1
|
Cao X, Zhang Y, Tripp A, Steinhauer R, Liu PW, Aronovitz MJ, Martin GL, Wang B, Alissa A, Aljuaid M, Ho J, Phan T, Madias C, Blanton RM, Galper JB. Myocardial cGMP-PKG1α dysregulation contributes to VT pathogenesis in type II diabetes and metabolic syndrome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.12.638003. [PMID: 40027639 PMCID: PMC11870439 DOI: 10.1101/2025.02.12.638003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Background Type-II diabetes (DMII) and metabolic syndrome increase ventricular arrhythmia and sudden cardiac death risk. Objectives To identify signaling mechanisms through which DMII and metabolic syndrome promote ventricular tachycardia (VT). Methods We performed ventricular programmed stimulation on leptin receptor mutant (Db/Db) mice with DMII, high fat high sucrose (HFHS)-fed mice with metabolic syndrome, and cGMP-dependent Protein Kinase 1α (PKG1α) leucine zipper mutant (LZM) mice, which do not have DMII or metabolic syndrome but have disrupted PKG1α signaling. Results During ventricular programmed stimulation, Db/Db and HFHS-fed mice displayed increased VT and T-wave alternans. Cardiomyocytes from these mice displayed early afterdepolarizations. Both models demonstrated decreased heart rate response to parasympathetic inhibition, indicating autonomic dysfunction. cGMP, which mediates cardiac parasympathetic stimulation, was reduced in LVs of Db/Db and HFHS-fed mice. Conversely, cGMP augmentation with soluble guanylate cyclase stimulation (riociguat) or phosphodiesterase 5 inhibition (sildenafil) reduced VT inducibility. PKG1α LZM mice had normal autonomic responsiveness, but excess VT inducibility. Db/Db, HFHS, and LZM mice each demonstrated hyperactivated myocardial glycogen synthase kinase3β (GSK3β). Further, GSK3β inhibition with TWS119 abolished inducible VT in these mice. Diastolic cytosolic Ca 2+ reuptake slope decreased in cardiomyocytes from all models, while GSK3β inhibition with TWS119 reversed this effect. Phospholamban (PLB), which inhibits sarcoplasmic/endoplasmic reticulum Ca 2+ ATPase 2a-mediated Ca 2+ reuptake, was hyperactivated/hypophosphorylated in HFHS-fed and LZM mice, and this was reversed by TWS119. Conclusions These findings identify cGMP reduction as driving GSK3β hyperstimulation, calcium dyshomeostasis, and VT in DMII and metabolic syndrome. Pharmacological modulation of these pathways opposes VT pathogenesis.
Collapse
|
2
|
Al-Maskari R, Abdelrahman AM, Ali H, Manoj P, Al Suleimani Y. Nephroprotective effects of the soluble guanylyl cyclase stimulator, riociguat in doxorubicin-induced acute kidney injury in rats. Toxicol Rep 2024; 13:101800. [PMID: 39606778 PMCID: PMC11600010 DOI: 10.1016/j.toxrep.2024.101800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/21/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024] Open
Abstract
This study aimed to investigate the potential protective effects of riociguat, a soluble guanylyl cyclase (sGC) stimulator, on kidney function and structure in rats with acute kidney injury (AKI) induced by the chemotherapeutic drug doxorubicin (DX). Rats were subjected to a single intraperitoneal injection of DX (13.5 mg/kg) on the 5th day, either alone or in combination with low-dose riociguat (3 mg/kg/day), or high-dose riociguat (10 mg/kg/day) for 8 consecutive days. Various markers related to kidney function, oxidative stress, and inflammation were measured in plasma and urine. Kidney tissues were examined histopathologically. DX-induced nephrotoxicity was characterized by increased plasma urea, creatinine, uric acid and neutrophil gelatinase-associated lipocalin (NGAL). DX also decreased creatinine clearance and albumin levels and increased urinary N-acetyl-β-D-glucosaminidase (NAG) activity. Furthermore, DX increased the inflammatory markers interleukin 1 beta (IL-1 β), interleukin 6 (IL-6) and tumor necrosis factor alpha (TNF-α). DX further induced oxidative stress injury evidenced by decreased glutathione reductase (GR) activity, total antioxidant capacity (TAC), superoxide dismutase (SOD) and catalase levels and increased malondialdehyde (MDA) levels. Concomitant treatment with riociguat ameliorated these DX-induced changes with parallel histopathological improvements but the effects were more favorable with high-dose riociguat. The observed renoprotective effects of riociguat can be partly attributed to the anti-inflammatory and anti-oxidant properties of this drug.
Collapse
Affiliation(s)
- Raya Al-Maskari
- Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, P.O. Box 35, Al Khod 123, Oman
| | - Aly M. Abdelrahman
- Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, P.O. Box 35, Al Khod 123, Oman
| | - Haytham Ali
- Department of Animal and Veterinary Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat 123, Oman
| | - Priyadarsini Manoj
- Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, P.O. Box 35, Al Khod 123, Oman
| | - Yousuf Al Suleimani
- Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, P.O. Box 35, Al Khod 123, Oman
| |
Collapse
|
3
|
Zhazykbayeva S, Budde H, Kaçmaz M, Zemedie Y, Osman H, Hassoun R, Jaquet K, Akin I, El-Battrawy I, Herwig M, Hamdani N. Exploring PKG signaling as a therapeutic avenue for pressure overload, ischemia, and HFpEF. Expert Opin Ther Targets 2024; 28:857-873. [PMID: 39329430 DOI: 10.1080/14728222.2024.2400093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 08/30/2024] [Indexed: 09/28/2024]
Abstract
INTRODUCTION Heart failure (HF) is a complex and heterogeneous syndrome resulting from any diastolic or systolic dysfunction of the cardiac muscle. In addition to comorbid conditions, pressure overload, and myocardial ischemia are associated with cardiac remodeling which manifests as extracellular matrix (ECM) perturbations, impaired cellular responses, and subsequent ventricular dysfunction. AREAS COVERED The current review discusses the main aspects of the cyclic guanosine monophosphate (cGMP)-protein kinase G (PKG) pathway (cGMP-PKG) pathway modulators and highlights the promising outcomes of its novel pharmacological boosters. EXPERT OPINION Among several signaling pathways involved in the pathogenesis of pressure overload, ischemia and HF with preserved ejection fraction (HFpEF) is cGMP-PKG pathway. This pathway plays a pivotal role in the regulation of cardiac contractility, and modulation of cGMP-PKG signaling, contributing to the development of the diseases. Ventricular cardiomyocytes of HF patients and animal models are known to exhibit reduced cGMP levels and disturbed cGMP signaling including hypophosphorylation of PKG downstream targets. However, restoration of cGMP-PKG signaling improves cardiomyocyte function and promotes cardioprotective effects.
Collapse
Affiliation(s)
- S Zhazykbayeva
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
| | - H Budde
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
| | - M Kaçmaz
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
- HCEMM-SU Cardiovascular Comorbidities Research Group, Center for Pharmacology and Drug Research & Development, Department of Pharmacology and Pharmacotherapy, Intézet címe Semmelweis University, Budapest, Hungary
| | - Y Zemedie
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
| | - H Osman
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
| | - R Hassoun
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
| | - K Jaquet
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
| | - I Akin
- Medical University Mannheim, Medical Faculty, Mannheim University, Heidelberg, Germany
| | - I El-Battrawy
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
- Department of Cardiology, St. Josef-Hospital, UK RUB, Ruhr University, Bochum, Germany
| | - M Herwig
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
| | - N Hamdani
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, Bochum, Germany
- Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
- HCEMM-SU Cardiovascular Comorbidities Research Group, Center for Pharmacology and Drug Research & Development, Department of Pharmacology and Pharmacotherapy, Intézet címe Semmelweis University, Budapest, Hungary
- Department of Cardiology, St. Josef-Hospital, UK RUB, Ruhr University, Bochum, Germany
- Department of Physiology, Cardiovascular Research Institute, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
4
|
Ismail EA, El-Sakka AI. An overview of conventional and investigational phosphodiesterase 5 inhibitors for treating erectile dysfunction and other conditions. Expert Opin Investig Drugs 2024; 33:925-938. [PMID: 39096237 DOI: 10.1080/13543784.2024.2388569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/14/2024] [Accepted: 08/01/2024] [Indexed: 08/05/2024]
Abstract
INTRODUCTION There is a rising concern about developing innovative, efficacious PDE5I molecules that provide better safety, efficacy, and tolerability with less adverse effects. Innovative PDE5I with dual targets have also been defined in the literature. Additionally, some of PDE5I are able to selectively inhibit other enzymes such as histone deacetylase, acetylcholine esterase, and cyclooxygenase or act as nitric oxide donors. This review presents knowledge concerning the advanced trends and perspectives in using PDE5I in treatment of ED and other conditions. AREAS COVERED Pre-clinical and early clinical trials that investigated the safety, efficacy, and tolerability of novel PDE5I such as Udenafil, Mirodenafil, Lodenafil, Youkenafil, Celecoxib, and TPN729 in treatment of ED and other conditions. EXPERT OPINION Preclinical and limited early clinical studies of the new molecules of PDE5I have demonstrated encouraging results; however, safety, efficacy, and tolerability are still issues that necessitate further long-term multicenter clinical studies to ensure justification of their uses in treatment of ED and other conditions. Progress in molecular delivery techniques and tailored patient-specific management and additional therapeutic technology will dramatically improve care for ED and other conditions. The dream of ED and many other conditions becoming more effectively managed may be feasible in the near future.
Collapse
Affiliation(s)
- Ezzat A Ismail
- Department of Urology, Suez Canal University, Ismailia, Egypt
| | | |
Collapse
|
5
|
Rasmussen M, Tolone A, Paquet-Durand F, Welinder C, Schwede F, Ekström P. The photoreceptor protective cGMP-analog Rp-8-Br-PET-cGMPS interacts with cGMP-interactors PKGI, PDE1, PDE6, and PKAI in the degenerating mouse retina. J Comp Neurol 2023; 531:935-951. [PMID: 36989379 DOI: 10.1002/cne.25475] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 07/12/2022] [Accepted: 03/06/2023] [Indexed: 03/31/2023]
Abstract
The inherited eye disease retinitis pigmentosa (RP) causes the loss of photoreceptors by a still unknown cell death mechanism. During this degeneration, cyclic guanosine-3',5'-monophosphate (cGMP) levels become elevated, leading to over-activation of the cGMP-binding protein cGMP-dependent protein kinase (PKG). cGMP analogs selectively modified to have inhibitory actions on PKG have aided in impeding photoreceptor death, and one such cGMP analog is Rp-8-Br-PET-cGMPS. However, cGMP analogs have previously been shown to interact with numerous targets, so to better understand the therapeutic action of Rp-8-Br-PET-cGMPS, it is necessary to elucidate its target-selectivity and hence what potential cellular mechanism(s) it may affect within the photoreceptors. Here, we, therefore, applied affinity chromatography together with mass spectrometry to isolate and identify Rp-8-Br-PET-cGMPS interactors from retinas derived from three different murine RP models (i.e., rd1, rd2, and rd10 mice). Our findings revealed that Rp-8-Br-PET-cGMPS bound seven known cGMP-binding proteins, including PKG1β, PDE1β, PDE1c, PDE6α, and PKA1α. Furthermore, an additional 28 proteins were found to be associated with Rp-8-Br-PET-cGMPS. This latter group included MAPK1/3, which is known to connect with cGMP/PKG in other systems. However, in organotypic retinal cultures, Rp-8-Br-PET-cGMPS had no effect on photoreceptor MAPK1/3 expression or activity. To summarize, Rp-8-Br-PET-cGMPS is more target specific compared to regular cGMP.
Collapse
Affiliation(s)
- Michel Rasmussen
- Faculty of Medicine, Department of Clinical Sciences Lund, Lund University, Ophthalmology, Lund, Sweden
| | - Arianna Tolone
- Insitute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | | | - Charlotte Welinder
- Faculty of Medicine, Department of Clinical Sciences Lund, Mass Spectrometry, Lund University, Lund, Sweden
| | - Frank Schwede
- BIOLOG Life Science Institute GmbH & Co. KG, Bremen, Germany
| | - Per Ekström
- Faculty of Medicine, Department of Clinical Sciences Lund, Lund University, Ophthalmology, Lund, Sweden
| |
Collapse
|
6
|
Guo B, Huang X, Chen Y, Broxmeyer HE. Ex Vivo Expansion and Homing of Human Cord Blood Hematopoietic Stem Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1442:85-104. [PMID: 38228960 DOI: 10.1007/978-981-99-7471-9_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Cord blood (CB) has been proven to be an alternative source of haematopoietic stem cells (HSCs) for clinical transplantation and has multiple advantages, including but not limited to greater HLA compatibility, lower incidence of graft-versus-host disease (GvHD), higher survival rates and lower relapse rates among patients with minimal residual disease. However, the limited number of HSCs in a single CB unit limits the wider use of CB in clinical treatment. Many efforts have been made to enhance the efficacy of CB HSC transplantation, particularly by ex vivo expansion or enhancing the homing efficiency of HSCs. In this chapter, we will document the major advances regarding human HSC ex vivo expansion and homing and will also discuss the possibility of clinical translation of such laboratory work.
Collapse
Affiliation(s)
- Bin Guo
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Xinxin Huang
- Xuhui Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
| | - Yandan Chen
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hal E Broxmeyer
- Department of Microbiology and Immunology, School of Medicine, Indiana University, Indianapolis, IN, USA.
| |
Collapse
|
7
|
Biological Assessment of the NO-Dependent Endothelial Function. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227921. [PMID: 36432022 PMCID: PMC9698916 DOI: 10.3390/molecules27227921] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 11/18/2022]
Abstract
Nitric oxide (NO) is implicated in numerous physiological processes, including vascular homeostasis. Reduced NO bioavailability is a hallmark of endothelial dysfunction, a prequel to many cardiovascular diseases. Biomarkers of an early NO-dependent endothelial dysfunction obtained from routine venous blood sampling would be of great interest but are currently lacking. The direct measurement of circulating NO remains a challenge due by its high reactivity and short half-life. The current techniques measure stable products from the NO signaling pathway or metabolic end products of NO that do not accurately represent its bioavailability and, therefore, endothelial function per se. In this review, we will concentrate on an original technique of low temperature electron paramagnetic resonance spectroscopy capable to directly measure the 5-α-coordinated heme nitrosyl-hemoglobin in the T (tense) state (5-α-nitrosyl-hemoglobin or HbNO) obtained from fresh venous human erythrocytes. In humans, HbNO reflects the bioavailability of NO formed in the vasculature from vascular endothelial NOS or exogenous NO donors with minor contribution from erythrocyte NOS. The HbNO signal is directly correlated with the vascular endothelial function and inversely correlated with vascular oxidative stress. Pilot studies support the validity of HbNO measurements both for the detection of endothelial dysfunction in asymptomatic subjects and for the monitoring of such dysfunction in patients with known cardiovascular disease. The impact of therapies or the severity of diseases such as COVID-19 infection involving the endothelium could also be monitored and their incumbent risk of complications better predicted through serial measurements of HbNO.
Collapse
|
8
|
Faleeva M, Diakonov I, Srivastava P, Ramuz M, Calamera G, Andressen KW, Bork N, Tsansizi L, Cosson MV, Bernardo AS, Nikolaev V, Gorelik J. Compartmentation of cGMP Signaling in Induced Pluripotent Stem Cell Derived Cardiomyocytes during Prolonged Culture. Cells 2022; 11:3257. [PMID: 36291124 PMCID: PMC9600086 DOI: 10.3390/cells11203257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/05/2022] [Accepted: 10/10/2022] [Indexed: 11/30/2022] Open
Abstract
The therapeutic benefit of stimulating the cGMP pathway as a form of treatment to combat heart failure, as well as other fibrotic pathologies, has become well established. However, the development and signal compartmentation of this crucial pathway has so far been overlooked. We studied how the three main cGMP pathways, namely, nitric oxide (NO)-cGMP, natriuretic peptide (NP)-cGMP, and β3-adrenoreceptor (AR)-cGMP, mature over time in culture during cardiomyocyte differentiation from human pluripotent stem cells (hPSC-CMs). After introducing a cGMP sensor for Förster Resonance Energy Transfer (FRET) microscopy, we used selective phosphodiesterase (PDE) inhibition to reveal cGMP signal compartmentation in hPSC-CMs at various times of culture. Methyl-β-cyclodextrin was employed to remove cholesterol and thus to destroy caveolae in these cells, where physical cGMP signaling compartmentalization is known to occur in adult cardiomyocytes. We identified PDE3 as regulator of both the NO-cGMP and NP-cGMP pathway in the early stages of culture. At the late stage, the role of the NO-cGMP pathway diminished, and it was predominantly regulated by PDE1, PDE2, and PDE5. The NP-cGMP pathway shows unrestricted locally and unregulated cGMP signaling. Lastly, we observed that maturation of the β3-AR-cGMP pathway in prolonged cultures of hPSC-CMs depends on the accumulation of caveolae. Overall, this study highlighted the importance of structural development for the necessary compartmentation of the cGMP pathway in maturing hPSC-CMs.
Collapse
Affiliation(s)
- Maria Faleeva
- Cardiac Section, National Heart and Lung Institute (NHLI), Faculty of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK
| | - Ivan Diakonov
- Cardiac Section, National Heart and Lung Institute (NHLI), Faculty of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK
| | - Prashant Srivastava
- Cardiac Section, National Heart and Lung Institute (NHLI), Faculty of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK
| | - Masoud Ramuz
- Cardiac Section, National Heart and Lung Institute (NHLI), Faculty of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK
| | - Gaia Calamera
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, P.O. Box 1057 Blindern, 0316 Oslo, Norway
| | - Kjetil Wessel Andressen
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo and Oslo University Hospital, P.O. Box 1057 Blindern, 0316 Oslo, Norway
| | - Nadja Bork
- German Center for Cardiovascular Research, University Medical Center Hamburg-Eppendorf and Institute of Experimental Cardiovascular Research, Martinistrasse 52, 20251 Hamburg, Germany
| | | | | | - Andreia Sofia Bernardo
- Cardiac Section, National Heart and Lung Institute (NHLI), Faculty of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Viacheslav Nikolaev
- German Center for Cardiovascular Research, University Medical Center Hamburg-Eppendorf and Institute of Experimental Cardiovascular Research, Martinistrasse 52, 20251 Hamburg, Germany
| | - Julia Gorelik
- Cardiac Section, National Heart and Lung Institute (NHLI), Faculty of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK
| |
Collapse
|
9
|
Li D, Liu K, Davis H, Robertson C, Neely OC, Tarafdar A, Li N, Lefkimmiatis K, Zaccolo M, Paterson DJ. Abnormal Cyclic Nucleotide Signaling at the Outer Mitochondrial Membrane In Sympathetic Neurons During the Early Stages of Hypertension. Hypertension 2022; 79:1374-1384. [PMID: 35506379 PMCID: PMC9172895 DOI: 10.1161/hypertensionaha.121.18882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Disruption of cyclic nucleotide signaling in sympathetic postganglionic neurons contributes to impaired intracellular calcium handling (Ca2+) and the development of dysautonomia during the early stages of hypertension, although how this occurs is poorly understood. Emerging evidence supports the uncoupling of signalosomes in distinct cellular compartments involving cyclic nucleotide–sensitive PDEs (phosphodiesterases), which may underpin the autonomic phenotype in stellate neurons.
Collapse
Affiliation(s)
- Dan Li
- Burdon Sanderson Cardiac Science Centre and BHF Centre of Research Excellence, Department of Physiology, Anatomy and Genetics (D.L., K.L., H.D., C.R., O.C.N., A.T., N.L., M.Z., D.J.P.), University of Oxford, United Kingdom
| | - Kun Liu
- Burdon Sanderson Cardiac Science Centre and BHF Centre of Research Excellence, Department of Physiology, Anatomy and Genetics (D.L., K.L., H.D., C.R., O.C.N., A.T., N.L., M.Z., D.J.P.), University of Oxford, United Kingdom
| | - Harvey Davis
- Burdon Sanderson Cardiac Science Centre and BHF Centre of Research Excellence, Department of Physiology, Anatomy and Genetics (D.L., K.L., H.D., C.R., O.C.N., A.T., N.L., M.Z., D.J.P.), University of Oxford, United Kingdom.,Department of Neuroscience, Physiology and Pharmacology, University College London, United Kingdom (H.D.)
| | - Calum Robertson
- Burdon Sanderson Cardiac Science Centre and BHF Centre of Research Excellence, Department of Physiology, Anatomy and Genetics (D.L., K.L., H.D., C.R., O.C.N., A.T., N.L., M.Z., D.J.P.), University of Oxford, United Kingdom
| | - Oliver C Neely
- Burdon Sanderson Cardiac Science Centre and BHF Centre of Research Excellence, Department of Physiology, Anatomy and Genetics (D.L., K.L., H.D., C.R., O.C.N., A.T., N.L., M.Z., D.J.P.), University of Oxford, United Kingdom
| | - Adib Tarafdar
- Burdon Sanderson Cardiac Science Centre and BHF Centre of Research Excellence, Department of Physiology, Anatomy and Genetics (D.L., K.L., H.D., C.R., O.C.N., A.T., N.L., M.Z., D.J.P.), University of Oxford, United Kingdom
| | - Ni Li
- Burdon Sanderson Cardiac Science Centre and BHF Centre of Research Excellence, Department of Physiology, Anatomy and Genetics (D.L., K.L., H.D., C.R., O.C.N., A.T., N.L., M.Z., D.J.P.), University of Oxford, United Kingdom.,Chinese Academy of Medical Sciences Oxford Institute (COI), Nuffield Department of Medicine Research Building (N.L.), University of Oxford, United Kingdom
| | - Konstantinos Lefkimmiatis
- Department of Molecular Medicine, University of Pavia, Italy (K.L.).,Veneto Institute of Molecular Medicine, Padova, Italy (K.L.)
| | - Manuela Zaccolo
- Burdon Sanderson Cardiac Science Centre and BHF Centre of Research Excellence, Department of Physiology, Anatomy and Genetics (D.L., K.L., H.D., C.R., O.C.N., A.T., N.L., M.Z., D.J.P.), University of Oxford, United Kingdom
| | - David J Paterson
- Burdon Sanderson Cardiac Science Centre and BHF Centre of Research Excellence, Department of Physiology, Anatomy and Genetics (D.L., K.L., H.D., C.R., O.C.N., A.T., N.L., M.Z., D.J.P.), University of Oxford, United Kingdom
| |
Collapse
|
10
|
Li J, Zhou Y, Lin YW, Tan X. A novel insight into the molecular mechanism of human soluble guanylyl cyclase focused on catalytic domain in living cells. Biochem Biophys Res Commun 2022; 604:51-56. [DOI: 10.1016/j.bbrc.2022.03.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 03/04/2022] [Indexed: 11/25/2022]
|
11
|
PDE-Mediated Cyclic Nucleotide Compartmentation in Vascular Smooth Muscle Cells: From Basic to a Clinical Perspective. J Cardiovasc Dev Dis 2021; 9:jcdd9010004. [PMID: 35050214 PMCID: PMC8777754 DOI: 10.3390/jcdd9010004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/18/2021] [Accepted: 12/20/2021] [Indexed: 12/14/2022] Open
Abstract
Cardiovascular diseases are important causes of mortality and morbidity worldwide. Vascular smooth muscle cells (SMCs) are major components of blood vessels and are involved in physiologic and pathophysiologic conditions. In healthy vessels, vascular SMCs contribute to vasotone and regulate blood flow by cyclic nucleotide intracellular pathways. However, vascular SMCs lose their contractile phenotype under pathological conditions and alter contractility or signalling mechanisms, including cyclic nucleotide compartmentation. In the present review, we focus on compartmentalized signaling of cyclic nucleotides in vascular smooth muscle. A deeper understanding of these mechanisms clarifies the most relevant axes for the regulation of vascular tone. Furthermore, this allows the detection of possible changes associated with pathological processes, which may be of help for the discovery of novel drugs.
Collapse
|
12
|
Rasmussen M, Welinder C, Schwede F, Ekström P. The stereospecific interaction sites and target specificity of cGMP analogs in mouse cortex. Chem Biol Drug Des 2021; 99:206-221. [PMID: 34687134 DOI: 10.1111/cbdd.13976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/29/2021] [Accepted: 10/16/2021] [Indexed: 11/30/2022]
Abstract
cGMP interactors play a role in several pathologies and may be targets for cGMP analog-based drugs, but the success of targeting depends on the biochemical stereospecificity between the cGMP-analog and the interactor. The stereospecificity between general cGMP analogs-or such that are selectivity-modified to obtain, for example, inhibitory actions on a specific target, like the cGMP-dependent protein kinase-have previously been investigated. However, the importance of stereospecificity for cGMP-analog binding to interactors is not known. We, therefore, applied affinity chromatography on mouse cortex proteins utilizing analogs with cyclic phosphate (8-AET-cGMP, 2-AH-cGMP, 2'-AHC-cGMP) and selectivity-modified analogs with sulfur-containing cyclic phosphorothioates (Rp/Sp-8-AET-cGMPS, Rp/Sp-2'-AHC-cGMPS) immobilized to agaroses. The results illustrate the cGMP analogs' stereospecific binding for PKG, PKA regulatory subunits and PKA catalytic subunits, PDEs, and EPAC2 and the involvement of these in various KEGG pathways. For the seven agaroses, PKG, PKA regulatory subunits, and PKA catalytic subunits were more prone to be enriched by 2-AH-, 8-AET-, Rp-8-AET-, and Sp-8-AET-cGMP, whereas PDEs and EPAC2 were more likely to be enriched by 2-AH-, Rp-2'-AHC-, and Rp-8-AET-cGMP. Our findings help elucidate the stereospecific-binding sites essential for the interaction between individual cGMP analogs and cGMP-binding proteins, as well as the cGMP analogs' target specificity, which are two crucial parameters in drug design.
Collapse
Affiliation(s)
- Michel Rasmussen
- Faculty of Medicine, Department of Clinical Sciences Lund, Ophthalmology, Lund University, Lund, Sweden
| | - Charlotte Welinder
- Faculty of Medicine, Department of Clinical Sciences Lund, Oncology, Lund University, Lund, Sweden
| | - Frank Schwede
- BIOLOG Life Science Institute GmbH & Co. KG, Bremen, Germany
| | - Per Ekström
- Faculty of Medicine, Department of Clinical Sciences Lund, Ophthalmology, Lund University, Lund, Sweden
| |
Collapse
|
13
|
Kobalava ZD, Lazarev PV. Nitric oxide — soluble guanylate cyclase — cyclic guanosine monophosphate signaling pathway in the pathogenesis of heart failure and search for novel therapeutic targets. КАРДИОВАСКУЛЯРНАЯ ТЕРАПИЯ И ПРОФИЛАКТИКА 2021. [DOI: 10.15829/1728-8800-2021-3035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Heart failure is a severe disease with an unfavorable prognosis, which requires intensification of therapy and the search for novel approaches to treatment. In this review, the physiological significance of soluble guanylate cyclase-related signaling pathway, reasons for decrease in its activity in heart failure and possible consequences are discussed. Pharmacological methods of stimulating the production of cyclic guanosine monophosphate using drugs with different mechanisms of action are considered. Data from clinical studies regarding their effectiveness and safety are presented. A promising approach is stimulation of soluble guanylate cyclase, which showed beneficial effects in preclinical studies, as well as in the recently completed phase III VICTORIA study.
Collapse
|
14
|
Sušić L, Maričić L, Vincelj J, Vadoci M, Sušić T. Understanding the association between endothelial dysfunction and left ventricle diastolic dysfunction in development of coronary artery disease and heart failure. ACTA BIO-MEDICA : ATENEI PARMENSIS 2021; 92:e2021204. [PMID: 34212905 PMCID: PMC8343725 DOI: 10.23750/abm.v92i3.11495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 04/07/2021] [Indexed: 11/23/2022]
Abstract
Cardiovascular diseases (CVDs) have been the most common cause of death worldwide for decades. Until recently the most affected patients were middle-aged and elderly, predominantly men, with more frequent ST elevation myocardial infarction (STEMI) caused by obstructive coronary artery disease (CAD). However, in the last two decades we have noticed an increased incidence of ischemia with non-obstructive coronary arteries (INOCA), which includes myocardial infarction with non-obstructive coronary arteries (MINOCA) and non-myocardial infarction syndromes, such as microvascular and vasospastic angina, conditions that have been particularly pronounced in women and young adults - the population we considered low-risky till than. Therefore, it has become apparent that for this group of patients conventional methods of assessing the risk of future cardiovascular (CV) events are no longer specific and sensitive enough. Heart failure with preserved ejection fraction (HFpEF) is another disease, the incidence of which has been rising rapidly during last two decades, and predominantly affects elderly population. Although the etiology and pathophysiology of INOCA and HFpEF are complex and not fully understood, there is no doubt that the underlying cause of both conditions is endothelial dysfunction (ED) which further promotes the development of left ventricular diastolic dysfunction (LVDD). Plasma biomarkers of ED, as well as natriuretic peptides (NPs), have been intensively investigated recently, and some of them have great potential for early detection and better assessment of CV risk in the future.
Collapse
Affiliation(s)
- Livija Sušić
- Department of Internal Medicine, Osijek-Baranja County Health Center, Osijek, Croatia and Josip Juraj Strossmayer University of Osijek, Faculty of Medicine, Osijek, Croatia.
| | - Lana Maričić
- Cardiology, University Hospital Centre Osijek, Osijek, Croatia; Josip Juraj Strossmayer University of Osijek, Faculty of Medicine, Osijek, Croatia.
| | - Josip Vincelj
- Josip Juraj Strossmayer University of Osijek, Faculty of Medicine, Osijek, Croatia.
| | - Milena Vadoci
- 1Department of Internal Medicine, Osijek-Baranja County Health Center, Osijek, Croatia.
| | | |
Collapse
|
15
|
Chen S, Yan C. An update of cyclic nucleotide phosphodiesterase as a target for cardiac diseases. Expert Opin Drug Discov 2021; 16:183-196. [PMID: 32957823 PMCID: PMC7854486 DOI: 10.1080/17460441.2020.1821643] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/07/2020] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Cyclic nucleotides, cAMP, and cGMP, are important second messengers of intracellular signaling and play crucial roles in cardiovascular biology and diseases. Cyclic nucleotide phosphodiesterases (PDEs) control the duration, magnitude, and compartmentalization of cyclic nucleotide signaling by catalyzing the hydrolysis of cyclic nucleotides. Individual PDEs modulate distinct signaling pathways and biological functions in the cell, making it a potential therapeutic target for the treatment of different cardiovascular disorders. The clinical success of several PDE inhibitors has ignited continued interest in PDE inhibitors and in PDE-target therapeutic strategies. AREAS COVERED This review concentrates on recent research advances of different PDE isoforms with regard to their expression patterns and biological functions in the heart. The limitations of current research and future directions are then discussed. The current and future development of PDE inhibitors is also covered. EXPERT OPINION Despite the therapeutic success of several marketed PDE inhibitors, the use of PDE inhibitors can be limited by their side effects, lack of efficacy, and lack of isoform selectivity. Advances in our understanding of the mechanisms by which cellular functions are changed through PDEs may enable the development of new approaches to achieve effective and specific PDE inhibition for various cardiac therapies.
Collapse
Affiliation(s)
- Si Chen
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
- Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Chen Yan
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| |
Collapse
|
16
|
Baker DA, Matralis AN, Osborne SA, Large JM, Penzo M. Targeting the Malaria Parasite cGMP-Dependent Protein Kinase to Develop New Drugs. Front Microbiol 2020; 11:602803. [PMID: 33391223 PMCID: PMC7773720 DOI: 10.3389/fmicb.2020.602803] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/23/2020] [Indexed: 12/17/2022] Open
Abstract
The single-celled apicomplexan parasite Plasmodium falciparum is responsible for the majority of deaths due to malaria each year. The selection of drug resistance has been a recurring theme over the decades with each new drug that is developed. It is therefore crucial that future generations of drugs are explored to tackle this major public health problem. Cyclic GMP (cGMP) signaling is one of the biochemical pathways that is being explored as a potential target for new antimalarial drugs. It has been shown that this pathway is essential for all of the key developmental stages of the complex malaria parasite life cycle. This gives hope that targeting cGMP signaling might give rise to drugs that treat disease, block its transmission and even prevent the establishment of infection. Here we review previous work that has been carried out to develop and optimize inhibitors of the cGMP-dependent protein kinase (PKG) which is a critical regulator of the malaria parasite life cycle.
Collapse
Affiliation(s)
- David A Baker
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | | | - Simon A Osborne
- LifeArc, Accelerator Building, Open Innovation Campus, Stevenage, United Kingdom
| | - Jonathan M Large
- LifeArc, Accelerator Building, Open Innovation Campus, Stevenage, United Kingdom
| | - Maria Penzo
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| |
Collapse
|
17
|
Baine S, Thomas J, Bonilla I, Ivanova M, Belevych A, Li J, Veeraraghavan R, Radwanski PB, Carnes C, Gyorke S. Muscarinic-dependent phosphorylation of the cardiac ryanodine receptor by protein kinase G is mediated by PI3K-AKT-nNOS signaling. J Biol Chem 2020; 295:11720-11728. [PMID: 32580946 PMCID: PMC7450129 DOI: 10.1074/jbc.ra120.014054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/20/2020] [Indexed: 12/30/2022] Open
Abstract
Post-translational modifications of proteins involved in calcium handling in myocytes, such as the cardiac ryanodine receptor (RyR2), critically regulate cardiac contractility. Recent studies have suggested that phosphorylation of RyR2 by protein kinase G (PKG) might contribute to the cardioprotective effects of cholinergic stimulation. However, the specific mechanisms underlying these effects remain unclear. Here, using murine ventricular myocytes, immunoblotting, proximity ligation as-says, and nitric oxide imaging, we report that phosphorylation of Ser-2808 in RyR2 induced by the muscarinic receptor agonist carbachol is mediated by a signaling axis comprising phosphoinositide 3-phosphate kinase, Akt Ser/Thr kinase, nitric oxide synthase 1, nitric oxide, soluble guanylate cyclase, cyclic GMP (cGMP), and PKG. We found that this signaling pathway is compartmentalized in myocytes, as it was distinct from atrial natriuretic peptide receptor-cGMP-PKG-RyR2 Ser-2808 signaling and independent of muscarinic-induced phosphorylation of Ser-239 in vasodilator-stimulated phosphoprotein. These results provide detailed insights into muscarinic-induced PKG signaling and the mediators that regulate cardiac RyR2 phosphorylation critical for cardiovascular function.
Collapse
Affiliation(s)
- Stephen Baine
- College of Pharmacy, Ohio State University, Columbus, Ohio, USA
| | - Justin Thomas
- College of Pharmacy, Ohio State University, Columbus, Ohio, USA
| | - Ingrid Bonilla
- Department of Physiology and Cell Biology, Ohio State University, Columbus, Ohio, USA
| | - Marina Ivanova
- Department of Physiology and Cell Biology, Ohio State University, Columbus, Ohio, USA
| | - Andriy Belevych
- Department of Physiology and Cell Biology, Ohio State University, Columbus, Ohio, USA
| | - Jiaoni Li
- Department of Biomedical Engineering, Ohio State University, Columbus, Ohio, USA
| | | | | | - Cynthia Carnes
- College of Pharmacy, Ohio State University, Columbus, Ohio, USA
| | - Sandor Gyorke
- Department of Biomedical Engineering, Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
18
|
cGMP signalling in cardiomyocyte microdomains. Biochem Soc Trans 2020; 47:1327-1339. [PMID: 31652306 DOI: 10.1042/bst20190225] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/20/2019] [Accepted: 09/24/2019] [Indexed: 02/07/2023]
Abstract
3',5'-Cyclic guanosine monophosphate (cGMP) is one of the major second messengers critically involved in the regulation of cardiac electrophysiology, hypertrophy, and contractility. Recent molecular and cellular studies have significantly advanced our understanding of the cGMP signalling cascade, its local microdomain-specific regulation and its role in protecting the heart from pathological stress. Here, we summarise recent findings on cardiac cGMP microdomain regulation and discuss their potential clinical significance.
Collapse
|
19
|
Wang X, Du W, Li M, Zhang Y, Li H, Sun K, Liu J, Dong P, Meng X, Yi W, Yang L, Zhao R, Hu J. The β subunit of soluble guanylyl cyclase GUCY1B3 exerts cardioprotective effects against ischemic injury via the PKCε/Akt pathway. J Cell Biochem 2018; 120:3071-3081. [PMID: 30485489 DOI: 10.1002/jcb.27479] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 07/18/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Xiaomin Wang
- Translational Medicine Center, Baotou Central Hospital Baotou China
| | - Wei Du
- Department of Cardiology Baotou Central Hospital Baotou China
| | - Meng Li
- Department of Cardiology Baotou Central Hospital Baotou China
| | - Yong Zhang
- Department of Cardiology Baotou Central Hospital Baotou China
| | - Hongyu Li
- Department of Cardiology Baotou Central Hospital Baotou China
| | - Kai Sun
- Translational Medicine Center, Baotou Central Hospital Baotou China
| | - Jianping Liu
- Department of Cardiology Baotou Central Hospital Baotou China
| | - Pengxia Dong
- Department of Cardiology Baotou Central Hospital Baotou China
| | - Xianda Meng
- Department of Cardiology Dalian (Municipal) Friendship Hospital Dalian China
| | - Wensi Yi
- Department of Institution of Interventional and Vascular Surgery Tongji University Shanghai China
| | - Liu Yang
- Department of Institution of Interventional and Vascular Surgery Tongji University Shanghai China
| | - Ruiping Zhao
- Translational Medicine Center, Baotou Central Hospital Baotou China
- Department of Cardiology Baotou Central Hospital Baotou China
| | - Jiang Hu
- Translational Medicine Center, Baotou Central Hospital Baotou China
| |
Collapse
|
20
|
Discovery of furyl/thienyl β-carboline derivatives as potent and selective PDE5 inhibitors with excellent vasorelaxant effect. Eur J Med Chem 2018; 158:767-780. [DOI: 10.1016/j.ejmech.2018.09.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 08/23/2018] [Accepted: 09/10/2018] [Indexed: 01/02/2023]
|
21
|
Reddy GR, West TM, Jian Z, Jaradeh M, Shi Q, Wang Y, Chen-Izu Y, Xiang YK. Illuminating cell signaling with genetically encoded FRET biosensors in adult mouse cardiomyocytes. J Gen Physiol 2018; 150:1567-1582. [PMID: 30242036 PMCID: PMC6219686 DOI: 10.1085/jgp.201812119] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 08/04/2018] [Accepted: 09/04/2018] [Indexed: 12/15/2022] Open
Abstract
FRET-based biosensors are powerful tools to study intracellular signaling that require long culture times for adenoviral infection. Reddy et al. have developed a method for culturing adult mouse cardiomyocytes involving blebbistatin, which preserves cell morphology for up to 50 h after adenoviral infection. FRET-based biosensor experiments in adult cardiomyocytes are a powerful way of dissecting the spatiotemporal dynamics of the complicated signaling networks that regulate cardiac health and disease. However, although much information has been gleaned from FRET studies on cardiomyocytes from larger species, experiments on adult cardiomyocytes from mice have been difficult at best. Thus the large variety of genetic mouse models cannot be easily used for this type of study. Here we develop cell culture conditions for adult mouse cardiomyocytes that permit robust expression of adenoviral FRET biosensors and reproducible FRET experimentation. We find that addition of 6.25 µM blebbistatin or 20 µM (S)-nitro-blebbistatin to a minimal essential medium containing 10 mM HEPES and 0.2% BSA maintains morphology of cardiomyocytes from physiological, pathological, and transgenic mouse models for up to 50 h after adenoviral infection. This provides a 10–15-h time window to perform reproducible FRET readings using a variety of CFP/YFP sensors between 30 and 50 h postinfection. The culture is applicable to cardiomyocytes isolated from transgenic mouse models as well as models with cardiac diseases. Therefore, this study helps scientists to disentangle complicated signaling networks important in health and disease of cardiomyocytes.
Collapse
Affiliation(s)
| | - Toni M West
- Department of Pharmacology, University of California at Davis, Davis, CA
| | - Zhong Jian
- Department of Pharmacology, University of California at Davis, Davis, CA
| | - Mark Jaradeh
- Department of Pharmacology, University of California at Davis, Davis, CA
| | - Qian Shi
- Department of Pharmacology, University of California at Davis, Davis, CA
| | - Ying Wang
- Department of Pharmacology, University of California at Davis, Davis, CA
| | - Ye Chen-Izu
- Department of Pharmacology, University of California at Davis, Davis, CA.,Department of Bioengineering, University of California at Davis, Davis, CA.,Department of Internal Medicine/Cardiology, University of California at Davis, Davis, CA
| | - Yang K Xiang
- Department of Pharmacology, University of California at Davis, Davis, CA .,Veterans Affairs Northern California Health Care System, Mather, CA
| |
Collapse
|