1
|
Zhao X, Zhu M, Wang Z, Gao M, Long Y, Zhou S, Wang W. The Alleviative Effect of Sodium Butyrate on Dexamethasone-Induced Skeletal Muscle Atrophy. Cell Biol Int 2025; 49:508-521. [PMID: 39936899 DOI: 10.1002/cbin.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 01/18/2025] [Accepted: 02/03/2025] [Indexed: 02/13/2025]
Abstract
Skeletal muscle mass is significantly negatively regulated by glucocorticoids. Following glucocorticoid administration, the balance between protein synthesis and breakdown in skeletal muscle is disrupted, shifting towards a predominance of catabolic metabolism. Short-chain fatty acids like sodium butyrate have been found to regulate inflammatory reactions and successively activate signaling pathways. The preventive benefits of sodium butyrate against dexamethasone-induced skeletal muscle atrophy and myotube atrophy models were examined in this work, and the underlying mechanism was clarified. A total of 32 6-week-old C57BL/6 inbred male mice were randomly assigned to one of four groups and treated with dexamethasone to induce muscle atrophy and sodium butyrate. We found that sodium succinate alleviated dexamethasone-induced myotube atrophy in the myotube atrophy model by lowering the gene expression of two E3 ubiquitin ligases, Atrogin-1 and MURF1, and activating the AKT/mTOR signaling pathway. Pertussis toxin reversed this effect, indicating that G protein-coupled receptors were involved in sodium butyrate's action as a mediator. Additionally, pre-treatment with sodium butyrate lowered weight and muscle mass loss in a mouse model of skeletal muscle atrophy, dramatically decreased the MURF1 gene expression and decreased the nuclear translocation of the glucocorticoid receptor. In conclusion, this study shows that sodium butyrate inhibits the expression of atrophy genes, thus preventing the breakdown of proteins and the loss of muscle mass, while also inhibiting weight loss, in animal models.
Collapse
Affiliation(s)
- Xingchen Zhao
- Innovative Institute of Animal Healthy Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Mingqiang Zhu
- Innovative Institute of Animal Healthy Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Zifan Wang
- College of Animal Science and Veterinary, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Ming Gao
- Innovative Institute of Animal Healthy Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Yifei Long
- Innovative Institute of Animal Healthy Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Shuo Zhou
- Innovative Institute of Animal Healthy Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Wei Wang
- Innovative Institute of Animal Healthy Breeding, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
- College of Animal Science and Veterinary, Shenyang Agricultural University, Shenyang, Liaoning, China
| |
Collapse
|
2
|
Li D, Pei Y, Liang L, Wang Z, Gai X, Sun Y. ADAMTS4 Reduction Contributes to Extracellular Matrix Deposition and Impaired Myogenesis in the Skeletal Muscle of Cigarette Smoke-Exposed Mice. Biomedicines 2025; 13:474. [PMID: 40002887 PMCID: PMC11853528 DOI: 10.3390/biomedicines13020474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/10/2025] [Accepted: 02/12/2025] [Indexed: 02/27/2025] Open
Abstract
Background: The extracellular matrix (ECM) plays a critical role in the proper regeneration of skeletal muscle. ECM remodeling has been reported in the skeletal muscle of chronic obstructive pulmonary disease (COPD), while the mechanisms remain poorly understood. Methods: In this study, we examined the dynamic interplay between ECM components and ECM enzymes in COPD skeletal muscle and cigarette smoke (CS) extract-treated C2C12 cells. C2C12 cells were further used to evaluate the role of a disintegrin and metalloproteinase with thrombospondin motif 4 (ADAMTS4) in ECM remodeling and myogenesis. Results: Chronic CS exposure induced the development of COPD and comorbid sarcopenia in C57BL/6J mice. Muscle fibrosis was observed in the gastrocnemius muscle of CS-exposed mice, accompanied by an upregulation of protein expression but a downregulation of mRNA levels of fibronectin and versican. We found that the discrepancy of mRNA and protein expression was attributed to the aberrant secretion of some ECM enzymes belonging to matrix metalloproteinases and ADAMTS proteases, especially ADAMTS4. CS exposure reduced ADAMTS4 expression in gastrocnemius muscles and C2C12 cells, and Adamts4 knockdown induced fibronectin and versican accumulation and impeded myogenic process. Conclusions: Considering that recent studies have indicated an impaired skeletal muscle regeneration in COPD, we suggested that the restrained production of ADAMTS4 in response to CS could be involved in the damaged muscle regeneration through regulating skeletal muscle ECM in COPD. Targeting ECM enzymes may benefit the rehabilitation of COPD-related sarcopenia.
Collapse
Affiliation(s)
| | | | | | | | - Xiaoyan Gai
- Department of Respiratory and Critical Care Medicine, Research Center for Chronic Airway Diseases, Peking University Third Hospital, Peking University Health Science Center, Beijing 100191, China; (D.L.); (Y.P.); (L.L.); (Z.W.)
| | - Yongchang Sun
- Department of Respiratory and Critical Care Medicine, Research Center for Chronic Airway Diseases, Peking University Third Hospital, Peking University Health Science Center, Beijing 100191, China; (D.L.); (Y.P.); (L.L.); (Z.W.)
| |
Collapse
|
3
|
Debruin D, McRae NL, Addinsall AB, McCulloch DR, Barker RG, Debrincat D, Hayes A, Murphy RM, Stupka N. In dystrophic mdx hindlimb muscles where fibrosis is limited, versican haploinsufficiency transiently improves contractile function without reducing inflammation. Am J Physiol Cell Physiol 2024; 327:C1035-C1050. [PMID: 39159389 DOI: 10.1152/ajpcell.00320.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/06/2024] [Accepted: 08/06/2024] [Indexed: 08/21/2024]
Abstract
Versican is increased with inflammation and fibrosis, and is upregulated in Duchenne muscular dystrophy. In fibrotic diaphragm muscles from dystrophic mdx mice, genetic reduction of versican attenuated macrophage infiltration and improved contractile function. Versican is also implicated in myogenesis. Here, we investigated whether versican modulated mdx hindlimb muscle pathology, where inflammation and regeneration are increased but fibrosis is minimal. Immunohistochemistry and qRT-PCR were used to assess how fiber type and glucocorticoids (α-methylprednisolone) modify versican expression. To genetically reduce versican, female mdx and male versican haploinsufficient (hdf) mice were bred resulting in male mdx-hdf and mdx (control) pups. Versican expression, contractile function, and pathology were evaluated in hindlimb muscles. Versican immunoreactivity was greater in slow versus fast hindlimb muscles. Versican mRNA transcripts were reduced by α-methylprednisolone in soleus, but not in fast extensor digitorum longus, muscles. In juvenile (6-wk-old) mdx-hdf mice, versican expression was most robustly decreased in soleus muscles leading to improved force output and a modest reduction in fatiguability. These functional benefits were not accompanied by decreased inflammation. Muscle architecture, regeneration markers, and fiber type also did not differ between mdx-hdf mice and mdx littermates. Improvements in soleus contractile function were not retained in adult (20-wk-old) mdx-hdf mice. In conclusion, soleus muscles from juvenile mdx mice were most responsive to pharmacological or genetic approaches targeting versican; however, the benefits of versican reduction were limited due to low fibrosis. Preclinical matrix research in dystrophy should account for muscle phenotype (including age) and the interdependence between inflammation and fibrosis. NEW & NOTEWORTHY The proteoglycan versican is upregulated in muscular dystrophy. In fibrotic diaphragm muscles from mdx mice, versican reduction attenuated macrophage infiltration and improved performance. Here, in hindlimb muscles from 6- and 20-wk-old mdx mice, where pathology is mild, versican reduction did not decrease inflammation and contractile function improvements were limited to juvenile mice. In dystrophic mdx muscles, the association between versican and inflammation is mediated by fibrosis, demonstrating interdependence between the immune system and extracellular matrix.
Collapse
MESH Headings
- Animals
- Female
- Male
- Mice
- Fibrosis
- Haploinsufficiency
- Hindlimb
- Inflammation/metabolism
- Inflammation/genetics
- Inflammation/pathology
- Mice, Inbred C57BL
- Mice, Inbred mdx
- Muscle Contraction
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/physiopathology
- Muscular Dystrophy, Duchenne/genetics
- Muscular Dystrophy, Duchenne/physiopathology
- Muscular Dystrophy, Duchenne/metabolism
- Muscular Dystrophy, Duchenne/pathology
- Versicans/genetics
- Versicans/metabolism
Collapse
Affiliation(s)
- Danielle Debruin
- Department of Medicine - Western Health, The University of Melbourne, Melbourne, Victoria, Australia
- Institute for Health and Sport (IHeS), Victoria University, Melbourne, Victoria, Australia
| | - Natasha L McRae
- Centre for Molecular and Medical Research, School of Medicine, Deakin University, Geelong, Victoria, Australia
| | - Alex B Addinsall
- Centre for Molecular and Medical Research, School of Medicine, Deakin University, Geelong, Victoria, Australia
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Daniel R McCulloch
- Centre for Molecular and Medical Research, School of Medicine, Deakin University, Geelong, Victoria, Australia
| | - Robert G Barker
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, Victoria, Australia
| | - Didier Debrincat
- Institute for Health and Sport (IHeS), Victoria University, Melbourne, Victoria, Australia
| | - Alan Hayes
- Department of Medicine - Western Health, The University of Melbourne, Melbourne, Victoria, Australia
- Institute for Health and Sport (IHeS), Victoria University, Melbourne, Victoria, Australia
- Australian Institute for Musculoskeletal Sciences (AIMSS), Victoria University & Western Health, Melbourne, Victoria, Australia
| | - Robyn M Murphy
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, Victoria, Australia
| | - Nicole Stupka
- Department of Medicine - Western Health, The University of Melbourne, Melbourne, Victoria, Australia
- Institute for Health and Sport (IHeS), Victoria University, Melbourne, Victoria, Australia
| |
Collapse
|
4
|
Yeo C, Kim H, Jeon WJ, Lee J, Hong JY, Kim H, Lee YJ, Baek SH, Ha IH. Protective effect of Luffa cylindrica Roemer against dexamethasone-induced muscle atrophy in primary rat skeletal muscle cells. J Muscle Res Cell Motil 2024; 45:1-10. [PMID: 37845555 PMCID: PMC10844154 DOI: 10.1007/s10974-023-09661-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/09/2023] [Indexed: 10/18/2023]
Abstract
Glucocorticoids (GCs) are commonly used in the treatment of chronic inflammatory conditions. However, the administration of high doses and long-term use of GCs can induce muscle atrophy (MA) in patients, leading to a decline in quality of life and increased mortality. MA leads to protein degradation in skeletal muscle, resulting in a reduction of muscle mass. This process is triggered by GCs like dexamethasone (DEX), which induce the expression of E3 ubiquitin ligases, namely Atrogin-1 and muscle RING-finger protein-1 (MuRF1). In this study, we examined the anti-MA potential of Luffa cylindrica Roemer (LCR) on DEX-treated primary skeletal myotubes. Primary skeletal myotubes stimulated with LCR alone resulted in a significant upregulation of myotube development, characterized by an increase in both the number and diameter of myotubes. Contrastingly, combined treatment with LCR and DEX reduced the expression of Atrogin-1, while treatment with DEX alone induced the expression of MuRF1. Furthermore, LCR treatment successfully restored the number and diameter of myotubes that had been diminished by DEX treatment. These findings suggest that LCR holds potential for treating MA, as an accelerating effect on muscle development and anti-MA effects on primary skeletal muscle cells were observed.
Collapse
Affiliation(s)
- Changhwan Yeo
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul, 135-896, Republic of Korea
| | - Hyunseong Kim
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul, 135-896, Republic of Korea
| | - Wan-Jin Jeon
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul, 135-896, Republic of Korea
| | - Junseon Lee
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul, 135-896, Republic of Korea
| | - Jin Young Hong
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul, 135-896, Republic of Korea
| | - Hyun Kim
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul, 135-896, Republic of Korea
| | - Yoon Jae Lee
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul, 135-896, Republic of Korea
| | - Seung Ho Baek
- College of Korean Medicine, Dongguk University, 32, Dongguk-ro, Ilsandong-gu, Goyang-si, 10326, Gyeonggi-do, Republic of Korea
| | - In-Hyuk Ha
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul, 135-896, Republic of Korea.
| |
Collapse
|
5
|
Núñez-Carpintero I, Rigau M, Bosio M, O'Connor E, Spendiff S, Azuma Y, Topf A, Thompson R, 't Hoen PAC, Chamova T, Tournev I, Guergueltcheva V, Laurie S, Beltran S, Capella-Gutiérrez S, Cirillo D, Lochmüller H, Valencia A. Rare disease research workflow using multilayer networks elucidates the molecular determinants of severity in Congenital Myasthenic Syndromes. Nat Commun 2024; 15:1227. [PMID: 38418480 PMCID: PMC10902324 DOI: 10.1038/s41467-024-45099-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 01/15/2024] [Indexed: 03/01/2024] Open
Abstract
Exploring the molecular basis of disease severity in rare disease scenarios is a challenging task provided the limitations on data availability. Causative genes have been described for Congenital Myasthenic Syndromes (CMS), a group of diverse minority neuromuscular junction (NMJ) disorders; yet a molecular explanation for the phenotypic severity differences remains unclear. Here, we present a workflow to explore the functional relationships between CMS causal genes and altered genes from each patient, based on multilayer network community detection analysis of complementary biomedical information provided by relevant data sources, namely protein-protein interactions, pathways and metabolomics. Our results show that CMS severity can be ascribed to the personalized impairment of extracellular matrix components and postsynaptic modulators of acetylcholine receptor (AChR) clustering. This work showcases how coupling multilayer network analysis with personalized -omics information provides molecular explanations to the varying severity of rare diseases; paving the way for sorting out similar cases in other rare diseases.
Collapse
Affiliation(s)
- Iker Núñez-Carpintero
- Barcelona Supercomputing Center (BSC), Plaça Eusebi Güell, 1-3, 08034, Barcelona, Spain
| | - Maria Rigau
- Barcelona Supercomputing Center (BSC), Plaça Eusebi Güell, 1-3, 08034, Barcelona, Spain
- MRC London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Mattia Bosio
- Barcelona Supercomputing Center (BSC), Plaça Eusebi Güell, 1-3, 08034, Barcelona, Spain
- Coordination Unit Spanish National Bioinformatics Institute (INB/ELIXIR-ES), Barcelona Supercomputing Center, Barcelona, Spain
| | - Emily O'Connor
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
- Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Sally Spendiff
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| | - Yoshiteru Azuma
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
- Department of Pediatrics, Aichi Medical University, Nagakute, Japan
| | - Ana Topf
- John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Rachel Thompson
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| | - Peter A C 't Hoen
- Center for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands
| | - Teodora Chamova
- Department of Neurology, Expert Centre for Hereditary Neurologic and Metabolic Disorders, Alexandrovska University Hospital, Medical University-Sofia, Sofia, Bulgaria
| | - Ivailo Tournev
- Department of Neurology, Expert Centre for Hereditary Neurologic and Metabolic Disorders, Alexandrovska University Hospital, Medical University-Sofia, Sofia, Bulgaria
- Department of Cognitive Science and Psychology, New Bulgarian University, Sofia, 1618, Bulgaria
| | - Velina Guergueltcheva
- Clinic of Neurology, University Hospital Sofiamed, Sofia University St. Kliment Ohridski, Sofia, Bulgaria
| | - Steven Laurie
- Centro Nacional de Análisis Genómico (CNAG-CRG), Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona, Catalonia, Spain
| | - Sergi Beltran
- Centro Nacional de Análisis Genómico (CNAG-CRG), Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona, Catalonia, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Spain
| | - Salvador Capella-Gutiérrez
- Barcelona Supercomputing Center (BSC), Plaça Eusebi Güell, 1-3, 08034, Barcelona, Spain
- Coordination Unit Spanish National Bioinformatics Institute (INB/ELIXIR-ES), Barcelona Supercomputing Center, Barcelona, Spain
| | - Davide Cirillo
- Barcelona Supercomputing Center (BSC), Plaça Eusebi Güell, 1-3, 08034, Barcelona, Spain.
| | - Hanns Lochmüller
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
- Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
- Centro Nacional de Análisis Genómico (CNAG-CRG), Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona, Catalonia, Spain
- Division of Neurology, Department of Medicine, The Ottawa Hospital, Ottawa, ON, Canada
- Department of Neuropediatrics and Muscle Disorders, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Alfonso Valencia
- Barcelona Supercomputing Center (BSC), Plaça Eusebi Güell, 1-3, 08034, Barcelona, Spain
- Coordination Unit Spanish National Bioinformatics Institute (INB/ELIXIR-ES), Barcelona Supercomputing Center, Barcelona, Spain
- ICREA, Pg. Lluís Companys 23, 08010, Barcelona, Spain
| |
Collapse
|
6
|
Grobbelaar S, Mercier AE, van den Bout I, Durandt C, Pepper MS. Considerations for enhanced mesenchymal stromal/stem cell myogenic commitment in vitro. Clin Transl Sci 2024; 17:e13703. [PMID: 38098144 PMCID: PMC10787211 DOI: 10.1111/cts.13703] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/16/2023] [Accepted: 12/09/2023] [Indexed: 01/15/2024] Open
Abstract
The generation of tissue from stem cells is an alluring concept as it holds a number of potential applications in clinical therapeutics and regenerative medicine. Mesenchymal stromal/stem cells (MSCs) can be isolated from a number of different somatic sources, and have the capacity to differentiate into adipogenic, osteogenic, chondrogenic, and myogenic lineages. Although the first three have been extensively investigated, there remains a paucity of literature on the latter. This review looks at the various strategies available in vitro to enhance harvested MSC commitment and differentiation into the myogenic pathway. These include chemical inducers, myogenic-enhancing cell culture substrates, and mechanical and dynamic culturing conditions. Drawing on information from embryonic and postnatal myogenesis from somites, satellite, and myogenic progenitor cells, the mechanisms behind the chemical and mechanical induction strategies can be studied, and the sequential gene and signaling cascades can be used to monitor the progression of myogenic differentiation in the laboratory. Increased understanding of the stimuli and signaling mechanisms in the initial stages of MSC myogenic commitment will provide tools with which we can enhance their differentiation efficacy and advance the process to clinical translation.
Collapse
Affiliation(s)
- Simone Grobbelaar
- Department of Physiology, School of Medicine, Faculty of Health SciencesUniversity of PretoriaPretoriaSouth Africa
- Institute for Cellular and Molecular Medicine, Department of Immunology, and South African Medical Research Council Extramural Unit for Stem Cell Research and Therapy, School of Medicine, Faculty of Health SciencesUniversity of PretoriaPretoriaSouth Africa
| | - Anne E. Mercier
- Department of Physiology, School of Medicine, Faculty of Health SciencesUniversity of PretoriaPretoriaSouth Africa
| | - Iman van den Bout
- Department of Physiology, School of Medicine, Faculty of Health SciencesUniversity of PretoriaPretoriaSouth Africa
- Centre for Neuroendocrinology, Department of Immunology, School of Medicine, Faculty of Health SciencesUniversity of PretoriaPretoriaSouth Africa
| | - Chrisna Durandt
- Institute for Cellular and Molecular Medicine, Department of Immunology, and South African Medical Research Council Extramural Unit for Stem Cell Research and Therapy, School of Medicine, Faculty of Health SciencesUniversity of PretoriaPretoriaSouth Africa
| | - Michael S. Pepper
- Institute for Cellular and Molecular Medicine, Department of Immunology, and South African Medical Research Council Extramural Unit for Stem Cell Research and Therapy, School of Medicine, Faculty of Health SciencesUniversity of PretoriaPretoriaSouth Africa
| |
Collapse
|
7
|
Uapinyoying P, Hogarth M, Battacharya S, Mázala DA, Panchapakesan K, Bönnemann CG, Jaiswal JK. Single-cell transcriptomic analysis of the identity and function of fibro/adipogenic progenitors in healthy and dystrophic muscle. iScience 2023; 26:107479. [PMID: 37599828 PMCID: PMC10432818 DOI: 10.1016/j.isci.2023.107479] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/20/2023] [Accepted: 07/20/2023] [Indexed: 08/22/2023] Open
Abstract
Fibro/adipogenic progenitors (FAPs) are skeletal muscle stromal cells that support regeneration of injured myofibers and their maintenance in healthy muscles. FAPs are related to mesenchymal stem cells (MSCs/MeSCs) found in other adult tissues, but there is poor understanding of the extent of similarity between these cells. Using single-cell RNA sequencing (scRNA-seq) datasets from multiple mouse tissues, we have performed comparative transcriptomic analysis. This identified remarkable transcriptional similarity between FAPs and MeSCs, confirmed the suitability of PDGFRα as a reporter for FAPs, and identified extracellular proteolysis as a new FAP function. Using PDGFRα as a cell surface marker, we isolated FAPs from healthy and dysferlinopathic mouse muscles and performed scRNA-seq analysis. This revealed decreased FAP-mediated Wnt signaling as a potential driver of FAP dysfunction in dysferlinopathic muscles. Analysis of FAPs in dysferlin- and dystrophin-deficient muscles identified a relationship between the nature of muscle pathology and alteration in FAP gene expression.
Collapse
Affiliation(s)
- Prech Uapinyoying
- Center for Genetic Medicine Research, Children’s National Research and Innovation Campus, Children’s National Hospital, Washington, DC 20012, USA
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Marshall Hogarth
- Center for Genetic Medicine Research, Children’s National Research and Innovation Campus, Children’s National Hospital, Washington, DC 20012, USA
| | - Surajit Battacharya
- Center for Genetic Medicine Research, Children’s National Research and Innovation Campus, Children’s National Hospital, Washington, DC 20012, USA
| | - Davi A.G. Mázala
- Center for Genetic Medicine Research, Children’s National Research and Innovation Campus, Children’s National Hospital, Washington, DC 20012, USA
- Department of Kinesiology, College of Health Professions, Towson University, Towson, MD 21252, USA
| | - Karuna Panchapakesan
- Center for Genetic Medicine Research, Children’s National Research and Innovation Campus, Children’s National Hospital, Washington, DC 20012, USA
| | - Carsten G. Bönnemann
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jyoti K. Jaiswal
- Center for Genetic Medicine Research, Children’s National Research and Innovation Campus, Children’s National Hospital, Washington, DC 20012, USA
- Department of Genomics and Precision Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC 20052, USA
| |
Collapse
|
8
|
McNamara SL, Seo BR, Freedman BR, Roloson EB, Alvarez JT, O'Neill CT, Vandenburgh HH, Walsh CJ, Mooney DJ. Anti-inflammatory therapy enables robot-actuated regeneration of aged muscle. Sci Robot 2023; 8:eadd9369. [PMID: 36947599 DOI: 10.1126/scirobotics.add9369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
Robot-actuated mechanical loading (ML)-based therapies ("mechanotherapies") can promote regeneration after severe skeletal muscle injury, but the effectiveness of such approaches during aging is unknown and may be influenced by age-associated decline in the healing capacity of skeletal muscle. To address this knowledge gap, this work used a noninvasive, load-controlled robotic device to impose highly defined tissue stresses to evaluate the age dependence of ML on muscle repair after injury. The response of injured muscle to robot-actuated cyclic compressive loading was found to be age sensitive, revealing not only a lack of reparative benefit of ML on injured aged muscles but also exacerbation of tissue inflammation. ML alone also disrupted the normal regenerative processes of aged muscle stem cells. However, these negative effects could be reversed by introducing anti-inflammatory therapy alongside ML application, leading to enhanced skeletal muscle regeneration even in aged mice.
Collapse
Affiliation(s)
- S L McNamara
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - B R Seo
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - B R Freedman
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - E B Roloson
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - J T Alvarez
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - C T O'Neill
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - H H Vandenburgh
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| | - C J Walsh
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - D J Mooney
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| |
Collapse
|
9
|
VanGenderen CA, Granet JA, Filippelli RL, Liu Y, Chang NC. Modulating Myogenesis: An Optimized In Vitro Assay to Pharmacologically Influence Primary Myoblast Differentiation. Curr Protoc 2022; 2:e565. [PMID: 36165685 DOI: 10.1002/cpz1.565] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The intentional pharmacological manipulation of myogenesis is an important technique for understanding the underlying mechanisms of muscle differentiation and disease etiology. Using the pharmacological agent metformin as an example molecule, we present a systematic approach to examine the impact of pharmacological agents on the myogenic program. This consists of optimizing the in vitro differentiation of primary myoblast cells followed by the generation of a dose-response curve for a respective pharmaceutical. To assess myogenic differentiation, we utilized three approaches (incorporating both transcriptional and protein techniques) to assess the effects of biologically active agents on the in vitro differentiation of primary myogenic progenitors. First, the immunofluorescent visualization of myosin heavy chain (MYHC), which is expressed in differentiated myofibers, is used to obtain the fusion index, a quantitative read-out of differentiation efficiency. Second, quantitative reverse transcription PCR (RT-qPCR) reveals the expression of myogenic factors (Pax7, Myf5, Myod, Myog, Myh2) at the transcript level. Third, western blotting is used to assess the protein expression levels of the myogenic markers (PAX7, MYF5, MYOD, MYOG, and MYHC). By monitoring the expression of these various myogenic factors during the differentiation process, the relative cellular state and differentiation status between samples can be determined. Combined, these approaches enable the successful assessment of the impact of pharmacological agents on myogenic differentiation. © 2022 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol: Immunofluorescence assay for qualitative and quantitative assessment of pharmacological agents on in vitro myogenic differentiation Support Protocol 1: Evaluating myogenic gene expression by RT-qPCR Support Protocol 2: Evaluating myogenic protein expression by western blot.
Collapse
Affiliation(s)
| | | | | | - Yiyang Liu
- McGill University, Montréal, Québec, Canada
| | | |
Collapse
|
10
|
Wang Y, Xiao Y, Zheng Y, Yang L, Wang D. An anti-ADAMTS1 treatment relieved muscle dysfunction and fibrosis in dystrophic mice. Life Sci 2021; 281:119756. [PMID: 34175316 DOI: 10.1016/j.lfs.2021.119756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 06/07/2021] [Accepted: 06/11/2021] [Indexed: 11/27/2022]
Abstract
Duchenne Muscular Dystrophy (DMD) is caused by mutations in the dystrophin gene, accompanied by aberrant extracellular matrix synthesis and muscle damage. ADAMTS1 metalloproteinase was reported increased in dystrophin-deficient mdx mouse. The aim of this study was to explore the role of ADAMTS1 in muscle function, fibrosis and damage, and respiratory function of mdx mice. 102 DMD patients and their mothers were included in this study. Multiplex ligation dependent probe amplification (MLPA) assay and Next-generation sequencing (NGS) were adopted to do genetic diagnosis. Dystrophin-deficient mdx mice were treated with anti-ADAMTS1 antibody (anti-ADAMTS1) for three weeks. The results showed that ADAMTS1 was increased in gastrocnemius muscle of mdx mice and serum of DMD patients. Anti-ADAMTS1 treatment increased Versican transcription but suppressed versican protein expression. Besides, we found anti-ADAMTS1 improved muscle strength, diaphragm and extensor digitorum longus muscles functions in mdx mice. Meanwhile, muscle fibrosis and damage were attenuated in anti-ADAMTS1 treated dystrophic mice. In summary, anti-ADAMTS1 antibody relieved muscle dysfunction and fibrosis in dystrophic mice. It is suggested that ADAMTS1 is a potential target for developing new biological therapies for DMD.
Collapse
Affiliation(s)
- Yan Wang
- Department of Pediatrics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi 'an 710004, Shaanxi Province, China; Department of Neurology, Xi'an Children's Hospital, Xi'an 710000, Shaanxi Province, China
| | - Yanfeng Xiao
- Department of Pediatrics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi 'an 710004, Shaanxi Province, China.
| | - Yanyan Zheng
- Department of Neurology, Xi'an Children's Hospital, Xi'an 710000, Shaanxi Province, China
| | - Le Yang
- Department of Neurology, Xi'an Children's Hospital, Xi'an 710000, Shaanxi Province, China
| | - Dong Wang
- Department of Neurology, Xi'an Children's Hospital, Xi'an 710000, Shaanxi Province, China
| |
Collapse
|
11
|
Zhang T, Kong X. Recent advances of glucocorticoids in the treatment of Duchenne muscular dystrophy (Review). Exp Ther Med 2021; 21:447. [PMID: 33777191 PMCID: PMC7967797 DOI: 10.3892/etm.2021.9875] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 12/18/2020] [Indexed: 12/14/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is the most common degenerative neuromuscular disease. The incidence of DMD in live births is 1/3,600-1/6,000. Although glucocorticoid-dependent medication is the mainstay treatment option for DMD, a standard treatment regimen has yet to be determined. The present review discusses the literature on the timing, methods and courses of glucocorticoid treatment for DMD. The review highlights the importance of the immediate commencement of glucocorticoid treatment following the diagnosis of DMD, with weekend-only administration being advantageous. Adherence to long-term single-glucocorticoid therapy can delay the loss of ambulation ability, and the side effects of the treatment are controllable. However, the standard medication for patients of different ages and stages of disease development, and the use of combination therapy require further investigation.
Collapse
Affiliation(s)
- Tianyuan Zhang
- Center of Prenatal Diagnosis, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Xiangdong Kong
- Center of Prenatal Diagnosis, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
12
|
Genetic reduction of the extracellular matrix protein versican attenuates inflammatory cell infiltration and improves contractile function in dystrophic mdx diaphragm muscles. Sci Rep 2020; 10:11080. [PMID: 32632164 PMCID: PMC7338466 DOI: 10.1038/s41598-020-67464-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 05/12/2020] [Indexed: 11/09/2022] Open
Abstract
There is a persistent, aberrant accumulation of V0/V1 versican in skeletal muscles from patients with Duchenne muscular dystrophy and in diaphragm muscles from mdx mice. Versican is a provisional matrix protein implicated in fibrosis and inflammation in various disease states, yet its role in the pathogenesis of muscular dystrophy is not known. Here, female mdx and male hdf mice (haploinsufficient for the versican allele) were bred. In the resulting F1 mdx-hdf male pups, V0/V1 versican expression in diaphragm muscles was decreased by 50% compared to mdx littermates at 20-26 weeks of age. In mdx-hdf mice, spontaneous physical activity increased by 17% and there was a concomitant decrease in total energy expenditure and whole-body glucose oxidation. Versican reduction improved the ex vivo strength and endurance of diaphragm muscle strips. These changes in diaphragm contractile properties in mdx-hdf mice were associated with decreased monocyte and macrophage infiltration and a reduction in the proportion of fibres expressing the slow type I myosin heavy chain isoform. Given the high metabolic cost of inflammation in dystrophy, an attenuated inflammatory response may contribute to the effects of versican reduction on whole-body metabolism. Altogether, versican reduction ameliorates the dystrophic pathology of mdx-hdf mice as evidenced by improved diaphragm contractile function and increased physical activity.
Collapse
|
13
|
Treatment of Dystrophic mdx Mice with an ADAMTS-5 Specific Monoclonal Antibody Increases the Ex Vivo Strength of Isolated Fast Twitch Hindlimb Muscles. Biomolecules 2020; 10:biom10030416. [PMID: 32156081 PMCID: PMC7175239 DOI: 10.3390/biom10030416] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/03/2020] [Accepted: 03/03/2020] [Indexed: 12/17/2022] Open
Abstract
Aberrant extracellular matrix synthesis and remodeling contributes to muscle degeneration and weakness in Duchenne muscular dystrophy (DMD). ADAMTS-5, a secreted metalloproteinase with catalytic activity against versican, is implicated in myogenesis and inflammation. Here, using the mdx mouse model of DMD, we report increased ADAMTS-5 expression in dystrophic hindlimb muscles, localized to regions of regeneration and inflammation. To investigate the pathophysiological significance of this, 4-week-old mdx mice were treated with an ADAMTS-5 monoclonal antibody (mAb) or IgG2c (IgG) isotype control for 3 weeks. ADAMTS-5 mAb treatment did not reduce versican processing, as protein levels of the cleaved versikine fragment did not differ between hindlimb muscles from ADAMTS-5 mAb or IgG treated mdx mice. Nonetheless, ADAMTS-5 blockade improved ex vivo strength of isolated fast extensor digitorum longus, but not slow soleus, muscles. The underpinning mechanism may include modulation of regenerative myogenesis, as ADAMTS-5 blockade reduced the number of recently repaired desmin positive myofibers without affecting the number of desmin positive muscle progenitor cells. Treatment with the ADAMTS-5 mAb did not significantly affect makers of muscle damage, inflammation, nor fiber size. Altogether, the positive effects of ADAMTS-5 blockade in dystrophic muscles are fiber-type-specific and independent of versican processing.
Collapse
|
14
|
Fang XB, Song ZB, Xie MS, Liu YM, Zhang WX. Synergistic effect of glucocorticoids and IGF-1 on myogenic differentiation through the Akt/GSK-3β pathway in C2C12 myoblasts. Int J Neurosci 2020; 130:1125-1135. [PMID: 32070170 DOI: 10.1080/00207454.2020.1730367] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Purpose: Glucocorticoids are the only therapeutics that can delay the progression of Duchenne musculardystrophy (DMD), the most prevalent type of inherited neuromuscular disorder in males. However, beyond theiranti-inflammatory effects, glucocorticoids have other underlying mechanisms that remain unclear. Moreover, muscleand circulating levels of insulin growth factor-1 (IGF-1) often decrease in response to glucocorticoids. Therefore, wehypothesized that glucocorticoids, either alone or in combination with IGF-1, can improve myogenic differentiation.Materials and methods: Established C2C12 myoblasts were employed as an in vitro model of myogenic differentiation,and myogenic differentiation markers, as assessed by Western blot (myogenin, MyoD, and MyHC protein expression),cellular morphology analysis (fusion index) and RT-PCR (MCK mRNA expression), were measured.Results: Myogenic differentiation markers were increased by glucocorticoid treatment. Furthermore, this effect was furtherenhanced by IGF-1, and these results suggest that glucocorticoids, either alone or together with IGF-1, can promotemyogenic differentiation. Akt and GSK-3β play important roles in myogenic differentiation. Interestingly, the levels ofboth phosphorylated Ser473-Akt and phosphorylated Ser9-GSK-3β were increased by glucocorticoid and IGF-1 cotreatment.Pharmacological manipulation with LY294002 and LiCl was employed to inhibit Akt and GSK-3β, respectively.We found that cellular differentiability was inhibited by LY294002 and enhanced by LiCl, indicating that theAkt/GSK-3β signaling pathway is activated by glucocorticoid and IGF-1 treatment to promote myogenic differentiation.Conclusions: Glucocorticoids together with IGF-1 promote myogenic differentiation through the Akt/GSK-3βpathway. Thus, these results further our knowledge of myogenic differentiation and may offer a potential alternativestrategy for DMD treatment based on glucocorticoid and IGF-1.
Collapse
Affiliation(s)
- Xiao-Bo Fang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zu-Biao Song
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Meng-Shu Xie
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yan-Mei Liu
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wei-Xi Zhang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
15
|
Wilkinson IVL, Perkins KJ, Dugdale H, Moir L, Vuorinen A, Chatzopoulou M, Squire SE, Monecke S, Lomow A, Geese M, Charles PD, Burch P, Tinsley JM, Wynne GM, Davies SG, Wilson FX, Rastinejad F, Mohammed S, Davies KE, Russell AJ. Chemical Proteomics and Phenotypic Profiling Identifies the Aryl Hydrocarbon Receptor as a Molecular Target of the Utrophin Modulator Ezutromid. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201912392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Isabel V. L. Wilkinson
- Department of ChemistryUniversity of OxfordChemistry Research Laboratory Mansfield Road Oxford OX1 3TA UK
| | - Kelly J. Perkins
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordSir Henry Wellcome Building of Gene Function South Parks Road Oxford OX1 3PT UK
| | - Hannah Dugdale
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordSir Henry Wellcome Building of Gene Function South Parks Road Oxford OX1 3PT UK
| | - Lee Moir
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordSir Henry Wellcome Building of Gene Function South Parks Road Oxford OX1 3PT UK
| | - Aini Vuorinen
- Department of ChemistryUniversity of OxfordChemistry Research Laboratory Mansfield Road Oxford OX1 3TA UK
| | - Maria Chatzopoulou
- Department of ChemistryUniversity of OxfordChemistry Research Laboratory Mansfield Road Oxford OX1 3TA UK
| | - Sarah E. Squire
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordSir Henry Wellcome Building of Gene Function South Parks Road Oxford OX1 3PT UK
| | - Sebastian Monecke
- Evotec International GmbHManfred Eigen Campus Essener Bogen 7 22419 Hamburg Germany
| | - Alexander Lomow
- Evotec International GmbHManfred Eigen Campus Essener Bogen 7 22419 Hamburg Germany
| | - Marcus Geese
- Evotec International GmbHManfred Eigen Campus Essener Bogen 7 22419 Hamburg Germany
| | - Philip D. Charles
- Department of BiochemistryUniversity of Oxford South Parks Rd Oxford OX1 3QU UK
- Target Discovery InstituteUniversity of OxfordOld Road Campus Roosevelt Drive Oxford OX3 7FZ UK
| | - Peter Burch
- Summit Therapeutics plc. 136a Eastern Avenue, Milton Park Abingdon Oxfordshire OX14 4SB UK
| | - Jonathan M. Tinsley
- Summit Therapeutics plc. 136a Eastern Avenue, Milton Park Abingdon Oxfordshire OX14 4SB UK
| | - Graham M. Wynne
- Department of ChemistryUniversity of OxfordChemistry Research Laboratory Mansfield Road Oxford OX1 3TA UK
| | - Stephen G. Davies
- Department of ChemistryUniversity of OxfordChemistry Research Laboratory Mansfield Road Oxford OX1 3TA UK
| | - Francis X. Wilson
- Summit Therapeutics plc. 136a Eastern Avenue, Milton Park Abingdon Oxfordshire OX14 4SB UK
| | - Fraydoon Rastinejad
- Target Discovery InstituteUniversity of OxfordOld Road Campus Roosevelt Drive Oxford OX3 7FZ UK
| | - Shabaz Mohammed
- Department of ChemistryUniversity of OxfordChemistry Research Laboratory Mansfield Road Oxford OX1 3TA UK
- Department of BiochemistryUniversity of Oxford South Parks Rd Oxford OX1 3QU UK
| | - Kay E. Davies
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordSir Henry Wellcome Building of Gene Function South Parks Road Oxford OX1 3PT UK
| | - Angela J. Russell
- Department of ChemistryUniversity of OxfordChemistry Research Laboratory Mansfield Road Oxford OX1 3TA UK
- Department of PharmacologyUniversity of Oxford Mansfield Road Oxford OX1 3PQ UK
| |
Collapse
|
16
|
Wilkinson IVL, Perkins KJ, Dugdale H, Moir L, Vuorinen A, Chatzopoulou M, Squire SE, Monecke S, Lomow A, Geese M, Charles PD, Burch P, Tinsley JM, Wynne GM, Davies SG, Wilson FX, Rastinejad F, Mohammed S, Davies KE, Russell AJ. Chemical Proteomics and Phenotypic Profiling Identifies the Aryl Hydrocarbon Receptor as a Molecular Target of the Utrophin Modulator Ezutromid. Angew Chem Int Ed Engl 2020; 59:2420-2428. [PMID: 31755636 PMCID: PMC7003794 DOI: 10.1002/anie.201912392] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/13/2019] [Indexed: 12/20/2022]
Abstract
Duchenne muscular dystrophy (DMD) is a fatal muscle-wasting disease arising from mutations in the dystrophin gene. Upregulation of utrophin to compensate for the missing dystrophin offers a potential therapy independent of patient genotype. The first-in-class utrophin modulator ezutromid/SMT C1100 was developed from a phenotypic screen through to a Phase 2 clinical trial. Promising efficacy and evidence of target engagement was observed in DMD patients after 24 weeks of treatment, however trial endpoints were not met after 48 weeks. The objective of this study was to understand the mechanism of action of ezutromid which could explain the lack of sustained efficacy and help development of new generations of utrophin modulators. Using chemical proteomics and phenotypic profiling we show that the aryl hydrocarbon receptor (AhR) is a target of ezutromid. Several lines of evidence demonstrate that ezutromid binds AhR with an apparent KD of 50 nm and behaves as an AhR antagonist. Furthermore, other reported AhR antagonists also upregulate utrophin, showing that this pathway, which is currently being explored in other clinical applications including oncology and rheumatoid arthritis, could also be exploited in future DMD therapies.
Collapse
Affiliation(s)
- Isabel V. L. Wilkinson
- Department of ChemistryUniversity of OxfordChemistry Research LaboratoryMansfield RoadOxfordOX1 3TAUK
| | - Kelly J. Perkins
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordSir Henry Wellcome Building of Gene FunctionSouth Parks RoadOxfordOX1 3PTUK
| | - Hannah Dugdale
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordSir Henry Wellcome Building of Gene FunctionSouth Parks RoadOxfordOX1 3PTUK
| | - Lee Moir
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordSir Henry Wellcome Building of Gene FunctionSouth Parks RoadOxfordOX1 3PTUK
| | - Aini Vuorinen
- Department of ChemistryUniversity of OxfordChemistry Research LaboratoryMansfield RoadOxfordOX1 3TAUK
| | - Maria Chatzopoulou
- Department of ChemistryUniversity of OxfordChemistry Research LaboratoryMansfield RoadOxfordOX1 3TAUK
| | - Sarah E. Squire
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordSir Henry Wellcome Building of Gene FunctionSouth Parks RoadOxfordOX1 3PTUK
| | - Sebastian Monecke
- Evotec International GmbHManfred Eigen CampusEssener Bogen 722419HamburgGermany
| | - Alexander Lomow
- Evotec International GmbHManfred Eigen CampusEssener Bogen 722419HamburgGermany
| | - Marcus Geese
- Evotec International GmbHManfred Eigen CampusEssener Bogen 722419HamburgGermany
| | - Philip D. Charles
- Department of BiochemistryUniversity of OxfordSouth Parks RdOxfordOX1 3QUUK
- Target Discovery InstituteUniversity of OxfordOld Road CampusRoosevelt DriveOxfordOX3 7FZUK
| | - Peter Burch
- Summit Therapeutics plc.136a Eastern Avenue, Milton ParkAbingdonOxfordshireOX14 4SBUK
| | - Jonathan M. Tinsley
- Summit Therapeutics plc.136a Eastern Avenue, Milton ParkAbingdonOxfordshireOX14 4SBUK
| | - Graham M. Wynne
- Department of ChemistryUniversity of OxfordChemistry Research LaboratoryMansfield RoadOxfordOX1 3TAUK
| | - Stephen G. Davies
- Department of ChemistryUniversity of OxfordChemistry Research LaboratoryMansfield RoadOxfordOX1 3TAUK
| | - Francis X. Wilson
- Summit Therapeutics plc.136a Eastern Avenue, Milton ParkAbingdonOxfordshireOX14 4SBUK
| | - Fraydoon Rastinejad
- Target Discovery InstituteUniversity of OxfordOld Road CampusRoosevelt DriveOxfordOX3 7FZUK
| | - Shabaz Mohammed
- Department of ChemistryUniversity of OxfordChemistry Research LaboratoryMansfield RoadOxfordOX1 3TAUK
- Department of BiochemistryUniversity of OxfordSouth Parks RdOxfordOX1 3QUUK
| | - Kay E. Davies
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordSir Henry Wellcome Building of Gene FunctionSouth Parks RoadOxfordOX1 3PTUK
| | - Angela J. Russell
- Department of ChemistryUniversity of OxfordChemistry Research LaboratoryMansfield RoadOxfordOX1 3TAUK
- Department of PharmacologyUniversity of OxfordMansfield RoadOxfordOX1 3PQUK
| |
Collapse
|
17
|
Bruna FA, Romeo LR, Campo-Verde-Arbocco F, Contador D, Gómez S, Santiano F, Sasso CV, Zyla L, López-Fontana C, Calvo JC, Carón RW, Pistone-Creydt V. Human renal adipose tissue from normal and tumor kidney: its influence on renal cell carcinoma. Oncotarget 2019; 10:5454-5467. [PMID: 31534630 PMCID: PMC6739217 DOI: 10.18632/oncotarget.27157] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 07/29/2019] [Indexed: 12/24/2022] Open
Abstract
Tumor cells can interact with neighboring adipose tissue. We evaluated components present in human adipose explants from normal (hRAN) and kidney cancer (hRAT) tissue, and we evaluated the effects of conditioned media (CMs) from hRAN and hRAT on proliferation, adhesion and migration of tumor and non-tumor human renal epithelial cell lines. In addition, we evaluated the expression of AdipoR1, ObR, CD44, vimentin, pERK and pPI3K on cell lines incubated with CMs. hRAN were obtained from healthy operated donors, and hRAT from patients who underwent a nephrectomy. hRAT showed increased levels of versican, leptin and ObR; and decreased levels of perilipin, adiponectin and AdipoR1, compared to hRAN. Cell lines showed a significant decrease in cell adhesion and increase in cell migration after incubation with hRAT-CMs vs. hRAN- or control-CMs. Surprisingly, HK-2, 786-O and ACHN cells showed a significant decrease in cell migration after incubation with hRAN-CMs vs. control-CMs. No difference in proliferation of cell lines was found after 24 or 48 h of treatment with CMs. AdipoR1 in ACHN and Caki-1 cells decreased significantly after incubation with hRAT-CMs vs. hRAN-CMs and control-CMs. ObR and CD44 increased in tumor line cells, and vimentin increased in non-tumor cells, after incubation with hRAT-CMs vs. hRAN-CMs and control-CMs. We observed an increase in the expression of pERK and pPI3K in HK-2, 786-O and ACHN, incubated with hRAT-CMs. In conclusion, results showed that adipose microenvironment can regulate the behavior of tumor and non tumor human renal epithelial cells.
Collapse
Affiliation(s)
- Flavia Alejandra Bruna
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Centro Científico y Tecnológico Mendoza, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina.,Centro de Medicina Regenerativa, Facultad de Medicina, Clínica Alemana, Universidad del Desarrollo, Santiago, Chile.,Universidad Nacional de Cuyo, Facultad de Odontología, Mendoza, Argentina
| | - Leonardo Rafael Romeo
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Centro Científico y Tecnológico Mendoza, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina.,Departamento de Urología y Transplante Renal, Hospital Español de Mendoza, Mendoza, Argentina
| | - Fiorella Campo-Verde-Arbocco
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Centro Científico y Tecnológico Mendoza, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina
| | - David Contador
- Centro de Medicina Regenerativa, Facultad de Medicina, Clínica Alemana, Universidad del Desarrollo, Santiago, Chile
| | - Silvina Gómez
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Centro Científico y Tecnológico Mendoza, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina
| | - Flavia Santiano
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Centro Científico y Tecnológico Mendoza, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina
| | - Corina Verónica Sasso
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Centro Científico y Tecnológico Mendoza, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina
| | - Leila Zyla
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Centro Científico y Tecnológico Mendoza, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina
| | - Constanza López-Fontana
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Centro Científico y Tecnológico Mendoza, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina
| | - Juan Carlos Calvo
- Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.,Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Rubén Walter Carón
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Centro Científico y Tecnológico Mendoza, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina
| | - Virginia Pistone-Creydt
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Centro Científico y Tecnológico Mendoza, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina.,Universidad Nacional de Cuyo, Facultad de Ciencias Médicas, Departamento de Fisiología, Mendoza, Argentina
| |
Collapse
|
18
|
Extracellular Matrix in Development and Disease. Int J Mol Sci 2019; 20:ijms20010205. [PMID: 30626024 PMCID: PMC6337388 DOI: 10.3390/ijms20010205] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 01/04/2019] [Indexed: 12/19/2022] Open
Abstract
The evolution of multicellular metazoan organisms was marked by the inclusion of an extracellular matrix (ECM), a multicomponent, proteinaceous network between cells that contributes to the spatial arrangement of cells and the resulting tissue organization. [...].
Collapse
|