1
|
Reamtong O, Pearngam P, Laoungbua P, Sitprija S, Thiangtrongjit T, Srisuk G, Vasaruchapong T, Khow O, Noiphrom J, Chaiyabutr N, Chanhome L, Kumkate S. Comparative in vitro immunoreactivity and protein analysis of Trimeresurus albolabris and Tropidolaemus wagleri venoms. Sci Rep 2025; 15:12693. [PMID: 40221593 PMCID: PMC11993613 DOI: 10.1038/s41598-025-97032-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 04/02/2025] [Indexed: 04/14/2025] Open
Abstract
Snakebite envenomation remains a significant global health concern, with antivenoms being the primary treatment. However, variations in venom composition can affect antivenom efficacy, leading to differences in immunoreactivity. This study aimed to evaluate and compare the immunological reactivity of venom components in Trimeresurus albolabris and Tropidolaemus wagleri venoms and further investigate the differences in antigenic properties of a key protein between two species that may influence antivenom recognition. The levels of immunological reactivity of monovalent (homospecific) antivenom and hemato polyvalent antivenom to Trimeresurus albolabris and Tropidolaemus wagleri venoms were evaluated using indirect ELISA. The immunoreactive levels of both antivenoms to antigenic proteins in Trimeresurus albolabris venom were comparable. In addition, both antivenoms reacted immunologically with antigens in Tropidolaemus wagleri venom. However, the hemato polyvalent antivenom showed greater reactivity to Tropidolaemus wagleri venom than the monovalent antivenom. The overall reactivity of the antivenoms to Trimeresurus albolabris venom was higher than that to Tropidolaemus wagleri venom. Using two-dimensional (2DE) immunoblotting and liquid chromatography mass-spectrometry-based proteomic technology (LC-MS/MS), immunoreactive and non-reactive proteins in both pit viper venoms were characterized and identified. Trimeresurus albolabris venom comprised a total of 235 spots, while Tropidolaemus wagleri venom contained 72 spots. Immunorecognition between the polyvalent antivenom and specific proteins in both venoms was mostly detected in proteins with a size over 30 kDa. Among the nine protein families identified in both venoms, the most frequently reactive proteins found in Trimeresurus albolabris venom were snake venom metalloproteinases (SVMP) and snake venom serine proteases (SVSP), while in Tropidolaemus wagleri venom, the most frequent were members of the L-amino acid oxidase (LAAO) family. For the non-immunoreactive proteins, we detected the highest identity numbers of phospholipase A2 (PLA2) in Trimeresurus albolabris venom and SVSP in Tropidolaemus wagleri venom. The distinctive characteristics between the non-reactive SVSP in Tropidolaemus wagleri venom and the reactive SVSP in Trimeresurus albolabris venom were investigated. The antigenic properties and predicted B cell epitopes were further analyzed using a computational approach. Structural and physicochemical analyses indicated that Loop 2 (residues 100-110) in the immunoreactive SVSP from Trimeresurus albolabris venom exhibited higher hydrophilicity and surface accessibility compared to the non-immunoreactive SVSP from Tropidolaemus wagleri venom. These findings provide important insights into the differences in antivenom reactivity to specific proteins across different snake venoms and may contribute to future research aimed at optimizing antivenom formulations.
Collapse
Affiliation(s)
- Onrapak Reamtong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Ratchathewi, Bangkok, 10400, Thailand
| | - Phorutai Pearngam
- Science Division, International College, Mahidol University, Salaya, Phutthamonthon, Nakhon Pathom, 73170, Thailand
| | - Panithi Laoungbua
- Snake Farm, Queen Saovabha Memorial Institute, Thai Red Cross Society, Pathumwan, Bangkok, 10330, Thailand
| | - Siravit Sitprija
- Department of Biology, Faculty of Science, Mahidol University, Ratchathewi, Bangkok, 10400, Thailand
| | - Tipparat Thiangtrongjit
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Ratchathewi, Bangkok, 10400, Thailand
| | - Godchakorn Srisuk
- Department of Biology, Faculty of Science, Mahidol University, Ratchathewi, Bangkok, 10400, Thailand
| | - Taksa Vasaruchapong
- Snake Farm, Queen Saovabha Memorial Institute, Thai Red Cross Society, Pathumwan, Bangkok, 10330, Thailand
| | - Orawan Khow
- Department of Research and Development, Queen Saovabha Memorial Institute, Thai Red Cross Society, Patumwan, Bangkok, 10330, Thailand
| | - Jureeporn Noiphrom
- Department of Research and Development, Queen Saovabha Memorial Institute, Thai Red Cross Society, Patumwan, Bangkok, 10330, Thailand
| | - Narongsak Chaiyabutr
- Snake Farm, Queen Saovabha Memorial Institute, Thai Red Cross Society, Pathumwan, Bangkok, 10330, Thailand
- Department of Research and Development, Queen Saovabha Memorial Institute, Thai Red Cross Society, Patumwan, Bangkok, 10330, Thailand
| | - Lawan Chanhome
- Snake Farm, Queen Saovabha Memorial Institute, Thai Red Cross Society, Pathumwan, Bangkok, 10330, Thailand.
| | - Supeecha Kumkate
- Department of Biology, Faculty of Science, Mahidol University, Ratchathewi, Bangkok, 10400, Thailand.
| |
Collapse
|
2
|
Rao S, Reghu N, Nair BG, Vanuopadath M. The Role of Snake Venom Proteins in Inducing Inflammation Post-Envenomation: An Overview on Mechanistic Insights and Treatment Strategies. Toxins (Basel) 2024; 16:519. [PMID: 39728777 PMCID: PMC11728808 DOI: 10.3390/toxins16120519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/23/2024] [Accepted: 11/05/2024] [Indexed: 12/28/2024] Open
Abstract
The intricate combination of organic and inorganic compounds found in snake venom includes proteins, peptides, lipids, carbohydrates, nucleotides, and metal ions. These components work together to immobilise and consume prey through processes such as paralysis and hypotension. Proteins, both enzymatic and non-enzymatic, form the primary components of the venom. Based on the effects they produce, venom can be classified as neurotoxic, hemotoxic, and cytotoxic. Studies have shown that, after envenomation, proteins in snake venom also contribute significantly to the induction of inflammatory responses which can either have systemic or localized consequences. This review delves into the mechanisms by which snake venom proteins trigger inflammatory responses, focusing on key families such as phospholipase A2, metalloproteinases, serine proteases, C-type lectins, cysteine-rich secretory proteins, and L-amino acid oxidase. In addition, the role of venom proteins in activating various inflammatory pathways, including the complement system, inflammasomes, and sterile inflammation are also summarized. The available therapeutic options are examined, with a focus on antivenom therapy and its side effects. In general, this review offers a comprehensive understanding of the inflammatory mechanisms that are triggered by snake venom proteins and the side effects of antivenom treatment. All these emphasize the need for effective strategies to mitigate these detrimental effects.
Collapse
Affiliation(s)
- Sudharshan Rao
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam 690 525, Kerala, India
- Systems Biology Ireland, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland
| | - Nisha Reghu
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam 690 525, Kerala, India
| | | | | |
Collapse
|
3
|
Espín-Angulo J, Vela D. Exploring the Venom Gland Transcriptome of Bothrops asper and Bothrops jararaca: De Novo Assembly and Analysis of Novel Toxic Proteins. Toxins (Basel) 2024; 16:511. [PMID: 39728769 PMCID: PMC11728684 DOI: 10.3390/toxins16120511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/26/2024] [Accepted: 11/02/2024] [Indexed: 12/28/2024] Open
Abstract
Previous proteomic studies of viperid venom revealed that it is mainly composed of metalloproteinases (SVMPs), serine proteinases (SVSPs), phospholipase A2 (PLA2), and C-type lectins (CTLs). However, other proteins appear in minor amounts that affect prey and need to be identified. This study aimed to identify novel toxic proteins in the venom gland transcriptome of Bothrops asper and Bothrops jararaca, using data from NCBI. Bioinformatics tools were used to assemble, identify, and compare potentially novel proteins in both species, and we performed functional annotation with BLASTX against the NR database. While previous assemblies have been performed for B. jararaca, this is the first assembly of the B. asper venom gland transcriptome. Proteins with potentially novel functions were identified, including arylsulfatase and dihydroorotate dehydrogenase, among others, that could have implications for venom toxicity. These results suggest that the identified proteins may contribute to venom toxic variation and provide new opportunities for antivenom research. The study improves the understanding of the protein composition of Bothrops venom and suggests new possibilities for the development of treatments and antivenoms.
Collapse
Affiliation(s)
- Joseph Espín-Angulo
- Facultad de Ciencias Exactas y Naturales, Pontificia Universidad Católica del Ecuador, Quito 170525, Ecuador
- Facultad de Ciencias Exactas y Naturales, Laboratorio de Genética Evolutiva, Pontificia Universidad Católica del Ecuador, Quito 170525, Ecuador
| | - Doris Vela
- Facultad de Ciencias Exactas y Naturales, Pontificia Universidad Católica del Ecuador, Quito 170525, Ecuador
- Facultad de Ciencias Exactas y Naturales, Laboratorio de Genética Evolutiva, Pontificia Universidad Católica del Ecuador, Quito 170525, Ecuador
| |
Collapse
|
4
|
Phan P, Deshwal A, McMahon TA, Slikas M, Andrews E, Becker B, Kumar TKS. A Review of Rattlesnake Venoms. Toxins (Basel) 2023; 16:2. [PMID: 38276526 PMCID: PMC10818703 DOI: 10.3390/toxins16010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 01/27/2024] Open
Abstract
Venom components are invaluable in biomedical research owing to their specificity and potency. Many of these components exist in two genera of rattlesnakes, Crotalus and Sistrurus, with high toxicity and proteolytic activity variation. This review focuses on venom components within rattlesnakes, and offers a comparison and itemized list of factors dictating venom composition, as well as presenting their known characteristics, activities, and significant applications in biosciences. There are 64 families and subfamilies of proteins present in Crotalus and Sistrurus venom. Snake venom serine proteases (SVSP), snake venom metalloproteases (SVMP), and phospholipases A2 (PLA2) are the standard components in Crotalus and Sistrurus venom. Through this review, we highlight gaps in the knowledge of rattlesnake venom; there needs to be more information on the venom composition of three Crotalus species and one Sistrurus subspecies. We discuss the activity and importance of both major and minor components in biomedical research and drug development.
Collapse
Affiliation(s)
- Phuc Phan
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA;
| | - Anant Deshwal
- Department of Biology, Bradley University, Peoria, IL 61625, USA; (T.A.M.); (M.S.); (E.A.)
| | - Tyler Anthony McMahon
- Department of Biology, Bradley University, Peoria, IL 61625, USA; (T.A.M.); (M.S.); (E.A.)
| | - Matthew Slikas
- Department of Biology, Bradley University, Peoria, IL 61625, USA; (T.A.M.); (M.S.); (E.A.)
| | - Elodie Andrews
- Department of Biology, Bradley University, Peoria, IL 61625, USA; (T.A.M.); (M.S.); (E.A.)
| | - Brian Becker
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701, USA;
| | | |
Collapse
|
5
|
Costa CRC, Belchor MN, Roggero A, Moraes LL, Samelo R, Annunciato I, Bonturi CR, Oliva MLV, Sousa SF, de Oliveira MA, Toyama MH. The First Anti-Snakebite and Hepatoprotective Characterization of a Trypsin Kunitz-like Inhibitor (EcTI) from the Plant Enterolobium contortisiliquum; A Case of Two Soul Mates Meeting. Pharmaceuticals (Basel) 2023; 16:ph16040632. [PMID: 37111388 PMCID: PMC10145096 DOI: 10.3390/ph16040632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/06/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
Snake venom serine protease (SVSP) interferes with the regulation and control of important biological reactions in homeostasis and can be classified as an activator of the fibrinolytic system and platelet aggregation. Our group has recently isolated a new serine protease from Crotalus durissus terrificus total venom (Cdtsp-2). This protein exhibits edematogenic capacity and myotoxic activity. A Kunitz-like EcTI inhibitor protein with a molecular mass of 20 kDa was isolated from Enterolobium contortisiliquum and showed high trypsin inhibition. Thus, the objective of this work is to verify the possible inhibition of the pharmacological activities of Cdtsp-2 by the Kutinz-type inhibitor EcTI. To isolate Cdtsp-2 from total C. d. terrificus venom, we used three-step chromatographic HPLC. Using the mice paw edema model, we observed an edematogenic effect, myotoxicity and hepatotoxicity caused by Cdtsp-2. In vitro and in vivo experiments showed that the alterations in hemostasis caused by Cdtsp-2 are crucial for the development of marked hepatotoxicity and that EcTI significantly inhibits the enzymatic and pharmacological activities of Cdtsp-2. Kunitz-like inhibitor may be a viable alternative for the development of ancillary treatments against the biological activities of venoms.
Collapse
Affiliation(s)
- Caroline R C Costa
- Center of Natural and Human Sciences, Federal University of ABC (UFABC), Santo André 09210-580, SP, Brazil
- Biosciences Institute of Paulista Coast Campus (IB/CLP), University of São Paulo State (UNESP), São Vicente 11330-900, SP, Brazil
| | - Mariana N Belchor
- Center of Natural and Human Sciences, Federal University of ABC (UFABC), Santo André 09210-580, SP, Brazil
- Biosciences Institute of Paulista Coast Campus (IB/CLP), University of São Paulo State (UNESP), São Vicente 11330-900, SP, Brazil
| | - Airam Roggero
- Biosciences Institute of Paulista Coast Campus (IB/CLP), University of São Paulo State (UNESP), São Vicente 11330-900, SP, Brazil
| | - Laila L Moraes
- Biosciences Institute of Paulista Coast Campus (IB/CLP), University of São Paulo State (UNESP), São Vicente 11330-900, SP, Brazil
| | - Ricardo Samelo
- Biosciences Institute of Paulista Coast Campus (IB/CLP), University of São Paulo State (UNESP), São Vicente 11330-900, SP, Brazil
| | - Isabelly Annunciato
- Biosciences Institute of Paulista Coast Campus (IB/CLP), University of São Paulo State (UNESP), São Vicente 11330-900, SP, Brazil
| | - Camila R Bonturi
- National Institute of Pharmacology (INFAR), Federal University of São Paulo (UNIFESP), São Paulo 04044-020, SP, Brazil
| | - Maria L V Oliva
- National Institute of Pharmacology (INFAR), Federal University of São Paulo (UNIFESP), São Paulo 04044-020, SP, Brazil
| | - Sergio F Sousa
- Unit of Applied Biomolecular Sciences (UCIBIO), REQUIMTE-BioSIM-Medicine Faculty, Porto University, 4050-345 Porto, Portugal
| | - Marcos A de Oliveira
- Center of Natural and Human Sciences, Federal University of ABC (UFABC), Santo André 09210-580, SP, Brazil
- Biosciences Institute of Paulista Coast Campus (IB/CLP), University of São Paulo State (UNESP), São Vicente 11330-900, SP, Brazil
| | - Marcos H Toyama
- Center of Natural and Human Sciences, Federal University of ABC (UFABC), Santo André 09210-580, SP, Brazil
- Biosciences Institute of Paulista Coast Campus (IB/CLP), University of São Paulo State (UNESP), São Vicente 11330-900, SP, Brazil
| |
Collapse
|
6
|
Biological and Medical Aspects Related to South American Rattlesnake Crotalus durissus (Linnaeus, 1758): A View from Colombia. Toxins (Basel) 2022; 14:toxins14120875. [PMID: 36548772 PMCID: PMC9784998 DOI: 10.3390/toxins14120875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/25/2022] [Accepted: 12/03/2022] [Indexed: 12/16/2022] Open
Abstract
In Colombia, South America, there is a subspecies of the South American rattlesnake Crotalus durissus, C. d. cumanensis, a snake of the Viperidae family, whose presence has been reduced due to the destruction of its habitat. It is an enigmatic snake from the group of pit vipers, venomous, with large articulated front fangs, special designs on its body, and a characteristic rattle on its tail. Unlike in Brazil, the occurrence of human envenomation by C. durisus in Colombia is very rare and contributes to less than 1% of envenomation caused by snakes. Its venom is a complex cocktail of proteins with different biological effects, which evolved with the purpose of paralyzing the prey, killing it, and starting its digestive process, as well as having defense functions. When its venom is injected into humans as the result of a bite, the victim presents with both local tissue damage and with systemic involvement, including a diverse degree of neurotoxic, myotoxic, nephrotoxic, and coagulopathic effects, among others. Its biological effects are being studied for use in human health, including the possible development of analgesic, muscle relaxant, anti-inflammatory, immunosuppressive, anti-infection, and antineoplastic drugs. Several groups of researchers in Brazil are very active in their contributions in this regard. In this work, a review is made of the most relevant biological and medical aspects related to the South American rattlesnake and of what may be of importance for a better understanding of the snake C. d. cumanensis, present in Colombia and Venezuela.
Collapse
|
7
|
Lian Q, Zhong L, Fu K, Ji Y, Zhang X, Liu C, Huang C. Hepatic inhibitors expression profiling of venom-challenged Sinonatrix annularis and antidotal activities. Biomed Pharmacother 2022; 156:113900. [DOI: 10.1016/j.biopha.2022.113900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/07/2022] [Accepted: 10/17/2022] [Indexed: 11/02/2022] Open
|
8
|
Proteomic analysis reveals rattlesnake venom modulation of proteins associated with cardiac tissue damage in mouse hearts. J Proteomics 2022; 258:104530. [PMID: 35182786 PMCID: PMC9308947 DOI: 10.1016/j.jprot.2022.104530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 01/19/2022] [Accepted: 02/13/2022] [Indexed: 11/20/2022]
Abstract
Snake envenomation is a common but neglected disease that affects millions of people around the world annually. Among venomous snake species in Brazil, the tropical rattlesnake (Crotalus durissus terrificus) accounts for the highest number of fatal envenomations and is responsible for the second highest number of bites. Snake venoms are complex secretions which, upon injection, trigger diverse physiological effects that can cause significant injury or death. The components of C. d. terrificus venom exhibit neurotoxic, myotoxic, hemotoxic, nephrotoxic, and cardiotoxic properties which present clinically as alteration of central nervous system function, motor paralysis, seizures, eyelid ptosis, ophthalmoplesia, blurred vision, coagulation disorders, rhabdomyolysis, myoglobinuria, and cardiorespiratory arrest. In this study, we focused on proteomic characterization of the cardiotoxic effects of C. d. terrificus venom in mouse models. We injected venom at half the lethal dose (LD50) into the gastrocnemius muscle. Mouse hearts were removed at set time points after venom injection (1 h, 6 h, 12 h, or 24 h) and subjected to trypsin digestion prior to high-resolution mass spectrometry. We analyzed the proteomic profiles of >1300 proteins and observed that several proteins showed noteworthy changes in their quantitative profiles, likely reflecting the toxic activity of venom components. Among the affected proteins were several associated with cellular deregulation and tissue damage. Changes in heart protein abundance offer insights into how they may work synergistically upon envenomation. SIGNIFICANCE: Venom of the tropical rattlesnake (Crotalus durissus terririficus) is known to be neurotoxic, myotoxic, nephrotoxic and cardiotoxic. Although there are several studies describing the biochemical effects of this venom, no work has yet described its proteomic effects in the cardiac tissue of mice. In this work, we describe the changes in several mouse cardiac proteins upon venom treatment. Our data shed new light on the clinical outcome of the envenomation by C. d. terrificus, as well as candidate proteins that could be investigated in efforts to improve current treatment approaches or in the development of novel therapeutic interventions in order to reduce mortality and morbidity resulting from envenomation.
Collapse
|
9
|
Megale ÂAA, Magnoli FC, Guidolin FR, Godoi KS, Portaro FCV, Dias-da-Silva W. Bitis arietans Snake Venom and Kn-Ba, a Snake Venom Serine Protease, Induce the Production of Inflammatory Mediators in THP-1 Macrophages. Toxins (Basel) 2021; 13:toxins13120906. [PMID: 34941743 PMCID: PMC8705107 DOI: 10.3390/toxins13120906] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/29/2021] [Accepted: 12/10/2021] [Indexed: 11/16/2022] Open
Abstract
Bitis arietans is a snake of medical importance found throughout sub-Saharan Africa and in savannas and pastures of Morocco and western Arabia. The effects of its venom are characterized by local and systemic alterations, such as inflammation and cardiovascular and hemostatic disturbances, which can lead to victims' death or permanent disability. To better characterize the inflammatory process induced by this snake's venom, the participation of eicosanoids and PAF (platelet- activating factor) in this response were demonstrated in a previous study. In addition, edema and early increased vascular permeability followed by an accumulation of polymorphonuclear (PMN) cells in the peritoneal cavity were accompanied by the production of the eicosanoids LTB4, LTC4, TXB2, and PGE2, and local and systemic production of IL-6 and MCP-1. In this context, the present study focused on the identification of inflammatory mediators produced by human macrophages derived from THP-1 cells in response to Bitis arietans venom (BaV), and Kn-Ba, a serine protease purified from this venom. Here, we show that Kn-Ba, and even the less intensive BaV, induced the production of the cytokine TNF and the chemokines RANTES and IL-8. Only Kn-Ba was able to induce the production of IL-6, MCP-1, and IP-10, whereas PGE2 was produced only in response to BaV. Finally, the release of IL-1β in culture supernatants suggests the activation of the inflammasomes by the venom of Bitis arietans and by Kn-Ba, which will be investigated in more detail in future studies.
Collapse
Affiliation(s)
- Ângela Alice Amadeu Megale
- Immunochemistry Laboratory, Butantan Institute, São Paulo 05503-900, Brazil; (F.C.M.); (F.R.G.); (K.S.G.)
- Correspondence: (Â.A.A.M.); (F.C.V.P.); (W.D.-d.-S.)
| | - Fabio Carlos Magnoli
- Immunochemistry Laboratory, Butantan Institute, São Paulo 05503-900, Brazil; (F.C.M.); (F.R.G.); (K.S.G.)
| | - Felipe Raimondi Guidolin
- Immunochemistry Laboratory, Butantan Institute, São Paulo 05503-900, Brazil; (F.C.M.); (F.R.G.); (K.S.G.)
| | - Kemily Stephanie Godoi
- Immunochemistry Laboratory, Butantan Institute, São Paulo 05503-900, Brazil; (F.C.M.); (F.R.G.); (K.S.G.)
| | - Fernanda Calheta Vieira Portaro
- Laboratory of Structure and Function of Biomolecules, Butantan Institute, São Paulo 05503-900, Brazil
- Correspondence: (Â.A.A.M.); (F.C.V.P.); (W.D.-d.-S.)
| | - Wilmar Dias-da-Silva
- Immunochemistry Laboratory, Butantan Institute, São Paulo 05503-900, Brazil; (F.C.M.); (F.R.G.); (K.S.G.)
- Correspondence: (Â.A.A.M.); (F.C.V.P.); (W.D.-d.-S.)
| |
Collapse
|
10
|
Baudou FG, Rodriguez JP, Fusco L, de Roodt AR, De Marzi MC, Leiva L. South American snake venoms with abundant neurotoxic components. Composition and toxicological properties. A literature review. Acta Trop 2021; 224:106119. [PMID: 34481791 DOI: 10.1016/j.actatropica.2021.106119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 01/18/2023]
Abstract
In South America there are three snake genera with predominantly neurotoxic venoms: Crotalus, Micrurus and Hydrophis, which include nine species/subspecies, 97 species and a single marine species, respectively. Although accidents with neurotoxic venoms are less frequent than those with anticoagulant, cytotoxic or necrotic venoms (e.g. from Bothrops), they are of major public health importance. Venoms from genus Crotalus have been extensively studied, while data on the venoms from the other two genera are very limited, especially for Hydrophis. The venoms of North and South American Crotalus species show biochemical and physiopathological differences. The former species cause bothrops-like envenomation symptoms, while the latter mainly have neurotoxic and myotoxic effects, leading to respiratory paralysis and, occasionally, renal failure by myoglobinuria and death, often with no local lesions. Micrurus and Hydrophis also cause neurotoxic envenomations. Many studies have isolated, identified and characterized new enzymes and toxins, thus expanding the knowledge of snake venom composition. The present review summarizes the currently available information on neurotoxic venoms from South American snakes, with a focus on protein composition and toxicological properties. It also includes some comments concerning potential medical applications of elapid and crotalic toxins.
Collapse
Affiliation(s)
- Federico G Baudou
- Universidad Nacional de Luján (UNLu), Depto. de Ciencias Básicas, Luján, Buenos Aires, Argentina; Laboratorio de Inmunología, Instituto de Ecología y Desarrollo Sustentable (INEDES), UNLu-CONICET, Luján, Buenos Aires, Argentina.
| | - Juan P Rodriguez
- Laboratorio de Investigaciones Bioquímicas de la Facultad de Medicina (LIBIM), Instituto de Química Básica y Aplicada del Nordeste Argentino (IQUIBA-NEA), Universidad Nacional del Nordeste, Consejo Nacional de Investigaciones Científicas y Técnicas (UNNE-CONICET), Corrientes, Argentina
| | - Luciano Fusco
- Laboratorio de Investigación en Proteínas (LabInPro), IQUIBA-NEA (UNNE, CONICET), FaCENA, (UNNE), Corrientes, Argentina
| | - Adolfo R de Roodt
- Área Investigación y Desarrollo-Venenos, Instituto Nacional de Producción de Biológicos, Administración Nacional de Laboratorios e Institutos de Salud "Dr. Carlos G. Malbrán", Ministerio de Salud de la Nación, Argentina; Primera Cátedra de Toxicología, Facultad de Medicina, Universidad de Buenos Aires, Argentina; Laboratorio de Toxinopatología, Centro de Patología Experimental y Aplicada, Facultad de Medicina, Universidad de Buenos Aires, Argentina
| | - Mauricio C De Marzi
- Universidad Nacional de Luján (UNLu), Depto. de Ciencias Básicas, Luján, Buenos Aires, Argentina; Laboratorio de Inmunología, Instituto de Ecología y Desarrollo Sustentable (INEDES), UNLu-CONICET, Luján, Buenos Aires, Argentina
| | - Laura Leiva
- Laboratorio de Investigación en Proteínas (LabInPro), IQUIBA-NEA (UNNE, CONICET), FaCENA, (UNNE), Corrientes, Argentina
| |
Collapse
|
11
|
Pucca MB, Bernarde PS, Rocha AM, Viana PF, Farias RES, Cerni FA, Oliveira IS, Ferreira IG, Sandri EA, Sachett J, Wen FH, Sampaio V, Laustsen AH, Sartim MA, Monteiro WM. Crotalus Durissus Ruruima: Current Knowledge on Natural History, Medical Importance, and Clinical Toxinology. Front Immunol 2021; 12:659515. [PMID: 34168642 PMCID: PMC8219050 DOI: 10.3389/fimmu.2021.659515] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 05/10/2021] [Indexed: 11/13/2022] Open
Abstract
Crotalus durissus ruruima is a rattlesnake subspecies mainly found in Roraima, the northernmost state of Brazil. Envenomings caused by this subspecies lead to severe clinical manifestations (e.g. respiratory muscle paralysis, rhabdomyolysis, and acute renal failure) that can lead to the victim’s death. In this review, we comprehensively describe C. d. ruruima biology and the challenges this subspecies poses for human health, including morphology, distribution, epidemiology, venom cocktail, clinical envenoming, and the current and future specific treatment of envenomings by this snake. Moreover, this review presents maps of the distribution of the snake subspecies and evidence that this species is responsible for some of the most severe envenomings in the country and causes the highest lethality rates. Finally, we also discuss the efficacy of the Brazilian horse-derived antivenoms to treat C. d. ruruima envenomings in Roraima state.
Collapse
Affiliation(s)
- Manuela B Pucca
- Medical School, Federal University of Roraima, Boa Vista, Brazil
| | - Paulo Sérgio Bernarde
- Laboratório de Herpetologia, Centro Multidisciplinar, Universidade Federal do Acre, Cruzeiro do Sul, Brazil
| | | | - Patrik F Viana
- National Institute of Amazonian Research, Biodiversity Coordination, Laboratory of Animal Genetics, Manaus, Brazil
| | - Raimundo Erasmo Souza Farias
- National Institute of Amazonian Research, Biodiversity Coordination, Laboratory of Animal Genetics, Manaus, Brazil
| | - Felipe A Cerni
- Medical School, Federal University of Roraima, Boa Vista, Brazil.,Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Isadora S Oliveira
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Isabela G Ferreira
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Eliseu A Sandri
- Insikiram Institute of Indigenous Higher Studies, Federal University of Roraima, Boa Vista, Brazil
| | - Jacqueline Sachett
- Department of Medicine and Nursing, School of Health Sciences, Amazonas State University, Manaus, Brazil.,Department of Teaching and Research, Alfredo da Matta Foundation, Manaus, Brazil
| | - Fan Hui Wen
- Antivenom Production Section, Butantan Institute, São Paulo, Brazil
| | - Vanderson Sampaio
- Department of Teaching and Research, Dr. Heitor Vieira Dourado Tropical Medicine Foundation, Manaus, Brazil
| | - Andreas H Laustsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Marco A Sartim
- Department of Teaching and Research, Dr. Heitor Vieira Dourado Tropical Medicine Foundation, Manaus, Brazil.,Institute of Biological Sciences, Amazonas Federal University, Manaus, Brazil
| | - Wuelton M Monteiro
- Department of Medicine and Nursing, School of Health Sciences, Amazonas State University, Manaus, Brazil.,Department of Teaching and Research, Dr. Heitor Vieira Dourado Tropical Medicine Foundation, Manaus, Brazil
| |
Collapse
|
12
|
Deshwal A, Phan P, Datta J, Kannan R, Thallapuranam SK. A Meta-Analysis of the Protein Components in Rattlesnake Venom. Toxins (Basel) 2021; 13:toxins13060372. [PMID: 34071038 DOI: 10.3390/toxins13060372] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 11/16/2022] Open
Abstract
The specificity and potency of venom components give them a unique advantage in developing various pharmaceutical drugs. Though venom is a cocktail of proteins, rarely are the synergy and association between various venom components studied. Understanding the relationship between various components of venom is critical in medical research. Using meta-analysis, we observed underlying patterns and associations in the appearance of the toxin families. For Crotalus, Dis has the most associations with the following toxins: PDE; BPP; CRL; CRiSP; LAAO; SVMP P-I and LAAO; SVMP P-III and LAAO. In Sistrurus venom, CTL and NGF have the most associations. These associations can predict the presence of proteins in novel venom and understand synergies between venom components for enhanced bioactivity. Using this approach, the need to revisit the classification of proteins as major components or minor components is highlighted. The revised classification of venom components is based on ubiquity, bioactivity, the number of associations, and synergies. The revised classification can be expected to trigger increased research on venom components, such as NGF, which have high biomedical significance. Using hierarchical clustering, we observed that the genera's venom compositions were similar, based on functional characteristics rather than phylogenetic relationships.
Collapse
Affiliation(s)
- Anant Deshwal
- Division of Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Phuc Phan
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA
| | - Jyotishka Datta
- Department of Statistics, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Ragupathy Kannan
- Department of Biology, University of Arkansas-Fort Smith, Fort Smith, AR 72913, USA
| | | |
Collapse
|
13
|
Travis ZD, Sherchan P, Hayes WK, Zhang JH. Surgically-induced brain injury: where are we now? Chin Neurosurg J 2019; 5:29. [PMID: 32922928 PMCID: PMC7398187 DOI: 10.1186/s41016-019-0181-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 11/14/2019] [Indexed: 12/18/2022] Open
Abstract
Neurosurgical procedures cause inevitable brain damage from the multitude of surgical manipulations utilized. Incisions, retraction, thermal damage from electrocautery, and intraoperative hemorrhage cause immediate and long-term brain injuries that are directly linked to neurosurgical operations, and these types of injuries, collectively, have been termed surgical brain injury (SBI). For the past decade, a model developed to study the underlying brain pathologies resulting from SBI has provided insight on cellular mechanisms and potential therapeutic targets. This model, as seen in a rat, mouse, and rabbit, mimics a neurosurgical operation and causes commonly encountered post-operative complications such as brain edema, neuroinflammation, and hemorrhage. In this review, we elaborate on SBI and its clinical impact, the SBI animal models and their clinical relevance, the importance of applying therapeutics before neurosurgical procedures (i.e., preconditioning), and the new direction of applying venom-derived proteins to attenuate SBI.
Collapse
Affiliation(s)
- Zachary D Travis
- Department of Earth and Biological Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92354 USA
| | - Prativa Sherchan
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA 92354 USA
| | - William K Hayes
- Department of Earth and Biological Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92354 USA
| | - John H Zhang
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA 92354 USA.,Department of Anesthesiology, School of Medicine, Loma Linda University, Loma Linda, CA 92354 USA
| |
Collapse
|
14
|
Boldrini-França J, Pinheiro-Junior EL, Arantes EC. Functional and biological insights of rCollinein-1, a recombinant serine protease from Crotalus durissus collilineatus. J Venom Anim Toxins Incl Trop Dis 2019; 25:e147118. [PMID: 31131001 PMCID: PMC6483414 DOI: 10.1590/1678-9199-jvatitd-1471-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 10/01/2018] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND The prevalent class of snake venom serine proteases (SVSP) in Viperidae venoms is the thrombin-like enzymes, which, similarly to human thrombin, convert fibrinogen into insoluble fibrin monomers. However, thrombin-like serine proteases differ from thrombin by being unable to activate factor XIII, thus leading to the formation of loose clots and fibrinogen consumption. We report the functional and biological characterization of a recombinant thrombin-like serine protease from Crotalus durissus collilineatus, named rCollinein-1. METHODS Heterologous expression of rCollinein-1 was performed in Pichia pastoris system according to a previously standardized protocol, with some modifications. rCollinein-1 was purified from the culture medium by a combination of three chromatographic steps. The recombinant toxin was tested in vitro for its thrombolytic activity and in mice for its edematogenicity, blood incoagulability and effect on plasma proteins. RESULTS When tested for the ability to induce mouse paw edema, rCollinein-1 demonstrated low edematogenic effect, indicating little involvement of this enzyme in the inflammatory processes resulting from ophidian accidents. The rCollinein-1 did not degrade blood clots in vitro, which suggests that this toxin lacks fibrinolytic activity and is not able to directly or indirectly activate the fibrinolytic system. The minimal dose of rCollinein-1 that turns the blood incoagulable in experimental mice is 7.5 mg/kg. The toxin also led to a significant increase in activated partial thromboplastin time at the dose of 1 mg/kg in the animals. Other parameters such as plasma fibrinogen concentration and prothrombin time were not significantly affected by treatment with rCollinein-1 at this dose. The toxin was also able to alter plasma proteins in mouse after 3 h of injection at a dose of 1 mg/kg, leading to a decrease in the intensity of beta zone and an increase in gamma zone in agarose gel electrophoresis. CONCLUSION These results suggest that the recombinant enzyme has no potential as a thrombolytic agent but can be applied in the prevention of thrombus formation in some pathological processes and as molecular tools in studies related to hemostasis.
Collapse
Affiliation(s)
- Johara Boldrini-França
- School of Pharmaceutical Sciences of Ribeirão Preto - FCFRP/USP,
Ribeirão Preto, São Paulo, Brazil
- Graduate Program in Ecosystem Ecology, University of Vila Velha, Av.
Comissário José Dantas de Melo, 21, Boa Vista II, 29102-920, Vila Velha, ES,
Brazil
| | | | - Eliane Candiani Arantes
- School of Pharmaceutical Sciences of Ribeirão Preto - FCFRP/USP,
Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|