3 activity for lymphomagenesis. These data reveal sex-specific roles of DDX3X in erythro- and lymphopoiesis as well as in MYC-driven lymphomagenesis.
Collapse
Affiliation(s)
- Marion Lacroix
- IRCM (Institut de Recherches Cliniques de Montr�al), Montreal, Quebec, Canada
| | | | | | - Julie Ross
- Montreal Clinical Research Institute, Montreal, Quebec, Canada
| | | | | | - Tarik Moroy
- Institut de recherches cliniques de Montr�al, Montreal, Canada
| |
Collapse
|
7
|
Levy G, Kicinski M, Van der Straeten J, Uyttebroeck A, Ferster A, De Moerloose B, Dresse MF, Chantrain C, Brichard B, Bakkus M. Immunoglobulin Heavy Chain High-Throughput Sequencing in Pediatric B-Precursor Acute Lymphoblastic Leukemia: Is the Clonality of the Disease at Diagnosis Related to Its Prognosis? Front Pediatr 2022; 10:874771. [PMID: 35712632 PMCID: PMC9197340 DOI: 10.3389/fped.2022.874771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 04/29/2022] [Indexed: 11/13/2022] Open
Abstract
High-throughput sequencing (HTS) of the immunoglobulin heavy chain (IgH) locus is a recent very efficient technique to monitor minimal residual disease of B-cell precursor acute lymphoblastic leukemia (BCP-ALL). It also reveals the sequences of clonal rearrangements, therefore, the multiclonal structure, of BCP-ALL. In this study, we performed IgH HTS on the diagnostic bone marrow of 105 children treated between 2004 and 2008 in Belgium for BCP-ALL in the European Organization for Research and Treatment of Cancer (EORTC)-58951 clinical trial. Patients were included irrespectively of their outcome. We described the patterns of clonal complexity at diagnosis and investigated its association with patients' characteristics. Two indicators of clonal complexity were used, namely, the number of foster clones, described as clones with similar D-N2-J rearrangements but other V-rearrangement and N1-joining, and the maximum across all foster clones of the number of evolved clones from one foster clone. The maximum number of evolved clones was significantly higher in patients with t(12;21)/ETV6:RUNX1. A lower number of foster clones was associated with a higher risk group after prephase and t(12;21)/ETV6:RUNX1 genetic type. This study observes that clonal complexity as accessed by IgH HTS is linked to prognostic factors in childhood BCP-ALL, suggesting that it may be a useful diagnostic tool for BCP-ALL status and prognosis.
Collapse
Affiliation(s)
- Gabriel Levy
- de Duve Institute, Université Catholique de Louvain, Brussels, Belgium.,Ludwig Institute for Cancer Research, Brussels, Belgium.,Department of Pediatric Oncology and Hematology, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium
| | - Michal Kicinski
- European Organization for Research and Treatment of Cancer (EORTC) Headquarters, Brussels, Belgium
| | - Jona Van der Straeten
- Molecular Hematology Laboratory, Vrije Universiteit Brussel, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Anne Uyttebroeck
- Department of Pediatric Hemato-Oncology, UZ Leuven, Leuven, Belgium
| | - Alina Ferster
- Department of Pediatric Hematology-Oncology, Children's University Hospital Queen Fabiola, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Barbara De Moerloose
- Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, Ghent, Belgium
| | - Marie-Francoise Dresse
- Department of Pediatrics, Centre Hospitalier Régional (CHR) de la Citadelle, Liège, Belgium
| | - Christophe Chantrain
- Division of Pediatric Hematology-Oncology, Centre Hospitalier Chrétien (CHC) MontLégia, Liège, Belgium
| | - Bénédicte Brichard
- Department of Pediatric Oncology and Hematology, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium
| | - Marleen Bakkus
- Molecular Hematology Laboratory, Vrije Universiteit Brussel, Universitair Ziekenhuis Brussel, Brussels, Belgium
| |
Collapse
|
8
|
LUBAC accelerates B-cell lymphomagenesis by conferring resistance to genotoxic stress on B cells. Blood 2021; 136:684-697. [PMID: 32325488 DOI: 10.1182/blood.2019002654] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 03/30/2020] [Indexed: 02/07/2023] Open
Abstract
The linear ubiquitin chain assembly complex (LUBAC) is a key regulator of NF-κB signaling. Activating single-nucleotide polymorphisms of HOIP, the catalytic subunit of LUBAC, are enriched in patients with activated B-cell-like (ABC) diffuse large B-cell lymphoma (DLBCL), and expression of HOIP, which parallels LUBAC activity, is elevated in ABC-DLBCL samples. Thus, to clarify the precise roles of LUBAC in lymphomagenesis, we generated a mouse model with augmented expression of HOIP in B cells. Interestingly, augmented HOIP expression facilitated DLBCL-like B-cell lymphomagenesis driven by MYD88-activating mutation. The developed lymphoma cells partly shared somatic gene mutations with human DLBCLs, with increased frequency of a typical AID mutation pattern. In vitro analysis revealed that HOIP overexpression protected B cells from DNA damage-induced cell death through NF-κB activation, and analysis of the human DLBCL database showed that expression of HOIP positively correlated with gene signatures representing regulation of apoptosis signaling, as well as NF-κB signaling. These results indicate that HOIP facilitates lymphomagenesis by preventing cell death and augmenting NF-κB signaling, leading to accumulation of AID-mediated mutations. Furthermore, a natural compound that specifically inhibits LUBAC was shown to suppress the tumor growth in a mouse transplantation model. Collectively, our data indicate that LUBAC is crucially involved in B-cell lymphomagenesis through protection against DNA damage-induced cell death and is a suitable therapeutic target for B-cell lymphomas.
Collapse
|
9
|
Metabolic Effects of Recurrent Genetic Aberrations in Multiple Myeloma. Cancers (Basel) 2021; 13:cancers13030396. [PMID: 33494394 PMCID: PMC7865460 DOI: 10.3390/cancers13030396] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 12/17/2022] Open
Abstract
Oncogene activation and malignant transformation exerts energetic, biosynthetic and redox demands on cancer cells due to increased proliferation, cell growth and tumor microenvironment adaptation. As such, altered metabolism is a hallmark of cancer, which is characterized by the reprogramming of multiple metabolic pathways. Multiple myeloma (MM) is a genetically heterogeneous disease that arises from terminally differentiated B cells. MM is characterized by reciprocal chromosomal translocations that often involve the immunoglobulin loci and a restricted set of partner loci, and complex chromosomal rearrangements that are associated with disease progression. Recurrent chromosomal aberrations in MM result in the aberrant expression of MYC, cyclin D1, FGFR3/MMSET and MAF/MAFB. In recent years, the intricate mechanisms that drive cancer cell metabolism and the many metabolic functions of the aforementioned MM-associated oncogenes have been investigated. Here, we discuss the metabolic consequences of recurrent chromosomal translocations in MM and provide a framework for the identification of metabolic changes that characterize MM cells.
Collapse
|
10
|
Lehrke MJ, Shapiro MJ, Rajcula MJ, Kennedy MM, McCue SA, Medina KL, Shapiro VS. The mitochondrial iron transporter ABCB7 is required for B cell development, proliferation, and class switch recombination in mice. eLife 2021; 10:69621. [PMID: 34762046 PMCID: PMC8585479 DOI: 10.7554/elife.69621] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 10/20/2021] [Indexed: 12/14/2022] Open
Abstract
Iron-sulfur (Fe-S) clusters are cofactors essential for the activity of numerous enzymes including DNA polymerases, helicases, and glycosylases. They are synthesized in the mitochondria as Fe-S intermediates and are exported to the cytoplasm for maturation by the mitochondrial transporter ABCB7. Here, we demonstrate that ABCB7 is required for bone marrow B cell development, proliferation, and class switch recombination, but is dispensable for peripheral B cell homeostasis in mice. Conditional deletion of ABCB7 using Mb1-cre resulted in a severe block in bone marrow B cell development at the pro-B cell stage. The loss of ABCB7 did not alter expression of transcription factors required for B cell specification or commitment. While increased intracellular iron was observed in ABCB7-deficient pro-B cells, this did not lead to increased cellular or mitochondrial reactive oxygen species, ferroptosis, or apoptosis. Interestingly, loss of ABCB7 led to replication-induced DNA damage in pro-B cells, independent of VDJ recombination, and these cells had evidence of slowed DNA replication. Stimulated ABCB7-deficient splenic B cells from CD23-cre mice also had a striking loss of proliferation and a defect in class switching. Thus, ABCB7 is essential for early B cell development, proliferation, and class switch recombination.
Collapse
Affiliation(s)
| | | | | | | | | | - Kay L Medina
- Department of Immunology, Mayo ClinicRochesterUnited States
| | | |
Collapse
|
11
|
Swiatczak B. Genomic Stress Responses Drive Lymphocyte Evolvability: An Ancient and Ubiquitous Mechanism. Bioessays 2020; 42:e2000032. [PMID: 32767393 DOI: 10.1002/bies.202000032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 07/03/2020] [Indexed: 12/15/2022]
Abstract
Somatic diversification of antigen receptor genes depends on the activity of enzymes whose homologs participate in a mutagenic DNA repair in unicellular species. Indeed, by engaging error-prone polymerases, gap filling molecules and altered mismatch repair pathways, lymphocytes utilize conserved components of genomic stress response systems, which can already be found in bacteria and archaea. These ancient systems of mutagenesis and repair act to increase phenotypic diversity of microbial cell populations and operate to enhance their ability to produce fit variants during stress. Coopted by lymphocytes, the ancient mutagenic processing systems retained their diversification functions instilling the adaptive immune cells with enhanced evolvability and defensive capacity to resist infection and damage. As reviewed here, the ubiquity and conserved character of specialized variation-generating mechanisms from bacteria to lymphocytes highlight the importance of these mechanisms for evolution of life in general.
Collapse
Affiliation(s)
- Bartlomiej Swiatczak
- Department of History of Science and Scientific Archeology, University of Science and Technology of China, 96 Jinzhai Rd., Hefei, 230026, China
| |
Collapse
|
12
|
Stratigopoulou M, van Dam TP, Guikema JEJ. Base Excision Repair in the Immune System: Small DNA Lesions With Big Consequences. Front Immunol 2020; 11:1084. [PMID: 32547565 PMCID: PMC7272602 DOI: 10.3389/fimmu.2020.01084] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 05/05/2020] [Indexed: 12/13/2022] Open
Abstract
The integrity of the genome is under constant threat of environmental and endogenous agents that cause DNA damage. Endogenous damage is particularly pervasive, occurring at an estimated rate of 10,000–30,000 per cell/per day, and mostly involves chemical DNA base lesions caused by oxidation, depurination, alkylation, and deamination. The base excision repair (BER) pathway is primary responsible for removing and repairing these small base lesions that would otherwise lead to mutations or DNA breaks during replication. Next to preventing DNA mutations and damage, the BER pathway is also involved in mutagenic processes in B cells during immunoglobulin (Ig) class switch recombination (CSR) and somatic hypermutation (SHM), which are instigated by uracil (U) lesions derived from activation-induced cytidine deaminase (AID) activity. BER is required for the processing of AID-induced lesions into DNA double strand breaks (DSB) that are required for CSR, and is of pivotal importance for determining the mutagenic outcome of uracil lesions during SHM. Although uracils are generally efficiently repaired by error-free BER, this process is surprisingly error-prone at the Ig loci in proliferating B cells. Breakdown of this high-fidelity process outside of the Ig loci has been linked to mutations observed in B-cell tumors and DNA breaks and chromosomal translocations in activated B cells. Next to its role in preventing cancer, BER has also been implicated in immune tolerance. Several defects in BER components have been associated with autoimmune diseases, and animal models have shown that BER defects can cause autoimmunity in a B-cell intrinsic and extrinsic fashion. In this review we discuss the contribution of BER to genomic integrity in the context of immune receptor diversification, cancer and autoimmune diseases.
Collapse
Affiliation(s)
- Maria Stratigopoulou
- Department of Pathology, Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Tijmen P van Dam
- Department of Pathology, Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Jeroen E J Guikema
- Department of Pathology, Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
13
|
Akçimen F, Martins S, Liao C, Bourassa CV, Catoire H, Nicholson GA, Riess O, Raposo M, França MC, Vasconcelos J, Lima M, Lopes-Cendes I, Saraiva-Pereira ML, Jardim LB, Sequeiros J, Dion PA, Rouleau GA. Genome-wide association study identifies genetic factors that modify age at onset in Machado-Joseph disease. Aging (Albany NY) 2020; 12:4742-4756. [PMID: 32205469 PMCID: PMC7138549 DOI: 10.18632/aging.102825] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 01/27/2020] [Indexed: 02/07/2023]
Abstract
Machado-Joseph disease (MJD/SCA3) is the most common form of dominantly inherited ataxia worldwide. The disorder is caused by an expanded CAG repeat in the ATXN3 gene. Past studies have revealed that the length of the expansion partly explains the disease age at onset (AO) variability of MJD, which is confirmed in this study (Pearson’s correlation coefficient R2 = 0.62). Using a total of 786 MJD patients from five different geographical origins, a genome-wide association study (GWAS) was conducted to identify additional AO modifying factors that could explain some of the residual AO variability. We identified nine suggestively associated loci (P < 1 × 10−5). These loci were enriched for genes involved in vesicle transport, olfactory signaling, and synaptic pathways. Furthermore, associations between AO and the TRIM29 and RAG genes suggests that DNA repair mechanisms might be implicated in MJD pathogenesis. Our study demonstrates the existence of several additional genetic factors, along with CAG expansion, that may lead to a better understanding of the genotype-phenotype correlation in MJD.
Collapse
Affiliation(s)
- Fulya Akçimen
- Department of Human Genetics, McGill University, Montréal, Québec, Canada.,Montreal Neurological Institute and Hospital, McGill University, Montréal, Québec, Canada
| | - Sandra Martins
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
| | - Calwing Liao
- Department of Human Genetics, McGill University, Montréal, Québec, Canada.,Montreal Neurological Institute and Hospital, McGill University, Montréal, Québec, Canada
| | - Cynthia V Bourassa
- Montreal Neurological Institute and Hospital, McGill University, Montréal, Québec, Canada.,Department of Neurology and Neurosurgery, McGill University, Montréal, Québec, Canada
| | - Hélène Catoire
- Montreal Neurological Institute and Hospital, McGill University, Montréal, Québec, Canada.,Department of Neurology and Neurosurgery, McGill University, Montréal, Québec, Canada
| | - Garth A Nicholson
- University of Sydney, Department of Medicine, Concord Hospital, Concord, Australia
| | - Olaf Riess
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany
| | - Mafalda Raposo
- Faculdade de Ciências e Tecnologia, Universidade dos Açores e Instituto de Biologia Molecular e Celular (IBMC), Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
| | - Marcondes C França
- Department of Neurology, Faculty of Medical Sciences, UNICAMP, São Paulo, Campinas, Brazil
| | - João Vasconcelos
- School of Medical Sciences, Department of Medical Genetics and Genomic Medicine, University of Campinas (UNICAMP), São Paulo, Campinas, Brazil
| | - Manuela Lima
- Faculdade de Ciências e Tecnologia, Universidade dos Açores e Instituto de Biologia Molecular e Celular (IBMC), Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
| | - Iscia Lopes-Cendes
- The Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), São Paulo, Campinas, Brazil.,Departamento de Neurologia, Hospital do Divino Espírito Santo, Ponta Delgada, Portugal
| | - Maria Luiza Saraiva-Pereira
- Medical Genetics Service, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil.,Depto. de Bioquímica - ICBS, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Laura B Jardim
- Medical Genetics Service, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, Brazil.,Depto de Medicina Interna, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Jorge Sequeiros
- IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal.,Institute for Molecular and Cell Biology (IBMC), Universidade do Porto, Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Patrick A Dion
- Montreal Neurological Institute and Hospital, McGill University, Montréal, Québec, Canada.,Department of Neurology and Neurosurgery, McGill University, Montréal, Québec, Canada
| | - Guy A Rouleau
- Department of Human Genetics, McGill University, Montréal, Québec, Canada.,Montreal Neurological Institute and Hospital, McGill University, Montréal, Québec, Canada.,Department of Neurology and Neurosurgery, McGill University, Montréal, Québec, Canada
| |
Collapse
|
14
|
Maguire A, Chen X, Wisner L, Malasi S, Ramsower C, Kendrick S, Barrett MT, Glinsmann-Gibson B, McGrath M, Rimsza LM. Enhanced DNA repair and genomic stability identify a novel HIV-related diffuse large B-cell lymphoma signature. Int J Cancer 2019; 145:3078-3088. [PMID: 31044434 DOI: 10.1002/ijc.32381] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 04/12/2019] [Accepted: 04/16/2019] [Indexed: 12/25/2022]
Abstract
Diffuse large B-cell lymphoma (DLBCL) is up to 17-fold more likely to occur, follows a more aggressive clinical course and frequently presents at advanced stages in HIV infected (+) individuals compared to HIV negative (-) individuals. However, the molecular pathology underpinning the clinical features of DLBCL in HIV(+) patients relative to the general population is poorly understood. We performed a retrospective study examining the transcriptional, genomic and protein expression differences between HIV(+) and HIV(-) germinal center B-cell (GCB) DLBCL cases using digital gene expression analysis, array comparative genomic hybridization (CGH) and immunohistochemistry (IHC). Genes associated with cell cycle progression (CCNA2, CCNB1, CDC25A, E2F1), DNA replication (MCM2, MCM4, MCM7) and DNA damage repair, including eight Fanconi anemia genes (FANCA, FANCD1/BRCA2, FANCE, FANCG, FANCR/RAD51, FANCS/BRCA1, FANCT/UBE2T, FANCV/MAD2L2), were significantly increased in HIV(+) GCB-DLBCL tumors compared to HIV(-) tumors. In contrast, genes associated with cell cycle inhibition (CDKN1A, CDKN1B) as well as apoptosis regulating BCL2 family members (BCL2, BAX, BIM, BMF, PUMA) were significantly decreased in the HIV(+) cohort. BCL2 IHC confirmed this expression. Array CGH data revealed that HIV(+) GCB-DLBCL tumors have fewer copy number variations than their HIV(-) counterparts, indicating enhanced genomic stability. Together, the results show that HIV(+) GCB-DLBCL is a distinct molecular malignancy from HIV(-) GCB-DLBCL; with an increased proliferative capacity, confirmed by Ki67 IHC staining, and enhanced genomic stability, the latter of which is likely related to the enhanced expression of DNA repair genes.
Collapse
Affiliation(s)
- Alanna Maguire
- Department of Research, Mayo Clinic Arizona, Scottsdale, AZ
| | - Xianfeng Chen
- Department of Research Biostatistics, Mayo Clinic Arizona, Scottsdale, AZ
| | - Lee Wisner
- Department of Research, Mayo Clinic Arizona, Scottsdale, AZ
| | - Smriti Malasi
- Department of Research, Mayo Clinic Arizona, Scottsdale, AZ
| | | | - Samantha Kendrick
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR
| | | | | | - Michael McGrath
- Department of Laboratory Medicine, Medicine, and Pathology, University of California, San Francisco, CA
| | - Lisa M Rimsza
- Department of Laboratory Medicine and Pathology, Mayo Clinic Arizona, Phoenix, AZ
| |
Collapse
|
15
|
DNA Injury and Repair Systems. Int J Mol Sci 2018; 19:ijms19071902. [PMID: 29958460 PMCID: PMC6073218 DOI: 10.3390/ijms19071902] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 06/21/2018] [Accepted: 06/22/2018] [Indexed: 12/24/2022] Open
|
16
|
Kumar A, Priya A, Ahmed T, Grundström C, Negi N, Grundström T. Regulation of the DNA Repair Complex during Somatic Hypermutation and Class-Switch Recombination. THE JOURNAL OF IMMUNOLOGY 2018; 200:4146-4156. [PMID: 29728513 DOI: 10.4049/jimmunol.1701586] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 04/11/2018] [Indexed: 02/06/2023]
Abstract
B lymphocytes optimize Ab responses by somatic hypermutation (SH), which introduces point mutations in the variable regions of the Ab genes and by class-switch recombination (CSR), which changes the expressed C region exon of the IgH. These Ab diversification processes are initiated by the deaminating enzyme activation-induced cytidine deaminase followed by many DNA repair enzymes, ultimately leading to deletions and a high mutation rate in the Ab genes, whereas DNA lesions made by activation-induced cytidine deaminase are repaired with low error rate on most other genes. This indicates an advanced regulation of DNA repair. In this study, we show that initiation of Ab diversification in B lymphocytes of mouse spleen leads to formation of a complex between many proteins in DNA repair. We show also that BCR activation, which signals the end of successful SH, reduces interactions between some proteins in the complex and increases other interactions in the complex with varying kinetics. Furthermore, we show increased localization of SH- and CSR-coupled proteins on switch regions of the Igh locus upon initiation of SH/CSR and differential changes in the localization upon BCR signaling, which terminates SH. These findings provide early evidence for a DNA repair complex or complexes that may be of functional significance for carrying out essential roles in SH and/or CSR in B cells.
Collapse
Affiliation(s)
- Anjani Kumar
- Department of Molecular Biology, Umeå University, SE-901 87 Umeå, Sweden
| | - Anshu Priya
- Department of Molecular Biology, Umeå University, SE-901 87 Umeå, Sweden
| | - Tanzeel Ahmed
- Department of Molecular Biology, Umeå University, SE-901 87 Umeå, Sweden
| | | | - Neema Negi
- Department of Molecular Biology, Umeå University, SE-901 87 Umeå, Sweden
| | - Thomas Grundström
- Department of Molecular Biology, Umeå University, SE-901 87 Umeå, Sweden
| |
Collapse
|