1
|
Arul Arasan TS, Jorgensen R, Van Antwerp C, Ng PKW, Gangur V. Advances in Mechanisms of Anaphylaxis in Wheat Allergy: Utility of Rodent Models. Foods 2025; 14:883. [PMID: 40077585 PMCID: PMC11899146 DOI: 10.3390/foods14050883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/20/2025] [Accepted: 02/27/2025] [Indexed: 03/14/2025] Open
Abstract
Wheat is a staple and nutritious food that is consumed globally. However, it is identified as a major allergenic food because of its capacity to trigger life-threatening systemic anaphylaxis. The specific mechanisms that underlie this systemic anaphylaxis in wheat allergy are incompletely understood. As a result, several rodent models have been developed to study anaphylaxis in wheat allergies. In this paper, we have conducted a comprehensive review of wheat-induced anaphylaxis using Google Scholar and PubMed databases with relevant keywords. The following objectives were addressed: (1) to determine the complexity of wheat-induced anaphylaxis; (2) to summarize the role of genetic susceptibility in wheat anaphylaxis; (3) to identify the environmental factors involved in the development of wheat anaphylaxis; (4) to map the current status of mechanisms involved in wheat anaphylaxis; (5) to identify the approaches, strengths, and limitations of rodent models of wheat anaphylaxis; and (6) to identify challenges and opportunities in this area of science. Our findings provide a comprehensive updated critical resource for the future research agenda in wheat allergy-associated anaphylaxis, particularly using rodent models as attractive pre-clinical tools.
Collapse
Affiliation(s)
- Tamil Selvan Arul Arasan
- Food Allergy and Immunology Laboratory, Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA; (T.S.A.A.); (R.J.); (C.V.A.)
| | - Rick Jorgensen
- Food Allergy and Immunology Laboratory, Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA; (T.S.A.A.); (R.J.); (C.V.A.)
| | - Chris Van Antwerp
- Food Allergy and Immunology Laboratory, Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA; (T.S.A.A.); (R.J.); (C.V.A.)
| | - Perry K. W. Ng
- Cereal Science Laboratory, Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48823, USA;
| | - Venu Gangur
- Food Allergy and Immunology Laboratory, Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA; (T.S.A.A.); (R.J.); (C.V.A.)
| |
Collapse
|
2
|
Wang B, Le DS, Liu L, Zhang XX, Yang F, Lai GR, Zhang C, Zhao ML, Shen YP, Liao PS, Liu T, Liang YP. Targeting exosomal double-stranded RNA-TLR3 signaling pathway attenuates morphine tolerance and hyperalgesia. Cell Rep Med 2024; 5:101782. [PMID: 39413734 PMCID: PMC11513852 DOI: 10.1016/j.xcrm.2024.101782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 08/14/2024] [Accepted: 09/18/2024] [Indexed: 10/18/2024]
Abstract
Long-term morphine use leads to tolerance and hyperalgesia in patients with chronic pain, with neuroinflammation playing a key role, but its underlying mechanisms remain elusive. This study determines that repeated intrathecal morphine injections increase double-stranded RNA (dsRNA) production in spinal neurons, due to downregulated adenosine deaminase RNA specific 1 (ADAR1) expression. Lentivirus-induced ADAR1 elevation decreases the high levels of intracellular dsRNA and attenuates morphine tolerance and hyperalgesia. dsRNA is released into cerebrospinal fluid via exosomes (Exos) after repeated morphine injections and is taken up by microglia for TLR3-TRIF-IL-6 signaling activation. Blocking Exos release with GW4869 or inhibition of TLR3 signaling mitigates neuroinflammation, preventing the development of morphine tolerance and hyperalgesia. Intrathecal injection of TLR3 inhibitor alone shows analgesic effects in neuropathic pain, and co-administration with morphine amplifies the analgesic efficacy of morphine. These findings demonstrate that targeting dsRNA-TLR3 signaling to mitigate neuroinflammation could be a promising treatment for morphine tolerance.
Collapse
Affiliation(s)
- Bing Wang
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA; Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, Jiangsu, China
| | - Dong-Sheng Le
- Department of Pain Management, The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Li Liu
- Department of Pain Management, The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Xue-Xue Zhang
- Department of Pain Management, The 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Fan Yang
- Department of Pain Management, The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Guo-Rong Lai
- Department of Pain Management, The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Chao Zhang
- Department of Pain Management, The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Mai-Lin Zhao
- Department of Pain Management, The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Yun-Peng Shen
- Department of Anesthesiology, The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Ping-Sheng Liao
- Department of Pain Management, The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Tong Liu
- Institute of Pain Medicine and Special Environmental Medicine, Nantong University, Nantong, Jiangsu, China.
| | - Ying-Ping Liang
- Department of Pain Management, The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.
| |
Collapse
|
3
|
Zhang X, Gao R, Zhang C, Teng Y, Chen H, Li Q, Liu C, Wu J, Wei L, Deng L, Wu L, Ye-Lehmann S, Mao X, Liu J, Zhu T, Chen C. Extracellular RNAs-TLR3 signaling contributes to cognitive impairment after chronic neuropathic pain in mice. Signal Transduct Target Ther 2023; 8:292. [PMID: 37544956 PMCID: PMC10404588 DOI: 10.1038/s41392-023-01543-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 06/01/2023] [Accepted: 06/12/2023] [Indexed: 08/08/2023] Open
Abstract
Chronic pain is often associated with cognitive decline, which could influence the quality of the patient's life. Recent studies have suggested that Toll-like receptor 3 (TLR3) is crucial for memory and learning. Nonetheless, the contribution of TLR3 to the pathogenesis of cognitive decline after chronic pain remains unclear. The level of TLR3 in hippocampal neurons increased in the chronic constriction injury (CCI) group than in the sham group in this study. Importantly, compared to the wild-type (WT) mice, TLR3 knockout (KO) mice and TLR3-specific neuronal knockdown mice both displayed improved cognitive function, reduced levels of inflammatory cytokines and neuronal apoptosis and attenuated injury to hippocampal neuroplasticity. Notably, extracellular RNAs (exRNAs), specifically double-stranded RNAs (dsRNAs), were increased in the sciatic nerve, serum, and hippocampus after CCI. The co-localization of dsRNA with TLR3 was also increased in hippocampal neurons. And the administration of poly (I:C), a dsRNA analog, elevated the levels of dsRNAs and TLR3 in the hippocampus, exacerbating hippocampus-dependent memory. In additon, the dsRNA/TLR3 inhibitor improved cognitive function after CCI. Together, our findings suggested that exRNAs, particularly dsRNAs, that were present in the condition of chronic neuropathic pain, activated TLR3, initiated downstream inflammatory and apoptotic signaling, caused damage to synaptic plasticity, and contributed to the etiology of cognitive impairment after chronic neuropathic pain.
Collapse
Affiliation(s)
- Xueying Zhang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
- The Research Units of West China (2018RU012)-Chinese Academy of Medical Sciences, West China Hospital, Sichuan University, Chengdu, China
| | - Rui Gao
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
- The Research Units of West China (2018RU012)-Chinese Academy of Medical Sciences, West China Hospital, Sichuan University, Chengdu, China
| | - Changteng Zhang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
- The Research Units of West China (2018RU012)-Chinese Academy of Medical Sciences, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Teng
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
- The Research Units of West China (2018RU012)-Chinese Academy of Medical Sciences, West China Hospital, Sichuan University, Chengdu, China
| | - Hai Chen
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, China
| | - Qi Li
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
- The Research Units of West China (2018RU012)-Chinese Academy of Medical Sciences, West China Hospital, Sichuan University, Chengdu, China
| | - Changliang Liu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
- The Research Units of West China (2018RU012)-Chinese Academy of Medical Sciences, West China Hospital, Sichuan University, Chengdu, China
| | - Jiahui Wu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
- The Research Units of West China (2018RU012)-Chinese Academy of Medical Sciences, West China Hospital, Sichuan University, Chengdu, China
| | - Liuxing Wei
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
- The Research Units of West China (2018RU012)-Chinese Academy of Medical Sciences, West China Hospital, Sichuan University, Chengdu, China
| | - Liyun Deng
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
- The Research Units of West China (2018RU012)-Chinese Academy of Medical Sciences, West China Hospital, Sichuan University, Chengdu, China
| | - Lining Wu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
- The Research Units of West China (2018RU012)-Chinese Academy of Medical Sciences, West China Hospital, Sichuan University, Chengdu, China
| | - Shixin Ye-Lehmann
- Diseases and Hormones of the Nervous System, University of Paris-Scalay Bicêtre Hosptial, Le Kremlin-Bicêtre, France
| | - Xiaobo Mao
- Department of Neurology, Institute of Cell Engineering, School of Medicine, Johns Hopkins University, Baltimore, USA
| | - Jin Liu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
- The Research Units of West China (2018RU012)-Chinese Academy of Medical Sciences, West China Hospital, Sichuan University, Chengdu, China
| | - Tao Zhu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China.
- The Research Units of West China (2018RU012)-Chinese Academy of Medical Sciences, West China Hospital, Sichuan University, Chengdu, China.
| | - Chan Chen
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China.
- The Research Units of West China (2018RU012)-Chinese Academy of Medical Sciences, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
4
|
Wang L, Xu H, Yang H, Zhou J, Zhao L, Zhang F. Glucose metabolism and glycosylation link the gut microbiota to autoimmune diseases. Front Immunol 2022; 13:952398. [PMID: 36203617 PMCID: PMC9530352 DOI: 10.3389/fimmu.2022.952398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/19/2022] [Indexed: 11/21/2022] Open
Abstract
Carbohydrates serve as important energy sources and structural substances for human body as well as for gut microbes. As evidenced by the advances in immunometabolism, glucose metabolism and adenosine triphosphate (ATP) generation are deeply involved in immune cell activation, proliferation, and signaling transduction as well as trafficking and effector functions, thus contributing to immune response programming and assisting in host adaption to microenvironment changes. Increased glucose uptake, aberrant expression of glucose transporter 1 (e.g., GLU1), and abnormal glycosylation patterns have been identified in autoimmunity and are suggested as partially responsible for the dysregulated immune response and the modification of gut microbiome composition in the autoimmune pathogenesis. The interaction between gut microbiota and host carbohydrate metabolism is complex and bidirectional. Their impact on host immune homeostasis and the development of autoimmune diseases remains to be elucidated. This review summarized the current knowledge on the crosstalk of glucose metabolism and glycosylation in the host with intestinal microbiota and discussed their possible role in the development and progression of autoimmune diseases. Potential therapeutic strategies targeting glucose metabolism and glycosylation in modulating gut ecosystem and treating autoimmune diseases were discussed as well.
Collapse
Affiliation(s)
- Lu Wang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- Key Laboratory of Rheumatology and Clinical Rheumatology, Ministry of Education, Beijing, China
| | - Haojie Xu
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- Key Laboratory of Rheumatology and Clinical Rheumatology, Ministry of Education, Beijing, China
| | - Huaxia Yang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- Key Laboratory of Rheumatology and Clinical Rheumatology, Ministry of Education, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Beijing, China
| | - Jiaxin Zhou
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- Key Laboratory of Rheumatology and Clinical Rheumatology, Ministry of Education, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Beijing, China
- *Correspondence: Jiaxin Zhou, ; Lidan Zhao,
| | - Lidan Zhao
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- Key Laboratory of Rheumatology and Clinical Rheumatology, Ministry of Education, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Beijing, China
- *Correspondence: Jiaxin Zhou, ; Lidan Zhao,
| | - Fengchun Zhang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- Key Laboratory of Rheumatology and Clinical Rheumatology, Ministry of Education, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Beijing, China
| |
Collapse
|
5
|
Al Mamun A, Suchi SA, Aziz MA, Zaeem M, Munir F, Wu Y, Xiao J. Pyroptosis in acute pancreatitis and its therapeutic regulation. Apoptosis 2022; 27:465-481. [PMID: 35687256 DOI: 10.1007/s10495-022-01729-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2022] [Indexed: 12/20/2022]
Abstract
Pyroptosis defines a new type of GSDMs-mediated programmed cell death, distinguishes from the classical concepts of apoptosis and necrosis-mediated cell death and is prescribed by cell swelling and membrane denaturation, leading to the extensive secretion of cellular components and low-grade inflammatory response. However, NLRP3 inflammasome activation can trigger its downstream inflammatory cytokines, leading to the activation of pyroptosis-regulated cell death. Current studies reveal that activation of caspase-4/5/11-driven non-canonical inflammasome signaling pathways facilitates the pathogenesis and progression of acute pancreatitis (AP). In addition, a large number of studies have reported that NLRP3 inflammasome-dependent pyroptosis is a crucial player in driving the course of the pathogenesis of AP. Excessive uncontrolled GSDMD-mediated pyroptosis has been implicated in AP. Therefore, the pyroptosis-related molecule GSDMD may be an independent prognostic biomarker for AP. The present review paper summarizes the molecular mechanisms of pyroptotic signaling pathways and their pathophysiological impacts on the progress of AP. Moreover, we briefly present some experimental compounds targeting pyroptosis-regulated cell death for exploring novel therapeutic directions for the treatment and management of AP. Our review investigations strongly suggest that targeting pyroptosis could be an ideal therapeutic approach in AP.
Collapse
Affiliation(s)
- Abdullah Al Mamun
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Zhejiang Province, Wenzhou, 325035, China
| | - Suzia Aktar Suchi
- Department of Pharmacy, College of Pharmacy, Chosun University, Gwangju, 501759, South Korea
| | - Md Abdul Aziz
- Department of Pharmacy, Faculty of Pharmacy and Health Sciences, State University of Bangladesh, Dhaka, 1205, Bangladesh.,Laboratory of Pharmacogenomics and Molecular Biology, Department of Pharmacy, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Muhammad Zaeem
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Zhejiang Province, Wenzhou, 325035, China
| | - Fahad Munir
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang Province, Wenzhou, 325000, China
| | - Yanqing Wu
- Institute of Life Sciences, Wenzhou University, Zhejiang Province, Wenzhou, 325035, China
| | - Jian Xiao
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Zhejiang Province, Wenzhou, 325035, China. .,Department of Hand Surgery and Peripheral Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang Province, Wenzhou, 325035, China.
| |
Collapse
|
6
|
Increasing Prevalence of Allergic Disease and Its Impact on Current Practice. CURRENT OTORHINOLARYNGOLOGY REPORTS 2022. [DOI: 10.1007/s40136-022-00406-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
7
|
The extended farm effect: The milk protein β-lactoglobulin in stable dust protects against allergies. Allergol Select 2022; 6:111-117. [PMID: 35392214 PMCID: PMC8982089 DOI: 10.5414/alx02246e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 02/08/2022] [Indexed: 12/16/2022] Open
Abstract
Background: The allergy- and asthma-protective farm effect is mediated by numerous factors. Especially dust from cattle stables and raw cow’s milk show beneficial properties, suggesting a bovine protein to be involved. As a major milk protein and member of the lipocalin family, β-lactoglobulin (BLG) binds small, hydrophobic ligands and thereby modulates the immune response. Empty BLG promotes allergy development, whereas BLG in association with ligands shows allergy-preventive as well as allergy-reducing effects in vivo and in vitro. Results: BLG has been identified as a major protein in stable dust (therein bound to zinc) as well as in the air around cattle stables. This association with zinc favors an allergy-protective immune profile. Conclusion: Its immune-modulating, allergy-protective characteristics together with its presence in raw cow’s milk as well as in stable dust and ambient air render BLG an essential contributor to the farm effect.
Collapse
|
8
|
Kirsten TB, Silva EP, Biondi TF, Rodrigues PS, Cardoso CV, Massironi SMG, Mori CMC, Bondan EF, Bernardi MM. Bate palmas mutant mice as a model of Kabuki syndrome: Higher susceptibility to infections and vocalization impairments? J Neurosci Res 2022; 100:1438-1451. [PMID: 35362120 DOI: 10.1002/jnr.25050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 02/11/2022] [Accepted: 03/19/2022] [Indexed: 11/11/2022]
Abstract
The recessive mutant mouse bate palmas (bapa) arose from N-ethyl-N-nitrosourea mutagenesis. Previous studies of our group revealed some behavioral impairments and a mutation in the lysine (K)-specific methyltransferase 2D (Kmt2d) gene. Because mutations in the KMT2D gene in humans are mainly responsible for Kabuki syndrome, this study was proposed to validate bapa mice as a model of Kabuki syndrome. Besides other symptoms, Kabuki syndrome is characterized by increased susceptibility to infections and speech impairments, usually diagnosed in the early childhood. Thus, juvenile male and female bapa mice were studied in different developmental stages (prepubertal period and puberty). To induce sickness behavior and to study infection susceptibility responses, lipopolysaccharide (LPS) was used. To study oral communication, ultrasonic vocalizations were evaluated. Behavioral (open-field test) and central (astrocytic glial fibrillary acidic protein [GFAP] and tyrosine hydroxylase [TH]) evaluations were also performed. Control and bapa female mice emitted 31-kHz ultrasounds on prepubertal period when exploring a novel environment, a frequency not yet described for mice, being defined as 31-kHz exploratory vocalizations. Males, LPS, and puberty inhibited these vocalizations. Bapa mice presented increased motor/exploratory behaviors on prepubertal period due to increased striatal TH expression, revealing striatal dopaminergic system hyperactivity. Combining open-field behavior and GFAP expression, bapa mice did not develop LPS tolerance, that is, they remained expressing signs of sickness behavior after LPS challenge, being more susceptible to infectious/inflammatory processes. It was concluded that bapa mice is a robust experimental model of Kabuki syndrome.
Collapse
Affiliation(s)
- Thiago B Kirsten
- Psychoneuroimmunology Laboratory, Program in Environmental and Experimental Pathology, Paulista University, São Paulo, Brazil
| | - Ericka P Silva
- Psychoneuroimmunology Laboratory, Program in Environmental and Experimental Pathology, Paulista University, São Paulo, Brazil
| | - Thalles F Biondi
- Psychoneuroimmunology Laboratory, Program in Environmental and Experimental Pathology, Paulista University, São Paulo, Brazil
| | - Paula S Rodrigues
- Psychoneuroimmunology Laboratory, Program in Environmental and Experimental Pathology, Paulista University, São Paulo, Brazil
| | - Carolina V Cardoso
- Psychoneuroimmunology Laboratory, Program in Environmental and Experimental Pathology, Paulista University, São Paulo, Brazil
| | - Silvia M G Massironi
- Department of Immunology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| | - Claudia M C Mori
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Eduardo F Bondan
- Psychoneuroimmunology Laboratory, Program in Environmental and Experimental Pathology, Paulista University, São Paulo, Brazil
| | - Maria M Bernardi
- Psychoneuroimmunology Laboratory, Program in Environmental and Experimental Pathology, Paulista University, São Paulo, Brazil
| |
Collapse
|
9
|
Chen S, Xie J, Zhao K, Ren L, Deng Y, Xie X, Chen S, Xu H, Long X, Liu E. LPS aggravates lung inflammation induced by RSV by promoting the ERK-MMP-12 signaling pathway in mice. Respir Res 2020; 21:193. [PMID: 32693803 PMCID: PMC7372760 DOI: 10.1186/s12931-020-01453-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 07/13/2020] [Indexed: 12/18/2022] Open
Abstract
Background RSV can lead to persistent airway inflammation and airway hyperresponsiveness (AHR), and is intimately associated with childhood recurrent wheezing and asthma, but the underlying mechanisms remain unclear. Lipopolysaccharide (LPS) is also implicated in the onset and exacerbation of asthma. However, whether inhalation of LPS can boost airway inflammation induced by RSV is not clear. In this study, we utilized an LPS- and RSV-superinfected mouse model to explore underlying pathogenesis. Methods Mice were infected with RSV on day 0 and inoculated with LPS from day 35 to day 41, samples were collected on day 42. Inflammatory cells, lung histopathology and AHR were measured. Cytokines were detected by ELISA and ERK, JNK, p38 was determined by western blot. MMP408, PD98059, SP600125 and SB203580 were used to inhibit MMP-12, ERK, JNK and p38 respectively. Results LPS exposure superimposed on RSV-infected lungs could lead to more vigorous cellular influx, lung structures damage, augmented AHR and higher MMP-12 levels. Inhibition of MMP-12 or ERK signaling pathway in vivo both diminished LPS-driven airway inflammation and AHR. Conclusions Exposure to LPS in RSV-infected mice is associated with enhanced increases in ERK-MMP-12 expression that translates into increased lung inflammation and AHR. These findings contribute novel information to the field investigating the onset of post-RSV bronchiolitis recurrent wheezing as a result of LPS exposure.
Collapse
Affiliation(s)
- Shenglin Chen
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, China.,China International Science and Technology Cooperation Base of Child development and Critical Disorders, Chongqing, China.,Chongqing Key Laboratory of Pediatrics, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, China.,Chongqing Medical University, Chongqing, China.,Center for Clinical Molecular Medicine, Chongqing Stem Cell Therapy Technology Research Center, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Jun Xie
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, China.,China International Science and Technology Cooperation Base of Child development and Critical Disorders, Chongqing, China.,Chongqing Key Laboratory of Pediatrics, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, China.,Chongqing Medical University, Chongqing, China.,Center for Clinical Molecular Medicine, Chongqing Stem Cell Therapy Technology Research Center, Children's Hospital of Chongqing Medical University, Chongqing, China.,Lijia respiratory Department, Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, P. R. China
| | - Keting Zhao
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, China.,China International Science and Technology Cooperation Base of Child development and Critical Disorders, Chongqing, China
| | - Luo Ren
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, China.,China International Science and Technology Cooperation Base of Child development and Critical Disorders, Chongqing, China.,Chongqing Key Laboratory of Pediatrics, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, China.,Chongqing Medical University, Chongqing, China.,Center for Clinical Molecular Medicine, Chongqing Stem Cell Therapy Technology Research Center, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yu Deng
- Lijia respiratory Department, Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, P. R. China
| | - Xiaohong Xie
- Lijia respiratory Department, Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, P. R. China
| | - Shiyi Chen
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, China.,China International Science and Technology Cooperation Base of Child development and Critical Disorders, Chongqing, China.,Chongqing Key Laboratory of Pediatrics, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, China.,Chongqing Medical University, Chongqing, China.,Center for Clinical Molecular Medicine, Chongqing Stem Cell Therapy Technology Research Center, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Hongmei Xu
- Department of Infection, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, 400014, P. R. China
| | - Xiaoru Long
- Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, China. .,China International Science and Technology Cooperation Base of Child development and Critical Disorders, Chongqing, China. .,Chongqing Key Laboratory of Pediatrics, Chongqing, China. .,Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, China. .,Chongqing Medical University, Chongqing, China. .,Center for Clinical Molecular Medicine, Chongqing Stem Cell Therapy Technology Research Center, Children's Hospital of Chongqing Medical University, Chongqing, China. .,Department of Infection, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, 400014, P. R. China.
| | - Enmei Liu
- Lijia respiratory Department, Ministry of Education Key Laboratory of Child Development and Disorders; National Clinical Research Center for Child Health and Disorders; China International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, P. R. China.
| |
Collapse
|
10
|
Favarin DC, Pereira ABM, Francischetti IMB, da Silva MV, Rodrigues V, da Silva PR, Valenzuela JG, Teixeira DNS, Oliveira CJF, Rogério ADP. Agaphelin modulates the activation of human bronchial epithelial cells induced by lipopolysaccharide and IL-4. Immunobiology 2020; 225:151937. [PMID: 32201094 DOI: 10.1016/j.imbio.2020.151937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/06/2020] [Accepted: 03/16/2020] [Indexed: 01/01/2023]
Abstract
Sand fly saliva presents molecules with potential to development of compounds for treatment of inflammatory diseases. Agaphelin, isolated from the saliva of the mosquito Anopheles gambiae, demonstrates anti-inflammatory properties such as neutrophils chemotaxis inhibition. Here, we extend these results and evaluated the role of agaphelin (0.1-100 nM) in an in vitro model consisting in the activation of human bronchial epithelial cells (BEAS-2B) by IL-4 (50 ng/mL) or lipopolysaccharide (LPS; 10 ng/mL). Agaphelin is non-cytotoxic for BEAS-2B cells. Notably, agaphelin markedly reduces CCL2 and IL-8 production induced by IL-4 or LPS, without altering the IL-10 production. The TLR4 expression and STAT1 phosphorylation induced by LPS were inhibited by agaphlin. In addition, agaphelin decreased the phosphorylation of STAT6 induce by IL-4, whose effect was independent of IL-4-binding activity. Taken together, these findings identify agaphelin as a potential anti-inflammatory therapeutic agent for airway inflammations.
Collapse
Affiliation(s)
- Daniely Cornélio Favarin
- Institute of Health Sciences, Department of Clinical Medicine, Laboratory of Experimental Immunopharmacology, Federal University of Triângulo Mineiro, Uberaba, MG, 38025-350, Brazil.
| | - Aline Beatriz Mahler Pereira
- Institute of Health Sciences, Department of Clinical Medicine, Laboratory of Experimental Immunopharmacology, Federal University of Triângulo Mineiro, Uberaba, MG, 38025-350, Brazil.
| | - Ivo M B Francischetti
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA.
| | - Marcos Vinicius da Silva
- Laboratory of Immunology and Infectious Diseases, Triângulo Mineiro Federal University, Uberaba, Brazil.
| | - Virmondes Rodrigues
- Laboratory of Immunology and Infectious Diseases, Triângulo Mineiro Federal University, Uberaba, Brazil.
| | - Paulo Roberto da Silva
- Institute of Health Sciences, Department of Clinical Medicine, Laboratory of Experimental Immunopharmacology, Federal University of Triângulo Mineiro, Uberaba, MG, 38025-350, Brazil.
| | - Jesus G Valenzuela
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA.
| | - David Nascimento Silva Teixeira
- Institute of Health Sciences, Department of Clinical Medicine, Laboratory of Experimental Immunopharmacology, Federal University of Triângulo Mineiro, Uberaba, MG, 38025-350, Brazil.
| | - Carlo José Freire Oliveira
- Laboratory of Immunology and Infectious Diseases, Triângulo Mineiro Federal University, Uberaba, Brazil.
| | - Alexandre de Paula Rogério
- Institute of Health Sciences, Department of Clinical Medicine, Laboratory of Experimental Immunopharmacology, Federal University of Triângulo Mineiro, Uberaba, MG, 38025-350, Brazil.
| |
Collapse
|
11
|
Lin X, Ren X, Xiao X, Yang Z, Yao S, Wong GW, Liu Z, Wang C, Su Z, Li J. Important Role of Immunological Responses to Environmental Exposure in the Development of Allergic Asthma. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2020; 12:934-948. [PMID: 32935487 PMCID: PMC7492518 DOI: 10.4168/aair.2020.12.6.934] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 04/30/2020] [Accepted: 05/02/2020] [Indexed: 12/16/2022]
Abstract
Allergic asthma is a public health problem that affects human health and socioeconomic development. Studies have found that the prevalence of asthma has significantly increased in recent years, which has become particularly pronounced in developed countries. With rapid urbanization in China in the last 3 decades, the prevalence of asthma has increased significantly in urban areas. As changes in genetic backgrounds of human populations are limited, environmental exposure may be a major factor that is responsible for the increased prevalence of asthma. This review focuses on environmental components of farms and rural areas that may have protective effects in reducing the development of asthma. Farm and rural related microorganism- and pathogen-associated molecular patterns are considered to be important environmental factors that modulate host's innate and adaptive immune system to induce protection effects later in life. Environmental microbial-related immunotherapy will also be discussed as the future research direction for the prevention of allergic asthma.
Collapse
Affiliation(s)
- Xinliu Lin
- Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xia Ren
- Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaojun Xiao
- Institute of Allergy and Immunology, School of Medicine, Shenzhen University, Shenzhen, China
| | - Zhaowei Yang
- Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Center for Genomics, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Siyang Yao
- Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Gary Wk Wong
- Departments of Pediatrics, Prince of Wales Hospital, The Chinese University of Hong Kong, China
| | - Zhigang Liu
- Institute of Allergy and Immunology, School of Medicine, Shenzhen University, Shenzhen, China
| | - Charles Wang
- Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Center for Genomics, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Zhong Su
- Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.
| | - Jing Li
- Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
12
|
Jia L, Chen H, Yang J, Fang X, Niu W, Zhang M, Li J, Pan X, Ren Z, Sun J, Pan LL. Combinatory antibiotic treatment protects against experimental acute pancreatitis by suppressing gut bacterial translocation to pancreas and inhibiting NLRP3 inflammasome pathway. Innate Immun 2019; 26:48-61. [PMID: 31615312 PMCID: PMC6974879 DOI: 10.1177/1753425919881502] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Gut bacterial translocation following impaired gut barrier is a critical
determinant of initiating and aggravating acute pancreatitis (AP). Antibiotic
combination (ABX; vancomycin, neomycin and polymyxin b) is capable of reducing
gut bacteria, but its efficacy in AP prevention and the underlying mechanism
have not been investigated yet. AP was induced in BALB/c mice by caerulein (CAE)
hyperstimulation. We found that ABX supplementation attenuated the severity of
AP as evidenced by reduced pancreatic oedema and myeloperoxidase activity. The
protective effect was also confirmed by improved histological morphology of the
pancreas and decreased pro-inflammatory markers (IL-1β, TNF-α, MCP-1) in
pancreas. ABX administration inhibits the activation of colonic TLR4/NLRP3
inflammasome pathway. Subsequently, down-regulated NLRP3 resulted in decreased
colonic pro-inflammation (IL-1β, IL-6, MCP-1) and enhanced gut physical barrier
as evidenced by up-regulation of tight junction proteins including occludin,
claudin-1 and ZO-1, as well as improved histological morphology of the colon.
Together, combinatory ABX therapy inhibited the translocation of gut bacteria to
pancreas and its amplification effects on pancreatic inflammation by inhibiting
the pancreatic NLRP3 pathway, and inhibiting intestinal-pancreatic inflammatory
responses. The current study provides the basis for potential clinical
application of ABX in AP.
Collapse
Affiliation(s)
- Lingling Jia
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, P. R. China
| | - Hao Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R. China
| | - Jun Yang
- Public Health Research Center and Department of General Surgery, Affiliated Hospital of Jiangnan University
| | - Xin Fang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R. China
| | - Wenying Niu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R. China
| | - Ming Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R. China
| | - Jiahong Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R. China
| | - Xiaohua Pan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R. China
| | - Zhengnan Ren
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R. China
| | - Jia Sun
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R. China
| | - Li-Long Pan
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, P. R. China
| |
Collapse
|
13
|
Nelwan SC, Nugraha RA, Endaryanto A, Meizarini A, Tedjosasongko U, Pradopo S, Utomo H. Converging findings from linkage between periodontal pathogen with atopic and allergic immune response. Cytokine 2018; 113:89-98. [PMID: 29937409 DOI: 10.1016/j.cyto.2018.06.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 05/30/2018] [Accepted: 06/11/2018] [Indexed: 12/13/2022]
Abstract
This study aims to explore a relationship between exposures of whole-cell Porphyromonas gingivalis in various doses with atopic inflammatory responses at experimental mice. A pretest-posttest controlled group design, with 16 Wistar rats (Rattus novergicus) randomized into four groups. Group 1 was the control group. Group 2 was given low-dose (9 × 107 colony-forming unit) of P. gingivalis. Group 3 was given medium-dose (9 × 109 colony-forming unit) of P. gingivalis. Group 4 was given high-dose (9 × 1011 colony-forming unit) of P. gingivalis. Interleukin-4, Interleukin-5, Interleukin-17F, Interleukin-21, Immunoglobulin-E, Immunoglobulin-G4, and γ-Interferon were measured by direct-sandwich ELISA just before the treatments began, day-4, and day-11 after treatments. There is a sudden increase of Interleukin-4 in the group 4 (23.79 ± 0.91 pg/ml to 54.17 ± 0.79 pg/ml; p = 0.01) and slight increase of Interleukin-5 in the group 4 (207.60 ± 11.15 pg/ml to 243.40 ± 9.33 pg/ml; p = 0.03). No change was observed for Interleukin-17F in all groups. Serum concentration of Immunoglobulin-E was decreased in group 2 (-10.44 ± 8.13 pg/ml), but increased in group 4 (+1.03 ± 4.57 pg/ml). Taken together, some cytokines are up-regulated and others are down-regulated after exposure to whole-cell P. gingivalis. Moreover, study of host responses during periodontal infection may offer critical key insight that contribute to the development of atopy. CLINICAL IMPLICATIONS: We introduced and explained the potential role of periodontal pathogen Porphyromonas gingivalis in systemic immune responses, along with its virulence factor inside the oral cavity. Our results consider several changes and differences of cytokines and immunoglobulins following whole-cell Porphyromonas gingivalis exposure. However, results of the study need to be interpreted with caution due to its limitations. CAPSULE SUMMARY: Interleukin (IL)-4 and IL-5 had been found increase after exposure to the periodontal pathogens Porphyromonas gingivalis, whereas no or minimal change had been found in the level of IL-17F, Ig-G4, and IFN-γ. The various cytokines and immunoglobulins shown in this study do not prove a causal relationship, and the precise role of Porphyromonas gingivalis in the regulation of atopic immune response warrants further investigation. Nevertheless, these findings may provide some critical key insight into the host responses following Porphyromonas gingivalis infection.
Collapse
Affiliation(s)
- Sindy Cornelia Nelwan
- Department of Pediatric Dentistry, Faculty of Dentistry Universitas Airlangga, Surabaya, Indonesia.
| | | | - Anang Endaryanto
- Department of Child Health, Faculty of Medicine Universitas Airlangga, Surabaya, Indonesia
| | - Asti Meizarini
- Department of Dental Materials Science and Technology, Faculty of Dentistry Universitas Airlangga, Surabaya, Indonesia
| | - Udijanto Tedjosasongko
- Department of Pediatric Dentistry, Faculty of Dentistry Universitas Airlangga, Surabaya, Indonesia
| | - Seno Pradopo
- Department of Pediatric Dentistry, Faculty of Dentistry Universitas Airlangga, Surabaya, Indonesia
| | - Haryono Utomo
- Department of Forensic Dentistry, Faculty of Dentistry Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
14
|
Ilic N, Gruden-Movsesijan A, Cvetkovic J, Tomic S, Vucevic DB, Aranzamendi C, Colic M, Pinelli E, Sofronic-Milosavljevic L. Trichinella spiralis Excretory-Secretory Products Induce Tolerogenic Properties in Human Dendritic Cells via Toll-Like Receptors 2 and 4. Front Immunol 2018; 9:11. [PMID: 29416536 PMCID: PMC5787699 DOI: 10.3389/fimmu.2018.00011] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 01/04/2018] [Indexed: 12/20/2022] Open
Abstract
Trichinella spiralis, as well as its muscle larvae excretory–secretory products (ES L1), given either alone or via dendritic cells (DCs), induce a tolerogenic immune microenvironment in inbred rodents and successfully ameliorate experimental autoimmune encephalomyelitis. ES L1 directs the immunological balance away from T helper (Th)1, toward Th2 and regulatory responses by modulating DCs phenotype. The ultimate goal of our work is to find out if it is possible to translate knowledge obtained in animal model to humans and to generate human tolerogenic DCs suitable for therapy of autoimmune diseases through stimulation with ES L1. Here, the impact of ES L1 on the activation of human monocyte-derived DCs is explored for the first time. Under the influence of ES L1, DCs acquired tolerogenic (semi-matured) phenotype, characterized by low expression of HLA-DR, CD83, and CD86 as well as moderate expression of CD40, along with the unchanged production of interleukin (IL)-12 and elevated production of IL-10 and transforming growth factor (TGF)-β, compared to controls. The interaction with DCs involved toll-like receptors (TLR) 2 and 4, and this interaction was mainly responsible for the phenotypic and functional properties of ES L1-treated DCs. Importantly, ES L1 potentiated Th2 polarizing capacity of DCs, and impaired their allo-stimulatory and Th1/Th17 polarizing properties. Moreover, ES L1-treated DCs promoted the expansion of IL-10- and TGF-β- producing CD4+CD25hiFoxp3hi T cells in indolamine 2, 3 dioxygenase (IDO)-1-dependent manner and increased the suppressive potential of the primed T cell population. ES L1-treated DCs retained the tolerogenic properties, even after the challenge with different pro-inflammatory stimuli, including those acting via TLR3 and, especially TLR4. These results suggest that the induction of tolerogenic properties of DCs through stimulation with ES L1 could represent an innovative approach for the preparation of tolerogenic DC for treatment of inflammatory and autoimmune disorders.
Collapse
Affiliation(s)
- Nataša Ilic
- Institute for the Application of Nuclear Energy, University of Belgrade, Belgrade, Serbia
| | | | - Jelena Cvetkovic
- Institute for the Application of Nuclear Energy, University of Belgrade, Belgrade, Serbia
| | - Sergej Tomic
- Institute for the Application of Nuclear Energy, University of Belgrade, Belgrade, Serbia
| | | | - Carmen Aranzamendi
- Groningen Biomolecular Science and Biotechnology Institute (GBB), University of Groningen, Groningen, Netherlands.,Centre for Infectious Disease Control Netherlands, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Miodrag Colic
- Institute for the Application of Nuclear Energy, University of Belgrade, Belgrade, Serbia.,Medical Faculty of the Military Medical Academy, University of Defence, Belgrade, Serbia
| | - Elena Pinelli
- Centre for Infectious Disease Control Netherlands, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | | |
Collapse
|