1
|
Shahzad A, Fan Y, Qian M, Khan SU, Mahmood U, Wei L, Qu C, Lu K. Genome-wide characterization of Related to ABI3/VP1 transcription factors among U's triangle Brassica species reveals a negative role for BnaA06.RAV3L in seed size. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 213:108854. [PMID: 38901228 DOI: 10.1016/j.plaphy.2024.108854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/01/2024] [Accepted: 06/16/2024] [Indexed: 06/22/2024]
Abstract
The transcription factors Related to ABI3/VP1 (RAV) are crucial for various plant processes and stress responses. Although the U's triangle Brassica species genomes have been released, the knowledge regarding the RAV family is still limited. In this study, we identified 123 putative RAV genes across the six U's triangle Brassica species (Brassica rapa, 14; Brassica oleracea, 14; Brassica nigra, 13; Brassica carinata, 27; Brassica juncea, 28; Brassica napus, 27). Phylogenetic analysis categorized them into three groups. The RAV genes exhibited diversity in both functional and structural aspects, particularly in gene structure and cis-acting elements within their promoters. The expression analysis revealed that BnaRAV genes in Group 1/2 exhibited diverse expression patterns across various tissues, while those in Group 3 did not show expression except for BnaRAV3L-2 and BnaRAV3L-6, which were exclusively expressed in seeds. Furthermore, the seed-specific expression of BnaA06. RAV3L (BnaRAV3L-2) was confirmed through promoter-GUS staining. Subcellular localization studies demonstrated that BnaA06.RAV3L is localized to the nucleus. The overexpression of BnaA06. RAV3L in Arabidopsis led to a remarkable inhibition of seed-specific traits such as seed width, seed length, seed area, and seed weight. This study provides insights into the functional evolution of the RAV gene family in U triangle Brassica species. It establishes a foundation for uncovering the molecular mechanisms underlying the negative role of RAV3L in seed development.
Collapse
Affiliation(s)
- Ali Shahzad
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing, 400715, China
| | - Yonghai Fan
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing, 400715, China
| | - Mingchao Qian
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing, 400715, China
| | - Shahid Ullah Khan
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing, 400715, China
| | - Umer Mahmood
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing, 400715, China
| | - Lijuan Wei
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing, 400715, China
| | - Cunmin Qu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing, 400715, China
| | - Kun Lu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing, 400715, China; Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, 400715, China; Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing, 400715, China.
| |
Collapse
|
2
|
Ling C, Liu Y, Yang Z, Xu J, Ouyang Z, Yang J, Wang S. Genome-Wide Identification of HSF Gene Family in Kiwifruit and the Function of AeHSFA2b in Salt Tolerance. Int J Mol Sci 2023; 24:15638. [PMID: 37958622 PMCID: PMC10649126 DOI: 10.3390/ijms242115638] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/19/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
Heat shock transcription factors (HSFs) play a crucial role in regulating plant growth and response to various abiotic stresses. In this study, we conducted a comprehensive analysis of the AeHSF gene family at genome-wide level in kiwifruit (Actinidia eriantha), focusing on their functions in the response to abiotic stresses. A total of 41 AeHSF genes were identified and categorized into three primary groups, namely, HSFA, HSFB, and HSFC. Further transcriptome analysis revealed that the expression of AeHSFA2b/2c and AeHSFB1c/1d/2c/3b was strongly induced by salt, which was confirmed by qRT-PCR assays. The overexpression of AeHSFA2b in Arabidopsis significantly improved the tolerance to salt stress by increasing AtRS5, AtGolS1 and AtGolS2 expression. Furthermore, yeast one-hybrid, dual-luciferase, and electrophoretic mobility shift assays demonstrated that AeHSFA2b could bind to the AeRFS4 promoter directly. Therefore, we speculated that AeHSFA2b may activate AeRFS4 expression by directly binding its promoter to enhance the kiwifruit's tolerance to salt stress. These results will provide a new insight into the evolutionary and functional mechanisms of AeHSF genes in kiwifruit.
Collapse
Affiliation(s)
| | | | | | | | | | - Jun Yang
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, School of Horticulture, Anhui Agriculture University, Hefei 230036, China
| | - Songhu Wang
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, School of Horticulture, Anhui Agriculture University, Hefei 230036, China
| |
Collapse
|
3
|
Jing Q, Chen A, Lv Z, Dong Z, Wang L, Meng X, Feng Y, Wan Y, Su C, Cui Y, Xu W, Hou H, Zhu X. Systematic Analysis of Galactinol Synthase and Raffinose Synthase Gene Families in Potato and Their Expression Patterns in Development and Abiotic Stress Responses. Genes (Basel) 2023; 14:1344. [PMID: 37510251 PMCID: PMC10379439 DOI: 10.3390/genes14071344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 06/19/2023] [Accepted: 06/25/2023] [Indexed: 07/30/2023] Open
Abstract
Raffinose family oligosaccharides (RFOs) are very important for plant growth, development, and abiotic stress tolerance. Galactinol synthase (GolS) and raffinose synthase (RFS) are critical enzymes involved in RFO biosynthesis. However, the whole-genome identification and stress responses of their coding genes in potato remain unexplored. In this study, four StGolS and nine StRFS genes were identified and classified into three and five subgroups, respectively. Remarkably, a total of two StGolS and four StRFS genes in potato were identified to form collinear pairs with those in both Arabidopsis and tomato, respectively. Subsequent analysis revealed that StGolS4 exhibited significantly high expression levels in transport-related tissues, PEG-6000, and ABA treatments, with remarkable upregulation under salt stress. Additionally, StRFS5 showed similar responses to StGolS4, but StRFS4 and StRFS8 gene expression increased significantly under salt treatment and decreased in PEG-6000 and ABA treatments. Overall, these results lay a foundation for further research on the functional characteristics and molecular mechanisms of these two gene families in response to ABA, salt, and drought stresses, and provide a theoretical foundation and new gene resources for the abiotic-stress-tolerant breeding of potato.
Collapse
Affiliation(s)
- Quankai Jing
- School of Horticulture, Anhui Agricultural University, Hefei 230000, China
| | - Airu Chen
- School of Horticulture, Anhui Agricultural University, Hefei 230000, China
| | - Zhaoyan Lv
- School of Horticulture, Anhui Agricultural University, Hefei 230000, China
| | - Zhihao Dong
- School of Horticulture, Anhui Agricultural University, Hefei 230000, China
| | - Lixia Wang
- School of Horticulture, Anhui Agricultural University, Hefei 230000, China
| | - Xiaoke Meng
- School of Horticulture, Anhui Agricultural University, Hefei 230000, China
| | - Yue Feng
- School of Horticulture, Anhui Agricultural University, Hefei 230000, China
| | - Yu Wan
- School of Horticulture, Anhui Agricultural University, Hefei 230000, China
| | - Chengyun Su
- School of Horticulture, Anhui Agricultural University, Hefei 230000, China
| | - Yanjie Cui
- School of Horticulture, Anhui Agricultural University, Hefei 230000, China
| | - Wenjuan Xu
- School of Horticulture, Anhui Agricultural University, Hefei 230000, China
| | - Hualan Hou
- School of Horticulture, Anhui Agricultural University, Hefei 230000, China
| | - Xiaobiao Zhu
- School of Horticulture, Anhui Agricultural University, Hefei 230000, China
| |
Collapse
|
4
|
Martins CPS, Fernandes D, Guimarães VM, Du D, Silva DC, Almeida AAF, Gmitter FG, Otoni WC, Costa MGC. Comprehensive analysis of the GALACTINOL SYNTHASE (GolS) gene family in citrus and the function of CsGolS6 in stress tolerance. PLoS One 2022; 17:e0274791. [PMID: 36112700 PMCID: PMC9481003 DOI: 10.1371/journal.pone.0274791] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 09/05/2022] [Indexed: 11/18/2022] Open
Abstract
Galactinol synthase (GolS) catalyzes the first and rate-limiting step in the synthesis of raffinose family of oligosaccharides (RFOs), which serve as storage and transport sugars, signal transducers, compatible solutes and antioxidants in higher plants. The present work aimed to assess the potential functions of citrus GolS in mechanisms of stress response and tolerance. By homology searches, eight GolS genes were found in the genomes of Citrus sinensis and C. clementina. Phylogenetic analysis showed that there is a GolS ortholog in C. clementina for each C. sinensis GolS, which have evolved differently from those of Arabidopsis thaliana. Transcriptional analysis indicated that most C. sinensis GolS (CsGolS) genes show a low-level tissue-specific and stress-inducible expression in response to drought and salt stress treatments, as well as to ‘Candidatus Liberibacter asiaticus’ infection. CsGolS6 overexpression resulted in improved tobacco tolerance to drought and salt stresses, contributing to an increased mesophyll cell expansion, photosynthesis and plant growth. Primary metabolite profiling revealed no significant changes in endogenous galactinol, but different extents of reduction of raffinose in the transgenic plants. On the other hand, a significant increase in the levels of metabolites with antioxidant properties, such as ascorbate, dehydroascorbate, alfa-tocopherol and spermidine, was observed in the transgenic plants. These results bring evidence that CsGolS6 is a potential candidate for improving stress tolerance in citrus and other plants.
Collapse
Affiliation(s)
- Cristina P. S. Martins
- Centro de Biotecnologia e Genética, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, Bahia, Brazil
| | - Denise Fernandes
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Valéria M. Guimarães
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Dongliang Du
- Horticultural Sciences Department, Citrus Research and Education Center, University of Florida, Lake Alfred, Florida, United States of America
| | - Delmira C. Silva
- Centro de Biotecnologia e Genética, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, Bahia, Brazil
| | - Alex-Alan F. Almeida
- Centro de Biotecnologia e Genética, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, Bahia, Brazil
| | - Frederick G. Gmitter
- Horticultural Sciences Department, Citrus Research and Education Center, University of Florida, Lake Alfred, Florida, United States of America
| | - Wagner C. Otoni
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Marcio G. C. Costa
- Centro de Biotecnologia e Genética, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, Bahia, Brazil
- * E-mail: ,
| |
Collapse
|
5
|
Yang J, Ling C, Liu Y, Zhang H, Hussain Q, Lyu S, Wang S, Liu Y. Genome-Wide Expression Profiling Analysis of Kiwifruit GolS and RFS Genes and Identification of AcRFS4 Function in Raffinose Accumulation. Int J Mol Sci 2022; 23:ijms23168836. [PMID: 36012101 PMCID: PMC9408211 DOI: 10.3390/ijms23168836] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/28/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022] Open
Abstract
The raffinose synthetase (RFS) and galactinol synthase (GolS) are two critical enzymes for raffinose biosynthesis, which play an important role in modulating plant growth and in response to a variety of biotic or abiotic stresses. Here, we comprehensively analyzed the RFS and GolS gene families and their involvement in abiotic and biotic stresses responses at the genome-wide scale in kiwifruit. A total of 22 GolS and 24 RFS genes were identified in Actinidia chinensis and Actinidia eriantha genomes. Phylogenetic analysis showed that the GolS and RFS genes were clustered into four and six groups, respectively. Transcriptomic analysis revealed that abiotic stresses strongly induced some crucial genes members including AcGolS1/2/4/8 and AcRFS2/4/8/11 and their expression levels were further confirmed by qRT-PCR. The GUS staining of AcRFS4Pro::GUS transgenic plants revealed that the transcriptionlevel of AcRFS4 was significantly increased by salt stress. Overexpression of AcRFS4 in Arabidopsis demonstrated that this gene enhanced the raffinose accumulation and the tolerance to salt stress. The co-expression networks analysis of hub transcription factors targeting key AcRFS4 genes indicated that there was a strong correlation between AcNAC30 and AcRFS4 expression under salt stress. Furthermore, the yeast one-hybrid assays showed that AcNAC30 could bind the AcRFS4 promoter directly. These results may provide insights into the evolutionary and functional mechanisms of GolS and RFS genes in kiwifruit.
Collapse
Affiliation(s)
- Jun Yang
- College of Horticulture, Anhui Agriculture University, Hefei 350002, China
| | - Chengcheng Ling
- College of Horticulture, Anhui Agriculture University, Hefei 350002, China
| | - Yunyan Liu
- College of Horticulture, Anhui Agriculture University, Hefei 350002, China
| | - Huamin Zhang
- College of Horticulture, Anhui Agriculture University, Hefei 350002, China
| | - Quaid Hussain
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 666 Wusu Street, Hangzhou 311300, China
| | - Shiheng Lyu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 666 Wusu Street, Hangzhou 311300, China
| | - Songhu Wang
- College of Horticulture, Anhui Agriculture University, Hefei 350002, China
- Correspondence: (S.W.); (Y.L.)
| | - Yongsheng Liu
- College of Horticulture, Anhui Agriculture University, Hefei 350002, China
- Correspondence: (S.W.); (Y.L.)
| |
Collapse
|
6
|
Dai H, Zhu Z, Wang Z, Zhang Z, Kong W, Miao M. Galactinol synthase 1 improves cucumber performance under cold stress by enhancing assimilate translocation. HORTICULTURE RESEARCH 2022; 9:uhab063. [PMID: 35048123 PMCID: PMC9015895 DOI: 10.1093/hr/uhab063] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 11/20/2021] [Indexed: 06/14/2023]
Abstract
Cucumber (Cucumis sativus L.) predominately translocates raffinose family oligosaccharides (RFOs) in the phloem and accumulates RFOs in leaves. Galactinol synthase (GolS) catalyzes the critical step of RFO biosynthesis, and determining the functional diversity of multiple GolS isoforms in cucumber is of scientific significance. In this study, we found that all four isoforms of CsGolS in the cucumber genome were upregulated by different abiotic stresses. β-glucuronidase staining and tissue separation experiments suggested that CsGolS1 is expressed in vascular tissues, whereas the other three CsGolSs are located in mesophyll cells. Further investigation indicates that CsGolS1 plays double roles in both assimilate loading and stress response in minor veins, which could increase the RFO concentration in the phloem sap and then improve assimilate transport under adverse conditions. Cold-induced minor vein-specific overexpression of CsGolS1 enhanced the assimilate translocation efficiency and accelerated the growth rates of sink leaves, fruits and whole plants under cold stress. Finally, our results demonstrate a previously unknown response to adverse environments and provide a potential biotechnological strategy to improve the stress resistance of cucumber.
Collapse
Affiliation(s)
- Haibo Dai
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Zihui Zhu
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Zhenguang Wang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Zhiping Zhang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Weiwen Kong
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Minmin Miao
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
7
|
BrPARP1, a Poly (ADP-Ribose) Polymerase Gene, Is Involved in Root Development in Brassica rapa under Drought Stress. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8010078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
PARP proteins are highly conserved homologs among the eukaryotic poly (ADP-ribose) polymerases. After activation, ADP-ribose polymers are synthesized on a series of ribozymes that use NAD+ as a substrate. PARPs participate in the regulation of various important biological processes, such as plant growth, development, and stress response. In this study, we characterized the homologue of PARP1 in B. rapa using RNA interference (RNAi) to reveal the underlying mechanism responding to drought stress. Bioinformatics and expression pattern analyses demonstrated that two copy numbers of PARP1 genes (BrPARP1.A03 and BrPARP1.A05) in B. rapa following a whole-genome triplication (WGT) event were retained compared with Arabidopsis, but only BrPARP1.A03 was predominantly transcribed in plant roots. Silencing of BrPARP1 could markedly promote root growth and development, probably via regulating cell division, and the transgenic Brassica lines showed more tolerance under drought treatment, accompanied with substantial alterations including accumulated proline contents, significantly reduced malondialdehyde, and increased antioxidative enzyme activity. In addition, the findings showed that the expression of stress-responsive genes, as well as reactive oxygen species (ROS)-scavenging related genes, was largely reinforced in the transgenic lines under drought stress. In general, these results indicated that BrPARP1 likely responds to drought stress by regulating root growth and the expression of stress-related genes to cope with adverse conditions in B. rapa.
Collapse
|
8
|
Wu Z, Wang Z, Zhang K. Isolation and functional characterization of a glucose-6-phosphate/phosphate translocator (IbG6PPT1) from sweet potato (Ipomoea batatas (L.) Lam.). BMC PLANT BIOLOGY 2021; 21:595. [PMID: 34915842 PMCID: PMC8675480 DOI: 10.1186/s12870-021-03372-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/29/2021] [Indexed: 05/05/2023]
Abstract
Sweet potato (Ipomoea batatas (L.) Lam.) is a good source of carbohydrates, an excellent raw material for starch-based industries, and a strong candidate for biofuel production due to its high starch content. However, the molecular basis of starch biosynthesis and accumulation in sweet potato is still insufficiently understood. Glucose-6-phosphate/phosphate translocators (GPTs) mediate the import of glucose-6-phosphate (Glc6P) into plastids for starch synthesis. Here, we report the isolation of a GPT-encoding gene, IbG6PPT1, from sweet potato and the identification of two additional IbG6PPT1 gene copies in the sweet potato genome. IbG6PPT1 encodes a chloroplast membrane-localized GPT belonging to the GPT1 group and highly expressed in storage root of sweet potato. Heterologous expression of IbG6PPT1 resulted in increased starch content in the leaves, root tips, and seeds and soluble sugar in seeds of Arabidopsis thaliana, but a reduction in soluble sugar in the leaves. These findings suggested that IbG6PPT1 might play a critical role in the distribution of carbon sources in source and sink and the accumulation of carbohydrates in storage tissues and would be a good candidate gene for controlling critical starch properties in sweet potato.
Collapse
Affiliation(s)
- Zhengdan Wu
- College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing, 400715, P. R. China
| | - Zhiqian Wang
- College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing, 400715, P. R. China
| | - Kai Zhang
- College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing, 400715, P. R. China.
| |
Collapse
|
9
|
Comprehensive analysis of polygalacturonase genes offers new insights into their origin and functional evolution in land plants. Genomics 2020; 113:1096-1108. [PMID: 33171205 DOI: 10.1016/j.ygeno.2020.11.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 09/22/2020] [Accepted: 11/04/2020] [Indexed: 11/21/2022]
Abstract
Polygalacturonase (PG) is a hydrolase that participates in pectin degradation, pod shattering and fruit softening. Here, we identified 2786 PG genes across 54 plants, which could be divided into three groups. Evolutionary analysis suggested that PG family originated from the charophyte green algae, and Subgroups A2-A4 evolved from the Subgroup A1 after the tracheophyte-angiosperm split. Whole-genome duplication was the major force leading to PG gene expansion. Interestingly, the PG genes continuously expanded in eudicots, whereas it contracted in monocots after the eudicot-monocot split. PG genes in Group A are expressed at high levels in floral organs, whereas genes in Groups B and C are expressed at high levels in various tissues. Moreover, three BnaPG15 members were found for their potential possibility in pod shattering in Brassica napus. Our results provide new insight into the evolutionary history of PG family, and their potentially functional role in plants.
Collapse
|
10
|
Minen RI, Martinez MP, Iglesias AA, Figueroa CM. Biochemical characterization of recombinant UDP-sugar pyrophosphorylase and galactinol synthase from Brachypodium distachyon. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 155:780-788. [PMID: 32866791 DOI: 10.1016/j.plaphy.2020.08.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/13/2020] [Accepted: 08/13/2020] [Indexed: 06/11/2023]
Abstract
Raffinose (Raf) protects plant cells during seed desiccation and under different abiotic stress conditions. The biosynthesis of Raf starts with the production of UDP-galactose by UDP-sugar pyrophosphorylase (USPPase) and continues with the synthesis of galactinol by galactinol synthase (GolSase). Galactinol is then used by Raf synthase to produce Raf. In this work, we report the biochemical characterization of USPPase (BdiUSPPase) and GolSase 1 (BdiGolSase1) from Brachypodium distachyon. The catalytic efficiency of BdiUSPPase was similar with galactose 1-phosphate and glucose 1-phosphate, but 5- to 17-fold lower with other sugar 1-phosphates. The catalytic efficiency of BdiGolSase1 with UDP-galactose was three orders of magnitude higher than with UDP-glucose. A structural model of BdiGolSase1 allowed us to determine the residues putatively involved in the binding of substrates. Among these, we found that Cys261 lies within the putative catalytic pocket. BdiGolSase1 was inactivated by oxidation with diamide and H2O2. The activity of the diamide-oxidized enzyme was recovered by reduction with dithiothreitol or E. coli thioredoxin, suggesting that BdiGolSase1 is redox-regulated.
Collapse
Affiliation(s)
- Romina I Minen
- Instituto de Agrobiotecnología del Litoral, UNL, CONICET, FBCB, Santa Fe, Argentina
| | - María P Martinez
- Instituto de Agrobiotecnología del Litoral, UNL, CONICET, FBCB, Santa Fe, Argentina
| | - Alberto A Iglesias
- Instituto de Agrobiotecnología del Litoral, UNL, CONICET, FBCB, Santa Fe, Argentina
| | - Carlos M Figueroa
- Instituto de Agrobiotecnología del Litoral, UNL, CONICET, FBCB, Santa Fe, Argentina.
| |
Collapse
|
11
|
Lohani N, Jain D, Singh MB, Bhalla PL. Engineering Multiple Abiotic Stress Tolerance in Canola, Brassica napus. FRONTIERS IN PLANT SCIENCE 2020; 11:3. [PMID: 32161602 PMCID: PMC7052498 DOI: 10.3389/fpls.2020.00003] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 01/03/2020] [Indexed: 05/22/2023]
Abstract
Impacts of climate change like global warming, drought, flooding, and other extreme events are posing severe challenges to global crop production. Contribution of Brassica napus towards the oilseed industry makes it an essential component of international trade and agroeconomics. Consequences from increasing occurrences of multiple abiotic stresses on this crop are leading to agroeconomic losses making it vital to endow B. napus crop with an ability to survive and maintain yield when faced with simultaneous exposure to multiple abiotic stresses. For an improved understanding of the stress sensing machinery, there is a need for analyzing regulatory pathways of multiple stress-responsive genes and other regulatory elements such as non-coding RNAs. However, our understanding of these pathways and their interactions in B. napus is far from complete. This review outlines the current knowledge of stress-responsive genes and their role in imparting multiple stress tolerance in B. napus. Analysis of network cross-talk through omics data mining is now making it possible to unravel the underlying complexity required for stress sensing and signaling in plants. Novel biotechnological approaches such as transgene-free genome editing and utilization of nanoparticles as gene delivery tools are also discussed. These can contribute to providing solutions for developing climate change resilient B. napus varieties with reduced regulatory limitations. The potential ability of synthetic biology to engineer and modify networks through fine-tuning of stress regulatory elements for plant responses to stress adaption is also highlighted.
Collapse
Affiliation(s)
| | | | | | - Prem L. Bhalla
- Plant Molecular Biology and Biotechnology Laboratory, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
12
|
Pipatchartlearnwong K, Juntawong P, Wonnapinij P, Apisitwanich S, Vuttipongchaikij S. Towards sex identification of Asian Palmyra palm ( Borassus flabellifer L.) by DNA fingerprinting, suppression subtractive hybridization and de novo transcriptome sequencing. PeerJ 2019; 7:e7268. [PMID: 31333909 PMCID: PMC6626516 DOI: 10.7717/peerj.7268] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 06/06/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Asian Palmyra palm, the source of palm-sugar, is dioecious with a long juvenile period requiring at least 12 years to reach its maturity. To date, there is no reliable molecular marker for identifying sexes before the first bloom, limiting crop designs and utilization. We aimed to identify sex-linked markers for this palm using PCR-based DNA fingerprinting, suppression subtractive hybridization (SSH) and transcriptome sequencing. METHODS DNA fingerprints were generated between males and females based on RAPD, AFLP, SCoT, modified SCoT, ILP, and SSR techniques. Large-scale cloning and screening of SSH libraries and de novo transcriptome sequencing of male and female cDNA from inflorescences were performed to identify sex-specific genes for developing sex-linked markers. RESULTS Through extensive screening and re-testing of the DNA fingerprints (up to 1,204 primer pairs) and transcripts from SSH (>10,000 clones) and transcriptome data, however, no sex-linked marker was identified. Although de novo transcriptome sequencing of male and female inflorescences provided ∼32 million reads and 187,083 assembled transcripts, PCR analysis of selected sex-highly represented transcripts did not yield any sex-linked marker. This result may suggest the complexity and small sex-determining region of the Asian Palmyra palm. To this end, we provide the first global transcripts of male and female inflorescences of Asian Palmyra palm. Interestingly, sequence annotation revealed a large proportion of transcripts related to sucrose metabolism, which corresponds to the sucrose-rich sap produced in the inflorescences, and these transcripts will be useful for further understanding of sucrose production in sugar crop plants. Provided lists of sex-specific and differential-expressed transcripts would be beneficial to the further study of sexual development and sex-linked markers in palms and related species.
Collapse
Affiliation(s)
| | - Piyada Juntawong
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, Thailand.,Center of Advanced studies for Tropical Natural Resources, Kasetsart University, Bangkok, Thailand.,Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok, Thailand
| | - Passorn Wonnapinij
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, Thailand.,Center of Advanced studies for Tropical Natural Resources, Kasetsart University, Bangkok, Thailand.,Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok, Thailand
| | - Somsak Apisitwanich
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, Thailand.,Center of Advanced studies for Tropical Natural Resources, Kasetsart University, Bangkok, Thailand
| | - Supachai Vuttipongchaikij
- Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, Thailand.,Center of Advanced studies for Tropical Natural Resources, Kasetsart University, Bangkok, Thailand.,Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok, Thailand
| |
Collapse
|
13
|
Mukherjee S, Sengupta S, Mukherjee A, Basak P, Majumder AL. Abiotic stress regulates expression of galactinol synthase genes post-transcriptionally through intron retention in rice. PLANTA 2019; 249:891-912. [PMID: 30465114 DOI: 10.1007/s00425-018-3046-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 11/13/2018] [Indexed: 06/09/2023]
Abstract
Expression of the Galactinol synthase genes in rice is regulated through post-transcriptional intron retention in response to abiotic stress and may be linked to Raffinose Family Oligosaccharide synthesis in osmotic perturbation. Galactinol synthase (GolS) is the first committed enzyme in raffinose family oligosaccharide (RFO) synthesis pathway and synthesizes galactinol from UDP-galactose and inositol. Expression of GolS genes has long been implicated in abiotic stress, especially drought and salinity. A non-canonical regulation mechanism controlling the splicing and maturation of rice GolS genes was identified in rice photosynthetic tissue. We found that the two isoforms of Oryza sativa GolS (OsGolS) gene, located in chromosomes 3(OsGolS1) and 7(OsGolS2) are interspersed by conserved introns harboring characteristic premature termination codons (PTC). During abiotic stress, the premature and mature transcripts of both isoforms were found to accumulate in a rhythmic manner for very small time-windows interrupted by phases of complete absence. Reporter gene assay using GolS promoters under abiotic stress does not reflect this accumulation profile, suggesting that this regulation occurs post-transcriptionally. We suggest that this may be due to a surveillance mechanism triggering the degradation of the premature transcript preventing its accumulation in the cell. The suggested mechanism fits the paradigm of PTC-induced Nonsense-Mediated Decay (NMD). In support of our hypothesis, when we pharmacologically blocked NMD, the full-length pre-mRNAs were increasingly accumulated in cell. To this end, our work suggests that a combined transcriptional and post transcriptional control exists in rice to regulate GolS expression under stress. Concurrent detection and processing of prematurely terminating transcripts coupled to repressed splicing can be described as a form of Regulated Unproductive Splicing and Translation (RUST) and may be linked to the stress adaptation of the plant, which is an interesting future research possibility.
Collapse
Affiliation(s)
- Sritama Mukherjee
- Division of Plant Biology, Bose Institute (Centenary Campus), Kolkata, West Bengal, 700054, India
- Botany Department, Bethune College, Kolkata, West Bengal, 700006, India
| | - Sonali Sengupta
- Division of Plant Biology, Bose Institute (Centenary Campus), Kolkata, West Bengal, 700054, India.
- School of Plant Environment and Soil Sciences, LSUAg Center, Baton Rouge, LA, 70803, USA.
| | - Abhishek Mukherjee
- Division of Plant Biology, Bose Institute (Centenary Campus), Kolkata, West Bengal, 700054, India
| | - Papri Basak
- Division of Plant Biology, Bose Institute (Centenary Campus), Kolkata, West Bengal, 700054, India
| | - Arun Lahiri Majumder
- Division of Plant Biology, Bose Institute (Centenary Campus), Kolkata, West Bengal, 700054, India.
| |
Collapse
|
14
|
Li H, Fan Y, Yu J, Chai L, Zhang J, Jiang J, Cui C, Zheng B, Jiang L, Lu K. Genome-Wide Identification of Flowering-Time Genes in Brassica Species and Reveals a Correlation between Selective Pressure and Expression Patterns of Vernalization-Pathway Genes in Brassica napus. Int J Mol Sci 2018; 19:E3632. [PMID: 30453667 PMCID: PMC6274771 DOI: 10.3390/ijms19113632] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 11/11/2018] [Accepted: 11/14/2018] [Indexed: 12/28/2022] Open
Abstract
Flowering time is a key agronomic trait, directly influencing crop yield and quality. Many flowering-time genes have been identified and characterized in the model plant Arabidopsis thaliana; however, these genes remain uncharacterized in many agronomically important Brassica crops. In this study, we identified 1064, 510, and 524 putative orthologs of A. thaliana flowering-time genes from Brassica napus, Brassica rapa, and Brassica oleracea, respectively, and found that genes involved in the aging and ambient temperature pathways were fewer than those in other flowering pathways. Flowering-time genes were distributed mostly on chromosome C03 in B. napus and B. oleracea, and on chromosome A09 in B. rapa. Calculation of non-synonymous (Ka)/synonymous substitution (Ks) ratios suggested that flowering-time genes in vernalization pathways experienced higher selection pressure than those in other pathways. Expression analysis showed that most vernalization-pathway genes were expressed in flowering organs. Approximately 40% of these genes were highly expressed in the anther, whereas flowering-time integrator genes were expressed in a highly organ-specific manner. Evolutionary selection pressures were negatively correlated with the breadth and expression levels of vernalization-pathway genes. These findings provide an integrated framework of flowering-time genes in these three Brassica crops and provide a foundation for deciphering the relationship between gene expression patterns and their evolutionary selection pressures in Brassica napus.
Collapse
Affiliation(s)
- Haojie Li
- Crop Research Institute, Sichuan Academy of Agricultural Science, Chengdu 610066, China.
| | - Yonghai Fan
- College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China.
- Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing 400715, China.
| | - Jingyin Yu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture; Oil Crops Research Institute, the Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
| | - Liang Chai
- Crop Research Institute, Sichuan Academy of Agricultural Science, Chengdu 610066, China.
| | - Jingfang Zhang
- Crop Research Institute, Sichuan Academy of Agricultural Science, Chengdu 610066, China.
| | - Jun Jiang
- Crop Research Institute, Sichuan Academy of Agricultural Science, Chengdu 610066, China.
| | - Cheng Cui
- Crop Research Institute, Sichuan Academy of Agricultural Science, Chengdu 610066, China.
| | - Benchuan Zheng
- Crop Research Institute, Sichuan Academy of Agricultural Science, Chengdu 610066, China.
| | - Liangcai Jiang
- Crop Research Institute, Sichuan Academy of Agricultural Science, Chengdu 610066, China.
| | - Kun Lu
- College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China.
- Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing 400715, China.
| |
Collapse
|
15
|
Liu M, Chang W, Fan Y, Sun W, Qu C, Zhang K, Liu L, Xu X, Tang Z, Li J, Lu K. Genome-Wide Identification and Characterization of NODULE-INCEPTION-Like Protein (NLP) Family Genes in Brassica napus. Int J Mol Sci 2018; 19:E2270. [PMID: 30072649 PMCID: PMC6121332 DOI: 10.3390/ijms19082270] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 07/30/2018] [Indexed: 12/30/2022] Open
Abstract
NODULE-INCEPTION-like proteins (NLPs) are conserved, plant-specific transcription factors that play crucial roles in responses to nitrogen deficiency. However, the evolutionary relationships and characteristics of NLP family genes in Brassica napus are unclear. In this study, we identified 31 NLP genes in B. napus, including 16 genes located in the A subgenome and 15 in the C subgenome. Subcellular localization predictions indicated that most BnaNLP proteins are localized to the nucleus. Phylogenetic analysis suggested that the NLP gene family could be divided into three groups and that at least three ancient copies of NLP genes existed in the ancestor of both monocots and dicots prior to their divergence. The ancestor of group III NLP genes may have experienced duplication more than once in the Brassicaceae species. Three-dimensional structural analysis suggested that 14 amino acids in BnaNLP7-1 protein are involved in DNA binding, whereas no binding sites were identified in the two RWP-RK and PB1 domains conserved in BnaNLP proteins. Expression profile analysis indicated that BnaNLP genes are expressed in most organs but tend to be highly expressed in a single organ. For example, BnaNLP6 subfamily members are primarily expressed in roots, while the four BnaNLP7 subfamily members are highly expressed in leaves. BnaNLP genes also showed different expression patterns in response to nitrogen-deficient conditions. Under nitrogen deficiency, all members of the BnaNLP1/4/5/9 subfamilies were upregulated, all BnaNLP2/6 subfamily members were downregulated, and BnaNLP7/8 subfamily members showed various expression patterns in different organs. These results provide a comprehensive evolutionary history of NLP genes in B. napus, and insight into the biological functions of BnaNLP genes in response to nitrogen deficiency.
Collapse
Affiliation(s)
- Miao Liu
- College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China.
- Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing 400715, China.
| | - Wei Chang
- Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing 400715, China.
- Shennong Class, Southwest University, Beibei, Chongqing 400715, China.
| | - Yonghai Fan
- College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China.
- Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing 400715, China.
| | - Wei Sun
- College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China.
- Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing 400715, China.
| | - Cunmin Qu
- College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China.
- Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing 400715, China.
| | - Kai Zhang
- College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China.
| | - Liezhao Liu
- College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China.
- Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing 400715, China.
| | - Xingfu Xu
- College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China.
- Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing 400715, China.
| | - Zhanglin Tang
- College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China.
- Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing 400715, China.
| | - Jiana Li
- College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China.
- Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing 400715, China.
| | - Kun Lu
- College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China.
- Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing 400715, China.
| |
Collapse
|