1
|
Bhuia MS, Chowdhury R, Afroz M, Akbor MS, Al Hasan MS, Ferdous J, Hasan R, de Alencar MVOB, Mubarak MS, Islam MT. Therapeutic Efficacy Studies on the Monoterpenoid Hinokitiol in the Treatment of Different Types of Cancer. Chem Biodivers 2025; 22:e202401904. [PMID: 39776341 DOI: 10.1002/cbdv.202401904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 12/10/2024] [Accepted: 12/15/2024] [Indexed: 01/11/2025]
Abstract
Hinokitiol (HK), a monoterpenoid that naturally occurs in plants belonging to the Cupressaceae family, possesses important biological activities, including an anticancer effect. This review summarizes its anticancer potential and draws possible molecular interventions. In addition, it evaluates the biopharmaceutical, toxicological properties, and clinical application of HK to establish its viability for future advancement as a dependable anticancer medication. The assessment is based on the most recent information available from various databases. Findings demonstrate that HK possesses substantial therapeutic advantages against diverse types of cancer (colon, cervical, breast, bone, endometrial, liver, prostate, oral, and skin) through various molecular mechanisms. HK induces oxidative stress, cytotoxicity, apoptosis, cell-cycle arrest at the G and S phases, and autophagy through modulation of phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR), p38/ERK/MAPK, nuclear factor kappa B, and c-Jun N-terminal kinase signaling pathways. Furthermore, this compound exhibits good oral bioavailability with excellent plasma clearance. Clinical uses of HK demonstrate therapeutic advantages without any significant negative effects. A thorough study of the pertinent data suggests that HK may serve as a viable candidate for developing novel cancer therapies. Consequently, more extensive studies are necessary to evaluate its cancer treatment efficacy, safety, and possible long-term hazards.
Collapse
Affiliation(s)
- Md Shimul Bhuia
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Dhaka, Bangladesh
- Phytochemistry and Biodiversity Research Laboratory, BioLuster Research Center Ltd, Gopalganj, Dhaka, Bangladesh
| | - Raihan Chowdhury
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Dhaka, Bangladesh
- Phytochemistry and Biodiversity Research Laboratory, BioLuster Research Center Ltd, Gopalganj, Dhaka, Bangladesh
| | - Meher Afroz
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Dhaka, Bangladesh
| | - Md Showkot Akbor
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Dhaka, Bangladesh
| | - Md Sakib Al Hasan
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Dhaka, Bangladesh
- Phytochemistry and Biodiversity Research Laboratory, BioLuster Research Center Ltd, Gopalganj, Dhaka, Bangladesh
| | - Jannatul Ferdous
- Department of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Dhaka, Bangladesh
| | - Rubel Hasan
- Phytochemistry and Biodiversity Research Laboratory, BioLuster Research Center Ltd, Gopalganj, Dhaka, Bangladesh
| | | | | | - Muhammad Torequl Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Dhaka, Bangladesh
- Phytochemistry and Biodiversity Research Laboratory, BioLuster Research Center Ltd, Gopalganj, Dhaka, Bangladesh
- Pharmacy Discipline, Khulna University, Khulna, Dhaka, Bangladesh
| |
Collapse
|
2
|
Takeuchi N, Fukui K, Nakamura K, Tanaka A. Studies on the antifungal effects of Hinokitiol on Candida albicans: inhibition of germ tube formation and synergistic pharmacological effects of miconazole. Odontology 2025; 113:556-565. [PMID: 39292415 DOI: 10.1007/s10266-024-00992-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 08/15/2024] [Indexed: 09/19/2024]
Abstract
One of the goals of oral healthcare management is to manage dry mouth. Thus, moisturizers containing antimicrobial ingredients, such as hinokitiol (HT), are applied to the oral mucosa after oral care. In this study, we investigated the preventive effect of HT against the growth of Candida albicans (C. al) and its synergistic effect when combined with miconazole (MCZ), an oral treatment for candidiasis. As the concentration of HT increased, the length and percentage of germ tubes (GT) decreased. Larger inhibition circles were observed for MCZ concentrations of 2.0 and 4.0 μg/disc compared to the HT medium without HT. The increased inhibitory effect was observed in both aerobic and anaerobic cultures. This suggests that the production of reactive oxygen species (ROS) by C. al cells increased with the combination of HT and MCZ. The length and percentage of GT increased, whereas the amount of ROS decreased when ROS scavengers were used in combination with the drug. HT led to morphological changes that inhibited the GT associated with pathogenic C. al, exhibited a complementary action against MCZ, and showed a possible association with hydrogen peroxide and superhydroxy anion radicals. These effects suggest that HT is a promising candidate for inhibiting C. al. In conclusion, HT demonstrated a prophylactic effect by inhibiting C. al and a synergistic effect with MCZ, a drug used to treat oral candidiasis. HT may also be useful for suppressing the onset and reducing the severity of oral candidiasis.
Collapse
Affiliation(s)
- Nobuchika Takeuchi
- Course of Clinical Science, Field of Oral and Maxillofacial Surgery and Systemic Medicine, Oral and Maxillofacial Surgery, Graduate School of Life Dentistry at Niigata, The Nippon Dental University, 1-8 Hamaura-cho, Chuo-ku, Niigata, 951-8580, Japan.
| | - Kayoko Fukui
- Department of Pharmacology, School of Life Dentistry at Niigata, The Nippon Dental University, 1-8 Hamaura-cho, Chuo-ku, Niigata, 951-8580, Japan
| | - Kenjirou Nakamura
- School of Life Dentistry at Niigata, The Nippon Dental University, 1-8 Hamaura-cho, Chuo-ku, Niigata, 951-8580, Japan
| | - Akira Tanaka
- Course of Clinical Science, Field of Oral and Maxillofacial Surgery and Systemic Medicine, Oral and Maxillofacial Surgery, Graduate School of Life Dentistry at Niigata, The Nippon Dental University, 1-8 Hamaura-cho, Chuo-ku, Niigata, 951-8580, Japan
- Department of Oral and Maxillofacial Surgery, School of Life Dentistry at Niigata, The Nippon Dental University, 1-8 Hamaura-cho, Chuo-ku, Niigata, 951-8580, Japan
| |
Collapse
|
3
|
Chen TW, Tsao NW, Wang SY, Chu FH. Cloning and functional characterization of volatile-terpene synthase genes from Chamaecyparis obtusa var. formosana. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 350:112322. [PMID: 39571687 DOI: 10.1016/j.plantsci.2024.112322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 11/01/2024] [Accepted: 11/15/2024] [Indexed: 11/26/2024]
Abstract
Chamaecyparis obtusa var. formosana is significant as a precious and endemic plant in Taiwan. The trunk, renowned for its excellent texture and color, is ideal for construction materials and furniture. Moreover, the entire plant is rich in aroma, which can be made into essential oils, fragrances, and a series of related products. Volatile terpenoids are the major compounds in the composition of essential oils, many of which can only be found in C. obtusa var. formosana. In this study, we successfully identified 12 volatile terpene synthases from C. obtusa var. formosana. Most of the selected TPSs displayed the ability to catalyze precursors into cyclic terpenoids, except for CovfTPS8, which also exhibited the capability to react with FPP and GPP. CovfTPS10 is particularly noteworthy for its multi-product characteristics and the ability to synthesize acoradiene. Moreover, it produces a novel compound, cis-isoduacene. Through the investigation of these volatile-terpenoid synthases, we can gain a better understanding of the cyclization process for terpenoids.
Collapse
Affiliation(s)
- Ting-Wei Chen
- School of Forestry and Resource Conservation, National Taiwan University, Taipei, Taiwan
| | - Nai-Wen Tsao
- Department of Forestry, National Chung-Hsing University, Taichung, Taiwan
| | - Sheng-Yang Wang
- Department of Forestry, National Chung-Hsing University, Taichung, Taiwan
| | - Fang-Hua Chu
- School of Forestry and Resource Conservation, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
4
|
Câmara JS, Perestrelo R, Ferreira R, Berenguer CV, Pereira JAM, Castilho PC. Plant-Derived Terpenoids: A Plethora of Bioactive Compounds with Several Health Functions and Industrial Applications-A Comprehensive Overview. Molecules 2024; 29:3861. [PMID: 39202940 PMCID: PMC11357518 DOI: 10.3390/molecules29163861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 09/03/2024] Open
Abstract
Terpenoids are a large class of natural secondary plant metabolites which are highly diverse in structure, formed from isoprene units (C-5), associated with a wide range of biological properties, including antioxidant, antimicrobial, anti-inflammatory, antiallergic, anticancer, antimetastatic, antiangiogenesis, and apoptosis induction, and are considered for potential application in the food, cosmetics, pharmaceutical, and medical industries. In plants, terpenoids exert a variety of basic functions in growth and development. This review gives an overview, highlighting the current knowledge of terpenoids and recent advances in our understanding of the organization, regulation, and diversification of core and specialized terpenoid metabolic pathways and addressing the most important functions of volatile and non-volatile specialized terpenoid metabolites in plants. A comprehensive description of different aspects of plant-derived terpenoids as a sustainable source of bioactive compounds, their biosynthetic pathway, the several biological properties attributed to these secondary metabolites associated with health-promoting effects, and their potential industrial applications in several fields will be provided, and emerging and green extraction methods will also be discussed. In addition, future research perspectives within this framework will be highlighted. Literature selection was carried out using the National Library of Medicine, PubMed, and international reference data for the period from 2010 to 2024 using the keyword "terpenoids". A total of 177,633 published papers were found, of which 196 original and review papers were included in this review according to the criteria of their scientific reliability, their completeness, and their relevance to the theme considered.
Collapse
Affiliation(s)
- José S. Câmara
- CQM—Centro de Química da Madeira, NPRG, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal; (R.P.); (R.F.); (C.V.B.); (J.A.M.P.); (P.C.C.)
- Departamento de Química, Faculdade de Ciências Exatas e da Engenharia da Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
| | - Rosa Perestrelo
- CQM—Centro de Química da Madeira, NPRG, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal; (R.P.); (R.F.); (C.V.B.); (J.A.M.P.); (P.C.C.)
| | - Rui Ferreira
- CQM—Centro de Química da Madeira, NPRG, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal; (R.P.); (R.F.); (C.V.B.); (J.A.M.P.); (P.C.C.)
| | - Cristina V. Berenguer
- CQM—Centro de Química da Madeira, NPRG, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal; (R.P.); (R.F.); (C.V.B.); (J.A.M.P.); (P.C.C.)
| | - Jorge A. M. Pereira
- CQM—Centro de Química da Madeira, NPRG, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal; (R.P.); (R.F.); (C.V.B.); (J.A.M.P.); (P.C.C.)
| | - Paula C. Castilho
- CQM—Centro de Química da Madeira, NPRG, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal; (R.P.); (R.F.); (C.V.B.); (J.A.M.P.); (P.C.C.)
- Departamento de Química, Faculdade de Ciências Exatas e da Engenharia da Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
| |
Collapse
|
5
|
Kim TY, Kim EN, Jeong GS. Therapeutic Effects of Hinokitiol through Regulating the SIRT1/NOX4 against Ligature-Induced Experimental Periodontitis. Antioxidants (Basel) 2024; 13:550. [PMID: 38790655 PMCID: PMC11118509 DOI: 10.3390/antiox13050550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/19/2024] [Accepted: 04/19/2024] [Indexed: 05/26/2024] Open
Abstract
Hinokitiol (HKT) is one of the essential oil components found in the heartwood of Cupressaceae plants, and has been reported to have various bioactive effects, including anti-inflammatory effects. However, the improving effect of HKT on periodontitis, which is characterized by periodontal tissue inflammation and alveolar bone loss, has not been clearly revealed. Therefore, we investigated the periodontitis-alleviating effect of HKT and the related molecular mechanisms in human periodontal ligament cells. According to the study results, HKT downregulated SIRT1 and NOX4, which were increased by Porphyromonas gingivalis Lipopolysaccharide (PG-LPS) stimulation and were found to regulate pro-inflammatory mediators and oxidative stress through SIRT1/NOX4 signals. Additionally, by increasing the expression of osteogenic makers such as alkaline phosphatase, osteogenic induction of human periodontal ligament (HPDL) cells, which had been reduced by PG-LPS, was restored. Furthermore, we confirmed that NOX4 expression was regulated through regulation of SIRT1 expression with HKT. The in vitro effect of HKT on improving periodontitis was proven using the periodontal inflammation model, which induces periodontal inflammation using ligature, a representative in vivo model. According to in vivo results, HKT alleviated periodontal inflammation and restored damaged alveolar bone in a concentration-dependent manner in the periodontal inflammation model. Through this experiment, the positive effects of HKT on relieving periodontal tissue inflammation and recovering damaged alveolar bone, which are important treatment strategies for periodontitis, were confirmed. Therefore, these results suggest that HKT has potential in the treatment of periodontitis.
Collapse
Affiliation(s)
| | | | - Gil-Saeng Jeong
- College of Pharmacy, Chungnam National University, Daejeon 34134, Republic of Korea; (T.-Y.K.); (E.-N.K.)
| |
Collapse
|
6
|
Synowiec-Wojtarowicz A, Krawczyk A, Kimsa-Dudek M. Static Magnetic Field Reduces the Anticancer Effect of Hinokitiol on Melanoma Malignant Cells-Gene Expression and Redox Homeostasis Studies. Pharmaceuticals (Basel) 2024; 17:430. [PMID: 38675392 PMCID: PMC11054113 DOI: 10.3390/ph17040430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Melanoma malignant is characterized by a high mortality rate, accounting for as much as 65% of deaths caused by skin cancer. A potential strategy in cancer treatment may be the use of natural compounds, which include hinokitiol (β-Thujaplicin), a phenolic component of essential oils extracted from cypress trees. Many studies confirm that a high-induction SMF (static magnetic field) has anticancer effects and can be used as a non-invasive anticancer therapy in combination with or without drugs. AIM The aim of this experiment was to evaluate the effect of a static magnetic field on melanoma cell cultures (C32 and COLO 829) treated with hinokitiol. METHODS AND RESULTS Melanoma cells were exposed to a static magnetic field of moderate induction and hinokitiol. The research included determining the activity of the antioxidant enzymes (SOD, GPx, and CAT) and MDA concentration as well as the gene expression profile. CONCLUSION Hinokitiol disturbs the redox homeostasis of C32 and COLO 829 melanoma malignant cells. Moreover, a static magnetic field has a protective effect on melanoma malignant cells and abolishes the anticancer effect of hinokitiol.
Collapse
Affiliation(s)
- Agnieszka Synowiec-Wojtarowicz
- Department of Nutrigenomics and Bromatology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 8 Jednosci Street, 41-200 Sosnowiec, Poland; (A.K.); (M.K.-D.)
| | | | | |
Collapse
|
7
|
Mathur A, Meena A, Luqman S. Monoterpenoids: An upcoming class of therapeutic agents for modulating cancer metastasis. Phytother Res 2024; 38:939-969. [PMID: 38102850 DOI: 10.1002/ptr.8081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/28/2023] [Accepted: 11/14/2023] [Indexed: 12/17/2023]
Abstract
Monoterpenoids, a sub-class of terpenoids, are secondary metabolites frequently extracted from the essential oils of aromatic plants. Their antitumor properties including antiproliferative, apoptotic, antiangiogenic, and antimetastatic effects along with other biological activities have been the subject of extensive study due to their diverse characteristics. In recent years, numerous investigations have been conducted to understand its potential anticancer impacts, specifically focusing on antiproliferative and apoptotic mechanisms. Metastasis, a malignancy hallmark, can exert either protective or destructive influences on tumor cells. Despite this, the potential antimetastatic and antiangiogenic attributes of monoterpenoids need further exploration. This review focuses on specific monoterpenoids, examining their effects on metastasis and relevant signaling pathways. The monoterpenoids exhibit a high level of complexity as natural products that regulate metastatic proteins through various signaling pathways, including phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin, mitogen-activated protein kinase/extracellular signal-regulated kinase/jun N-terminal kinase, nuclear factor kappa B, vascular endothelial growth factor, and epithelial mesenchymal transition process. Additionally, this review delves into the biosynthesis and classification of monoterpenoids, their potential antitumor impacts on cell lines, the plant sources of monoterpenoids, and the current status of limited clinical trials investigating their efficacy against cancer. Moreover, monoterpenoids depict promising potential in preventing cancer metastasis, however, inadequate clinical trials limit their drug usage. State-of-the-art techniques and technologies are being employed to overcome the challenges of utilizing monoterpenoids as an anticancer agent.
Collapse
Affiliation(s)
- Anurag Mathur
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Abha Meena
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Suaib Luqman
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
8
|
Chelpuri Y, Pabbathi S, Alla GR, Yadala RK, Kamishetti M, Banothu AK, Boinepally R, Bharani KK, Khurana A. Tropolone derivative hinokitiol ameliorates cerulein-induced acute pancreatitis in mice. Int Immunopharmacol 2022; 109:108915. [PMID: 35679663 DOI: 10.1016/j.intimp.2022.108915] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 05/25/2022] [Accepted: 05/29/2022] [Indexed: 11/17/2022]
Abstract
Hinokitiol is a natural bio-active tropolone derivative with promising antioxidant and anti-inflammatory properties. This study was conducted to evaluate the ameliorative effects of hinokitiol against acute pancreatitis induced by cerulein. Mice were pre-treated with hinokitiol intraperitoneally for 7 days (50 and 100 mg/kg), and on the final day of study, cerulein (6 × 50 μg/kg) was injected every hour for six times. Six hours after the last dose of cerulein, blood was collected from the mice through retro-orbital plexus for biochemical analysis. After blood collection, mice were euthanized and the pancreas was harvested for studying effects on oxidative stress, pro-inflammatory cytokines, immunohistochemistry and histopathology of tissue sections. Hinokitiol treatment significantly reduced edema of the pancreas and reduced the plasma levels of lipase and amylase in mice with cerulein-induced acute pancreatitis. It also attenuated the oxidative and nitrosative stress related damage as evident from the reduced malondialdehyde (MDA) and nitrite levels, which were significantly increased in the mice with acute pancreatitis. Furthermore, hinokitiol administration significantly reduced the pancreatitis-evoked decrease in the activity of catalase, glutathione (GSH) and superoxide dismutase (SOD) in the pancreatic tissue. Pre-treatment with hinokitiol significantly reduced the elevated levels of pro-inflammatory cytokines like interleukin-6 (IL-6), interleukin-1β (IL-1β), tumor necrosis factor-alpha (TNF-α) as well as increased the levels of anti-inflammatory cytokine interleukin-10 (IL-10) in the pancreatic tissue of mice with acute pancreatitis. The immunohistochemical expression of nuclear factor kappa light chain enhancer of activated B cells (NF-κB), cyclooxygenase (COX-2) and TNF-α were significantly decreased by hinokitiol in mice with cerulein-induced acute pancreatitis. In conclusion, the results of the present study demonstrate that hinokitiol has significant potential to prevent cerulein-induced acute pancreatitis.
Collapse
Affiliation(s)
- Yamini Chelpuri
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc), Rajendranagar, Hyderabad 500030, PVNRTVU, Telangana, India
| | - Shivakumar Pabbathi
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc), Rajendranagar, Hyderabad 500030, PVNRTVU, Telangana, India
| | - Gopala Reddy Alla
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc), Rajendranagar, Hyderabad 500030, PVNRTVU, Telangana, India
| | - Ravi Kumar Yadala
- Department of Veterinary Pathology, College of Veterinary Science (CVSc), Rajendranagar, Hyderabad 500030, PVNRTVU, Telangana, India
| | - Mounika Kamishetti
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc), Rajendranagar, Hyderabad 500030, PVNRTVU, Telangana, India
| | - Anil Kumar Banothu
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc), Rajendranagar, Hyderabad 500030, PVNRTVU, Telangana, India.
| | - Ramya Boinepally
- Department of Veterinary Pathology, Veterinary Clinical Complex, College of Veterinary Science (CVSc), Warangal 506166, PVNRTVU, Telangana, India
| | - Kala Kumar Bharani
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc), Warangal 506166, PVNRTVU, Telangana, India
| | - Amit Khurana
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc), Rajendranagar, Hyderabad 500030, PVNRTVU, Telangana, India; Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc), Warangal 506166, PVNRTVU, Telangana, India; Centre for Biomedical Engineering (CBME), Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi 110016, India.
| |
Collapse
|
9
|
The radiosensitizing effect of β-Thujaplicin, a tropolone derivative inducing S-phase cell cycle arrest, in head and neck squamous cell carcinoma-derived cell lines. Invest New Drugs 2022; 40:700-708. [PMID: 35412173 PMCID: PMC9288374 DOI: 10.1007/s10637-022-01229-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 02/28/2022] [Indexed: 12/24/2022]
Abstract
Background Resistance to radiotherapy is a common cause of treatment failure in advanced head and neck squamous cell carcinoma (HNSCC). ß-Thujaplicin, a natural tropolone derivative, acts as an anti-cancer agent and has recently been shown to radiosensitize non-HNSCC cancer cells. However, no data is currently available on its radiosensitizing potential in HNSCC. Methods To investigate the effect of ß-Thujaplicin and irradiation in HNSCC cell lines CAL27 and FADU, we performed a cell viability assay, colony forming assay, flow cytometry for cell cycle analysis and a wound healing assay. Drug-irradiation interaction was analyzed using a zero-interaction potency model. Results Treatment with ß-Thujaplicin led to a dose-dependent decrease in cell viability and enhanced the effect of irradiation. Clonogenic survival was inhibited with synergistic drug-irradiation interaction. ß-Thujaplicin further led to S-phase arrest and increased the sub-G1 population. Moreover, combined ß-Thujaplicin and irradiation treatment had a higher anti-migratory effect compared to irradiation alone. Conclusions ß-Thujaplicin acts as a radiosensitizer in HNSCC cell lines. Further evaluation of its use in HNSCC therapy is warranted.
Collapse
|
10
|
Hinokitiol Protects Cardiomyocyte from Oxidative Damage by Inhibiting GSK3β-Mediated Autophagy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2700000. [PMID: 35419165 PMCID: PMC9001072 DOI: 10.1155/2022/2700000] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/08/2022] [Indexed: 12/13/2022]
Abstract
More and more attention has been paid to the use of traditional phytochemicals. Here, we first verified the therapeutic potential of a natural bioactive compound called Hinokitiol in myocardial ischemia reperfusion injury. Hinokitiol exerts cardioprotective effect through inhibition of GSK-3β and subsequent elimination of excessive autophagy, tuning autophagic activity in moderate extent for remedial profit in acute myocardial infarction and myocardial ischemia reperfusion injury. Overall, our study establishes Hinokitiol as a novel available interventional treatment for myocardial ischemia reperfusion injury.
Collapse
|
11
|
Masyita A, Mustika Sari R, Dwi Astuti A, Yasir B, Rahma Rumata N, Emran TB, Nainu F, Simal-Gandara J. Terpenes and terpenoids as main bioactive compounds of essential oils, their roles in human health and potential application as natural food preservatives. Food Chem X 2022; 13:100217. [PMID: 35498985 PMCID: PMC9039924 DOI: 10.1016/j.fochx.2022.100217] [Citation(s) in RCA: 235] [Impact Index Per Article: 78.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/08/2022] [Accepted: 01/14/2022] [Indexed: 02/06/2023] Open
Abstract
Essential oils (EOs) are volatile and concentrated liquids extracted from different parts of plants. Bioactive compounds found in EOs, especially terpenes and terpenoids possess a wide range of biological activities including anticancer, antimicrobial, anti-inflammatory, antioxidant, and antiallergic. Available literature confirms that EOs exhibit antimicrobial and food preservative properties that are considered as a real potential application in food industry. Hence, the purpose of this review is to present an overview of current knowledge of EOs for application in pharmaceutical and medical industries as well as their potential as food preservatives in food industry.
Collapse
Affiliation(s)
- Ayu Masyita
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Sulawesi Selatan, Indonesia
| | - Reka Mustika Sari
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sumatera Utara, Medan 20222, Sumatera Utara, Indonesia
- Cellulosic and Functional Materials Research Centre, Universitas Sumatera Utara, Jl. Bioteknologi No.1, Medan 20155, Indonesia
| | - Ayun Dwi Astuti
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Sulawesi Selatan, Indonesia
| | - Budiman Yasir
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Sulawesi Selatan, Indonesia
- Sekolah Tinggi Ilmu Farmasi Makassar, Makassar 90242, Sulawesi Selatan, Indonesia
| | - Nur Rahma Rumata
- Sekolah Tinggi Ilmu Farmasi Makassar, Makassar 90242, Sulawesi Selatan, Indonesia
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| | - Firzan Nainu
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Sulawesi Selatan, Indonesia
| | - Jesus Simal-Gandara
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E32004 Ourense, Spain
| |
Collapse
|
12
|
Different Cell Responses to Hinokitiol Treatment Result in Senescence or Apoptosis in Human Osteosarcoma Cell Lines. Int J Mol Sci 2022; 23:ijms23031632. [PMID: 35163553 PMCID: PMC8835861 DOI: 10.3390/ijms23031632] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/28/2022] [Accepted: 01/28/2022] [Indexed: 02/01/2023] Open
Abstract
Hinokitiol is a tropolone-related compound isolated from the heartwood of cupressaceous plants. It is known to exhibit various biological functions including antibacterial, antifungal, and antioxidant activities. In the study, we investigated the antitumor activities of hinokitiol against human osteosarcoma cells. The results revealed that hinokitiol treatment inhibited cell viability of human osteosarcoma U-2 OS and MG-63 cells in the MTT assay. Further study revealed that hinokitiol exposure caused cell cycle arrest at the S phase and a DNA damage response with the induction of γ-H2AX foci in both osteosarcoma cell lines. In U-2 OS cells with wild-type tumor suppressor p53, we found that hinokitiol exposure induced p53 expression and cellular senescence, and knockdown of p53 suppressed the senescence. However, in MG-63 cells with mutated p53, a high percentage of cells underwent apoptosis with cleaved-PARP expression and Annexin V staining after hinokitiol treatment. In addition, up-regulated autophagy was observed both in hinokitiol-exposed U-2 OS and MG-63 cells. As the autophagy was suppressed through the autophagy inhibitor chloroquine, hinokitiol-induced senescence in U-2 OS cells was significantly enhanced accompanying more abundant p53 expression. In MG-63 cells, co-treatment of chloroquine increased hinokitiol-induced apoptosis and decreased cell viability of the treated cells. Our data revealed that hinokitiol treatment could result in different cell responses, senescence or apoptosis in osteosarcoma cell lines, and suppression of autophagy could promote these effects. We hypothesize that the analysis of p53 status and co-administration of autophagy inhibitors might provide more precise and efficacious therapies in hinokitiol-related trials for treating osteosarcoma.
Collapse
|
13
|
Jin X, Zhang M, Lu J, Duan X, Chen J, Liu Y, Chang W, Lou H. Hinokitiol chelates intracellular iron to retard fungal growth by disturbing mitochondrial respiration. J Adv Res 2022; 34:65-77. [PMID: 35024181 PMCID: PMC8655124 DOI: 10.1016/j.jare.2021.06.016] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 06/01/2021] [Accepted: 06/15/2021] [Indexed: 12/30/2022] Open
Abstract
Introduction The increasing morbidity of fungal infections and the prevalence of drug resistance highlighted the discovery of novel antifungal agents and investigation of their modes of action. Iron chelators have been used to treat superficial fungal infections or potentiate the efficacy of certain antifungal drugs. Hinokitiol exhibits potent antifungal activity and iron-chelating ability. However, their relationships have not been established. Objectives This study aims to explore the selectivity of hinokitiol against fungal cells and mammalian cells and determine the role of iron-chelating for the antifungal activity of hinokitiol. Methods Iron probe FeRhonox-1 was used to determine intracellular Fe2+ content. 5-Cyano-2,3-ditolyl tetrazolium chloride probe and Cell Counting Kit-8 were used to detect the mitochondrial respiratory activities. Quantitative real-time PCR and rescue experiments were performed to determine the effect of iron on the antifungal activity of hinokitiol. The effects of hinokitiol on fungal mitochondria were further evaluated using reactive oxygen species probes and several commercial Assay Kits. The ability of hinokitiol to induce resistance in Candida species was carried out using a serial passage method. The in vivo therapeutic effect of hinokitiol was evaluated using Galleria mellonella as an infectious model. Results Hinokitiol was effective against a panel of Candida strains with multiple azole-resistant mechanisms and persistently inhibited Candida albicans growth. Mechanism investigations revealed that hinokitiol chelated fungal intracellular iron and inhibited the respiration of fungal cells but had minor effects on mammalian cells. Hinokitiol further inhibited the activities of mitochondrial respiratory chain complexes I and II and reduced mitochondrial membrane potential, thereby decreasing intracellular ATP synthesis and increasing detrimental intracellular reductive stress. Moreover, hinokitiol exhibited low potential for inducing resistance in several Candida species and greatly improved the survival of Candida-infected Galleria mellonella. Conclusions These findings suggested the potential application of hinokitiol as an iron chelator to treat fungal infections.
Collapse
Affiliation(s)
- Xueyang Jin
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Ming Zhang
- Institute of Medical Science, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Jinghui Lu
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Ximeng Duan
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Jinyao Chen
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Yue Liu
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Wenqiang Chang
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Hongxiang Lou
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| |
Collapse
|
14
|
Sharma M, Grewal K, Jandrotia R, Batish DR, Singh HP, Kohli RK. Essential oils as anticancer agents: Potential role in malignancies, drug delivery mechanisms, and immune system enhancement. Biomed Pharmacother 2021; 146:112514. [PMID: 34963087 DOI: 10.1016/j.biopha.2021.112514] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/30/2021] [Accepted: 12/06/2021] [Indexed: 01/04/2023] Open
Abstract
Cancer retains a central place in fatality rates among the wide variety of diseases known world over, and the conventional synthetic medicaments, albeit used until now, produce numerous side effects. As a result, newer, better, and safer alternatives such as natural plant products, are gravely required. Essential oils (EOs) offer a plethora of bioactivities including antibacterial, antiviral, antioxidant, and anticancer properties, therefore, the use of EOs in combination with synthetic drugs or aromatherapy continues to be popular in many settings. In view of the paramount importance of EOs and their potential bioactivities, this review summarizes the current knowledge on the interconnection between EOs and cancer treatment. In particular, the current review presents an updated summary of the chemical composition of EOs, their current applications in cancer treatments based on clinical studies, and the mechanism of action against the cancer cell lines. Similarly, an overview of using EOs in aromatherapy and enhancing immunity during cancer treatment is provided. Further, this review focuses on the recent technological advancements such as the loading of EOs using protein microspheres, ligands, or nanoemulsions/nanoencapsulation, which offer multiple benefits in cancer treatment via site-specific and target-oriented delivery of drugs. The continuing clinical studies of EOs implicate that their pharmacological applications are a rewarding research area.
Collapse
Affiliation(s)
- Mansi Sharma
- Department of Environment Studies, Panjab University, Chandigarh 160 014, India
| | - Kamaljit Grewal
- Department of Botany, Panjab University, Chandigarh 160 014, India
| | - Rupali Jandrotia
- Department of Botany, Panjab University, Chandigarh 160 014, India
| | | | - Harminder Pal Singh
- Department of Environment Studies, Panjab University, Chandigarh 160 014, India.
| | | |
Collapse
|
15
|
Goda MS, Nafie MS, Awad BM, Abdel-Kader MS, Ibrahim AK, Badr JM, Eltamany EE. In Vitro and In Vivo Studies of Anti-Lung Cancer Activity of Artemesia judaica L. Crude Extract Combined with LC-MS/MS Metabolic Profiling, Docking Simulation and HPLC-DAD Quantification. Antioxidants (Basel) 2021; 11:17. [PMID: 35052522 PMCID: PMC8773337 DOI: 10.3390/antiox11010017] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 12/18/2022] Open
Abstract
Artemisia judaica L. (Family: Asteraceae) exhibited antioxidant, anti-inflammatory, and antiapoptotic effects. The in vitro cytotoxic activity of A. judaica ethanolic extract was screened against a panel of cancer cell lines. The results revealed its cytotoxic activity against a lung cancer (A549) cell line with a promising IC50 of 14.2 μg/mL compared to doxorubicin as a standard. This was confirmed through the downregulation of antiapoptotic genes, the upregulation of proapoptotic genes, and the cell cycle arrest at the G2/M phase. Further in vivo study showed that a solid tumor mass was significantly reduced, with a tumor inhibition ratio of 54% relative to doxorubicin therapy in a Xenograft model. From a chemical point of view, various classes of natural products have been identified by liquid chromatography combined with tandem mass spectrometry (LC-MS/MS). The docking study of the detected metabolites approved their cytotoxic activity through their virtual binding affinity towards the cyclin-dependent kinase 2 (CDK-2) and epidermal growth factor receptor (EGFR) active sites. Finally, A. judaica is a fruitful source of polyphenols that are well-known for their antioxidant and cytotoxic activities. As such, the previously reported polyphenols with anti-lung cancer activity were quantified by high-performance liquid chromatography coupled with a diode array detector (HPLC-DAD). Rutin, quercetin, kaempferol, and apigenin were detected at concentrations of 6 mg/gm, 0.4 mg/gm, 0.36 mg/gm, and 3.9 mg/gm of plant dry extract, respectively. It is worth noting that kaempferol and rutin are reported for the first time. Herein, A. judaica L. may serve as an adjuvant therapy or a promising source of leading structures in drug discovery for lung cancer treatment.
Collapse
Affiliation(s)
- Marwa S. Goda
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (M.S.G.); (A.K.I.); (J.M.B.); (E.E.E.)
| | - Mohamed S. Nafie
- Department of Chemistry, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt;
| | - Basma M. Awad
- Department of Pharmacognosy, Faculty of Pharmacy and Pharmaceutical Industries, Sinai University, El-Arish 45518, Egypt;
| | - Maged S. Abdel-Kader
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University 173, Al-Kharj 11942, Saudi Arabia
- Department of Pharmacognosy, College of Pharmacy, Alexandria University, Alexandria 21215, Egypt
| | - Amany K. Ibrahim
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (M.S.G.); (A.K.I.); (J.M.B.); (E.E.E.)
| | - Jihan M. Badr
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (M.S.G.); (A.K.I.); (J.M.B.); (E.E.E.)
| | - Enas E. Eltamany
- Department of Pharmacognosy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; (M.S.G.); (A.K.I.); (J.M.B.); (E.E.E.)
| |
Collapse
|
16
|
The antimicrobial and immunomodulatory effects of Ionophores for the treatment of human infection. J Inorg Biochem 2021; 227:111661. [PMID: 34896767 DOI: 10.1016/j.jinorgbio.2021.111661] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/27/2021] [Accepted: 11/03/2021] [Indexed: 12/18/2022]
Abstract
Ionophores are a diverse class of synthetic and naturally occurring ion transporter compounds which demonstrate both direct and in-direct antimicrobial properties against a broad panel of bacterial, fungal, viral and parasitic pathogens. In addition, ionophores can regulate the host-immune response during communicable and non-communicable disease states. Although the clinical use of ionophores such as Amphotericin B, Bedaquiline and Ivermectin highlight the utility of ionophores in modern medicine, for many other ionophore compounds issues surrounding toxicity, bioavailability or lack of in vivo efficacy studies have hindered clinical development. The antimicrobial and immunomodulating properties of a range of compounds with characteristics of ionophores remain largely unexplored. As such, ionophores remain a latent therapeutic avenue to address both the global burden of antimicrobial resistance, and the unmet clinical need for new antimicrobial therapies. This review will provide an overview of the broad-spectrum antimicrobial and immunomodulatory properties of ionophores, and their potential uses in clinical medicine for combatting infection.
Collapse
|
17
|
Qi M, Chen X, Bian L, Zhang H, Ma J. Honokiol combined with curcumin sensitizes multidrug-resistant human lung adenocarcinoma A549/DDP cells to cisplatin. Exp Ther Med 2021; 22:1301. [PMID: 34630656 DOI: 10.3892/etm.2021.10736] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 03/20/2020] [Indexed: 11/05/2022] Open
Abstract
The aim of the present study was to discuss the effects and underlying mechanisms of honokiol (HNK) and/or curcumin (CUR) in sensitization of multidrug-resistant human lung adenocarcinoma A549/DDP cells to cisplatin (DDP). An MTS assay was performed to detect the cytotoxicity of HNK, CUR and DDP in A549 and A549/DDP cells and compare their sensitivity. The A549/DDP cells were then divided into 8 groups: Control, HNK, CUR, DDP, HNK + CUR, HNK + DDP, CUR + DDP and HNK + CUR + DDP. Cell proliferation was measured by MTS assay and colony formation assay, cell apoptosis was detected by flow cytometry, cell invasion was evaluated by Transwell assay and cell migration was determined by a wound healing assay. In order to investigate the possible mechanisms, P-glycoprotein (P-gp) protein expression was measured by western blotting and immunofluorescence assays. The mRNA expression levels of AKT, Erk1/2, cyclin-dependent kinase inhibitor 1 (P21), caspase 3, cleaved caspase 3, caspase 9, cleaved caspase 9, poly (ADP-ribose) polymerase (PARP), cleaved PARP, matrix metalloproteinase (MMP)-2 and MMP-9 were examined by reverse transcription-quantitative (RT-q) PCR assay, and the protein expression levels of phosphorylated (p)-AKT, p-Erk1/2, P21, caspase 3, cleaved caspase 3, caspase 9, cleaved caspase 9, PARP, cleaved PARP, MMP-2 and MMP-9 proteins expression by western blot assay. The MTS assay demonstrated that HNK (5 µg/ml), CUR (10 µg/ml) and DDP (5 µg/ml) had no obvious toxicity to A549/DDP cells, and HNK, CUR and DDP were more sensitive in A549 cells compared with A549/DDP cells. The optimal concentrations of HNK (5 µg/ml), CUR (10 µg/ml) and DDP (5 µg/ml) were chosen to carry out the further experiments. Compared with the control group, no significant change was observed in cell proliferation, apoptosis, migration, invasion and related mRNA and protein expression in HNK, CUR, DDP and HNK + CUR groups. The cell proliferation rate in the HNK + DDP and CUR + DDP groups was significantly suppressed with cell apoptosis significantly increased, respectively. The invasion cell number and wound healing rate of HNK + DDP and CUR + DDP groups were significantly depressed compared with the control group, respectively. Immunofluorescence demonstrated that the nuclear volume of P-gp in HNK + DDP and CUR + DDP groups were significantly downregulated compared with the control group, respectively. The RT-qPCR assay demonstrated that the AKT, Erk1/2 and P21 mRNA expression levels were significantly decreased and cleaved caspase 3, cleaved caspase 9 and cleaved PARP were increased in HNK + DDP and CUR + DDP groups compared with the control group. The western blotting results were consistent with the RT-qPCR results. NK + CUR + DDP had improved effects on A549/DDP compared with HNK + DDP or CUR + DDP group, respectively. HNK and/or CUR could improve the sensitivity of DDP to A549/DDP cell by the regulation of P-gp, inducing apoptosis, and inhibiting migration and invasion via AKT/ERK signal pathway in an in vitro study.
Collapse
Affiliation(s)
- Mingming Qi
- Department of Febrile Diseases, School of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Xiaojin Chen
- Hanlin College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Liqun Bian
- Digestive Department, Xiyuan Hospital, China Academy of Chinese Medicine Sciences, Beijing 100091, P.R. China
| | - Han Zhang
- Department of Febrile Diseases, School of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| | - Jian Ma
- Department of Febrile Diseases, School of Chinese Medicine, Nanjing, Jiangsu 210023, P.R. China
| |
Collapse
|
18
|
Abstract
Hinokitiol is a natural bioactive compound found in several aromatic and medicinal plants. It is a terpenoid synthetized and secreted by different species as secondary metabolites. This volatile compound was tested and explored for its different biological properties. In this review, we report the pharmacological properties of hinokitiol by focusing mainly on its anticancer mechanisms. Indeed, it can block cell transformation at different levels by its action on the cell cycle, apoptosis, autophagy via inhibiting gene expression and dysregulating cellular signaling pathways. Moreover, hinokitiol also exhibits other pharmacological properties, including antidiabetic, anti-inflammatory, and antimicrobial effects. It showed multiple and several effects through its inhibition, interaction and/or activation of the main cellular targets inducing these pathologies.
Collapse
|
19
|
Chen HY, Cheng WP, Chiang YF, Hong YH, Ali M, Huang TC, Wang KL, Shieh TM, Chang HY, Hsia SM. Hinokitiol Exhibits Antitumor Properties through Induction of ROS-Mediated Apoptosis and p53-Driven Cell-Cycle Arrest in Endometrial Cancer Cell Lines (Ishikawa, HEC-1A, KLE). Int J Mol Sci 2021; 22:ijms22158268. [PMID: 34361036 PMCID: PMC8348875 DOI: 10.3390/ijms22158268] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 12/11/2022] Open
Abstract
Hinokitiol is a natural tropolone derivative that is present in the heartwood of cupressaceous plants, and has been extensively investigated for its anti-inflammatory, antioxidant, and antitumor properties in the context of various diseases. To date, the effects of hinokitiol on endometrial cancer (EC) has not been explored. The purpose of our study was to investigate the anti-proliferative effects of hinokitiol on EC cells. Cell viability was determined with an MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay, and the quantification of apoptosis and reactive oxygen species (ROSs) was performed by using flow cytometry, while protein expression was measured with the Western blotting technique. Hinokitiol significantly suppressed cell proliferation through the inhibition of the expression of cell-cycle mediators, such as cyclin D1 and cyclin-dependent kinase 4 (CDK4), as well as the induction of the tumor suppressor protein p53. In addition, hinokitiol increased the number of apoptotic cells and increased the protein expression of cleaved-poly-ADP-ribose polymerase (PARP) and active cleaved-caspase-3, as well as the ratio of Bcl-2-associated X protein (Bax) to B-cell lymphoma 2 (Bcl-2). Interestingly, except for KLE cells, hinokitiol induced autophagy by promoting the accumulation of the microtubule-associated protein light chain 3B (LC3B) and reducing the sequestosome-1 (p62/SQSTM1) protein level. Furthermore, hinokitiol triggered ROS production and upregulated the phosphorylation of extracellular-signal-regulated kinase (p-ERK1/2) in EC cells. These results demonstrate that hinokitiol has potential anti-proliferative and pro-apoptotic benefits in the treatment of endometrial cancer cell lines (Ishikawa, HEC-1A, and KLE).
Collapse
Affiliation(s)
- Hsin-Yuan Chen
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan; (H.-Y.C.); (Y.-F.C.)
- Department of Nutrition, I-Shou University, Kaohsiung 84001, Taiwan;
| | - Wen-Pin Cheng
- Department of Medical Education and Research, Shin Kong Wu Ho-Su Memorial Hospital, Taipei 11101, Taiwan;
| | - Yi-Fen Chiang
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan; (H.-Y.C.); (Y.-F.C.)
| | - Yong-Han Hong
- Department of Nutrition, I-Shou University, Kaohsiung 84001, Taiwan;
| | - Mohamed Ali
- Clinical Pharmacy Department, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt;
| | - Tsui-Chin Huang
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan;
| | - Kai-Lee Wang
- Department of Nursing, Ching Kuo Institute of Management and Health, Keelung 20301, Taiwan;
| | - Tzong-Ming Shieh
- School of Dentistry, College of Dentistry, China Medical University, Taichung 40402, Taiwan;
| | - Hsin-Yi Chang
- Graduate Institute of Metabolism and Obesity Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan;
| | - Shih-Min Hsia
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan; (H.-Y.C.); (Y.-F.C.)
- Graduate Institute of Metabolism and Obesity Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan;
- School of Food and Safety, Taipei Medical University, Taipei 11031, Taiwan
- Nutrition Research Center, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Correspondence: ; Tel.: +886-2-2736-1661 (ext. 6558)
| |
Collapse
|
20
|
Silva BIM, Nascimento EA, Silva CJ, Silva TG, Aguiar JS. Anticancer activity of monoterpenes: a systematic review. Mol Biol Rep 2021; 48:5775-5785. [PMID: 34304392 DOI: 10.1007/s11033-021-06578-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 07/15/2021] [Indexed: 01/06/2023]
Abstract
Secondary metabolites have been recognized for centuries as medicinal agents, in particular monoterpenes which have been the target of research in the discovery of antineoplastic drugs, as they have potential antitumor effect and low toxicity and are used as additives in foods and cosmetics. Another advantage of monoterpenes is structural diversity, which gives greater plasticity when interacting with cells. The purpose of this review was to summarize and critically discuss the anticancer potential of monoterpenes and their respective mechanisms of action. A systematic review of articles in the MEDLINE/PubMed, Web of Science, Scopus and Science Direct electronic databases was independently conducted by three reviewers using the combination of the following keywords: monoterpenes AND anticancer AND in vitro. Restriction in selecting articles followed pre-established inclusion and exclusion criteria by the reviewers, and also a time limitation with works published between 2015 and 2019 being selected. In total, 39 works were deemed eligible for inclusion in the final review. Monoterpenes have cytotoxic activity in a wide variety of tumor cell lines, and mainly appear to exert this effect by inducing apoptosis caused by oxidative stress. In addition, improved use of monoterpenes when used in drug delivery systems and the synergistic effect with conventional chemotherapeutic drugs are reported. These findings validate this class of compounds as a promising source of chemotherapeutic drugs yet to be explored.
Collapse
Affiliation(s)
- Bruno I M Silva
- Department of Antibiotics, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Erika A Nascimento
- Department of Antibiotics, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Cleber J Silva
- Department of Antibiotics, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Teresinha G Silva
- Department of Antibiotics, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Jaciana S Aguiar
- Department of Antibiotics, Federal University of Pernambuco, Recife, Pernambuco, Brazil.
| |
Collapse
|
21
|
Seno S, Kimura M, Yashiro Y, Kimura R, Adachi K, Terabayashi A, Takahashi M, Oyama T, Abe H, Abe T, Tanuma SI, Takasawa R. β-Thujaplicin Enhances TRAIL-Induced Apoptosis via the Dual Effects of XIAP Inhibition and Degradation in NCI-H460 Human Lung Cancer Cells. MEDICINES 2021; 8:medicines8060026. [PMID: 34199423 PMCID: PMC8229775 DOI: 10.3390/medicines8060026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 05/31/2021] [Accepted: 05/31/2021] [Indexed: 11/16/2022]
Abstract
Background: β-thujaplicin, a natural tropolone derivative, has anticancer effects on various cancer cells via apoptosis. However, the apoptosis regulatory proteins involved in this process have yet to be revealed. Methods: Trypan blue staining, a WST-8 assay, and a caspase-3/7 activity assay were used to investigate whether β-thujaplicin sensitizes cancer cells to TNF-related apoptosis-inducing ligand (TRAIL)-mediated apoptosis. Additionally, western blotting was performed to clarify the effects of β-thujaplicin on X-linked inhibitor of apoptosis protein (XIAP) in NCI-H460 cells and a fluorescence polarization binding assay was used to evaluate the binding-inhibitory activity of β-thujaplicin against XIAP-BIR3. Results: β- and γ-thujaplicins decreased the viability of NCI-H460 cells in a dose-dependent manner; they also sensitized the cells to TRAIL-induced cell growth inhibition and apoptosis. β-thujaplicin significantly potentiated the apoptosis induction effect of TRAIL on NCI-H460 cells, which was accompanied by enhanced caspase-3/7 activity. Interestingly, β-thujaplicin treatment in NCI-H460 cells decreased XIAP levels. Furthermore, β-thujaplicin was able to bind XIAP-BIR3 at the Smac binding site. Conclusions: These findings indicate that β-thujaplicin could enhance TRAIL-induced apoptosis in NCI-H460 cells via XIAP inhibition and degradation. Thus, the tropolone scaffold may be useful for designing novel nonpeptidic small-molecule inhibitors of XIAP and developing new types of anticancer drugs.
Collapse
Affiliation(s)
- Saki Seno
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan; (S.S.); (M.K.); (Y.Y.); (R.K.); (K.A.); (A.T.); (M.T.)
| | - Minori Kimura
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan; (S.S.); (M.K.); (Y.Y.); (R.K.); (K.A.); (A.T.); (M.T.)
| | - Yuki Yashiro
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan; (S.S.); (M.K.); (Y.Y.); (R.K.); (K.A.); (A.T.); (M.T.)
| | - Ryutaro Kimura
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan; (S.S.); (M.K.); (Y.Y.); (R.K.); (K.A.); (A.T.); (M.T.)
| | - Kanae Adachi
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan; (S.S.); (M.K.); (Y.Y.); (R.K.); (K.A.); (A.T.); (M.T.)
| | - Aoi Terabayashi
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan; (S.S.); (M.K.); (Y.Y.); (R.K.); (K.A.); (A.T.); (M.T.)
| | - Mio Takahashi
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan; (S.S.); (M.K.); (Y.Y.); (R.K.); (K.A.); (A.T.); (M.T.)
| | - Takahiro Oyama
- Hinoki Shinyaku Co. Ltd., Chiyoda-ku, Tokyo 102-0084, Japan; (T.O.); (H.A.); (T.A.)
| | - Hideaki Abe
- Hinoki Shinyaku Co. Ltd., Chiyoda-ku, Tokyo 102-0084, Japan; (T.O.); (H.A.); (T.A.)
| | - Takehiko Abe
- Hinoki Shinyaku Co. Ltd., Chiyoda-ku, Tokyo 102-0084, Japan; (T.O.); (H.A.); (T.A.)
| | - Sei-ichi Tanuma
- Department of Genomic Medicinal Science, Research Institute for Science and Technology, Organization for Research Advancement, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan;
| | - Ryoko Takasawa
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan; (S.S.); (M.K.); (Y.Y.); (R.K.); (K.A.); (A.T.); (M.T.)
- Correspondence: ; Tel.: +81-4-7124-1501
| |
Collapse
|
22
|
Bouvry C, Ardisson V, Noiret N, Garin E, Lepareur N. Labeling of Hinokitiol with 90Y for Potential Radionuclide Therapy of Hepatocellular Carcinoma. Processes (Basel) 2021; 9:940. [DOI: 10.3390/pr9060940] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Hepatocellular carcinoma (HCC), the most common form of primary liver tumors, is the fifth cancer in the world in terms of incidence, and third in terms of mortality. Despite significant advances in the treatment of HCC, its prognosis remains bleak. Transarterial radioembolization with radiolabeled microspheres and Lipiodol has demonstrated significant effectiveness. Here we present a new, simple radiolabeling of Lipiodol with Yttrium-90, for the potential treatment of HCC.
Collapse
Affiliation(s)
- Christelle Bouvry
- Comprehensive Cancer Center Eugène Marquis, F-35042 Rennes, France
- CNRS, ISCR (Institut des Sciences Chimiques de Rennes)—UMR 6226, University Rennes, F-35000 Rennes, France
| | - Valérie Ardisson
- Comprehensive Cancer Center Eugène Marquis, F-35042 Rennes, France
| | - Nicolas Noiret
- ENSCR, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)—UMR 6226, University Rennes, F-35000 Rennes, France
| | - Etienne Garin
- Comprehensive Cancer Center Eugène Marquis, F-35042 Rennes, France
- Inrae, Inserm, Institut NUMECAN (Nutrition, Métabolismes et Cancer)—UMR_A 1341, University Rennes, UMR_S 1241, F-35033 Rennes, France
| | - Nicolas Lepareur
- Comprehensive Cancer Center Eugène Marquis, F-35042 Rennes, France
- Inrae, Inserm, Institut NUMECAN (Nutrition, Métabolismes et Cancer)—UMR_A 1341, University Rennes, UMR_S 1241, F-35033 Rennes, France
| |
Collapse
|
23
|
Chemoinformatic Screening for the Selection of Potential Senolytic Compounds from Natural Products. Biomolecules 2021; 11:biom11030467. [PMID: 33809876 PMCID: PMC8004226 DOI: 10.3390/biom11030467] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 12/17/2022] Open
Abstract
Cellular senescence is a cellular condition that involves significant changes in gene expression and the arrest of cell proliferation. Recently, it has been suggested in experimental models that the elimination of senescent cells with pharmacological methods delays, prevents, and improves multiple adverse outcomes related to age. In this sense, the so-called senoylitic compounds are a class of drugs that selectively eliminates senescent cells (SCs) and that could be used in order to delay such adverse outcomes. Interestingly, the first senolytic drug (navitoclax) was discovered by using chemoinformatic and network analyses. Thus, in the present study, we searched for novel senolytic compounds through the use of chemoinformatic tools (fingerprinting and network pharmacology) over different chemical databases (InflamNat and BIOFACQUIM) coming from natural products (NPs) that have proven to be quite remarkable for drug development. As a result of screening, we obtained three molecules (hinokitiol, preussomerin C, and tanshinone I) that could be considered senolytic compound candidates since they share similarities in structure with senolytic leads (tunicamycin, ginsenoside Rb1, ABT 737, rapamycin, navitoclax, timosaponin A-III, digoxin, roxithromycin, and azithromycin) and targets involved in senescence pathways with potential use in the treatment of age-related diseases.
Collapse
|
24
|
Bi Q, Wang M, Zhao F, Wang M, Yin X, Ruan J, Wang D, Ji X. N-Butanol Fraction of Wenxia Formula Extract Inhibits the Growth and Invasion of Non-Small Cell Lung Cancer by Down-Regulating Sp1-Mediated MMP2 Expression. Front Pharmacol 2020; 11:594744. [PMID: 33329003 PMCID: PMC7734278 DOI: 10.3389/fphar.2020.594744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 10/21/2020] [Indexed: 12/24/2022] Open
Abstract
Lung cancer is the most commonly diagnosed cancer and the leading cause of cancer death. It is necessary to develop effective anti-lung cancer therapeutics. Wenxia Formula (WXF), an empirical traditional Chinese herbal formula, has been reported to have significant antitumor activity. In this study, to further clarify the material basis of the anti-tumor effect of WXF, we investigated the cytotoxic effect of the N-butanol fraction of Wenxia Formula extract (NWXF) against two lung cancer and one normal human cell lines. The chemical profile of NWXF was characterized by UPLC/Q-TOF-MS analysis and a total of 201 compounds with mzCloud Best Match of greater than 70 were identified by using the online database mzCloud. To address the functional role of NWXF, we assessed cell proliferation, migration and invasion capabilities. Subcutaneous xenografts were constructed to determine the effect of NWXF in vivo. The results showed that NWXF effectively inhibited the proliferation and migration of non-small cell lung cancer (NSCLC) cells with little toxic effects on human bronchial epithelial cells. Meanwhile, orally administered NWXF exhibited prominent dose-dependent anti-tumor efficacy in vivo. Mechanistically, NWXF significantly downregulated MMP9 and Sp1-mediated MMP2 expression. In conclusion, NWXF might be a promising candidate for treatment of human lung cancer.
Collapse
Affiliation(s)
- QianYu Bi
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China.,College of Chinese Traditional Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - MengRan Wang
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Fang Zhao
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Meng Wang
- College of Chinese Traditional Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China.,Department of Medicine, Jining NO.1 People's Hospital, Jining, China
| | - XiangJun Yin
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - JiaZhao Ruan
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - DeLong Wang
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - XuMing Ji
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China.,Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, China.,Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Hangzhou, China
| |
Collapse
|
25
|
Wu YJ, Hsu WJ, Wu LH, Liou HP, Pangilinan CR, Tyan YC, Lee CH. Hinokitiol reduces tumor metastasis by inhibiting heparanase via extracellular signal-regulated kinase and protein kinase B pathway. Int J Med Sci 2020; 17:403-413. [PMID: 32132875 PMCID: PMC7053356 DOI: 10.7150/ijms.41177] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 01/08/2020] [Indexed: 12/14/2022] Open
Abstract
Heparanase cleaves the extracellular matrix by degrading heparan sulfate that ultimately leads to cell invasion and metastasis; a condition that causes high mortality among cancer patients. Many of the anticancer drugs available today are natural products of plant origin, such as hinokitiol. In the previous report, it was revealed that hinokitiol plays an essential role in anti-inflammatory and anti-oxidation processes and promote apoptosis or autophagy resulting to the inhibition of tumor growth and differentiation. Therefore, this study explored the effects of hinokitiol on the cancer-promoting pathway in mouse melanoma (B16F10) and breast (4T1) cancer cells, with emphasis on heparanase expression. We detected whether hinokitiol can elicit anti-metastatic effects on cancer cells via wound healing and Transwell assays. Besides, mice experiment was conducted to observe the impact of hinokitiol in vivo. Our results show that hinokitiol can inhibit the expression of heparanase by reducing the phosphorylation of protein kinase B (Akt) and extracellular regulated protein kinase (ERK). Furthermore, in vitro cell migration assay showed that heparanase downregulation by hinokitiol led to a decrease in metastatic activity which is consistent with the findings in the in vivo experiment.
Collapse
Affiliation(s)
- Yueh-Jung Wu
- Department of Surgery, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
| | - Wei-Jie Hsu
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Li-Hsien Wu
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Huei-Pu Liou
- Department of Surgery, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
| | | | - Yu-Chang Tyan
- Department of Medical Imaging and Radiological Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Che-Hsin Lee
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.,Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan.,Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University, Kaohsiung, Taiwan
| |
Collapse
|
26
|
Balsa LM, Ruiz MC, Santa Maria de la Parra L, Baran EJ, León IE. Anticancer and antimetastatic activity of copper(II)-tropolone complex against human breast cancer cells, breast multicellular spheroids and mammospheres. J Inorg Biochem 2019; 204:110975. [PMID: 31911364 DOI: 10.1016/j.jinorgbio.2019.110975] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 12/13/2019] [Accepted: 12/24/2019] [Indexed: 12/11/2022]
Abstract
The goal of this work was to display the anticancer and antimetastatic activity of a copper(II) with tropolone (trp), complex [Cu(trp)2] toward human breast cancer cells in monolayer (2D) and spheroids (3D). Cytotoxicity assays against MCF7 (IC50(complex) = 5.2 ± 1.8 μM, IC50(CDDP) = 19.3 ± 2.1 μM) and MDA-MB-231 (IC50(complex) = 4.0 ± 0.2 μM, IC50(CDDP) = 27.0 ± 1.9 μM) demonstrate that [Cu(trp)2] exert greater antitumor potency than cisplatin (CDDP) on 2D and 3D human breast cancer cell models. Besides, [Cu(trp)2] inhibits cell migration by reducing the metalloproteinases activities and the compound undergoes the breast cancer cells to apoptosis at lower concentrations (2.5-10 μM). Moreover, [Cu(trp)2] overcame CDDP presenting an IC50 value 26-fold more lower against breast multicellular spheroids ((IC50(complex) = 4.9 μM, IC50(CDDP) = 130 μM)). Also, our results showed that [Cu(trp)2] inhibited the cell migration and cell invasion of breast multicellular spheroids, showing that [Cu(trp)2] exhibited antimetastatic properties. On the other hand, [Cu(trp)2] reduced mammosphere forming capacity affecting the size and number of mammospheres. Taken together, [Cu(trp)2] exhibited anticancer and antimetastatic properties on monolayer (2D) and spheroids (3D) derived from human breast cancer cells.
Collapse
Affiliation(s)
- Lucia M Balsa
- Inorganic Chemistry Center (CEQUINOR, CONICET), Exact School Sciences, National University of La Plata, Bv 120 1465, 1900 La Plata, Argentina
| | - Maria C Ruiz
- Inorganic Chemistry Center (CEQUINOR, CONICET), Exact School Sciences, National University of La Plata, Bv 120 1465, 1900 La Plata, Argentina
| | - Lucia Santa Maria de la Parra
- Inorganic Chemistry Center (CEQUINOR, CONICET), Exact School Sciences, National University of La Plata, Bv 120 1465, 1900 La Plata, Argentina
| | - Enrique J Baran
- Inorganic Chemistry Center (CEQUINOR, CONICET), Exact School Sciences, National University of La Plata, Bv 120 1465, 1900 La Plata, Argentina
| | - Ignacio E León
- Inorganic Chemistry Center (CEQUINOR, CONICET), Exact School Sciences, National University of La Plata, Bv 120 1465, 1900 La Plata, Argentina.
| |
Collapse
|
27
|
Molecular Mechanisms Underlying Yatein-Induced Cell-Cycle Arrest and Microtubule Destabilization in Human Lung Adenocarcinoma Cells. Cancers (Basel) 2019; 11:cancers11091384. [PMID: 31533296 PMCID: PMC6769669 DOI: 10.3390/cancers11091384] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/11/2019] [Accepted: 09/12/2019] [Indexed: 11/28/2022] Open
Abstract
Yatein is an antitumor agent isolated from Calocedrus formosana Florin leaves extract. In our previous study, we found that yatein inhibited the growth of human lung adenocarcinoma A549 and CL1-5 cells by inducing intrinsic and extrinsic apoptotic pathways. To further uncover the effects and mechanisms of yatein-induced inhibition on A549 and CL1-5 cell growth, we evaluated yatein-mediated antitumor activity in vivo and the regulatory effects of yatein on cell-cycle progression and microtubule dynamics. Flow cytometry and western blotting revealed that yatein induces G2/M arrest in A549 and CL1-5 cells. Yatein also destabilized microtubules and interfered with microtubule dynamics in the two cell lines. Furthermore, we evaluated the antitumor activity of yatein in vivo using a xenograft mouse model and found that yatein treatment altered cyclin B/Cdc2 complex expression and significantly inhibited tumor growth. Taken together, our results suggested that yatein effectively inhibited the growth of A549 and CL1-5 cells possibly by disrupting cell-cycle progression and microtubule dynamics.
Collapse
|
28
|
Lee TB, Jun JH. Can Hinokitiol Kill Cancer Cells? Alternative Therapeutic Anticancer Agent via Autophagy and Apoptosis. KOREAN JOURNAL OF CLINICAL LABORATORY SCIENCE 2019. [DOI: 10.15324/kjcls.2019.51.2.221] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Tae Bok Lee
- Confocal Core Facility, Center for Medical Innovation, Seoul National University Hospital, Seoul, Korea
- Department of Senior Healthcare, BK21 Plus Program, Graduate School of Eulji University, Seongnam, Korea
| | - Jin Hyun Jun
- Department of Senior Healthcare, BK21 Plus Program, Graduate School of Eulji University, Seongnam, Korea
- Department of Biomedical Laboratory Science, Eulji University, Seongnam, Korea
- Eulji Medi-Bio Research Institute (EMBRI), Eulji University, Daejeon, Korea
| |
Collapse
|
29
|
Che CT, Zhang H. Plant Natural Products for Human Health. Int J Mol Sci 2019; 20:ijms20040830. [PMID: 30769917 PMCID: PMC6412953 DOI: 10.3390/ijms20040830] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 02/08/2019] [Indexed: 12/13/2022] Open
Abstract
The aim of this Special Issue on “Plant Natural Products for Human Health” is to compile a series of scientific reports to demonstrate the medicinal potential of plant natural products, such as in vitro and in vivo activities, clinical effects, mechanisms of action, structure-activity relationships, and pharmacokinetic properties. With the global trend growing in popularity for botanical dietary supplements and phytopharmaceuticals, it is hoped that this Special Issue would serve as a timely reference for researchers and scholars who are interested in the discovery of potentially useful molecules from plant sources for health-related applications.
Collapse
Affiliation(s)
- Chun-Tao Che
- Department of Medicinal Chemistry and Pharmacognosy, and the World Health Organization Collaborating Center for Traditional Medicine, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA.
| | - Hongjie Zhang
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong, China.
| |
Collapse
|
30
|
Wei KC, Chen RF, Chen YF, Lin CH. Hinokitiol suppresses growth of B16 melanoma by activating ERK/MKP3/proteosome pathway to downregulate survivin expression. Toxicol Appl Pharmacol 2019; 366:35-45. [PMID: 30684529 DOI: 10.1016/j.taap.2019.01.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 01/15/2019] [Accepted: 01/21/2019] [Indexed: 01/17/2023]
Abstract
Metastasis is the major cause of treatment failure in patients with cancer. Hinokitiol, a metal chelator derived from natural plants, has anti-inflammatory and antioxidant activities as well as anticancer effects. We investigated the potential anticancer effects of hinokitiol in metastatic melanoma cell line B16-F10. Exposure of the melanoma B16-F10 cells to hinokitiol significantly inhibited colony formation and cell viability in a time and concentration-dependent manner. The hinokitiol-treated cells exhibited apoptotic features in morphological assay. Results from Western blot and immunoprecipitation showed that hinokitiol treatment decreased survivin protein levels and increased suvivin ubiquitination. Pretreatment with proteosome inhibitors effectively prevented hinokitiol-induced decrease in survivin expression, implying that ubiquitin/proteosome pathway involved in hinokitiol-reduced survivin expression. Hinokitiol rapidly induced ERK phosphorylation followed by a sustained dephosphorylation, which accompanied with an increase in expression of tumor suppressor MKP-3 (mitogen-activated protein kinase phosphatase-3). Inhibition of hinokitiol-induced ERK activation by MEK inhibitor U0126 completely blocked expression of MKP-3. More importantly, inhibition of MKP-3 activity by NSC 95397 significantly inhibited hinokitiol-induced ERK dephosphorylation, ubiquitination and downregulation of survivin. These results suggested that hinokitiol inhibited growth of B16-F10 melanoma through downregulation of survivin by activating ERK/MKP-3/proteosome pathway. Hinokitiol-inhibition of survivin may be a novel and potential approach for melanoma therapy. Hinokitiol can be useful for developing therapeutic agent for melanoma.
Collapse
Affiliation(s)
- Kai-Che Wei
- Department of Dermatology, Kaohsiung Veterans General Hospital, Kaoshiung 802, Taiwan; Faculty of Yuhing Junior College of Health Care and Management, Kaohsiung 802, Taiwan
| | - Rui-Fang Chen
- Master and PhD Programs in Pharmacology and Toxicology, School of Medicine, Tzu Chi University, Hualien 970, Taiwan
| | - Yu-Fu Chen
- Master and PhD Programs in Pharmacology and Toxicology, School of Medicine, Tzu Chi University, Hualien 970, Taiwan
| | - Chia-Ho Lin
- Master and PhD Programs in Pharmacology and Toxicology, School of Medicine, Tzu Chi University, Hualien 970, Taiwan; Department of Pharmacology, School of Medicine, Tzu Chi University, Hualien 970, Taiwan.
| |
Collapse
|
31
|
Hinokitiol Offers Neuroprotection Against 6-OHDA-Induced Toxicity in SH-SY5Y Neuroblastoma Cells by Downregulating mRNA Expression of MAO/α-Synuclein/LRRK2/PARK7/PINK1/PTEN Genes. Neurotox Res 2018; 35:945-954. [DOI: 10.1007/s12640-018-9988-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 11/28/2018] [Accepted: 11/29/2018] [Indexed: 12/11/2022]
|