1
|
Shimoda Y, Yamaya-Ito H, Hakoyama T, Sato S, Kaneko T, Shibata S, Kawaguchi M, Suganuma N, Hayashi M, Kouchi H, Umehara Y. A mitochondrial metalloprotease FtsH4 is required for symbiotic nitrogen fixation in Lotus japonicus nodules. Sci Rep 2024; 14:27578. [PMID: 39528551 PMCID: PMC11554776 DOI: 10.1038/s41598-024-78295-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Symbiotic nitrogen fixation is a highly coordinated process involving legume plants and nitrogen-fixing bacteria known as rhizobia. In this study, we investigated a novel Fix- mutant of the model legume Lotus japonicus that develops root nodules with endosymbiotic rhizobia but fails in nitrogen fixation. Map-based cloning identified the causal gene encoding the filamentation temperature-sensitive H (FtsH) protein, designated as LjFtsH4. The LjFtsH4 gene was expressed in all plant organs without increased levels during nodulation. Subcellular localization revealed that LjFtsH4, fused with a fluorescent protein, localized in mitochondria. The Ljftsh4 mutant nodules showed signs of premature senescence, including symbiosome membrane collapse and bacteroid disintegration. Additionally, nodule cells of Ljftsh4 mutant displayed mitochondria with indistinct crista structures. Grafting and complementation tests confirmed that the Fix- phenotype was determined by the root genotype, and that protease activity of LjFtsH4 was essential for nodule nitrogen fixation. Furthermore, the ATP content in Ljftsh4 mutant roots and nodules was lower than in the wild-type, suggesting reduced mitochondrial function. These findings underscore the critical role of LjFtsH4 in effective symbiotic nitrogen fixation in root nodules.
Collapse
Affiliation(s)
- Yoshikazu Shimoda
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, 305-8604, Japan.
| | - Hiroko Yamaya-Ito
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, 305-8604, Japan
- College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Tsuneo Hakoyama
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, 305-8604, Japan
- Center for Sustainable Resource Science, RIKEN, Yokohama, Kanagawa, 230-0045, Japan
| | - Shusei Sato
- Kazusa DNA Research Institute, Kisarazu, Chiba, 292-0818, Japan
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, 980-8577, Japan
| | - Takakazu Kaneko
- Kazusa DNA Research Institute, Kisarazu, Chiba, 292-0818, Japan
- Faculty of Life Sciences, Kyoto Sangyo University, Kita-ku, Kyoto, 603-8555, Japan
| | - Satoshi Shibata
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, 305-8604, Japan
- Mining and Metallurgy Laboratories Technology Development Department, Metals Company, Mitsubishi Materials Corporation, Iwaki, Fukushima, 971-8101, Japan
| | | | - Norio Suganuma
- Department of Life Science, Aichi University of Education, Kariya, Aichi, 448-8542, Japan
| | - Makoto Hayashi
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, 305-8604, Japan
- Center for Sustainable Resource Science, RIKEN, Yokohama, Kanagawa, 230-0045, Japan
| | - Hiroshi Kouchi
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, 305-8604, Japan
| | - Yosuke Umehara
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, 305-8604, Japan.
| |
Collapse
|
2
|
Eckardt NA, Avin-Wittenberg T, Bassham DC, Chen P, Chen Q, Fang J, Genschik P, Ghifari AS, Guercio AM, Gibbs DJ, Heese M, Jarvis RP, Michaeli S, Murcha MW, Mursalimov S, Noir S, Palayam M, Peixoto B, Rodriguez PL, Schaller A, Schnittger A, Serino G, Shabek N, Stintzi A, Theodoulou FL, Üstün S, van Wijk KJ, Wei N, Xie Q, Yu F, Zhang H. The lowdown on breakdown: Open questions in plant proteolysis. THE PLANT CELL 2024; 36:2931-2975. [PMID: 38980154 PMCID: PMC11371169 DOI: 10.1093/plcell/koae193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/16/2024] [Accepted: 06/19/2024] [Indexed: 07/10/2024]
Abstract
Proteolysis, including post-translational proteolytic processing as well as protein degradation and amino acid recycling, is an essential component of the growth and development of living organisms. In this article, experts in plant proteolysis pose and discuss compelling open questions in their areas of research. Topics covered include the role of proteolysis in the cell cycle, DNA damage response, mitochondrial function, the generation of N-terminal signals (degrons) that mark many proteins for degradation (N-terminal acetylation, the Arg/N-degron pathway, and the chloroplast N-degron pathway), developmental and metabolic signaling (photomorphogenesis, abscisic acid and strigolactone signaling, sugar metabolism, and postharvest regulation), plant responses to environmental signals (endoplasmic-reticulum-associated degradation, chloroplast-associated degradation, drought tolerance, and the growth-defense trade-off), and the functional diversification of peptidases. We hope these thought-provoking discussions help to stimulate further research.
Collapse
Affiliation(s)
| | - Tamar Avin-Wittenberg
- Department of Plant and Environmental Sciences, Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Diane C Bassham
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Poyu Chen
- School of Biological Science and Technology, College of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Qian Chen
- Ministry of Agriculture and Rural Affairs Key Laboratory for Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Jun Fang
- Section of Molecular Plant Biology, Department of Biology, University of Oxford, Oxford OX1 3RB, UK
| | - Pascal Genschik
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, 12, rue du Général Zimmer, Strasbourg 67084, France
| | - Abi S Ghifari
- School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Angelica M Guercio
- Department of Plant Biology, College of Biological Sciences, University of California-Davis, Davis, CA 95616, USA
| | - Daniel J Gibbs
- School of Biosciences, University of Birmingham, Edgbaston B1 2RU, UK
| | - Maren Heese
- Department of Developmental Biology, University of Hamburg, Ohnhorststr. 18, Hamburg 22609, Germany
| | - R Paul Jarvis
- Section of Molecular Plant Biology, Department of Biology, University of Oxford, Oxford OX1 3RB, UK
| | - Simon Michaeli
- Department of Postharvest Sciences, Agricultural Research Organization (ARO), Volcani Institute, Rishon LeZion 7505101, Israel
| | - Monika W Murcha
- School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Sergey Mursalimov
- Department of Postharvest Sciences, Agricultural Research Organization (ARO), Volcani Institute, Rishon LeZion 7505101, Israel
| | - Sandra Noir
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, 12, rue du Général Zimmer, Strasbourg 67084, France
| | - Malathy Palayam
- Department of Plant Biology, College of Biological Sciences, University of California-Davis, Davis, CA 95616, USA
| | - Bruno Peixoto
- Section of Molecular Plant Biology, Department of Biology, University of Oxford, Oxford OX1 3RB, UK
| | - Pedro L Rodriguez
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Cientificas-Universidad Politecnica de Valencia, Valencia ES-46022, Spain
| | - Andreas Schaller
- Department of Plant Physiology and Biochemistry, Institute of Biology, University of Hohenheim, Stuttgart 70599, Germany
| | - Arp Schnittger
- Department of Developmental Biology, University of Hamburg, Ohnhorststr. 18, Hamburg 22609, Germany
| | - Giovanna Serino
- Department of Biology and Biotechnology, Sapienza Universita’ di Roma, p.le A. Moro 5, Rome 00185, Italy
| | - Nitzan Shabek
- Department of Plant Biology, College of Biological Sciences, University of California-Davis, Davis, CA 95616, USA
| | - Annick Stintzi
- Department of Plant Physiology and Biochemistry, Institute of Biology, University of Hohenheim, Stuttgart 70599, Germany
| | | | - Suayib Üstün
- Faculty of Biology and Biotechnology, Ruhr-University of Bochum, Bochum 44780, Germany
| | - Klaas J van Wijk
- Section of Plant Biology, School of Integrative Plant Sciences (SIPS), Cornell University, Ithaca, NY 14853, USA
| | - Ning Wei
- School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Qi Xie
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, the Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feifei Yu
- College of Grassland Science and Technology, China Agricultural University, Beijing 100083, China
| | - Hongtao Zhang
- Plant Sciences and the Bioeconomy, Rothamsted Research, Harpenden AL5 2JQ, UK
| |
Collapse
|
3
|
Isono E, Li J, Pulido P, Siao W, Spoel SH, Wang Z, Zhuang X, Trujillo M. Protein degrons and degradation: Exploring substrate recognition and pathway selection in plants. THE PLANT CELL 2024; 36:3074-3098. [PMID: 38701343 PMCID: PMC11371205 DOI: 10.1093/plcell/koae141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/27/2024] [Accepted: 04/07/2024] [Indexed: 05/05/2024]
Abstract
Proteome composition is dynamic and influenced by many internal and external cues, including developmental signals, light availability, or environmental stresses. Protein degradation, in synergy with protein biosynthesis, allows cells to respond to various stimuli and adapt by reshaping the proteome. Protein degradation mediates the final and irreversible disassembly of proteins, which is important for protein quality control and to eliminate misfolded or damaged proteins, as well as entire organelles. Consequently, it contributes to cell resilience by buffering against protein or organellar damage caused by stresses. Moreover, protein degradation plays important roles in cell signaling, as well as transcriptional and translational events. The intricate task of recognizing specific proteins for degradation is achieved by specialized systems that are tailored to the substrate's physicochemical properties and subcellular localization. These systems recognize diverse substrate cues collectively referred to as "degrons," which can assume a range of configurations. They are molecular surfaces recognized by E3 ligases of the ubiquitin-proteasome system but can also be considered as general features recognized by other degradation systems, including autophagy or even organellar proteases. Here we provide an overview of the newest developments in the field, delving into the intricate processes of protein recognition and elucidating the pathways through which they are recruited for degradation.
Collapse
Affiliation(s)
- Erika Isono
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Jianming Li
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Pablo Pulido
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC), 28049 Madrid, Spain
| | - Wei Siao
- Department of Biology, Aachen RWTH University, Institute of Molecular Plant Physiology, 52074 Aachen, Germany
| | - Steven H Spoel
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Zhishuo Wang
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Xiaohong Zhuang
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Marco Trujillo
- Department of Biology, Aachen RWTH University, Institute of Molecular Plant Physiology, 52074 Aachen, Germany
| |
Collapse
|
4
|
Moloi SJ, Ngara R. The roles of plant proteases and protease inhibitors in drought response: a review. FRONTIERS IN PLANT SCIENCE 2023; 14:1165845. [PMID: 37143877 PMCID: PMC10151539 DOI: 10.3389/fpls.2023.1165845] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/30/2023] [Indexed: 05/06/2023]
Abstract
Upon exposure to drought, plants undergo complex signal transduction events with concomitant changes in the expression of genes, proteins and metabolites. For example, proteomics studies continue to identify multitudes of drought-responsive proteins with diverse roles in drought adaptation. Among these are protein degradation processes that activate enzymes and signalling peptides, recycle nitrogen sources, and maintain protein turnover and homeostasis under stressful environments. Here, we review the differential expression and functional activities of plant protease and protease inhibitor proteins under drought stress, mainly focusing on comparative studies involving genotypes of contrasting drought phenotypes. We further explore studies of transgenic plants either overexpressing or repressing proteases or their inhibitors under drought conditions and discuss the potential roles of these transgenes in drought response. Overall, the review highlights the integral role of protein degradation during plant survival under water deficits, irrespective of the genotypes' level of drought resilience. However, drought-sensitive genotypes exhibit higher proteolytic activities, while drought-tolerant genotypes tend to protect proteins from degradation by expressing more protease inhibitors. In addition, transgenic plant biology studies implicate proteases and protease inhibitors in various other physiological functions under drought stress. These include the regulation of stomatal closure, maintenance of relative water content, phytohormonal signalling systems including abscisic acid (ABA) signalling, and the induction of ABA-related stress genes, all of which are essential for maintaining cellular homeostasis under water deficits. Therefore, more validation studies are required to explore the various functions of proteases and their inhibitors under water limitation and their contributions towards drought adaptation.
Collapse
|
5
|
Warnsmann V, Marschall LM, Meeßen AC, Wolters M, Schürmanns L, Basoglu M, Eimer S, Osiewacz HD. Disruption of the MICOS complex leads to an aberrant cristae structure and an unexpected, pronounced lifespan extension in Podospora anserina. J Cell Biochem 2022; 123:1306-1326. [PMID: 35616269 DOI: 10.1002/jcb.30278] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/28/2022] [Accepted: 05/14/2022] [Indexed: 11/11/2022]
Abstract
Mitochondria are dynamic eukaryotic organelles involved in a variety of essential cellular processes including the generation of adenosine triphosphate (ATP) and reactive oxygen species as well as in the control of apoptosis and autophagy. Impairments of mitochondrial functions lead to aging and disease. Previous work with the ascomycete Podospora anserina demonstrated that mitochondrial morphotype as well as mitochondrial ultrastructure change during aging. The latter goes along with an age-dependent reorganization of the inner mitochondrial membrane leading to a change from lamellar cristae to vesicular structures. Particularly from studies with yeast, it is known that besides the F1 Fo -ATP-synthase and the phospholipid cardiolipin also the "mitochondrial contact site and cristae organizing system" (MICOS) complex, existing of the Mic60- and Mic10-subcomplex, is essential for proper cristae formation. In the present study, we aimed to understand the mechanistic basis of age-related changes in the mitochondrial ultrastructure. We observed that MICOS subunits are coregulated at the posttranscriptional level. This regulation partially depends on the mitochondrial iAAA-protease PaIAP. Most surprisingly, we made the counterintuitive observation that, despite the loss of lamellar cristae and of mitochondrial impairments, the ablation of MICOS subunits (except for PaMIC12) leads to a pronounced lifespan extension. Moreover, simultaneous ablation of subunits of both MICOS subcomplexes synergistically increases lifespan, providing formal genetic evidence that both subcomplexes affect lifespan by different and at least partially independent pathways. At the molecular level, we found that ablation of Mic10-subcomplex components leads to a mitohormesis-induced lifespan extension, while lifespan extension of Mic60-subcomplex mutants seems to be controlled by pathways involved in the control of phospholipid homeostasis. Overall, our data demonstrate that both MICOS subcomplexes have different functions and play distinct roles in the aging process of P. anserina.
Collapse
Affiliation(s)
- Verena Warnsmann
- Institute of Molecular Biosciences, Faculty of Biosciences, Goethe-University, Frankfurt, Germany
| | - Lisa-Marie Marschall
- Institute of Molecular Biosciences, Faculty of Biosciences, Goethe-University, Frankfurt, Germany
| | - Anja C Meeßen
- Institute of Molecular Biosciences, Faculty of Biosciences, Goethe-University, Frankfurt, Germany
| | - Maike Wolters
- Institute of Molecular Biosciences, Faculty of Biosciences, Goethe-University, Frankfurt, Germany
| | - Lea Schürmanns
- Institute of Molecular Biosciences, Faculty of Biosciences, Goethe-University, Frankfurt, Germany
| | - Marion Basoglu
- Institute for Cell Biology and Neuroscience, Faculty of Biosciences, Goethe-University, Frankfurt, Germany
| | - Stefan Eimer
- Institute for Cell Biology and Neuroscience, Faculty of Biosciences, Goethe-University, Frankfurt, Germany
| | - Heinz D Osiewacz
- Institute of Molecular Biosciences, Faculty of Biosciences, Goethe-University, Frankfurt, Germany
| |
Collapse
|
6
|
Proteolytic regulation of mitochondrial oxidative phosphorylation components in plants. Biochem Soc Trans 2022; 50:1119-1132. [PMID: 35587610 PMCID: PMC9246333 DOI: 10.1042/bst20220195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/07/2022] [Accepted: 05/03/2022] [Indexed: 11/28/2022]
Abstract
Mitochondrial function relies on the homeostasis and quality control of their proteome, including components of the oxidative phosphorylation (OXPHOS) pathway that generates energy in form of ATP. OXPHOS subunits are under constant exposure to reactive oxygen species due to their oxidation-reduction activities, which consequently make them prone to oxidative damage, misfolding, and aggregation. As a result, quality control mechanisms through turnover and degradation are required for maintaining mitochondrial activity. Degradation of OXPHOS subunits can be achieved through proteomic turnover or modular degradation. In this review, we present multiple protein degradation pathways in plant mitochondria. Specifically, we focus on the intricate turnover of OXPHOS subunits, prior to protein import via cytosolic proteasomal degradation and post import and assembly via intra-mitochondrial proteolysis involving multiple AAA+ proteases. Together, these proteolytic pathways maintain the activity and homeostasis of OXPHOS components.
Collapse
|
7
|
Heidorn-Czarna M, Maziak A, Janska H. Protein Processing in Plant Mitochondria Compared to Yeast and Mammals. FRONTIERS IN PLANT SCIENCE 2022; 13:824080. [PMID: 35185991 PMCID: PMC8847149 DOI: 10.3389/fpls.2022.824080] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 01/12/2022] [Indexed: 05/02/2023]
Abstract
Limited proteolysis, called protein processing, is an essential post-translational mechanism that controls protein localization, activity, and in consequence, function. This process is prevalent for mitochondrial proteins, mainly synthesized as precursor proteins with N-terminal sequences (presequences) that act as targeting signals and are removed upon import into the organelle. Mitochondria have a distinct and highly conserved proteolytic system that includes proteases with sole function in presequence processing and proteases, which show diverse mitochondrial functions with limited proteolysis as an additional one. In virtually all mitochondria, the primary processing of N-terminal signals is catalyzed by the well-characterized mitochondrial processing peptidase (MPP). Subsequently, a second proteolytic cleavage occurs, leading to more stabilized residues at the newly formed N-terminus. Lately, mitochondrial proteases, intermediate cleavage peptidase 55 (ICP55) and octapeptidyl protease 1 (OCT1), involved in proteolytic cleavage after MPP and their substrates have been described in the plant, yeast, and mammalian mitochondria. Mitochondrial proteins can also be processed by removing a peptide from their N- or C-terminus as a maturation step during insertion into the membrane or as a regulatory mechanism in maintaining their function. This type of limited proteolysis is characteristic for processing proteases, such as IMP and rhomboid proteases, or the general mitochondrial quality control proteases ATP23, m-AAA, i-AAA, and OMA1. Identification of processing protease substrates and defining their consensus cleavage motifs is now possible with the help of large-scale quantitative mass spectrometry-based N-terminomics, such as combined fractional diagonal chromatography (COFRADIC), charge-based fractional diagonal chromatography (ChaFRADIC), or terminal amine isotopic labeling of substrates (TAILS). This review summarizes the current knowledge on the characterization of mitochondrial processing peptidases and selected N-terminomics techniques used to uncover protease substrates in the plant, yeast, and mammalian mitochondria.
Collapse
|
8
|
Mitochondrial Phospholipid Homeostasis Is Regulated by the i-AAA Protease PaIAP and Affects Organismic Aging. Cells 2021; 10:cells10102775. [PMID: 34685755 PMCID: PMC8534651 DOI: 10.3390/cells10102775] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 11/27/2022] Open
Abstract
Mitochondria are ubiquitous organelles of eukaryotic organisms with a number of essential functions, including synthesis of iron-sulfur clusters, amino acids, lipids, and adenosine triphosphate (ATP). During aging of the fungal aging model Podospora anserina, the inner mitochondrial membrane (IMM) undergoes prominent morphological alterations, ultimately resulting in functional impairments. Since phospholipids (PLs) are key components of biological membranes, maintenance of membrane plasticity and integrity via regulation of PL biosynthesis is indispensable. Here, we report results from a lipidomic analysis of isolated mitochondria from P. anserina that revealed an age-related reorganization of the mitochondrial PL profile and the involvement of the i-AAA protease PaIAP in proteolytic regulation of PL metabolism. The absence of PaIAP enhances biosynthesis of characteristic mitochondrial PLs, leads to significant alterations in the acyl composition of the mitochondrial signature PL cardiolipin (CL), and induces mitophagy. These alterations presumably cause the lifespan increase of the PaIap deletion mutant under standard growth conditions. However, PaIAP is required at elevated temperatures and for degradation of superfluous CL synthase PaCRD1 during glycolytic growth. Overall, our study uncovers a prominent role of PaIAP in the regulation of PL homeostasis in order to adapt membrane plasticity to fluctuating environmental conditions as they occur in nature.
Collapse
|
9
|
Maziak A, Heidorn-Czarna M, Weremczuk A, Janska H. FTSH4 and OMA1 mitochondrial proteases reduce moderate heat stress-induced protein aggregation. PLANT PHYSIOLOGY 2021; 187:769-786. [PMID: 34608962 PMCID: PMC8491029 DOI: 10.1093/plphys/kiab296] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 06/04/2021] [Indexed: 05/12/2023]
Abstract
The threat of global warming makes uncovering mechanisms of plant tolerance to long-term moderate heat stress particularly important. We previously reported that Arabidopsis (Arabidopsis thaliana) plants lacking mitochondrial proteases FTSH4 or OMA1 suffer phenotypic changes under long-term stress of 30°C, while their growth at 22°C is not affected. Here we found that these morphological and developmental changes are associated with increased accumulation of insoluble mitochondrial protein aggregates that consist mainly of small heat-shock proteins (sHSPs). Greater accumulation of sHSPs in ftsh4 than oma1 corresponds with more severe phenotypic abnormalities. We showed that the proteolytic activity of FTSH4, and to a lesser extent of OMA1, as well as the chaperone function of FTSH4, is crucial for protecting mitochondrial proteins against aggregation. We demonstrated that HSP23.6 and NADH dehydrogenase subunit 9 present in aggregates are proteolytic substrates of FTSH4, and this form of HSP23.6 is also a substrate of OMA1 protease. In addition, we found that the activity of FTSH4 plays an important role during recovery from elevated to optimal temperatures. Isobaric tags for relative and absolute quantification (iTRAQ)-based proteomic analyses, along with identification of aggregation-prone proteins, implicated mitochondrial pathways affected by protein aggregation (e.g. assembly of complex I) and revealed that the mitochondrial proteomes of ftsh4 and oma1 plants are similarly adapted to long-term moderate heat stress. Overall, our data indicate that both FTSH4 and OMA1 increase the tolerance of plants to long-term moderate heat stress by reducing detergent-tolerant mitochondrial protein aggregation.
Collapse
Affiliation(s)
- Agata Maziak
- Department of Cellular Molecular Biology, Faculty of Biotechnology, University of Wroclaw, Wroclaw, 50-383, Poland
| | - Malgorzata Heidorn-Czarna
- Department of Cellular Molecular Biology, Faculty of Biotechnology, University of Wroclaw, Wroclaw, 50-383, Poland
| | - Aleksandra Weremczuk
- Department of Cellular Molecular Biology, Faculty of Biotechnology, University of Wroclaw, Wroclaw, 50-383, Poland
| | - Hanna Janska
- Department of Cellular Molecular Biology, Faculty of Biotechnology, University of Wroclaw, Wroclaw, 50-383, Poland
- Author for communication:
| |
Collapse
|
10
|
Møller IM, Igamberdiev AU, Bykova NV, Finkemeier I, Rasmusson AG, Schwarzländer M. Matrix Redox Physiology Governs the Regulation of Plant Mitochondrial Metabolism through Posttranslational Protein Modifications. THE PLANT CELL 2020; 32:573-594. [PMID: 31911454 PMCID: PMC7054041 DOI: 10.1105/tpc.19.00535] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 10/28/2019] [Accepted: 01/06/2020] [Indexed: 05/18/2023]
Abstract
Mitochondria function as hubs of plant metabolism. Oxidative phosphorylation produces ATP, but it is also a central high-capacity electron sink required by many metabolic pathways that must be flexibly coordinated and integrated. Here, we review the crucial roles of redox-associated posttranslational protein modifications (PTMs) in mitochondrial metabolic regulation. We discuss several major concepts. First, the major redox couples in the mitochondrial matrix (NAD, NADP, thioredoxin, glutathione, and ascorbate) are in kinetic steady state rather than thermodynamic equilibrium. Second, targeted proteomics have produced long lists of proteins potentially regulated by Cys oxidation/thioredoxin, Met-SO formation, phosphorylation, or Lys acetylation, but we currently only understand the functional importance of a few of these PTMs. Some site modifications may represent molecular noise caused by spurious reactions. Third, different PTMs on the same protein or on different proteins in the same metabolic pathway can interact to fine-tune metabolic regulation. Fourth, PTMs take part in the repair of stress-induced damage (e.g., by reducing Met and Cys oxidation products) as well as adjusting metabolic functions in response to environmental variation, such as changes in light irradiance or oxygen availability. Finally, PTMs form a multidimensional regulatory system that provides the speed and flexibility needed for mitochondrial coordination far beyond that provided by changes in nuclear gene expression alone.
Collapse
Affiliation(s)
- Ian Max Møller
- Department of Molecular Biology and Genetics, Aarhus University, DK-4200 Slagelse, Denmark
| | - Abir U Igamberdiev
- Department of Biology, Memorial University of Newfoundland, St. John's, Newfoundland A1B 3X9, Canada
| | - Natalia V Bykova
- Agriculture and Agri-Food Canada, Morden Research and Development Centre, Morden, Manitoba R6M 1Y5, Canada
| | - Iris Finkemeier
- Institute of Plant Biology and Biotechnology, University of Münster, DE-48149 Münster, Germany
| | | | - Markus Schwarzländer
- Institute of Plant Biology and Biotechnology, University of Münster, DE-48143 Münster, Germany
| |
Collapse
|
11
|
Huber CV, Jakobs BD, Mishra LS, Niedermaier S, Stift M, Winter G, Adamska I, Funk C, Huesgen PF, Funck D. DEG10 contributes to mitochondrial proteostasis, root growth, and seed yield in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:5423-5436. [PMID: 31225599 PMCID: PMC6793672 DOI: 10.1093/jxb/erz294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 06/11/2019] [Indexed: 05/04/2023]
Abstract
Maintaining mitochondrial proteome integrity is especially important under stress conditions to ensure a continued ATP supply for protection and adaptation responses in plants. Deg/HtrA proteases are important factors in the cellular protein quality control system, but little is known about their function in mitochondria. Here we analyzed the expression pattern and physiological function of Arabidopsis thaliana DEG10, which has homologs in all photosynthetic eukaryotes. Both expression of DEG10:GFP fusion proteins and immunoblotting after cell fractionation showed an unambiguous subcellular localization exclusively in mitochondria. DEG10 promoter:GUS fusion constructs showed that DEG10 is expressed in trichomes but also in the vascular tissue of roots and aboveground organs. DEG10 loss-of-function mutants were impaired in root elongation, especially at elevated temperature. Quantitative proteome analysis revealed concomitant changes in the abundance of mitochondrial respiratory chain components and assembly factors, which partially appeared to depend on altered mitochondrial retrograde signaling. Under field conditions, lack of DEG10 caused a decrease in seed production. Taken together, our findings demonstrate that DEG10 affects mitochondrial proteostasis, is required for optimal root development and seed set under challenging environmental conditions, and thus contributes to stress tolerance of plants.
Collapse
Affiliation(s)
- Catharina V Huber
- Department of Biology, University of Konstanz, Universitätsstraße, Konstanz, Germany
| | - Barbara D Jakobs
- Department of Biology, University of Konstanz, Universitätsstraße, Konstanz, Germany
| | - Laxmi S Mishra
- Department of Chemistry, Umeå University, Linnaeus väg, Umeå, Sweden
| | - Stefan Niedermaier
- Central Institute for Engineering, Electronics and Analytics, ZEA-3 Analytics, Forschungszentrum Jülich, Wilhelm-Johnen-Straße, Jülich, Germany
| | - Marc Stift
- Department of Biology, University of Konstanz, Universitätsstraße, Konstanz, Germany
| | - Gudrun Winter
- Department of Biology, University of Konstanz, Universitätsstraße, Konstanz, Germany
| | - Iwona Adamska
- Department of Biology, University of Konstanz, Universitätsstraße, Konstanz, Germany
| | - Christiane Funk
- Department of Chemistry, Umeå University, Linnaeus väg, Umeå, Sweden
| | - Pitter F Huesgen
- Central Institute for Engineering, Electronics and Analytics, ZEA-3 Analytics, Forschungszentrum Jülich, Wilhelm-Johnen-Straße, Jülich, Germany
- Medical Faculty and University Hospital, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Dietmar Funck
- Department of Biology, University of Konstanz, Universitätsstraße, Konstanz, Germany
| |
Collapse
|
12
|
Rei Liao JY, van Wijk KJ. Discovery of AAA+ Protease Substrates through Trapping Approaches. Trends Biochem Sci 2019; 44:528-545. [PMID: 30773324 DOI: 10.1016/j.tibs.2018.12.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 12/17/2018] [Indexed: 12/27/2022]
Abstract
Proteases play essential roles in cellular proteostasis. Mechanisms through which proteases recognize their substrates are often hard to predict and therefore require experimentation. In vivo trapping allows systematic identification of potential substrates of proteases, their adaptors, and chaperones. This combines in vivo genetic modifications of proteolytic systems, stabilized protease-substrate interactions, affinity enrichments of trapped substrates, and mass spectrometry (MS)-based identification. In vitro approaches, in which immobilized protease components are incubated with isolated cellular proteome, complement this in vivo approach. Both approaches can provide information about substrate recognition signals, degrons, and conditional effects. This review summarizes published trapping studies and their biological outcomes, and provides recommendations for substrate trapping of the processive AAA+ Clp, Lon, and FtsH chaperone proteolytic systems.
Collapse
Affiliation(s)
- Jui-Yun Rei Liao
- Section of Plant Biology, School of Integrative Plant Sciences (SIPS), Cornell University, Ithaca, NY 14853, USA
| | - Klaas J van Wijk
- Section of Plant Biology, School of Integrative Plant Sciences (SIPS), Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
13
|
Editorial for Special Issue "Plant Mitochondria". Int J Mol Sci 2018; 19:ijms19123849. [PMID: 30513904 PMCID: PMC6321511 DOI: 10.3390/ijms19123849] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 11/30/2018] [Indexed: 12/22/2022] Open
|
14
|
AAA Proteases: Guardians of Mitochondrial Function and Homeostasis. Cells 2018; 7:cells7100163. [PMID: 30314276 PMCID: PMC6210556 DOI: 10.3390/cells7100163] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 10/04/2018] [Accepted: 10/09/2018] [Indexed: 12/30/2022] Open
Abstract
Mitochondria are dynamic, semi-autonomous organelles that execute numerous life-sustaining tasks in eukaryotic cells. Functioning of mitochondria depends on the adequate action of versatile proteinaceous machineries. Fine-tuning of mitochondrial activity in response to cellular needs involves continuous remodeling of organellar proteome. This process not only includes modulation of various biogenetic pathways, but also the removal of superfluous proteins by adenosine triphosphate (ATP)-driven proteolytic machineries. Accordingly, all mitochondrial sub-compartments are under persistent surveillance of ATP-dependent proteases. Particularly important are highly conserved two inner mitochondrial membrane-bound metalloproteases known as m-AAA and i-AAA (ATPases associated with diverse cellular activities), whose mis-functioning may lead to impaired organellar function and consequently to development of severe diseases. Herein, we discuss the current knowledge of yeast, mammalian, and plant AAA proteases and their implications in mitochondrial function and homeostasis maintenance.
Collapse
|
15
|
Heidorn-Czarna M, Domanski D, Kwasniak-Owczarek M, Janska H. Targeted Proteomics Approach Toward Understanding the Role of the Mitochondrial Protease FTSH4 in the Biogenesis of OXPHOS During Arabidopsis Seed Germination. FRONTIERS IN PLANT SCIENCE 2018; 9:821. [PMID: 29963070 PMCID: PMC6014109 DOI: 10.3389/fpls.2018.00821] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 05/28/2018] [Indexed: 05/23/2023]
Abstract
Seed germination provides an excellent model to study the process of mitochondrial biogenesis. It is a complex and strictly regulated process which requires a proper biogenesis of fully active organelles from existing promitochondrial structures. We have previously reported that the lack of the inner mitochondrial membrane protease FTSH4 delayed Arabidopsis seed germination. Here, we implemented a targeted mass spectrometry-based approach, Multiple Reaction Monitoring (MRM), with stable-isotope-labeled standard peptides for increased sensitivity, to quantify mitochondrial proteins in dry and germinating wild-type and ftsh4 mutant seeds, lacking the FTSH4 protease. Using total seed protein extracts we measured the abundance of the peptide targets belonging to the OXPHOS complexes, AOX1A, transport, and inner membrane scaffold as well as mitochondrial proteins that are highly specific to dry and germinating seeds. The MRM assay showed that the abundance of these proteins in ftsh4 did not differ substantially from that observed in wild-type at the level of dry seed and after stratification, but we observed a reduction in protein abundance in most of the examined OXPHOS subunits in the later stages of germination. These changes in OXPHOS protein levels in ftsh4 mutants were accompanied by a lower cytochrome pathway activity as well as an increased AOX1A amount at the transcript and protein level and alternative pathway activity. The analyses of the steady-state transcript levels of mitochondrial and nuclear genes encoding OXPHOS subunits did not show significant difference in their amount, indicating that the observed changes in the OXPHOS occurred at the post-transcriptional level. At the time when ftsh4 seeds were fully germinated, the abundance of the OXPHOS proteins in the mutant was either slightly lowered or comparable to these amounts in wild-type seeds at the similar developmental stage. By the implementation of an integrative approach combining targeted proteomics, quantitative transcriptomics, and physiological studies we have shown that the FTSH4 protease has an important role in the biogenesis of OXPHOS and thus biogenesis of mitochondria during germination of Arabidopsis seeds.
Collapse
Affiliation(s)
- Malgorzata Heidorn-Czarna
- Department of Cellular Molecular Biology, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Dominik Domanski
- Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | | | - Hanna Janska
- Department of Cellular Molecular Biology, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| |
Collapse
|
16
|
Dolzblasz A, Gola EM, Sokołowska K, Smakowska-Luzan E, Twardawska A, Janska H. Impairment of Meristem Proliferation in Plants Lacking the Mitochondrial Protease AtFTSH4. Int J Mol Sci 2018. [PMID: 29538317 PMCID: PMC5877714 DOI: 10.3390/ijms19030853] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Shoot and root apical meristems (SAM and RAM, respectively) are crucial to provide cells for growth and organogenesis and therefore need to be maintained throughout the life of a plant. However, plants lacking the mitochondrial protease AtFTSH4 exhibit an intriguing phenotype of precocious cessation of growth at both the shoot and root apices when grown at elevated temperatures. This is due to the accumulation of internal oxidative stress and progressive mitochondria dysfunction. To explore the impacts of the internal oxidative stress on SAM and RAM functioning, we study the expression of selected meristem-specific (STM, CLV3, WOX5) and cell cycle-related (e.g., CYCB1, CYCD3;1) genes at the level of the promoter activity and/or transcript abundance in wild-type and loss-of-function ftsh4-1 mutant plants grown at 30 °C. In addition, we monitor cell cycle progression directly in apical meristems and analyze the responsiveness of SAM and RAM to plant hormones. We show that growth arrest in the ftsh4-1 mutant is caused by cell cycle dysregulation in addition to the loss of stem cell identity. Both the SAM and RAM gradually lose their proliferative activity, but with different timing relative to CYCB1 transcriptional activity (a marker of G2-M transition), which cannot be compensated by exogenous hormones.
Collapse
Affiliation(s)
- Alicja Dolzblasz
- Faculty of Biological Sciences, Institute of Experimental Biology, Kanonia 6/8, 50-328 Wroclaw, Poland.
| | - Edyta M Gola
- Faculty of Biological Sciences, Institute of Experimental Biology, Kanonia 6/8, 50-328 Wroclaw, Poland.
| | - Katarzyna Sokołowska
- Faculty of Biological Sciences, Institute of Experimental Biology, Kanonia 6/8, 50-328 Wroclaw, Poland.
| | - Elwira Smakowska-Luzan
- Faculty of Biotechnology, University of Wroclaw, F. Joliot-Curie 14A, 50-383 Wroclaw, Poland.
| | - Adriana Twardawska
- Faculty of Biological Sciences, Institute of Experimental Biology, Kanonia 6/8, 50-328 Wroclaw, Poland.
| | - Hanna Janska
- Faculty of Biotechnology, University of Wroclaw, F. Joliot-Curie 14A, 50-383 Wroclaw, Poland.
| |
Collapse
|