1
|
Alharbi AM, Kafl HE, Abdelaziz RR, Suddek GM. Protocatechuic acid mitigates 5-fluorouracil-triggered renal and hepatic injury in rats. Hum Exp Toxicol 2025; 44:9603271251332914. [PMID: 40228806 DOI: 10.1177/09603271251332914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
IntroductionNephrotoxicity and hepatotoxicity are substantial side effects triggered in individuals injected with 5-fluorouracil (5-FU), an anticancer drug. This study aimed to investigate the impact of the natural antioxidant and anti-inflammatory phenolic compound; protocatechuic acid (PCA) on 5-FU-provoked renal and hepatic injury in rats.MethodsRats were allocated to 4 groups: control, 5-FU, 5-FU + PCA (50 mg/kg), and 5-FU + PCA (100 mg/kg). Rats were intraperitoneally injected 5-FU (75 mg/kg; once a week for 21 days. Protocatechuic acid (50 and 100 mg/kg/day; orally) was administered for 3 weeks.ResultsRats co-treated with PCA had lower serum kidney and liver function markers than those receiving 5-FU alone. Furthermore, co-treatment with PCA successfully modulated kidney and liver contents of TNF-α, NF-κB p65, active caspase-1, IL-1β, p-p38 MAPK, SOD, GSH, Nrf-2, HO-1 and MDA. Moreover, PCA improved histopathological alterations of both kidney and liver tissues.ConclusionPCA exerts its hepatoprotective and nephroprotective effects against 5-FU-triggered toxicity through modulation of oxidative stress and inflammatory pathways, particularly via Nrf-2 activation and NF-κB inhibition.
Collapse
Affiliation(s)
- Alhomedy M Alharbi
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Mansoura University, Egypt
| | - Hoda E Kafl
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Mansoura University, Egypt
| | - Rania R Abdelaziz
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Mansoura University, Egypt
| | - Ghada M Suddek
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Mansoura University, Egypt
| |
Collapse
|
2
|
Barakat WEM, Moawed FSM, Ahmed ESA, Abo-Zaid OAR. The hepatotoxicity of γ-radiation synthesized 5-fluorouracil nanogel versus 5-fluorouracil in rats model. Int J Immunopathol Pharmacol 2024; 38:3946320241227099. [PMID: 38207276 PMCID: PMC10785744 DOI: 10.1177/03946320241227099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 01/02/2023] [Indexed: 01/13/2024] Open
Abstract
INTRODUCTION The clinical use of 5-fluorouracil (5-FU), a routinely used chemotherapy medication, has a deleterious impact on the liver. Therefore, it is necessary to find a less harmful alternative to minimize liver damage. This study was designed to see how 5-fluorouracil nanogel influenced 5-FU-induced liver damage in rats. METHODS To induce liver damage, male albino rats were injected intraperitoneally with 5-FU (12.5 mg/kg) three doses/week for 1 month. The histopathological examination together with measuring the activities of serum alanine and aspartate aminotransferase enzymes (ALT and AST) were used to evaluate the severity of liver damage besides, hepatic oxidative stress and antioxidant markers were also measured. The hepatic gene expression of heme oxygenase-1 (HO-1), nuclear factor erythroid 2-related factor 2 (Nrf2) and its inhibitor Kelch-like ECH-associated protein-1(Keap-1) in addition to hepatic inflammatory mediators including tumor necrosis factor-α (TNF- α) and interleukins (IL-1β, IL-6) were detected. RESULTS 5-Fu nanogel effectively attenuated 5-FU-induced liver injury by improving the hepatic structure and function (ALT and AST) besides the suppression of the hepatic inflammatory mediators (TNF- α, IL-1β and IL-6). Additionally, 5-FU nanogel alleviated the impaired redox status and restored the antioxidant system via maintaining the cellular homeostasis Keap-1/Nrf2/HO-1 pathway. CONCLUSION Consequently, 5-Fu nanogel exhibited lower liver toxicity compared to 5-FU, likely due to the alleviation of hepatic inflammation and the regulation of the cellular redox pathway.
Collapse
Affiliation(s)
- Wael EM Barakat
- Biochemistry and Molecular Biology Department, Benha University Faculty of Veterinary Medicine, Benha, Egypt
| | - Fatma SM Moawed
- Health Radiation Research, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Esraa SA Ahmed
- Radiation Biology Research, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Omayma AR Abo-Zaid
- Biochemistry and Molecular Biology Department, Benha University Faculty of Veterinary Medicine, Benha, Egypt
| |
Collapse
|
3
|
Tirendi S, Marengo B, Domenicotti C, Bassi AM, Almonti V, Vernazza S. Colorectal cancer and therapy response: a focus on the main mechanisms involved. Front Oncol 2023; 13:1208140. [PMID: 37538108 PMCID: PMC10396348 DOI: 10.3389/fonc.2023.1208140] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/19/2023] [Indexed: 08/05/2023] Open
Abstract
Introduction The latest GLOBOCAN 2021 reports that colorectal cancer (CRC) is the second leading cause of cancer-related death worldwide. Most CRC cases are sporadic and associated with several risk factors, including lifestyle habits, gut dysbiosis, chronic inflammation, and oxidative stress. Aim To summarize the biology of CRC and discuss current therapeutic interventions designed to counteract CRC development and to overcome chemoresistance. Methods Literature searches were conducted using PubMed and focusing the attention on the keywords such as "Current treatment of CRC" or "chemoresistance and CRC" or "oxidative stress and CRC" or "novel drug delivery approaches in cancer" or "immunotherapy in CRC" or "gut microbiota in CRC" or "systematic review and meta-analysis of randomized controlled trials" or "CSCs and CRC". The citations included in the search ranged from September 1988 to December 2022. An additional search was carried out using the clinical trial database. Results Rounds of adjuvant therapies, including radiotherapy, chemotherapy, and immunotherapy are commonly planned to reduce cancer recurrence after surgery (stage II and stage III CRC patients) and to improve overall survival (stage IV). 5-fluorouracil-based chemotherapy in combination with other cytotoxic drugs, is the mainstay to treat CRC. However, the onset of the inherent or acquired resistance and the presence of chemoresistant cancer stem cells drastically reduce the efficacy. On the other hand, the genetic-molecular heterogeneity of CRC often precludes also the efficacy of new therapeutic approaches such as immunotherapies. Therefore, the CRC complexity made of natural or acquired multidrug resistance has made it necessary the search for new druggable targets and new delivery systems. Conclusion Further knowledge of the underlying CRC mechanisms and a comprehensive overview of current therapeutic opportunities can provide the basis for identifying pharmacological and biological barriers that render therapies ineffective and for identifying new potential biomarkers and therapeutic targets for advanced and aggressive CRC.
Collapse
Affiliation(s)
- Sara Tirendi
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), Genoa, Italy
| | - Barbara Marengo
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), Genoa, Italy
| | - Cinzia Domenicotti
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), Genoa, Italy
| | - Anna M. Bassi
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), Genoa, Italy
| | - Vanessa Almonti
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Stefania Vernazza
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), Genoa, Italy
| |
Collapse
|
4
|
Khalaf HM, Hafez SMNA, Abdalla AM, Welson NN, Abdelzaher WY, Abdelbaky FAF. Role of Platelet-activating factor and HO-1 in mediating the protective effect of rupatadine against 5-fluorouracil-induced hepatotoxicity in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:40190-40203. [PMID: 35119631 PMCID: PMC9120097 DOI: 10.1007/s11356-022-18899-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 01/23/2022] [Indexed: 05/06/2023]
Abstract
5-fluorouracil (5-FU) is a widely used chemotherapeutic drug, but its hepatotoxicity challenges its clinical use. Thus, searching for a hepatoprotective agent is highly required to prevent the accompanied hepatic hazards. The current study aimed to investigate the potential benefit and mechanisms of action of rupatadine (RU), a Platelet-activating factor (PAF) antagonist, in the prevention of 5-FU-related hepatotoxicity in rats. Hepatotoxicity was developed in male albino rats by a single 5-FU (150 mg/kg) intra-peritoneal injection on the 7th day of the experiment. RU (3 mg/kg/day) was orally administrated to the rodents for 10 days. Hepatic toxicity was assessed by measuring both liver and body weights, serum alanine aminotransferase and aspartate aminotransferase (ALT and AST), hepatic oxidative stress parameters (malondialdehyde (MDA), nitric oxide levels (NOx), reduced glutathione (GSH), superoxide dismutase (SOD)), and heme oxygenase-1 (HO-1). Inflammatory markers expressions (inducible nitric oxide synthase (iNOS), tumor necrosis factor-alpha (TNFα), interleukins; IL-1B, IL-6), the apoptotic marker (caspase-3), and PAF were measured in the hepatic tissue. 5-FU-induced hepatotoxicity was proved by the biochemical along with histopathological assessments. RU ameliorated 5-FU-induced liver damage as proved by the improved serum ALT, AST, and hepatic oxidative stress parameters, the attenuated expression of hepatic pro-inflammatory cytokines and PAF, and the up-regulation of HO-1. Therefore, it can be concluded that RU pretreatment exerted a hepatoprotective effect against 5-FU-induced liver damage through both its powerful anti-inflammatory, antioxidant, and anti-apoptotic effect.
Collapse
Affiliation(s)
| | | | | | - Nermeen N. Welson
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt
| | | | | |
Collapse
|
5
|
Kapelemera AM, Uang YS, Wang LH, Wu TY, Lee FY, Tai L, Wang CC, Lee CJ. Pharmacokinetic Herb-Drug Interactions of Xiang-Sha-Liu-Jun-Zi-Tang and Paclitaxel in Male Sprague Dawley Rats and Its Influence on Enzyme Kinetics in Human Liver Microsomes. Front Pharmacol 2022; 13:858007. [PMID: 35450043 PMCID: PMC9016196 DOI: 10.3389/fphar.2022.858007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
Paclitaxel is a prescribed anticancer drug used to treat various cancers. It is a substrate of cytochrome P-450 (CYP-450) enzymes. Despite its efficacy, paclitaxel has severe side effects. Herbal medicines are commonly used to treat the side effects of chemotherapy. They can be administered before, during, and after chemotherapy. Xiang-Sha-Liu-Jun-Zi Tang (XSLJZT) is a herbal formula commonly used in breast cancer patients. The main purpose of this study was to assess the pharmacokinetic (PK) influence of XSLJZT on paclitaxel PK parameters, determine its effect on CYP-450 enzyme expression, and evaluate its effect on enzyme activity. Sprague Dawley rats were classified into pretreatment and co-treatment groups, where XSLJZT was pre-administered for 3, 5, and 7 days and co-administered 2 h before paclitaxel administration. The rat liver tissues and Hep-G2 cells were used to determine the effects of XSLJZT on CYP3A1/2 and CYP3A4 enzymes respectively. Western blot analysis was used to detect changes in the CYP3A1/2 and CYP3A4 enzymes expression. The influence of XSLJZT on enzyme activity was evaluated using human liver microsomes, and a liquid chromatography-tandem mass spectrometric system was developed to monitor paclitaxel levels in rat plasma. Results demonstrated that XSLJZT increased the area under the concentration versus time curve (AUC) for paclitaxel in pretreatment groups by 2-, 3-, and 4-fold after 3, 5, and 7 days, respectively. In contrast, no significant change in the AUC was observed in the co-treatment group. However, the half-life was prolonged in all groups from 17.11 min to a maximum of 37.56 min. XSLJZT inhibited CYP3A1/2 expression in the rat liver tissues and CYP3A4 enzymes in Hep-G2 cells in a time-dependent manner, with the highest inhibition observed after 7 days of pretreatment in rat liver tissues. In the enzyme kinetics study, XSLJZT inhibited enzyme activity in a competitive dose-dependent manner. In conclusion, there is a potential interaction between XSLJZT and paclitaxel at different co-treatment and pretreatment time points.
Collapse
Affiliation(s)
- Alinafe Magret Kapelemera
- PhD Program in Clinical Drug Development of Herbal Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yow-Shieng Uang
- Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei, Taiwan.,Rosetta Pharmamate Co., Ltd, New Taipei City, Taiwan
| | - Li-Hsuan Wang
- School of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Tien-Yuan Wu
- Department of Pharmacology, School of Medicine, College of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Fang-Yu Lee
- Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei, Taiwan
| | - Li Tai
- Rosetta Pharmamate Co., Ltd, New Taipei City, Taiwan
| | - Ching-Chiung Wang
- PhD Program in Clinical Drug Development of Herbal Medicine, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei, Taiwan.,School of Pharmacy, Taipei Medical University, Taipei, Taiwan.,Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei, Taiwan
| | - Chia-Jung Lee
- PhD Program in Clinical Drug Development of Herbal Medicine, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei, Taiwan.,Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei, Taiwan
| |
Collapse
|
6
|
Liu JH, Hsieh CH, Liu CY, Chang CW, Chen YJ, Tsai TH. Anti-inflammatory effects of Radix Aucklandiae herbal preparation ameliorate intestinal mucositis induced by 5-fluorouracil in mice. JOURNAL OF ETHNOPHARMACOLOGY 2021; 271:113912. [PMID: 33567307 DOI: 10.1016/j.jep.2021.113912] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE 5-Fluorouracil (5-FU) is a chemotherapy agent that is widely used in clinical oncologic practice. However, intestinal mucositis is the most frequently occurring side effect of cancer therapy with 5-FU. Based on a literature survey, Radix Aucklandiae herbal preparation potentially ameliorates intestinal mucositis in 5-FU-treated mice. AIM OF THE STUDY The aim of this study was to investigate the inflammation and gastrointestinal regulation of intestinal mucositis induced by 5-FU, including the intestinal morphology, as well as the reduction in food intake, body weight loss, and diarrhea. MATERIALS AND METHODS Intestinal mucositis was induced in mice by 5-FU (30 mg/kg, i.p., for 5 consecutive days). The dose-dependent Radix Aucklandiae herbal preparation (0.3, 1, and 3 g/kg/day, p.o.), loperamide (3 mg/kg/day, p.o.) or celecoxib (40 mg/kg/day, p.o.) was concurrently administered until the 7th day. Physical status observation, diarrhea assessment, serum proinflammatory cytokine levels, intestinal villus height and crypt depth, and total goblet cells from tissues were assessed. RESULTS The dosage regimen of 5-FU administration caused severe intestinal mucositis in mice, including damage to the intestinal morphology, accompanied by a reduction in food intake, body weight loss, and diarrhea. The high-dose Radix Aucklandiae herbal preparation significantly relieves 5-FU-induced intestinal mucositis by enhancing proliferative activity in epithelial crypts; improving anepithymia, body weight loss, and diarrhea; and displaying protective effects on goblet cells in intestinal mucosal epithelia. Activation of NF-κB in the intestinal mucositis model was also suppressed by the Radix Aucklandiae herbal preparation, suggesting that it is a potent inhibitor of NF-κB and proinflammatory cytokines, such as IL-1β, IL-6, TNF-α, and COX-2. CONCLUSIONS Our data support the conclusion that the Radix Aucklandiae herbal preparation could effectively ameliorate 5-FU-induced gastrointestinal toxicity and be applied clinically for the prevention of intestinal mucositis during chemotherapy.
Collapse
Affiliation(s)
- Ju-Han Liu
- School of Nursing, National Taipei University of Nursing and Health Sciences, Taipei, 112, Taiwan; Institute of Traditional Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan; Graduate Institute of Acupuncture Science, China Medical University, Taichung, 404, Taiwan
| | - Chen-Hsi Hsieh
- Institute of Traditional Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan; Department of Radiation Oncology, Far Eastern Memorial Hospital, Taipei, 220, Taiwan; Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan.
| | - Chia-Yuan Liu
- Institute of Traditional Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan; Division of Gastroenterology, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, 251, Taiwan; Department of Medicine, MacKay Medical College, New Taipei City, 252, Taiwan; Mackay Junior College of Medicine, Nursing and Management, Taipei, 112, Taiwan
| | - Ching-Wei Chang
- Institute of Traditional Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan; Division of Gastroenterology, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, 251, Taiwan; Department of Medicine, MacKay Medical College, New Taipei City, 252, Taiwan; Mackay Junior College of Medicine, Nursing and Management, Taipei, 112, Taiwan
| | - Yu-Jen Chen
- Institute of Traditional Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan; Department of Medicine, MacKay Medical College, New Taipei City, 252, Taiwan; Department of Radiation Oncology, MacKay Memorial Hospital, Taipei, 251, Taiwan
| | - Tung-Hu Tsai
- Institute of Traditional Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan; Graduate Institute of Acupuncture Science, China Medical University, Taichung, 404, Taiwan; School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
| |
Collapse
|
7
|
Li J, Li MR, Sun B, Liu CM, Ren J, Zhi WQ, Zhang PY, Qiao HL, Gao N. Inhibition of Rat CYP1A2 and CYP2C11 by Honokiol, a Component of Traditional Chinese Medicine. Eur J Drug Metab Pharmacokinet 2019; 44:787-796. [DOI: 10.1007/s13318-019-00565-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
8
|
Zhu P, Liu Z, Zhou J, Chen Y. Tanshinol inhibits the growth, migration and invasion of hepatocellular carcinoma cells via regulating the PI3K-AKT signaling pathway. Onco Targets Ther 2018; 12:87-99. [PMID: 30588033 PMCID: PMC6304085 DOI: 10.2147/ott.s185997] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Background Tanshinol is an active constituent of Salvia miltiorrhiza and possess anti-inflammatory, antioxidant, and anti-bacterial activity. Herein, we explored the role of tanshinol on the growth and aggressiveness of hepatocellular carcinoma (HCC) cells in vitro and in vivo. Materials and methods The proliferation of a panel of HCC cell lines was measured using MTT assay. The expressions of phosphatidylinositol 3 kinase (PI3K) and protein kinase B (AKT) were detected by immunofluorescence staining and immunohistochemical assay. The levels of Bcl-2 and Bax were determined using immunoblotting assay. The secretions of matrix metalloproteinase-2 (MMP-2) and MMP-9 were detected by ELISA. The migration and invasion abilities of HepG2 cell were determined using wound healing and Transwell invasion assays. The apoptosis of HepG2 cell induced by tanshinol was analyzed by Annexin V/propidium iodide staining. A xenograft model was constructed to investigate the inhibitory effect of tanshinol on HepG2 cell growth in vivo. To further investigate the role of tanshinol on the metastasis of HepG2 cell in vivo, an experimental metastasis assay was performed. Results Tanshinol inhibited the growth and colony formation of HCC cell in vitro. Tanshinol also induced the apoptosis of HepG2 cell and inhibited the migration and invasion of HepG2 cell. In in vivo experiments, tanshinol suppressed the tumor growth and metastasis of HepG2 cell. Furthermore, the phosphorylation of PI3K and AKT was decreased by tanshinol in vitro and in vivo. Conclusion Tanshinol exerts its anti-cancer effects via regulating the PI3K-AKT signaling pathway in HCC.
Collapse
Affiliation(s)
- Pingting Zhu
- School of Nursing, Yangzhou University, Yangzhou, China, .,Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China,
| | - Zhaoguo Liu
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, China
| | - JiaoJiao Zhou
- School of Nursing, Yangzhou University, Yangzhou, China,
| | - Yuanyuan Chen
- School of Nursing, Yangzhou University, Yangzhou, China,
| |
Collapse
|
9
|
Li Y, Guo S, Ren Q, Wei D, Zhao M, Su S, Tang Z, Duan JA. Pharmacokinetic Comparisons of Multiple Triterpenic Acids from Jujubae Fructus Extract Following Oral Delivery in Normal and Acute Liver Injury Rats. Int J Mol Sci 2018; 19:ijms19072047. [PMID: 30011885 PMCID: PMC6073449 DOI: 10.3390/ijms19072047] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 07/10/2018] [Accepted: 07/11/2018] [Indexed: 12/16/2022] Open
Abstract
Jujubae Fructus, the dried fruit of Ziziphus jujuba, has been used as Chinese medicine and food for centuries. Triterpenic acids have been found to be the major bioactive constituents in Jujubae Fructus responsible for their hepatoprotective activity in previous phytochemical and biological studies, while few pharmacokinetic studies have been conducted. To reveal the kinetics of the triterpenic acids under the pathological liver injury state, an established ultra-performance liquid chromatography coupled with a mass spectrometry method was applied for the simultaneous quantitation of seven triterpenic acids (ceanothic acid, epiceanothic acid, pomonic acid, alphitolic acid, maslinic acid, betulinic acid, and betulonic acid) in plasma samples of normal and acute liver injury rats induced by CCl₄. The results showed that there were significant differences (p < 0.05) in the pharmacokinetic parameters of seven triterpenic acids between model and normal groups. The AUC0–t and AUC0–∞ of epiceanothic acid (5227 ± 334 μg⋅h/L vs. 1478 ± 255 μg ⋅ h/L and 6127 ± 423 μg ⋅ h/L vs. 1482 ± 255 μg ⋅ h/L, respectively) and pomonic acid (4654 ± 349 μg ⋅ h/L vs. 1834 ± 225 μg ⋅ h/L and 4776 ± 322 μg ⋅ h/L vs. 1859 ± 230 μg ⋅ h/L, respectively) in model rats were significantly higher than those in normal rats, and the CLz/F of them were significantly decreased (0.28 ± 0.02 L/h/kg vs. 1.36 ± 0.18 L/h/kg and 19.96 ± 1.30 L/h/kg vs. 53.15 ± 5.60 L/h/kg, respectively). In contrast, the above parameters for alphitolic acid, betulinic acid and betulonic acid exhibited the quite different trend. This pharmacokinetic research might provide useful information for the clinical usage of triterpenic acids from Jujubae Fructus.
Collapse
Affiliation(s)
- Yao Li
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization/State Key Laboratory Cultivation Base for Traditional Chinese Medicine Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Sheng Guo
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization/State Key Laboratory Cultivation Base for Traditional Chinese Medicine Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Quanjin Ren
- Institute of Botany, Jiangsu Province and Chinese Academy of Science, Nanjing 210014, China.
| | - Dandan Wei
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization/State Key Laboratory Cultivation Base for Traditional Chinese Medicine Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Ming Zhao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization/State Key Laboratory Cultivation Base for Traditional Chinese Medicine Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Shulan Su
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization/State Key Laboratory Cultivation Base for Traditional Chinese Medicine Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Zhishu Tang
- Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xianyang 712046, China.
| | - Jin-Ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization/State Key Laboratory Cultivation Base for Traditional Chinese Medicine Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|