1
|
Ullah I, Khan R, Suhail SM, Ahmad I, Khan FA, Shoaib M, Farid K, Ayari-Akkari A, Morfeine EA. Association of polymorphism in the promotor area of the caprine BMPR1B gene with litter size and body measurement traits in Damani goats. Trop Anim Health Prod 2024; 56:137. [PMID: 38649642 DOI: 10.1007/s11250-024-03991-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/15/2024] [Indexed: 04/25/2024]
Abstract
This study aimed to explore polymorphisms in the promoter region of the caprine BMPR1B (Bone morphogenetic protein receptor 1 beta) gene and its association with body measurement and litter size traits in Damani does. A total of 53 blood samples were collected to analyze the association between the BMPR1B gene polymorphism and 11 phenotypic traits in Damani female goats. The results revealed that three novel SNPs were identified in the promoter region of the caprine BMPR1B gene, including g.67 A > C (SNP1), g.170 G > A(SNP2), and g.501A > T (SNP3), among which the SNP1 and SNP2 were significantly (p < 0.05) associated with litter size and body measurement traits in Damani goats. In SNP1 the AC genotype could be used as a marker for litter size, and the CC genotype for body weight in Damani goats. In SNP2, the genotype GG was significantly (p < 0.05) associated with ear and head length. Therefore, we can conclude from the present study, that genetic variants AC and CC of the caprine BMPR1B gene could be used as genetic markers for economic traits through marker-assisted selection for the breed improvement program of the Damani goat.
Collapse
Affiliation(s)
- Inayat Ullah
- Department of Livestock Management, Breeding and Genetics, Faculty of Animal Husbandry and Veterinary Sciences, The University of Agriculture, Peshawar, Pakistan
| | - Rajwali Khan
- Department of Livestock Management, Breeding and Genetics, Faculty of Animal Husbandry and Veterinary Sciences, The University of Agriculture, Peshawar, Pakistan.
| | - Syed Muhammad Suhail
- Department of Livestock Management, Breeding and Genetics, Faculty of Animal Husbandry and Veterinary Sciences, The University of Agriculture, Peshawar, Pakistan
| | - Ijaz Ahmad
- Department of Livestock Management, Breeding and Genetics, Faculty of Animal Husbandry and Veterinary Sciences, The University of Agriculture, Peshawar, Pakistan
| | - Farhan Anwar Khan
- College of Veterinary Sciences, Faculty of Animal Husbandry and Veterinary Sciences, The University of Agriculture, Peshawar, Pakistan
| | - Muhammad Shoaib
- College of Veterinary Sciences, Faculty of Animal Husbandry and Veterinary Sciences, The University of Agriculture, Peshawar, Pakistan
| | - Kamran Farid
- Department of Livestock and Dairy Development (Extension) Government of Khyber Pakhtunkhwa, Peshawar, Pakistan
| | - Amel Ayari-Akkari
- Biology Department, College of Science, King Khalid University, P.O. Box 960, Abha, Saudi Arabia
| | - Ekhlas Ali Morfeine
- Biology Department, College of Science, King Khalid University, P.O. Box 960, Abha, Saudi Arabia
| |
Collapse
|
2
|
Zhao X, Yan J, Chu H, Wu Z, Li W, Zhang Q, Zhang Y, Guo Y, Fan Z. The polymorphism of the ovine insulin like growth factor-2 (IGF2) gene and their associations with growth related traits in Tibetan sheep. Trop Anim Health Prod 2023; 56:19. [PMID: 38110604 DOI: 10.1007/s11250-023-03858-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 12/07/2023] [Indexed: 12/20/2023]
Abstract
In the current study, the role of the ovine IGF2 as a potential candidate gene was investigated as though marker-assisted selection in Chinese Tibetan sheep. The Sanger DNA sequencing method explored five single nucleotide polymorphisms (SNPs) in 5'UTR of the ovine IGF2 gene (C15640T, G15801A, G15870A, C15982G and G15991A) in Chinese Tibetan sheep. The frequencies of four SNPs were within the Hardy-Weinberg Equilibrium (chi-square test) except C15982G. The statistical analysis indicated that the C15640T and G15801A were significantly associated with body height, body length, chest circumference, and body weight (P < 0.05 or P < 0.01). Furthermore, C15982G variant exhibited significant correlation with the body weight (P < 0.01). These findings suggests that the promoter variants of IGF2 gene could be used as a candidate gene through marker-assisted selection for the body weight and body measurement traits in Tibetan sheep breeding program.
Collapse
Affiliation(s)
- Xianlin Zhao
- College of Pharmacy, Heze University, Heze, Shandong Province, 274000, People's Republic of China
| | - Jinyun Yan
- Gaoqing County Black Cattle Industry Development Center, Gaoqing County Bureau of Agriculture and Rural Affairs, Zibo, Shandong Province, 255000, People's Republic of China
| | - Hanping Chu
- College of Pharmacy, Heze University, Heze, Shandong Province, 274000, People's Republic of China
| | - Zhenling Wu
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, Qinghai Province, 810016, People's Republic of China
| | - Wendi Li
- College of Pharmacy, Heze University, Heze, Shandong Province, 274000, People's Republic of China
| | - Qing Zhang
- College of Pharmacy, Heze University, Heze, Shandong Province, 274000, People's Republic of China
| | - Yu Zhang
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, Qinghai Province, 810016, People's Republic of China
| | - Yanmin Guo
- College of Pharmacy, Heze University, Heze, Shandong Province, 274000, People's Republic of China.
| | - Zhaobin Fan
- College of Pharmacy, Heze University, Heze, Shandong Province, 274000, People's Republic of China.
| |
Collapse
|
3
|
Wei D, Wang J, Jiupan Z, Khan R, Abbas Raza SH, Yaping S, Chao J, Ayari-Akkari A, Ahmed DAEM. Roles of MEF2A and HOXA5 in the transcriptional regulation of the bovine FoxO1 gene. Anim Biotechnol 2023; 34:4367-4379. [PMID: 36449378 DOI: 10.1080/10495398.2022.2150632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The Forkhead box factor 1 (FoxO1) gene plays a vital role in the growth and development of skeletal muscle. In the present study, expression analysis of the bovine FoxO1 gene exhibited the highest expression in longissimus dorsi muscle followed by its expression in adipose tissue. Moreover, high mRNA expression of FoxO1 gene was found in differentiated bovine myoblasts and adipocytes at day 6 of induced differentiation (p < 0.05). The regulatory pattern of the bovine FoxO1 gene was investigated through screening and dual-luciferase activity of the 1.7 kb 5'UTR (untranslated region) within pGL3-basic vector and a core promoter region was explored at (-285/-27) upstream of the transcription start site. The transcription factors (TFs) MEF2A and HOXA5 within the core promoter region (-285/-27) were found as the regulatory cis-acting element. The siRNA interference of the TFs, chromatin immunoprecipitation (ChIP) assay, and site-directed mutation validated that MEF2A and HOXA5 binding occurs in the region -285/-27 bp and performs an essential role in the transcriptional regulation of bovine FoxO1 gene. These findings explored the regulatory network mechanism of the FoxO1 gene in skeletal muscle development and adipogenesis for the bovine breed improvement program.
Collapse
Affiliation(s)
- Dawei Wei
- School of Agriculture, Ningxia University, Yinchuan, China
| | - Jin Wang
- Institute of Animal Sciences, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan, China
| | - Zhang Jiupan
- Institute of Animal Sciences, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan, China
| | - Rajwali Khan
- Livestock Management, Breeding and Genetics, The University of Agriculture, Peshawar, Pakistan
| | | | - Song Yaping
- School of Agriculture, Ningxia University, Yinchuan, China
| | - Jiang Chao
- School of Agriculture, Ningxia University, Yinchuan, China
| | - Amel Ayari-Akkari
- Biology Department, College of Science, King Khalid University, Abha, Saudi Arabia
- Laboratory of Diversity, Management and Conservation of Biological Systems, Faculty of Science of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Dalia Abd El Moneim Ahmed
- Laboratory of Diversity, Management and Conservation of Biological Systems, Faculty of Science of Tunis, University of Tunis El Manar, Tunis, Tunisia
| |
Collapse
|
4
|
Zhao X, Khan R, Hongfang G, Abbas Raza SH, Ayari-Akkari A, Othman G, Alshammari AM, Aloufi BH, Alabbosh KF, Alshammari WB, Linsen Z. Genetic variants of TORC1 gene promoter and their association with carcass quality and body measurement traits in Qinchuan beef cattle. Anim Biotechnol 2023; 34:2537-2545. [PMID: 35916659 DOI: 10.1080/10495398.2022.2105226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
In the present study, sequencing of TORC1 prompter region explored three SNPs at loci g.80G>T, g.93A>T, and g.1253G>A. The SNP1 produced GG, GT and TT, SNP2 AA, AT and TT, and SNP3 produced GG, GA and AA genotypes. Allelic and genotypic frequencies analysis exhibited that SNP1 is within Hardy-Weinberg equilibrium (HWE). All three SNPs were found highly polymorphic as PIC value (0.25 < PIC < 0.50). At loci g.80G>T the cattle with genotype GG showed significantly (P <0.01) larger body length (BL), Wither height (WH), Hip height (HH), Rump length (RL), Hip width (HW), Chest depth (CD), and Chest circumference (CC). The genotype AA at g.93A>T showed significantly (P< 0.01 and 0.05) Larger body length (BL), Wither height (WH), Hip height, Rump length (RL), Hip width (HW), Chest depth (CD), and Chest circumference (CC). Interestingly, the carcass quality parameters such as Ultrasound loin area (ULA) and Intramuscular fat percentage (IF%) was highest in genotype GG at loci g.1253G>A. These findings conclude that genotype GG at loci g.80 G>T and AA at loci g.93A>T could be used as genetic markers for body measurement and genotype GG at loci g.1253G>A for carcass quality traits of TORC1 gene in Qinchuan beef cattle.
Collapse
Affiliation(s)
- Xianlin Zhao
- College of Pharmacy, Heze University, Heze, China
| | - Rajwali Khan
- Department of Livestock Management, Breeding and Genetic, The University of Agriculture Peshawar, Peshawar, Pakistan
| | - Guo Hongfang
- Medical College, Xuchang University, Xuchang, China
| | | | - Amel Ayari-Akkari
- Biology Department, College of Science, King Khalid University, Abha, Saudi Arabia
- Laboratory of Diversity, Management and Conservation of Biological Systems, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Gehan Othman
- Biology Department, College of Science, King Khalid University, Abha, Saudi Arabia
| | | | - Bandar Hamad Aloufi
- Department of Biology, College of Science, University of Hail, Ha'il, Saudi Arabia
| | | | - Wasimah B Alshammari
- Department of Biology, College of Science, University of Hail, Ha'il, Saudi Arabia
| | - Zan Linsen
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
5
|
Ullah A, Khan R, Suhail SM, Ahmad I, Anwar Khan F, Subhan Qureshi M, Khan NA, Ayari-Akkari A, Ahmed DAEM. Bioinformatics analysis and the association of polymorphisms within the caprine GDF9 gene promoter with economically useful traits in Damani goats. Anim Biotechnol 2023; 34:3449-3460. [PMID: 36576034 DOI: 10.1080/10495398.2022.2154676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The blood sample from 60 Damani does were collected and genomic DNA was extracted, and DNA integrity were investigated. A 447 bp promoter fragment of the GDF9 gene was amplified and Sanger sequenced for the identification of GDF9 gene polymorphism. Three novel SNPs were identified at positions g. 97(T > A), g. 142 (G > G) and g. 313(C > T) in the promoter region of the caprine GDF9 gene which significantly (P < 0.05) influenced litter size, body measurement, and milk production traits in Damani goats. The genotype CT of SNP1 significantly (P < 0.05) improved litter size, genotype GG of SNP2 significantly (P < 0.05) enhanced milk production, while the genotypes CC of SNP3 significant (P < 0.05) increased body measurement traits in Damani goats. Moreover, in SNP1 loss of 3 transcription factors (TF) binding sites occurred, SNP2 caused loss of two TFs binding sites, and SNP3 caused loss of a single TF binding site. Similarly, SNP1 and SNP2 caused the gain of three new potential TF binding sites, and SNP3 caused gain of two new TF binding sites. It is concluded that caprine GDF9 gene could be used as a candidate gene for litter size, milk production and body measurement traits in Damani goats through marker-assisted selection for future breeding program.
Collapse
Affiliation(s)
- Aftab Ullah
- Department of Livestock Management, Breeding and Genetics, The University of Agriculture, Peshawar, Pakistan
| | - Rajwali Khan
- Department of Livestock Management, Breeding and Genetics, The University of Agriculture, Peshawar, Pakistan
| | - Syed Muhammad Suhail
- Department of Livestock Management, Breeding and Genetics, The University of Agriculture, Peshawar, Pakistan
| | - Ijaz Ahmad
- Department of Livestock Management, Breeding and Genetics, The University of Agriculture, Peshawar, Pakistan
| | - Farhan Anwar Khan
- College of Veterinary Sciences, The University of Agriculture, Peshawar, Pakistan
| | - Muhammad Subhan Qureshi
- Department of Livestock Management, Breeding and Genetics, The University of Agriculture, Peshawar, Pakistan
| | - Nazir Ahmad Khan
- Department of Animal Nutrition, The University of Agriculture, Peshawar, Pakistan
| | - Amel Ayari-Akkari
- Biology Department, College of Science, King Khalid University, Abha, Saudi Arabia
- Laboratory of Diversity, Management and Conservation of Biological Systems, Faculty of Science of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | | |
Collapse
|
6
|
Kinkpe L, Khan R, Suhail SM, Ahmad I, Khan FA, Ayari-Akkari A, Siddiqui S. Polymorphism and association study of lactoferrin (LF) gene with milk yield, milk composition, and somatic cell count in Beetal goats. Trop Anim Health Prod 2023; 55:415. [PMID: 37996555 DOI: 10.1007/s11250-023-03834-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/14/2023] [Indexed: 11/25/2023]
Abstract
The sequence analysis of PCR product exhibited four novel SNPs in the promoter region of the LF gene at loci g.98T>C, g.143T>A, g.189AC>A, and g.346A>G. Each SNP yielded three genotypes; the genotypes TT (SNP1), AA (SNP3), and GG (SNP4) decreased SCC and increase milk quality traits such as density, protein, and milk yield (P < 0.01). The genotype CC (SNP2) and CA (SNP4) significantly (P < 0.01) decreased the milk quality parameters, while genotypes TC (SNP2) and GG (SNP4) showed significantly (P < 0.01) less SCC and increase lactose % in milk. Furthermore, screening of the LF promoter sequence explored the gain of four TF binding sites at locus g.98T˃C and three TF binding sites at g.346A˃G. However, the loss of four and two TF binding sites was seen at locus g.143T˃A and g.189C˃A, respectively. We can conclude from the present study that the GG, TT, and AA genotype might be utilized as genetic markers in marker-assisted selection for the breed improvement program of Beetal goats.
Collapse
Affiliation(s)
- Lionel Kinkpe
- Department of Livestock Management, Breeding and Genetics, The University of Agriculture, Peshawar, 25130, Pakistan
| | - Rajwali Khan
- Department of Livestock Management, Breeding and Genetics, The University of Agriculture, Peshawar, 25130, Pakistan.
| | - Syed Muhammad Suhail
- Department of Livestock Management, Breeding and Genetics, The University of Agriculture, Peshawar, 25130, Pakistan
| | - Ijaz Ahmad
- Department of Livestock Management, Breeding and Genetics, The University of Agriculture, Peshawar, 25130, Pakistan
| | - Farhan Anwar Khan
- College of Veterinary Sciences, The University of Agriculture, Peshawar, Pakistan
| | - Amel Ayari-Akkari
- Biology Department, College of Science, King Khalid University, Abha, P.O Box 960, Saudi Arabia
| | - Sazada Siddiqui
- Biology Department, College of Science, King Khalid University, Abha, P.O Box 960, Saudi Arabia
| |
Collapse
|
7
|
Silva FA, Picorelli ACR, Veiga GS, Nery MF. Patterns of enrichment and acceleration in evolutionary rates of promoters suggest a role of regulatory regions in cetacean gigantism. BMC Ecol Evol 2023; 23:62. [PMID: 37872505 PMCID: PMC10594719 DOI: 10.1186/s12862-023-02171-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 10/11/2023] [Indexed: 10/25/2023] Open
Abstract
BACKGROUND Cetaceans (whales, porpoises, and dolphins) are a lineage of aquatic mammals from which some species became giants. Only recently, gigantism has been investigated from the molecular point of view. Studies focused mainly on coding regions, and no data on the influence of regulatory regions on gigantism in this group was available. Accordingly, we investigated the molecular evolution of non-coding regulatory regions of genes already described in the literature for association with size in mammals, focusing mainly on the promoter regions. For this, we used Ciiider and phyloP tools. Ciiider identifies significantly enriched transcription factor binding sites, and phyloP estimates the molecular evolution rate of the promoter. RESULTS We found evidence of enrichment of transcription binding factors related to large body size, with distinct patterns between giant and non-giant cetaceans in the IGFBP7 and NCAPG promoters, in which repressive agents are present in small cetaceans and those that stimulate transcription, in giant cetaceans. In addition, we found evidence of acceleration in the IGF2, IGFBP2, IGFBP7, and ZFAT promoters. CONCLUSION Our results indicate that regulatory regions may also influence cetaceans' body size, providing candidate genes for future research to understand the molecular basis of the largest living animals.
Collapse
Affiliation(s)
- Felipe A Silva
- Dept of Genetics, Evolution, Microbiology & Immunology, Institute of Biology, University of Campinas, Rua Monteiro Lobato, 255, Campinas, 13083-862, SP, Brazil
| | - Agnello C R Picorelli
- Dept of Genetics, Evolution, Microbiology & Immunology, Institute of Biology, University of Campinas, Rua Monteiro Lobato, 255, Campinas, 13083-862, SP, Brazil
| | - Giovanna S Veiga
- Dept of Genetics, Evolution, Microbiology & Immunology, Institute of Biology, University of Campinas, Rua Monteiro Lobato, 255, Campinas, 13083-862, SP, Brazil
| | - Mariana F Nery
- Dept of Genetics, Evolution, Microbiology & Immunology, Institute of Biology, University of Campinas, Rua Monteiro Lobato, 255, Campinas, 13083-862, SP, Brazil.
| |
Collapse
|
8
|
Yuan Z, Ge L, Su P, Gu Y, Chen W, Cao X, Wang S, Lv X, Getachew T, Mwacharo JM, Haile A, Sun W. NCAPG Regulates Myogenesis in Sheep, and SNPs Located in Its Putative Promoter Region Are Associated with Growth and Development Traits. Animals (Basel) 2023; 13:3173. [PMID: 37893897 PMCID: PMC10603679 DOI: 10.3390/ani13203173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/02/2023] [Accepted: 10/07/2023] [Indexed: 10/29/2023] Open
Abstract
Previously, NCAPG was identified as a candidate gene associated with sheep growth traits. This study aimed to investigate the direct role of NCAPG in regulating myogenesis in embryonic myoblast cells and to investigate the association between single-nucleotide polymorphisms (SNPs) in its promoter region and sheep growth traits. The function of NCAPG in myoblast proliferation and differentiation was detected after small interfering RNAs (siRNAs) knocked down the expression of NCAPG. Cell proliferation was detected using CCK-8 assay, EdU proliferation assay, and flow cytometry cell cycle analysis. Cell differentiation was detected via cell immunofluorescence and the quantification of myogenic regulatory factors (MRFs). SNPs in the promoter region were detected using Sanger sequencing and genotyped using the improved multiplex ligation detection reaction (iMLDR®) technique. As a result, a notable decrease (p < 0.01) in the percentage of EdU-positive cells in the siRNA-694-treated group was observed. A significant decrease (p < 0.01) in cell viability after treatment with siRNA-694 for 48 h and 72 h was detected using the CCK-8 method. The quantity of S-phase cells in the siRNA-694 treatment group was significantly decreased (p < 0.01). After interfering with NCAPG in myoblasts during induced differentiation, the relative expression levels of MRFs were markedly (p < 0.05 or p < 0.01) reduced compared with the control group on days 5-7. The myoblast differentiation in the siRNA-694 treatment group was obviously suppressed compared with the control group. SNP1, SNP2, SNP3, and SNP4 were significantly (p < 0.05) associated with all traits except body weight measured at birth and one month of age. SNP5 was significantly (p < 0.05) associated with body weight, body height, and body length in six-month-old sheep. In conclusion, interfering with NCAPG can inhibit the proliferation and differentiation of ovine embryonic myoblasts. SNPs in its promoter region can serve as potential useful markers for selecting sheep growth traits.
Collapse
Affiliation(s)
- Zehu Yuan
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (Z.Y.); (L.G.); (P.S.); (Y.G.); (W.C.); (X.C.); (S.W.); (X.L.)
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou 225009, China
| | - Ling Ge
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (Z.Y.); (L.G.); (P.S.); (Y.G.); (W.C.); (X.C.); (S.W.); (X.L.)
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou 225009, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Pengwei Su
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (Z.Y.); (L.G.); (P.S.); (Y.G.); (W.C.); (X.C.); (S.W.); (X.L.)
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou 225009, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yifei Gu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (Z.Y.); (L.G.); (P.S.); (Y.G.); (W.C.); (X.C.); (S.W.); (X.L.)
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou 225009, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Weihao Chen
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (Z.Y.); (L.G.); (P.S.); (Y.G.); (W.C.); (X.C.); (S.W.); (X.L.)
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou 225009, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Xiukai Cao
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (Z.Y.); (L.G.); (P.S.); (Y.G.); (W.C.); (X.C.); (S.W.); (X.L.)
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou 225009, China
| | - Shanhe Wang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (Z.Y.); (L.G.); (P.S.); (Y.G.); (W.C.); (X.C.); (S.W.); (X.L.)
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou 225009, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Xiaoyang Lv
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (Z.Y.); (L.G.); (P.S.); (Y.G.); (W.C.); (X.C.); (S.W.); (X.L.)
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou 225009, China
| | - Tesfaye Getachew
- International Centre for Agricultural Research in the Dry Areas, Addis Ababa 999047, Ethiopia; (T.G.); (J.M.M.); (A.H.)
| | - Joram M. Mwacharo
- International Centre for Agricultural Research in the Dry Areas, Addis Ababa 999047, Ethiopia; (T.G.); (J.M.M.); (A.H.)
| | - Aynalem Haile
- International Centre for Agricultural Research in the Dry Areas, Addis Ababa 999047, Ethiopia; (T.G.); (J.M.M.); (A.H.)
| | - Wei Sun
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (Z.Y.); (L.G.); (P.S.); (Y.G.); (W.C.); (X.C.); (S.W.); (X.L.)
- International Joint Research Laboratory in Universities of Jiangsu Province of China for Domestic Animal Germplasm Resources and Genetic Improvement, Yangzhou University, Yangzhou 225009, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- “Innovative China” “Belt and Road” International Agricultural Technology Innovation Institute for Evaluation, Protection, and Improvement on Sheep Genetic Resource, Yangzhou 225009, China
| |
Collapse
|
9
|
Association of variants in FABP4, FASN, SCD, SREBP1 and TCAP genes with intramuscular fat, carcass traits and body size in Chinese Qinchuan cattle. Meat Sci 2022; 192:108882. [PMID: 35714427 DOI: 10.1016/j.meatsci.2022.108882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 06/04/2022] [Accepted: 06/05/2022] [Indexed: 12/17/2022]
Abstract
This study aimed to genotype the variants in FABP4, FASN, SCD, SREBP1 and TCAP genes, and to analyze their associations with intramuscular fat (IMF) content, carcass traits and body size in Chinese Qinchuan cattle (QC). The association studies showed that the FABP4 c.220A > G polymorphism was significantly associated with ultrasound longissimus muscle depth (ULMD) and IMF, the FASN g.16024A > G polymorphism was significantly associated with ULMD and some body size traits, the SREBP1 84 bp indel was significantly associated with back fat thickness, ULMD and some body size traits. The frequencies of well-characterized A allele in FABP4 c.220A > G in Korean cattle (KOR) and Japanese Black cattle (JB), T allele in SCD g.8586C > T in KOR, SS genotype in SREBP1 84 bp indel in KOR and JB, DELDEL genotype in TCAP g.592-597CTGCAGinsdel in KOR were significantly higher than in Chinese cattle breeds. Thus, the associated four polymorphisms were expected to be genetic selection markers for meat quality, carcass traits and body size of QC.
Collapse
|
10
|
Ning Y, Zhang L, Wang W, Wu S. Effect of genetic variants in the SMAD1 and SMAD5 genes promoter on growth and beef quality traits in cattle. Gene 2022; 819:146220. [PMID: 35093446 DOI: 10.1016/j.gene.2022.146220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 12/15/2021] [Accepted: 01/13/2022] [Indexed: 11/27/2022]
Abstract
The SMAD1 and SMAD5 genes belong to mothers against decapentaplegic proteins family, which participate in the BMP pathway to control skeletal myogenesis and growth. In the present study, we analyzed the associations between polymorphisms of SMAD1 and SMAD5 genes promoter and important economical traits in Qinchuan cattle. Four SNPs in the SMAD1 gene promoter and three SNPs in the SMAD5 promoter were identified by sequencing of 448 Qinchuan cattles. Allelic and frequency analyses of these SNPs resulted in eight haplotypes both in the promoters of the two genes promoter and identified potential cis-regulatory transcription factor (TF) components. In addition, correlation analysis showed that cattle SMAD1 promoter activity of individuals with Hap4 (P < 0.01) was stronger than that of individuals with Hap2. while the transcriptional activity of individuals with Hap3 within SMAD5 gene promoter was significantly (P < 0.01) higher followed by H2. Uniformly, diplotypes H4-H6 of SMAD1 gene and H1-H3 of SMAD5 gene performed significant (P < 0.01) associations with body measurement and improved carcass quality traits. All these results have indicated that polymorphisms in SMAD1 and SMAD5 genes promoter could impact the transcriptional regulation and then affect muscle content in beef cattle. Moreover, both the SMAD1 and SMAD5 genes were expressed ubiquitously in 10 tissues and had higher expression in the longissimus thoracis tissue from 6-month-old and 12-month-old cattle than in cattle of other ages. We can conclude that SMAD1 and SMAD5 genes may play an important role in muscle growth and development, and the variants mapped within SMAD1 and SMAD5 genes can be utilized in molecular marker-assisted selection for cattle carcass quality and body measurement traits in breed improvement programs of Qinchuan cattle.
Collapse
Affiliation(s)
- Yue Ning
- College of Chemistry and Chemical Engineering, Xianyang Normal University, Xianyang, Shaanxi 712000, China
| | - Le Zhang
- Institute of Physical Education, Yan'an University, Yan'an 716000, Shaanxi, China.
| | - Wenbo Wang
- College of Chemistry and Chemical Engineering, Xianyang Normal University, Xianyang, Shaanxi 712000, China
| | - Sen Wu
- Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, China
| |
Collapse
|
11
|
Association of SNPs in AKIRIN2, TTN, EDG1 and MYBPC1 genes with growth and carcass traits in Qinchuan cattle. ANNALS OF ANIMAL SCIENCE 2021. [DOI: 10.2478/aoas-2021-0025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
Growth and carcass traits are the main breeding objectives in beef cattle. The aim of this study was to confirm genetic effects of the c.*188G>A SNP of AKIRIN2, the g.231054C>T SNP of TTN, the g.1471620G>T SNP of EDG1 and the g.70014208A>G SNP of MYBPC1 on growth and carcass traits in Chinese Qinchuan (QC) cattle, as well as to compare the frequencies of the well-characterized alleles of these SNPs among six Chinese cattle populations, three Japanese cattle populations, two European cattle populations and one Korean cattle population. In this study, a total of 665 cattle samples were genotyped using MassARRAY and PCR-RFLP. Association analysis explored effects of four SNPs on growth and carcass traits including body length, wither height, hip height, hip width, rump length, chest depth, chest circumference, back fat thickness, ultrasound longissimus muscle area and ultrasound longissimus muscle depth in QC (P<0.05 to P<0.001). The well-characterized A (c.*188G>A), T (g.231054C>T) and T (g.1471620G>T) alleles in Japanese Black cattle were significantly higher than Chinese cattle breeds, on the contrary, the G allele (g.70014208A>G) was markedly higher in Chinese cattle breeds than other cattle breeds. These results suggest that the four SNPs might be useful as a molecular marker for growth-related traits in Chinese QC cattle.
Collapse
|
12
|
Identification of genetic variants the CCKAR gene and based on body measurement and carcass quality characteristics in Qinchuan beef cattle (Bos taurus). ELECTRON J BIOTECHN 2021. [DOI: 10.1016/j.ejbt.2021.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
13
|
Bioinformatics analysis and genetic polymorphisms in genomic region of the bovine SH2B2 gene and their associations with molecular breeding for body size traits in qinchuan beef cattle. Biosci Rep 2021; 40:222267. [PMID: 32110807 PMCID: PMC7069895 DOI: 10.1042/bsr20192113] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 02/21/2020] [Accepted: 02/28/2020] [Indexed: 11/17/2022] Open
Abstract
The Src homology 2 B 2 (SH2B2) gene regulate energy balance and body weight at least partially by enhancing Janus kinase-2 (JAK2)-mediated cytokine signaling, including leptin and/or GH signaling. Leptin is an adipose hormone that controls body weight. The objective of the present study is to evaluate the association between body measurement traits and SH2B2 gene polymorphisms as responsible mutations. For this purpose, we selected four single-nucleotide polymorphisms (SNPs) in SH2B2 gene, including two in intron 5 (g.20545A>G, and g.20570G>A, one synonymous SNP g.20693T>C, in exon 6 and one in intron 8 (g.24070C>A, and genotyped them in Qinchuan cattle. SNPs in sample populations were in medium polymorphism level (0.250<PIC<0.500). Association study indicated that the g.20570G>A, g.20693T>C, and g.24070C>A, significantly (P < 0.05) associated with body length (BL) and chest circumference (CC) in Qinchuan cattle. In addition, H4H3 and H5H5 diplotype had highly significantly (P < 0.01) greater body length (BL), rump length (RL), and chest circumference (CC) than H4H2. Our investigation will not only extend the spectrum of genetic variation of bovine SH2B2 gene, but also provide useful information for the marker assisted selection in beef cattle breeding program.
Collapse
|
14
|
Chong Y, Liu G, Girmay S, Jiang X. Novel mutations in the signal transducer and activator of transcription 3 gene are associated with sheep body weight and fatness traits. Mamm Genome 2021; 32:38-49. [PMID: 33492461 DOI: 10.1007/s00335-020-09850-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 09/29/2020] [Indexed: 12/01/2022]
Abstract
The signal transducer and activator of transcription 3 (STAT3) gene plays a crucial role in leptin-mediated energy metabolism, upon which the growth and development of animals depend. Nevertheless, no studies have reported the effects of STAT3 gene polymorphisms on body weight and fatness modulation in sheep. This study aimed to illustrate STAT3 mRNA expression across tissues and various developmental stages of sheep and to highlight the association of STAT3 gene polymorphisms with body weight and fat-related traits in sheep, in order to identify a genetic marker that may conceivably be of value for marker-assisted selection (MAS). This study revealed that STAT3 was differentially expressed across age and sex (p < 0.05), with higher expression in the ram liver. The abundant expression of STAT3 in the liver of male sheep and increased expression in the hypothalamus and longissimus dorsi muscle from birth to six months of age may indicate the vital role of the STAT3 gene in animal growth and development. Moreover, SNP association analysis also revealed that the novel SNPs of the STAT3 gene detected in this study showed a significant association with body weight and fatness traits (p < 0.05). In conclusion, the significant genetic effects of the STAT3 gene polymorphisms on sheep growth and development revealed that STAT3 could be a marker gene for the selection of growth-related traits in sheep.
Collapse
Affiliation(s)
- Yuqing Chong
- Laboratory of Small Ruminant Genetics, Breeding and Reproduction, Huazhong Agricultural University, Wuhan, 430070, China.,Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Guiqiong Liu
- Laboratory of Small Ruminant Genetics, Breeding and Reproduction, Huazhong Agricultural University, Wuhan, 430070, China.,Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shishay Girmay
- Laboratory of Small Ruminant Genetics, Breeding and Reproduction, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xunping Jiang
- Laboratory of Small Ruminant Genetics, Breeding and Reproduction, Huazhong Agricultural University, Wuhan, 430070, China. .,Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
15
|
Fang J, Zhang D, Cao JW, Zhang L, Liu CX, Xing YP, Wang F, Xu HY, Wang SC, Ling Y, Wang W, Zhang YR, Zhou HM. Pathways involved in pony body size development. BMC Genomics 2021; 22:58. [PMID: 33461495 PMCID: PMC7814589 DOI: 10.1186/s12864-020-07323-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 12/14/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The mechanism of body growth in mammals is poorly understood. Here, we investigated the regulatory networks involved in body growth through transcriptomic analysis of pituitary and epiphyseal tissues of smaller sized Debao ponies and Mongolian horses at the juvenile and adult stages. RESULTS We found that growth hormone receptor (GHR) was expressed at low levels in long bones, although growth hormone (GH) was highly expressed in Debao ponies compared with Mongolian horses. Moreover, significant downregulated of the GHR pathway components m-RAS and ATF3 was found in juvenile ponies, which slowed the proliferation of bone osteocytes. However, WNT2 and PLCβ2 were obviously upregulated in juvenile Debao ponies, which led to premature mineralization of the bone extracellular matrix. Furthermore, we found that the WNT/Ca2+ pathway may be responsible for regulating body growth. GHR was demonstrated by q-PCR and Western blot analyses to be expressed at low levels in long bones of Debao ponies. Treatment with WNT antagonistI decreased the expression of WNT pathway components (P < 0.05) in vitro. Transduction of ATDC5 cells with a GHR-RNAi lentiviral vector decreased the expression of the GHR pathway components (P < 0.05). Additionally, the expression of the IGF-1 gene in the liver was lower in Debao ponies than in Mongolian horses at the juvenile and adult stages. Detection of plasma hormone concentrations showed that Debao ponies expressed higher levels of IGF-1 as juveniles and higher levels of GH as adults than Mongolian horses, indicating that the hormone regulation in Debao ponies differs from that in Mongolian horses. CONCLUSION Our work provides insights into the genetic regulation of short stature growth in mammals and can provide useful information for the development of therapeutic strategies for small size.
Collapse
Affiliation(s)
- Jun Fang
- College of Life Sciences, Inner Mongolia Agricultural University, No. 306 Zhaowuda Road, Hohhot, 010018, China
| | - Dong Zhang
- College of Life Sciences, Inner Mongolia Agricultural University, No. 306 Zhaowuda Road, Hohhot, 010018, China
| | - Jun Wei Cao
- College of Life Sciences, Inner Mongolia Agricultural University, No. 306 Zhaowuda Road, Hohhot, 010018, China
| | - Li Zhang
- College of Life Sciences, Inner Mongolia Agricultural University, No. 306 Zhaowuda Road, Hohhot, 010018, China
| | - Chun Xia Liu
- College of Life Sciences, Inner Mongolia Agricultural University, No. 306 Zhaowuda Road, Hohhot, 010018, China
| | - Yan Ping Xing
- College of Life Sciences, Inner Mongolia Agricultural University, No. 306 Zhaowuda Road, Hohhot, 010018, China
| | - Feng Wang
- College of Life Sciences, Inner Mongolia Agricultural University, No. 306 Zhaowuda Road, Hohhot, 010018, China
| | - Hong Yang Xu
- College of Life Sciences, Inner Mongolia Agricultural University, No. 306 Zhaowuda Road, Hohhot, 010018, China
| | - Shi Chao Wang
- College of Life Sciences, Inner Mongolia Agricultural University, No. 306 Zhaowuda Road, Hohhot, 010018, China
| | - Yu Ling
- College of Life Sciences, Inner Mongolia Agricultural University, No. 306 Zhaowuda Road, Hohhot, 010018, China
| | - Wei Wang
- College of Life Sciences, Inner Mongolia Agricultural University, No. 306 Zhaowuda Road, Hohhot, 010018, China
| | - Yan Ru Zhang
- College of Life Sciences, Inner Mongolia Agricultural University, No. 306 Zhaowuda Road, Hohhot, 010018, China.
| | - Huan Min Zhou
- College of Life Sciences, Inner Mongolia Agricultural University, No. 306 Zhaowuda Road, Hohhot, 010018, China.
| |
Collapse
|
16
|
Hongfang G, Khan R, Raza SHA, Nurgulsim K, Suhail SM, Rahman A, Ahmed I, Ijaz A, Ahmad I, Linsen Z. Transcriptional regulation of adipogenic marker genes for the improvement of intramuscular fat in Qinchuan beef cattle. Anim Biotechnol 2020; 33:776-795. [PMID: 33151113 DOI: 10.1080/10495398.2020.1837847] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The intramuscular fat content plays a crucial role in meat quality traits. Increasing the degree of adipogenesis in beef cattle leads to an increase in the content of intramuscular fat. Adipogenesis a complex biochemical process which is under firm genetic control. Over the last three decades, the Qinchuan beef cattle have been extensively studied for the improvement of meat production and quality traits. In this study, we reviewed the literature regarding adipogenesis and intramuscular fat deposition. Then, we summarized the research conducted on the transcriptional regulation of key adipogenic marker genes, and also reviewed the roles of adipogenic marker genes in adipogenesis of Qinchuan beef cattle. This review will elaborate our understanding regarding transcriptional regulation which is a vital physiological process regulated by a cascade of transcription factors (TFs), key target marker genes, and regulatory proteins. This synergistic action of TFs and target genes ensures the accurate and diverse transmission of the genetic information for the accomplishment of central physiological processes. This information will provide an insight into the transcriptional regulation of the adipogenic marker genes and its role in bovine adipogenesis for the breed improvement programs especially for the trait of intramuscular fat deposition.
Collapse
Affiliation(s)
- Guo Hongfang
- Medical College of Xuchang University, Xuchang City, Henan Province, P. R. China
| | - Rajwali Khan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P. R. China.,Department of Livestock Management, Breeding and Genetics, The University of Agriculture, Peshawar, Pakistan
| | - Sayed Haidar Abbas Raza
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Kaster Nurgulsim
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P. R. China
| | - Syed Muhammad Suhail
- Department of Livestock Management, Breeding and Genetics, The University of Agriculture, Peshawar, Pakistan
| | - Abdur Rahman
- Department of Livestock Management, Breeding and Genetics, The University of Agriculture, Peshawar, Pakistan
| | - Ijaz Ahmed
- Department of Livestock Management, Breeding and Genetics, The University of Agriculture, Peshawar, Pakistan
| | - Asim Ijaz
- Department of Livestock Management, Breeding and Genetics, The University of Agriculture, Peshawar, Pakistan
| | - Iftikhar Ahmad
- Department of Livestock Management, Breeding and Genetics, The University of Agriculture, Peshawar, Pakistan
| | - Zan Linsen
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P. R. China
| |
Collapse
|
17
|
Hu Z, Cao J, Liu G, Zhang H, Liu X. Comparative Transcriptome Profiling of Skeletal Muscle from Black Muscovy Duck at Different Growth Stages Using RNA-seq. Genes (Basel) 2020; 11:genes11101228. [PMID: 33092100 PMCID: PMC7590229 DOI: 10.3390/genes11101228] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/13/2020] [Accepted: 10/16/2020] [Indexed: 12/13/2022] Open
Abstract
In China, the production for duck meat is second only to that of chicken, and the demand for duck meat is also increasing. However, there is still unclear on the internal mechanism of regulating skeletal muscle growth and development in duck. This study aimed to identity candidate genes related to growth of duck skeletal muscle and explore the potential regulatory mechanism. RNA-seq technology was used to compare the transcriptome of skeletal muscles in black Muscovy ducks at different developmental stages (day 17, 21, 27, 31, and 34 of embryos and postnatal 6-month-olds). The SNPs and InDels of black Muscovy ducks at different growth stages were mainly in “INTRON”, “SYNONYMOUS_CODING”, “UTR_3_PRIME”, and “DOWNSTREAM”. The average number of AS in each sample was 37,267, mainly concentrated in TSS and TTS. Besides, a total of 19 to 5377 DEGs were detected in each pairwise comparison. Functional analysis showed that the DEGs were mainly involved in the processes of cell growth, muscle development, and cellular activities (junction, migration, assembly, differentiation, and proliferation). Many of DEGs were well known to be related to growth of skeletal muscle in black Muscovy duck, such as MyoG, FBXO1, MEF2A, and FoxN2. KEGG pathway analysis identified that the DEGs were significantly enriched in the pathways related to the focal adhesion, MAPK signaling pathway and regulation of the actin cytoskeleton. Some DEGs assigned to these pathways were potential candidate genes inducing the difference in muscle growth among the developmental stages, such as FAF1, RGS8, GRB10, SMYD3, and TNNI2. Our study identified several genes and pathways that may participate in the regulation of skeletal muscle growth in black Muscovy duck. These results should serve as an important resource revealing the molecular basis of muscle growth and development in duck.
Collapse
|
18
|
Yang X, Ning Y, Mei C, Zhang W, Sun J, Wang S, Zan L. The role of BAMBI in regulating adipogenesis and myogenesis and the association between its polymorphisms and growth traits in cattle. Mol Biol Rep 2020; 47:5963-5974. [PMID: 32740798 DOI: 10.1007/s11033-020-05670-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 07/17/2020] [Indexed: 11/30/2022]
Abstract
Bone morphogenic protein and activin membrane-bound inhibitor (BAMBI) is a transmembrane protein that affects the growth, development and muscle regeneration of the body by regulating the TGF-β, BMP and Wnt signaling pathways. Studies have found that BAMBI has important regulatory functions in skeletal muscle and preadipocytes in vivo and in vitro. However, research on this protein in cattle is lacking. In this study, to determine the role of BAMBI in the growth and development of cattle, we first found that the expression of BAMBI in adipose tissue and longissimus muscle of newborn and adult Qinchuan beef cattle was significantly different. Then we showed that BAMBI knockdown promoted the differentiation of bovine preadipocytes and suppressed myoblast myogenesis, as indicated by the increased lipid droplets and the decreased myotubes, as well as the corresponding significant changes in the expression of PPARγ, C/EBPα, C/EBPβ, FABP4, MyoD, MyoG and Myf6. Finally, to further verify the effect of BAMBI on the growth performance of cattle, we identified seven novel SNPs in the BAMBI genomic region, which were significantly correlated with one or more growth traits (p < 0.05). Furthermore, individuals with haplotype H1H4 (TC-GA-CT-CA-AT-AT-AG) had a higher body and carcass quality than those with other haplotypes (p < 0.05). In brief, BAMBI may be a functional gene for the differentiation of bovine preadipocytes and myoblasts, and variations in the BAMBI genomic region, especially the combined haplotype H1H4, may benefit marker-assisted selection in cattle.
Collapse
Affiliation(s)
- Xinran Yang
- College of Animal Science and Technology, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Yue Ning
- College of Chemistry and Chemical Engineering, Xianyang Normal University, Xianyang, 712000, Shaanxi, China
| | - Chugang Mei
- College of Animal Science and Technology, Northwest A & F University, Yangling, 712100, Shaanxi, China.,National Beef Cattle Improvement Center, Yangling, 712100, Shaanxi, China
| | - Weiyi Zhang
- College of Animal Science and Technology, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Jingchun Sun
- College of Animal Science and Technology, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Sihu Wang
- College of Animal Science and Technology, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A & F University, Yangling, 712100, Shaanxi, China. .,National Beef Cattle Improvement Center, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
19
|
Genetic variants in MYF5 affected growth traits and beef quality traits in Chinese Qinchuan cattle. Genomics 2020; 112:2804-2812. [PMID: 32220486 DOI: 10.1016/j.ygeno.2020.03.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/07/2020] [Accepted: 03/22/2020] [Indexed: 12/14/2022]
Abstract
Myogenic factor 5 plays actively roles in the regulation of myogenesis. The aims of this study are to identify the evolution information of MYF5 protein among 10 domestic and mammalian animals, to uncover the expression patterns of MYF5 gene in calves and adults of Qinchuan cattle, and to expose the genetic variants of the MYF5 gene and explore its effect on cattle growth traits and beef quality traits in Qinchuan cattle. The bioinformatics results showed that the MYF5 proteins highly conserved in different mammalian or domestic animals apart from chicken. The expression level of MYF5 gene in the heart, muscle, lung, large intestine and liver was greater than that of other tissues. PCR amplicons sequencing identified four novel SNPs at g.5738A>G, g.5785C>T and g.5816A>G in the 3rd exon region and g.6535A>G in the 3' UTR. Genotypic frequencies of g.5785C>T was harshly deviated from the HWE (P < .05). Genetic diversity was low or intermediate for the four SNPs and those SNPs were in the weak linkage disequilibrium. Association analysis results indicated g.5785C>T, g.5816A>G and g.6535A>G significant effect on growth performance and beef quality traits of Qinchuan cattle. H1H3 diplotype had greater body size and better beef quality. All the results implicate that the MYF5 gene might be applied as a promising candidate gene in Qinchuan cattle breeding.
Collapse
|
20
|
Khan R, Raza SHA, Guo H, Xiaoyu W, Sen W, Suhail SM, Rahman A, Ullah I, Abd El-Aziz AH, Manzari Z, Alshawi A, Zan L. Genetic variants in the TORC2 gene promoter and their association with body measurement and carcass quality traits in Qinchuan cattle. PLoS One 2020; 15:e0227254. [PMID: 32059009 PMCID: PMC7021310 DOI: 10.1371/journal.pone.0227254] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 11/27/2019] [Indexed: 11/19/2022] Open
Abstract
The TORC2 gene is responsible for nutrient metabolism, gluconeogenesis, myogenesis and adipogenesis through the PI3K-Akt, AMPK, glucagon and insulin resistance signaling pathways. Sequencing of PCR amplicons explored three novel SNPs at loci g.16534694G>A, g.16535011C>T, and g.16535044A>T in the promoter region of the TORC2 gene in the Qinchuan breed of cattle. Allelic and genotypic frequencies of these SNPs deviated from Hardy-Weinberg equilibrium (HWE) (P < 0.05). SNP1 genotype GG, SNP2 genotype CT and SNP3 genotype AT showed significantly (P <0.05) larger body measurement and improved carcass quality traits. Haplotype H1 (GCA) showed significantly (p<0.01) higher transcriptional activity (51.44%) followed by H4 (ATT) (34.13%) in bovine preadipocytes. The diplotypes HI-H3 (GG-CC-AT), H1-H2 (GG-CT-AT) and H3-H4 (GA-CT-TT) showed significant (P<0.01) associations with body measurement and improved carcass quality traits. Analysis of the relative mRNA expression level of the TORC2 gene in different tissues within two different age groups revealed a significant increase (P<0.01) in liver, small intestine, muscle and fat tissues with growth from calf stage to adult stage. We can conclude that variants mapped within TORC2 can be used in marker-assisted selection for carcass quality and body measurement traits in breed improvement programs of Qinchuan cattle.
Collapse
Affiliation(s)
- Rajwali Khan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Sayed Haidar Abbas Raza
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Hongfang Guo
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Wang Xiaoyu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P.R. China
| | - Wu Sen
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P.R. China
- Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, China
| | - Syed Muhammad Suhail
- Department of Livestock Management, Breeding and Genetics, The University of Agriculture Peshawar, Peshawar, Pakistan
| | - Abdur Rahman
- Department of Livestock Management, Breeding and Genetics, The University of Agriculture Peshawar, Peshawar, Pakistan
| | - Irfan Ullah
- College of Bio-medical Engineering, Chongqing University, Chongqing, China
| | - Ayman Hassan Abd El-Aziz
- Animal Husbandry and Animal Wealth Development Department, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Zeinab Manzari
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Akil Alshawi
- School of Life Science University of Nottingham, Nottingham, United Kingdom
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, P.R. China
- National Beef Cattle Improvement Research Center, Yangling, China
| |
Collapse
|
21
|
Expression of the bovine KLF6 gene polymorphisms and their association with carcass and body measures in Qinchuan cattle (Bos Taurus). Genomics 2020; 112:423-431. [DOI: 10.1016/j.ygeno.2019.03.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 03/11/2019] [Accepted: 03/12/2019] [Indexed: 02/02/2023]
|
22
|
Functional impact of cytochrome P450 3A (CYP3A) missense variants in cattle. Sci Rep 2019; 9:19672. [PMID: 31873175 PMCID: PMC6927969 DOI: 10.1038/s41598-019-56271-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 12/09/2019] [Indexed: 12/26/2022] Open
Abstract
Cytochrome P450 3A is the most important CYP subfamily in humans, and CYP3A4/CYP3A5 genetic variants contribute to inter-individual variability in drug metabolism. However, no information is available for bovine CYP3A (bCYP3A). Here we described bCYP3A missense single nucleotide variants (SNVs) and evaluated their functional effects. CYP3A28, CYP3A38 and CYP3A48 missense SNVs were identified in 300 bulls of Piedmontese breed through targeted sequencing. Wild-type and mutant bCYP3A cDNAs were cloned and expressed in V79 cells. CYP3A-dependent oxidative metabolism of testosterone (TST) and nifedipine (NIF) was assessed by LC-MS/MS. Finally, SNVs functional impact on TST hydroxylation was measured ex vivo in liver microsomes from individually genotyped animals. Thirteen missense SNVs were identified and validated. Five variants showed differences in CYP3A catalytic activity: three CYP3A28 SNVs reduced TST 6β-hydroxylation; one CYP3A38 variant increased TST 16β-hydroxylation, while a CYP3A48 SNV showed enhanced NIF oxidation. Individuals homozygous for rs384467435 SNV showed a reduced TST 6β-hydroxylation. Molecular modelling showed that most of SNVs were distal to CYP3A active site, suggesting indirect effects on the catalytic activity. Collectively, these findings demonstrate the importance of pharmacogenetics studies in veterinary species and suggest bCYP3A genotype variation might affect the fate of xenobiotics in food-producing species such as cattle.
Collapse
|
23
|
Wang Z, Zhang X, Jiang E, Yan H, Zhu H, Chen H, Liu J, Qu L, Pan C, Lan X. InDels within caprine IGF2BP1 intron 2 and the 3'-untranslated regions are associated with goat growth traits. Anim Genet 2019; 51:117-121. [PMID: 31625179 DOI: 10.1111/age.12871] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2019] [Indexed: 12/31/2022]
Abstract
Insulin-like growth factor 2 mRNA binding protein 1 (IGF2BP1) is involved in the Hedgehog pathway and has been shown to regulate the RNA stability of several growth-related target genes. It is located in a quantitative trait locus showing a strong association with traits related to body size in ducks. Fibroblast growth factor receptor 1 (FGFR1) also participates in Hedgehog signaling pathways and has been reported to be associated with organic growth and development. FGFR1-knockout mice have been shown to have severe postnatal growth defects, including an approximately 50% reduction in body weight and bone mass. Meanwhile, nonsense-mediated mRNA decay factor (SMG6) can maintain genomic stability, which is associated with organic growth and development. Therefore, we hypothesized that IGF2BP1, FGFR1 and SMG6 genes may play important roles in the growth traits of goats. In this study, the existence of two insertion/deletion (InDel) variants within IGF2BP1, one InDel within FGFR1 and two InDels within SMG6 was verified and their correlation with growth traits was analyzed in 2429 female Shaanbei white cashmere goats. Results showed both the 15 bp InDel in intron 2 and the 5 bp InDel in the 3' regulatory region within IGF2BP1 were significantly associated with growth traits (P < 0.05) and goats with the combinatorial homozygous insertion genotypes of these two loci had the highest body weight (P = 0.046). The other InDels within FGFR1 and SMG6 were not obviously associated with growth traits (P > 0.05). Therefore, the two InDels in IGF2BP1 were vital mutations affecting goat growth traits.
Collapse
Affiliation(s)
- Z Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - X Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - E Jiang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - H Yan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China.,College of Life Sciences, Yulin College, Yulin, Shaanxi, 719000, China.,Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Yulin College, Yulin, Shaanxi, 719000, China
| | - H Zhu
- College of Life Sciences, Yulin College, Yulin, Shaanxi, 719000, China.,Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Yulin College, Yulin, Shaanxi, 719000, China
| | - H Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - J Liu
- College of Life Sciences, Yulin College, Yulin, Shaanxi, 719000, China.,Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Yulin College, Yulin, Shaanxi, 719000, China
| | - L Qu
- College of Life Sciences, Yulin College, Yulin, Shaanxi, 719000, China.,Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Yulin College, Yulin, Shaanxi, 719000, China
| | - C Pan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - X Lan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
24
|
Function and Transcriptional Regulation of Bovine TORC2 Gene in Adipocytes: Roles of C/EBP, XBP1, INSM1 and ZNF263. Int J Mol Sci 2019; 20:ijms20184338. [PMID: 31487963 PMCID: PMC6769628 DOI: 10.3390/ijms20184338] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 09/01/2019] [Accepted: 09/01/2019] [Indexed: 12/25/2022] Open
Abstract
The TORC2 gene is a member of the transducer of the regulated cyclic adenosine monophosphate (cAMP) response element binding protein gene family, which plays a key role in metabolism and adipogenesis. In the present study, we confirmed the role of TORC2 in bovine preadipocyte proliferation through cell cycle staining flow cytometry, cell counting assay, 5-ethynyl-2′-deoxyuridine staining (EdU), and mRNA and protein expression analysis of proliferation-related marker genes. In addition, Oil red O staining analysis, immunofluorescence of adiponectin, mRNA and protein level expression of lipid related marker genes confirmed the role of TORC2 in the regulation of bovine adipocyte differentiation. Furthermore, the transcription start site and sub-cellular localization of the TORC2 gene was identified in bovine adipocytes. To investigate the underlying regulatory mechanism of the bovine TORC2, we cloned a 1990 bp of the 5’ untranslated region (5′UTR) promoter region into a luciferase reporter vector and seven vector fragments were constructed through serial deletion of the 5′UTR flanking region. The core promoter region of the TORC2 gene was identified at location −314 to −69 bp upstream of the transcription start site. Based on the results of the transcriptional activities of the promoter vector fragments, luciferase activities of mutated fragments and siRNAs interference, four transcription factors (CCAAT/enhancer-binding protein C/BEPγ, X-box binding protein 1 XBP1, Insulinoma-associated 1 INSM1, and Zinc finger protein 263 ZNF263) were identified as the transcriptional regulators of TORC2 gene. These findings were further confirmed through Electrophoretic Mobility Shift Assay (EMSA) within nuclear extracts of bovine adipocytes. Furthermore, we also identified that C/EBPγ, XBP1, INSM1 and ZNF263 regulate TORC2 gene as activators in the promoter region. We can conclude that TORC2 gene is potentially a positive regulator of adipogenesis. These findings will not only provide an insight for the improvement of intramuscular fat in cattle, but will enhance our understanding regarding therapeutic intervention of metabolic syndrome and obesity in public health as well.
Collapse
|
25
|
Shishay G, Liu G, Jiang X, Yu Y, Teketay W, Du D, Jing H, Liu C. Variation in the Promoter Region of the MC4R Gene Elucidates the Association of Body Measurement Traits in Hu Sheep. Int J Mol Sci 2019; 20:E240. [PMID: 30634446 PMCID: PMC6358852 DOI: 10.3390/ijms20020240] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/24/2018] [Accepted: 12/30/2018] [Indexed: 12/15/2022] Open
Abstract
The melanocortin 4 receptor (MC4R) gene is expressed in the appetite-regulating areas of the brain and is engaged in the leptin signaling pathway. Although previous studies have identified variants in the coding region of the sheep MC4R gene showing significant associations with birth weight, weaning weight, and backfat thickness, no such associations have been reported for the promoter region. Besides, the essential promoter region of the sheep MC4R has not been delineated. In this study, to better understand the transcriptional regulation of MC4R and to elucidate the association between regulatory variants and haplotypes with body measurement traits in sheep, we cloned and characterized the MC4R promoter. We found that the minimal promoter of the gene is located within the region -1207/-880 bp upstream of the first exon. Real-time quantitative PCR (RT-qPCR) data revealed the mRNA expression of the MC4R gene had a significant difference between sex and age. In the association analysis, eight single nucleotide polymorphisms (SNPs) had a significant association with one or more traits (p < 0.05); of these, two SNPs were novel. Notably, individuals with haplotype H1H2 (CT-GA-GT-GA-GT-GA-GA-CG) were heavier in body weight than other haplotypes. Altogether, variations in the MC4R gene promoter, most notably haplotype H1H2, may greatly benefit marker-assisted selection in sheep.
Collapse
Affiliation(s)
- Girmay Shishay
- Laboratory of Small Ruminant Genetics, Breeding and Reproduction, Huazhong Agricultural University, Wuhan 430070, China.
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China.
| | - Guiqiong Liu
- Laboratory of Small Ruminant Genetics, Breeding and Reproduction, Huazhong Agricultural University, Wuhan 430070, China.
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China.
| | - Xunping Jiang
- Laboratory of Small Ruminant Genetics, Breeding and Reproduction, Huazhong Agricultural University, Wuhan 430070, China.
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China.
| | - Yun Yu
- Laboratory of Small Ruminant Genetics, Breeding and Reproduction, Huazhong Agricultural University, Wuhan 430070, China.
| | - Wassie Teketay
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China.
| | - Dandan Du
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China.
| | - Huang Jing
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China.
| | - Chenghui Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of the Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|