1
|
Moura TDBD, Nunes FB, Crestani BDV, Araujo TFC, Hanauer EL, Corleta HVE, Branchini G. Preeclampsia and transport of ions and small molecules: A literature review. Placenta 2024; 156:77-91. [PMID: 39293185 DOI: 10.1016/j.placenta.2024.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/22/2024] [Accepted: 09/12/2024] [Indexed: 09/20/2024]
Abstract
Preeclampsia (PE) is a prevalent obstetric complication affecting approximately 3-5% of pregnancies worldwide and is a major cause of maternal and perinatal morbidity and mortality. Preeclampsia is considered a disease of the endothelial system that can progress to eclampsia, characterized by seizures. Early diagnosis and appropriate management are crucial to improving maternal and fetal outcomes, as preeclampsia can lead to severe complications such as placental abruption, fetal growth restriction, and stroke. The pathophysiology of PE is complex, involving a combination of genetic, acquired, and immunological factors. A central feature of the condition is inadequate placentation and impaired uteroplacental perfusion, leading to local hypoxia, endothelial dysfunction, vasoconstriction, and immunological dysregulation. Recent evidence suggests that dysregulation of ion transporters may play a significant role in the adaptation of uterine circulation during placentation. These transporters are essential for maintaining maternal-fetal homeostasis, influencing processes such as nutrient exchange, hormone synthesis, trophoblast cell migration, and the function of smooth muscle cells in blood vessels. In preeclampsia, adverse conditions like hypoxia and oxidative stress result in the downregulation of ion, solute, and water transporters, impairing their function. This review focuses on membrane transporters involved in PE, discussing functional alterations and their physiological implications. The goal of this investigation is to enhance understanding of how dysregulation of ion and small molecule transporters contributes to the development and progression of preeclampsia, underscoring the importance of exploring these signaling pathways for potential therapeutic interventions.
Collapse
Affiliation(s)
- Thaís Duarte Borges de Moura
- Graduate Program in Pathology, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), 245 Sarmento Leite St, Porto Alegre, RS, ZIP 90050170, Brazil
| | - Fernanda Bordignon Nunes
- Graduate Program in Pathology, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), 245 Sarmento Leite St, Porto Alegre, RS, ZIP 90050170, Brazil; Pontifícia Universidade Católica Do Rio Grande Do Sul (PUCRS), 6681 Ipiranga Av, Porto Alegre, RS, ZIP 90619-900, Brazil
| | - Bianca Dalla Vecchia Crestani
- Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), 245 Sarmento Leite St, Porto Alegre, ZIP 90050170, Brazil
| | | | - Eduarda Luiza Hanauer
- Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), 245 Sarmento Leite St, Porto Alegre, ZIP 90050170, Brazil
| | - Helena von Eye Corleta
- Departamento de Ginecologia e Obstetrícia, Faculdade de Medicina, Universidade Federal Do Rio Grande Do Sul (UFRGS), 2400 Ramiro Barcelos St, Porto Alegre, RS, ZIP 90035-003, Brazil
| | - Gisele Branchini
- Graduate Program in Pathology, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), 245 Sarmento Leite St, Porto Alegre, RS, ZIP 90050170, Brazil.
| |
Collapse
|
2
|
Depierre P, Ginet V, Truttmann AC, Puyal J. Neuronal autosis is Na +/K +-ATPase alpha 3-dependent and involved in hypoxic-ischemic neuronal death. Cell Death Dis 2024; 15:363. [PMID: 38796484 PMCID: PMC11127954 DOI: 10.1038/s41419-024-06750-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/28/2024]
Abstract
Macroautophagy (hereafter called autophagy) is an essential physiological process of degradation of organelles and long-lived proteins. The discovery of autosis, a Na+/K+-ATPase (ATP1)-dependent type of autophagic cell death with specific morphological and biochemical features, has strongly contributed to the acceptance of a pro-death role of autophagy. However, the occurrence and relevance of autosis in neurons has never been clearly investigated, whereas we previously provided evidence that autophagy mechanisms could be involved in neuronal death in different in vitro and in vivo rodent models of hypoxia-ischemia (HI) and that morphological features of autosis were observed in dying neurons following rat perinatal cerebral HI. In the present study, we demonstrated that neuronal autosis could occur in primary cortical neurons using two different stimulations enhancing autophagy flux and neuronal death: a neurotoxic concentration of Tat-BECN1 (an autophagy-inducing peptide) and a hypoxic/excitotoxic stimulus (mimicking neuronal death induced by cerebral HI). Both stimulations induce autophagic neuronal death (dependent on canonical autophagic genes and independent on apoptotic, necroptotic or ferroptotic pathways) with all morphological and biochemical (ATP1a-dependent) features of autosis. However, we demonstrated that autosis is not dependent on the ubiquitous subunit ATP1a1 in neurons, as in dividing cell types, but on the neuronal specific ATP1a3 subunit. We also provided evidence that, in different in vitro and in vivo models where autosis is induced, ATP1a3-BECN1 interaction is increased and prevented by cardiac glycosides treatment. Interestingly, an increase in ATP1a3-BECN1 interaction is also detected in dying neurons in the autoptic brains of human newborns with severe hypoxic-ischemic encephalopathy (HIE). Altogether, these results suggest that ATP1a3-BECN1-dependent autosis could play an important role in neuronal death in HI conditions, paving the way for the development of new neuroprotective strategies in hypoxic-ischemic conditions including in severe case of human HIE.
Collapse
Affiliation(s)
- Pauline Depierre
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Vanessa Ginet
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
- Clinic of Neonatology, Department of Women, Mother and Child, University Hospital Center of Vaud, Lausanne, Switzerland
| | - Anita C Truttmann
- Clinic of Neonatology, Department of Women, Mother and Child, University Hospital Center of Vaud, Lausanne, Switzerland
| | - Julien Puyal
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland.
- CURML, University Center of Legal Medicine, Lausanne University Hospital, Lausanne, Switzerland.
| |
Collapse
|
3
|
Silva AR, de Souza e Souza KFC, Souza TBD, Younes-Ibrahim M, Burth P, de Castro Faria Neto HC, Gonçalves-de-Albuquerque CF. The Na/K-ATPase role as a signal transducer in lung inflammation. Front Immunol 2024; 14:1287512. [PMID: 38299144 PMCID: PMC10827986 DOI: 10.3389/fimmu.2023.1287512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/26/2023] [Indexed: 02/02/2024] Open
Abstract
Acute respiratory distress syndrome (ARDS) is marked by damage to the capillary endothelium and alveolar epithelium following edema formation and cell infiltration. Currently, there are no effective treatments for severe ARDS. Pathologies such as sepsis, pneumonia, fat embolism, and severe trauma may cause ARDS with respiratory failure. The primary mechanism of edema clearance is the epithelial cells' Na/K-ATPase (NKA) activity. NKA is an enzyme that maintains the electrochemical gradient and cell homeostasis by transporting Na+ and K+ ions across the cell membrane. Direct injury on alveolar cells or changes in ion transport caused by infections decreases the NKA activity, loosening tight junctions in epithelial cells and causing edema formation. In addition, NKA acts as a receptor triggering signal transduction in response to the binding of cardiac glycosides. The ouabain (a cardiac glycoside) and oleic acid induce lung injury by targeting NKA. Besides enzymatic inhibition, the NKA triggers intracellular signal transduction, fostering proinflammatory cytokines production and contributing to lung injury. Herein, we reviewed and discussed the crucial role of NKA in edema clearance, lung injury, and intracellular signaling pathway activation leading to lung inflammation, thus putting the NKA as a protagonist in lung injury pathology.
Collapse
Affiliation(s)
- Adriana Ribeiro Silva
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | | | - Thamires Bandeira De Souza
- Laboratório de Imunofarmacologia, Departamento de Ciências Fisiológicas, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
- Departamento de Biologia Celular e Molecular, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil
| | - Mauricio Younes-Ibrahim
- Departamento de Medicina Interna, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patrícia Burth
- Departamento de Biologia Celular e Molecular, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil
| | | | - Cassiano Felippe Gonçalves-de-Albuquerque
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
- Laboratório de Imunofarmacologia, Departamento de Ciências Fisiológicas, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
4
|
Markov AG, Livanova AA, Fedorova AA, Kravtsova VV, Krivoi II. Chronic Ouabain Targets Pore-Forming Claudin-2 and Ameliorates Radiation-Induced Damage to the Rat Intestinal Tissue Barrier. Int J Mol Sci 2023; 25:278. [PMID: 38203449 PMCID: PMC10778734 DOI: 10.3390/ijms25010278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/15/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Ionizing radiation (IR) causes disturbances in the functions of the gastrointestinal tract. Given the therapeutic potential of ouabain, a specific ligand of the Na,K-ATPase, we tested its ability to protect against IR-induced disturbances in the barrier and transport properties of the jejunum and colon of rats. Male Wistar rats were subjected to 6-day intraperitoneal injections of vehicle or ouabain (1 µg/kg/day). On the fourth day of injections, rats were exposed to total-body X-ray irradiation (10 Gy) or a sham irradiation. Isolated tissues were examined 72 h post-irradiation. Electrophysiological characteristics and paracellular permeability for sodium fluorescein were measured in an Ussing chamber. Histological analysis and Western blotting were also performed. In the jejunum tissue, ouabain exposure did not prevent disturbances in transepithelial resistance, paracellular permeability, histological characteristics, as well as changes in the expression of claudin-1, -3, -4, tricellulin, and caspase-3 induced by IR. However, ouabain prevented overexpression of occludin and the pore-forming claudin-2. In the colon tissue, ouabain prevented electrophysiological disturbances and claudin-2 overexpression. These observations may reveal a mechanism by which circulating ouabain maintains tight junction integrity under IR-induced intestinal dysfunction.
Collapse
Affiliation(s)
- Alexander G. Markov
- Department of General Physiology, St. Petersburg State University, 199034 St. Petersburg, Russia; (A.A.L.); (A.A.F.); (V.V.K.); (I.I.K.)
| | | | | | | | | |
Collapse
|
5
|
Socha MW, Chmielewski J, Pietrus M, Wartęga M. Endogenous Digitalis-like Factors as a Key Molecule in the Pathophysiology of Pregnancy-Induced Hypertension and a Potential Therapeutic Target in Preeclampsia. Int J Mol Sci 2023; 24:12743. [PMID: 37628922 PMCID: PMC10454430 DOI: 10.3390/ijms241612743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Preeclampsia (PE), the most severe presentation of hypertensive disorders of pregnancy, is the major cause of morbidity and mortality linked to pregnancy, affecting both mother and fetus. Despite advances in prophylaxis and managing PE, delivery of the fetus remains the only causative treatment available. Focus on complex pathophysiology brought the potential for new treatment options, and more conservative options allowing reduction of feto-maternal complications and sequelae are being investigated. Endogenous digitalis-like factors, which have been linked to the pathogenesis of preeclampsia since the mid-1980s, have been shown to play a role in the pathogenesis of various cardiovascular diseases, including congestive heart failure and chronic renal disease. Elevated levels of EDLF have been described in pregnancy complicated by hypertensive disorders and are currently being investigated as a therapeutic target in the context of a possible breakthrough in managing preeclampsia. This review summarizes mechanisms implicating EDLFs in the pathogenesis of preeclampsia and evidence for their potential role in treating this doubly life-threatening disease.
Collapse
Affiliation(s)
- Maciej W. Socha
- Department of Perinatology, Gynecology and Gynecologic Oncology, Faculty of Health Sciences, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Łukasiewicza 1, 85-821 Bydgoszcz, Poland
- Department of Obstetrics and Gynecology, St. Adalbert’s Hospital in Gdańsk, Copernicus Healthcare Entity, Jana Pawła II 50, 80-462 Gdańsk, Poland
| | - Jakub Chmielewski
- Department of Obstetrics and Gynecology, St. Adalbert’s Hospital in Gdańsk, Copernicus Healthcare Entity, Jana Pawła II 50, 80-462 Gdańsk, Poland
| | - Miłosz Pietrus
- Department of Gynecology and Obstetrics, Jagiellonian University Medical College, 31-501 Kraków, Poland
| | - Mateusz Wartęga
- Department of Pathophysiology, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie- Skłodowskiej 9, 85-094 Bydgoszcz, Poland
| |
Collapse
|
6
|
Inflammatory Response: A Crucial Way for Gut Microbes to Regulate Cardiovascular Diseases. Nutrients 2023; 15:nu15030607. [PMID: 36771313 PMCID: PMC9921390 DOI: 10.3390/nu15030607] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/09/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
Gut microbiota is the largest and most complex microflora in the human body, which plays a crucial role in human health and disease. Over the past 20 years, the bidirectional communication between gut microbiota and extra-intestinal organs has been extensively studied. A better comprehension of the alternative mechanisms for physiological and pathophysiological processes could pave the way for health. Cardiovascular disease (CVD) is one of the most common diseases that seriously threatens human health. Although previous studies have shown that cardiovascular diseases, such as heart failure, hypertension, and coronary atherosclerosis, are closely related to gut microbiota, limited understanding of the complex pathogenesis leads to poor effectiveness of clinical treatment. Dysregulation of inflammation always accounts for the damaged gastrointestinal function and deranged interaction with the cardiovascular system. This review focuses on the characteristics of gut microbiota in CVD and the significance of inflammation regulation during the whole process. In addition, strategies to prevent and treat CVD through proper regulation of gut microbiota and its metabolites are also discussed.
Collapse
|
7
|
Gokula V, Terrero D, Joe B. Six Decades of History of Hypertension Research at the University of Toledo: Highlighting Pioneering Contributions in Biochemistry, Genetics, and Host-Microbiota Interactions. Curr Hypertens Rep 2022; 24:669-685. [PMID: 36301488 PMCID: PMC9708772 DOI: 10.1007/s11906-022-01226-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2022] [Indexed: 01/31/2023]
Abstract
PURPOSE OF REVIEW The study aims to capture the history and lineage of hypertension researchers from the University of Toledo in Ohio and showcase their collective scientific contributions dating from their initial discoveries of the physiology of adrenal and renal systems and genetics regulating blood pressure (BP) to its more contemporary contributions including microbiota and metabolomic links to BP regulation. RECENT FINDINGS The University of Toledo College of Medicine and Life Sciences (UTCOMLS), previously known as the Medical College of Ohio, has contributed significantly to our understanding of the etiology of hypertension. Two of the scientists, Patrick Mulrow and John Rapp from UTCOMLS, have been recognized with the highest honor, the Excellence in Hypertension award from the American Heart Association for their pioneering work on the physiology and genetics of hypertension, respectively. More recently, Bina Joe has continued their legacy in the basic sciences by uncovering previously unknown novel links between microbiota and metabolites to the etiology of hypertension, work that has been recognized by the American Heart Association with multiple awards. On the clinical research front, Christopher Cooper and colleagues lead the CORAL trials and contributed importantly to the investigations on renal artery stenosis treatment paradigms. Hypertension research at this institution has not only provided these pioneering insights, but also grown careers of scientists as leaders in academia as University Presidents and Deans of Medical Schools. Through the last decade, the university has expanded its commitment to Hypertension research as evident through the development of the Center for Hypertension and Precision Medicine led by Bina Joe as its founding Director. Hypertension being the top risk factor for cardiovascular diseases, which is the leading cause of human mortality, is an important area of research in multiple international universities. The UTCOMLS is one such university which, for the last 6 decades, has made significant contributions to our current understanding of hypertension. This review is a synthesis of this rich history. Additionally, it also serves as a collection of audio archives by more recent faculty who are also prominent leaders in the field of hypertension research, including John Rapp, Bina Joe, and Christopher Cooper, which are cataloged at Interviews .
Collapse
Affiliation(s)
- Veda Gokula
- Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, College of Medicine and Life Sciences, University of Toledo College of Medicine and Life Sciences, Block Health Science Building, 3000 Arlington Ave, Toledo, OH, 43614-2598, USA
| | - David Terrero
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy, University of Toledo, Toledo, OH, USA
| | - Bina Joe
- Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, College of Medicine and Life Sciences, University of Toledo College of Medicine and Life Sciences, Block Health Science Building, 3000 Arlington Ave, Toledo, OH, 43614-2598, USA.
| |
Collapse
|
8
|
Lamichhane S, Mohammed CJ, Haller ST, Kennedy DJ, Isailovic D. Quantification of Cardiotonic Steroids Potentially Regulated by Paraoxonase 3 in a Rat Model of Chronic Kidney Disease Using UHPLC-Orbitrap-MS. Int J Mol Sci 2022; 23:ijms232113565. [PMID: 36362352 PMCID: PMC9654389 DOI: 10.3390/ijms232113565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/28/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022] Open
Abstract
Endogenous cardiotonic steroids (CTSs), such as telocinobufagin (TCB) and marinobufagin (MBG) contain a lactone moiety critical to their binding and signaling through the Na+/K+-ATPase. Their concentrations elevate in response to sodium intake and under volume-expanded conditions. Paraoxonase 3 (PON3) is an enzyme that can hydrolyze lactone substrates. Here, we examine the role of PON3 in regulating CTS levels in a rat model of chronic kidney diseases (CKD). TCB and MBG were extracted from rat urine samples, and the analyses were carried out using ultra-high pressure liquid chromatography−Orbitrap-mass spectrometry (UHPLC-Orbitrap-MS). Ten-week-old Dahl salt-sensitive wild type (SS-WT) and Dahl salt-sensitive PON3 knockout (SS-PON3 KO) rats were maintained on a high-salt diet (8% NaCl) for 8 weeks to initiate salt-sensitive hypertensive renal disease characteristic of this model. CTS extraction recovery from urine >80% was achieved. For animals maintained on a normal chow diet, the baseline amount of TCB excreted in 24 h urine of SS-PON3 KO rats (6.08 ± 1.47 ng/24 h; or 15.09 ± 3.25 pmol) was significantly higher than for SS-WT rats (1.48 ± 0.69 ng/24 h; or 3.67 ± 1.54 pmol, p < 0.05). Similarly, for the same animals, the amount of excreted MBG was higher in the urine of SS-PON3 KO rats (4.74 ± 1.30 ng/24 h versus 1.03 ± 0.25 ng/24 h in SS-WT; or 11.83 ± 2.91 pmol versus 2.57 ± 0.56 pmol in SS-WT, p < 0.05). For animals on a high-salt diet, the SS-PON3 KO rats had significantly increased levels of TCB (714.52 ± 79.46 ng/24 h; or 1774.85 ± 175.55 pmol) compared to SS-WT control (343.84 ± 157.54 ng/24 h; or 854.09 ± 350.02 pmol, p < 0.05), and comparatively higher levels of MBG were measured for SS-PON3 KO (225.55 ± 82.61 ng/24 h; or 563.19 ± 184.5 pmol) versus SS-WT (157.56 ± 85.53 ng/24 h; or 393.43 ± 191.01 pmol, p > 0.05) rats. These findings suggest that the presence and absence of PON3 dramatically affect the level of endogenous CTSs, indicating its potential role in CTS regulation.
Collapse
Affiliation(s)
- Sabitri Lamichhane
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, OH 43606, USA
| | - Chrysan J. Mohammed
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Steven T. Haller
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - David J. Kennedy
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
- Correspondence: (D.J.K.); (D.I.); Tel.: +1+419-383-6822 (D.J.K.); +1+419-530-5523 (D.I.)
| | - Dragan Isailovic
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, OH 43606, USA
- Correspondence: (D.J.K.); (D.I.); Tel.: +1+419-383-6822 (D.J.K.); +1+419-530-5523 (D.I.)
| |
Collapse
|
9
|
Short-Term Mild Hypoxia Modulates Na,K-ATPase to Maintain Membrane Electrogenesis in Rat Skeletal Muscle. Int J Mol Sci 2022; 23:ijms231911869. [PMID: 36233169 PMCID: PMC9570130 DOI: 10.3390/ijms231911869] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/26/2022] [Accepted: 09/30/2022] [Indexed: 11/17/2022] Open
Abstract
The Na,K-ATPase plays an important role in adaptation to hypoxia. Prolonged hypoxia results in loss of skeletal muscle mass, structure, and performance. However, hypoxic preconditioning is known to protect against a variety of functional impairments. In this study, we tested the possibility of mild hypoxia to modulate the Na,K-ATPase and to improve skeletal muscle electrogenesis. The rats were subjected to simulated high-altitude (3000 m above sea level) hypobaric hypoxia (HH) for 3 h using a hypobaric chamber. Isolated diaphragm and soleus muscles were tested. In the diaphragm muscle, HH increased the α2 Na,K-ATPase isozyme electrogenic activity and stably hyperpolarized the extrajunctional membrane for 24 h. These changes were accompanied by a steady increase in the production of thiobarbituric acid reactive substances as well as a decrease in the serum level of endogenous ouabain, a specific ligand of the Na,K-ATPase. HH also increased the α2 Na,K-ATPase membrane abundance without changing its total protein content; the plasma membrane lipid-ordered phase did not change. In the soleus muscle, HH protected against disuse (hindlimb suspension) induced sarcolemmal depolarization. Considering that the Na,K-ATPase is critical for maintaining skeletal muscle electrogenesis and performance, these findings may have implications for countermeasures in disuse-induced pathology and hypoxic therapy.
Collapse
|
10
|
Chronic Ouabain Prevents Radiation-Induced Reduction in the α2 Na,K-ATPase Function in the Rat Diaphragm Muscle. Int J Mol Sci 2022; 23:ijms231810921. [PMID: 36142836 PMCID: PMC9505176 DOI: 10.3390/ijms231810921] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/11/2022] [Accepted: 09/15/2022] [Indexed: 11/29/2022] Open
Abstract
The damaging effect of ionizing radiation (IR) on skeletal muscle Na,K-ATPase is an open field of research. Considering a therapeutic potential of ouabain, a specific ligand of the Na,K-ATPase, we tested its ability to protect against the IR-induced disturbances of Na,K-ATPase function in rat diaphragm muscle that co-expresses the α1 and α2 isozymes of this protein. Male Wistar rats (n = 26) were subjected to 6-day injections of vehicle (0.9% NaCl) or ouabain (1 µg/kg/day). On the fourth day of injections, rats were exposed to one-time total-body X-ray irradiation (10 Gy), or a sham irradiation. The isolated muscles were studied 72 h post-irradiation. IR decreased the electrogenic contribution of the α2 Na,K-ATPase without affecting its protein content, thereby causing sarcolemma depolarization. IR increased serum concentrations of ouabain, IL-6, and corticosterone, decreased lipid peroxidation, and changed cellular redox status. Chronic ouabain administration prevented IR-induced depolarization and loss of the α2 Na,K-ATPase electrogenic contribution without changing its protein content. This was accompanied with an elevation of ouabain concentration in circulation and with the lack of IR-induced suppression of lipid peroxidation. Given the crucial role of Na,K-ATPase in skeletal muscle performance, these findings may have therapeutic implications as countermeasures for IR-induced muscle pathology.
Collapse
|
11
|
Mohammed CJ, Lamichhane S, Connolly JA, Soehnlen SM, Khalaf FK, Malhotra D, Haller ST, Isailovic D, Kennedy DJ. A PON for All Seasons: Comparing Paraoxonase Enzyme Substrates, Activity and Action including the Role of PON3 in Health and Disease. Antioxidants (Basel) 2022; 11:antiox11030590. [PMID: 35326240 PMCID: PMC8945423 DOI: 10.3390/antiox11030590] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 12/17/2022] Open
Abstract
Paraoxonases (PONs) are a family of hydrolytic enzymes consisting of three members, PON1, PON2, and PON3, located on human chromosome 7. Identifying the physiological substrates of these enzymes is necessary for the elucidation of their biological roles and to establish their applications in the biomedical field. PON substrates are classified as organophosphates, aryl esters, and lactones based on their structure. While the established native physiological activity of PONs is its lactonase activity, the enzymes’ exact physiological substrates continue to be elucidated. All three PONs have antioxidant potential and play an important anti-atherosclerotic role in several diseases including cardiovascular diseases. PON3 is the last member of the family to be discovered and is also the least studied of the three genes. Unlike the other isoforms that have been reviewed extensively, there is a paucity of knowledge regarding PON3. Thus, the current review focuses on PON3 and summarizes the PON substrates, specific activities, kinetic parameters, and their association with cardiovascular as well as other diseases such as HIV and cancer.
Collapse
Affiliation(s)
- Chrysan J. Mohammed
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (C.J.M.); (J.A.C.); (S.M.S.); (F.K.K.); (D.M.); (S.T.H.)
| | - Sabitri Lamichhane
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, OH 43606, USA; (S.L.); (D.I.)
| | - Jacob A. Connolly
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (C.J.M.); (J.A.C.); (S.M.S.); (F.K.K.); (D.M.); (S.T.H.)
| | - Sophia M. Soehnlen
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (C.J.M.); (J.A.C.); (S.M.S.); (F.K.K.); (D.M.); (S.T.H.)
| | - Fatimah K. Khalaf
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (C.J.M.); (J.A.C.); (S.M.S.); (F.K.K.); (D.M.); (S.T.H.)
- Department of Clinical Pharmacy, College of Pharmacy, University of Alkafeel, Najaf 61001, Iraq
| | - Deepak Malhotra
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (C.J.M.); (J.A.C.); (S.M.S.); (F.K.K.); (D.M.); (S.T.H.)
| | - Steven T. Haller
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (C.J.M.); (J.A.C.); (S.M.S.); (F.K.K.); (D.M.); (S.T.H.)
| | - Dragan Isailovic
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, OH 43606, USA; (S.L.); (D.I.)
| | - David J. Kennedy
- Department of Medicine, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; (C.J.M.); (J.A.C.); (S.M.S.); (F.K.K.); (D.M.); (S.T.H.)
- Correspondence: ; Tel.: +1-419-383-6822
| |
Collapse
|
12
|
ATP1A1 Mutant in Aldosterone-Producing Adenoma Leads to Cell Proliferation. Int J Mol Sci 2021; 22:ijms222010981. [PMID: 34681640 PMCID: PMC8537586 DOI: 10.3390/ijms222010981] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/04/2021] [Accepted: 10/09/2021] [Indexed: 12/14/2022] Open
Abstract
The molecular mechanisms by which ATP1A1 mutation-mediated cell proliferation or tumorigenesis in aldosterone-producing adenomas (APAs) have not been elucidated. First, we investigated whether the APA-associated ATP1A1 L104R mutation stimulated cell proliferation. Second, we aimed to clarify the molecular mechanisms by which the ATP1A1 mutation-mediated cell proliferated. We performed transcriptome analysis in APAs with ATP1A1 mutation. ATP1A1 L104R mutation were modulated in human adrenocortical carcinoma (HAC15) cells (ATP1A1-mutant cells), and we evaluated cell proliferation and molecular signaling events. Transcriptome and immunohistochemical analysis showed that Na/K-ATPase (NKA) expressions in ATP1A1 mutated APA were more abundant than those in non-functioning adrenocortical adenoma or KCNJ5 mutated APAs. The significant increase of number of cells, amount of DNA and S-phase population were shown in ATP1A1-mutant cells. Fluo-4 in ATP1A1-mutant cells were significantly increased. Low concentration of ouabain stimulated cell proliferation in ATP1A1-mutant cells. ATP1A1-mutant cells induced Src phosphorylation, and low concentration of ouabain supplementation showed further Src phosphorylation. We demonstrated that NKAs were highly expressed in ATP1A1 mutant APA, and the mutant stimulated cell proliferation and Src phosphorylation in ATP1A1-mutant cells. NKA stimulations would be a risk factor for the progression and development to an ATP1A1 mutant APA.
Collapse
|
13
|
Kravtsova VV, Krivoi II. Molecular and Functional Heterogeneity of Na,K-ATPase in the Skeletal Muscle. J EVOL BIOCHEM PHYS+ 2021. [DOI: 10.1134/s0022093021040086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Pillai SS, Lakhani HV, Zehra M, Wang J, Dilip A, Puri N, O’Hanlon K, Sodhi K. Predicting Nonalcoholic Fatty Liver Disease through a Panel of Plasma Biomarkers and MicroRNAs in Female West Virginia Population. Int J Mol Sci 2020; 21:ijms21186698. [PMID: 32933141 PMCID: PMC7554851 DOI: 10.3390/ijms21186698] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/04/2020] [Accepted: 09/11/2020] [Indexed: 02/07/2023] Open
Abstract
(1) Background: Nonalcoholic fatty liver disease (NAFLD) is primarily characterized by the presence of fatty liver, hepatic inflammation and fibrogenesis eventually leading to nonalcoholic steatohepatitis (NASH) or cirrhosis. Obesity and diabetes are common risk factors associated with the development and progression of NAFLD, with one of the highest prevalence of these diseased conditions in the West Virginia population. Currently, the diagnosis of NAFLD is limited to radiologic studies and biopsies, which are not cost-effective and highly invasive. Hence, this study aimed to develop a panel and assess the progressive levels of circulatory biomarkers and miRNA expression in patients at risk for progression to NASH to allow early intervention strategies. (2) Methods: In total, 62 female patients were enrolled and blood samples were collected after 8–10 h of fasting. Computed tomography was performed on abdomen/pelvis following IV contrast administration. The patients were divided into the following groups: Healthy subjects with normal BMI and normal fasting blood glucose (Control, n = 20), Obese with high BMI and normal fasting blood glucose (Obese, n = 20) and Obese with high fasting blood glucose (Obese + DM, n = 22). Based on findings from CT, another subset was created from Obese + DM group with patients who showed signs of fatty liver infiltration (Obese + DM(FI), n = 10). ELISA was performed for measurement of plasma biomarkers and RT-PCR was performed for circulating miRNA expression. (3) Results: Our results show significantly increased levels of plasma IL-6, Leptin and FABP-1, while significantly decreased level of adiponectin in Obese, Obese + DM and Obese + DM(FI) group, as compared to healthy controls. The level of CK-18 was significantly increased in Obese + DM(FI) group as compared to control. Subsequently, the expression of miR-122, miR-34a, miR-375, miR-16 and miR-21 was significantly increased in Obese + DM and Obese + DM(FI) group as compared to healthy control. Our results also show distinct correlation of IL-6, FABP-1 and adiponectin levels with the expression of miRNAs in relation to the extent of NAFLD progression. (4) Conclusion: Our results support the clinical application of these biomarkers and miRNAs in monitoring the progression of NAFLD, suggesting a more advanced diagnostic potential of this panel than conventional methods. This panel may provide an appropriate method for early prognosis and management of NAFLD and subsequent adverse hepatic pathophysiology, potentially reducing the disease burden on the West Virginia population.
Collapse
Affiliation(s)
- Sneha S. Pillai
- Departments of Surgery and Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV 25701, USA; (S.S.P.); (H.V.L.); (M.Z.); (J.W.); (A.D.)
| | - Hari Vishal Lakhani
- Departments of Surgery and Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV 25701, USA; (S.S.P.); (H.V.L.); (M.Z.); (J.W.); (A.D.)
| | - Mishghan Zehra
- Departments of Surgery and Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV 25701, USA; (S.S.P.); (H.V.L.); (M.Z.); (J.W.); (A.D.)
| | - Jiayan Wang
- Departments of Surgery and Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV 25701, USA; (S.S.P.); (H.V.L.); (M.Z.); (J.W.); (A.D.)
| | - Anum Dilip
- Departments of Surgery and Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV 25701, USA; (S.S.P.); (H.V.L.); (M.Z.); (J.W.); (A.D.)
| | - Nitin Puri
- Departments of Biomedical Sciences and Medical Education, Marshall University Joan C. Edwards School of Medicine, Huntington, WV 25701, USA;
| | - Kathleen O’Hanlon
- Departments of Family Medicine, Marshall University Joan C. Edwards School of Medicine, Huntington, WV 25701, USA;
| | - Komal Sodhi
- Departments of Surgery and Biomedical Sciences, Marshall University Joan C. Edwards School of Medicine, Huntington, WV 25701, USA; (S.S.P.); (H.V.L.); (M.Z.); (J.W.); (A.D.)
- Correspondence: ; Tel.: +1-(304)-691-1704; Fax: +1-(914)-347-4956
| |
Collapse
|
15
|
Lopina OD, Tverskoi AM, Klimanova EA, Sidorenko SV, Orlov SN. Ouabain-Induced Cell Death and Survival. Role of α1-Na,K-ATPase-Mediated Signaling and [Na +] i/[K +] i-Dependent Gene Expression. Front Physiol 2020; 11:1060. [PMID: 33013454 PMCID: PMC7498651 DOI: 10.3389/fphys.2020.01060] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/31/2020] [Indexed: 12/12/2022] Open
Abstract
Ouabain is of cardiotonic steroids (CTS) family that is plant-derived compounds and is known for many years as therapeutic and cytotoxic agents. They are specific inhibitors of Na,K-ATPase, the enzyme, which pumps Na+ and K+ across plasma membrane of animal cells. Treatment of cells by CTS affects various cellular functions connected with the maintenance of the transmembrane gradient of Na+ and K+. Numerous studies demonstrated that binding of CTS to Na,K-ATPase not only suppresses its activity but also induces some signal pathways. This review is focused on different mechanisms of two ouabain effects: their ability (1) to protect rodent cells from apoptosis through the expression of [Na+]i-sensitive genes and (2) to trigger death of non-rodents cells (so-called «oncosis»), possessing combined markers of «classic» necrosis and «classic» apoptosis. Detailed study of oncosis demonstrated that the elevation of the [Na+]i/[K+]i ratio is not a sufficient for its triggering. Non-rodent cell death is determined by the characteristic property of "sensitive" to ouabain α1-subunit of Na,K-ATPase. In this case, ouabain binding leads to enzyme conformational changes triggering the activation of p38 mitogen-activated protein kinases (MAPK) signaling. The survival of rodent cells with ouabain-«resistant» α1-subunit is connected with another conformational transition induced by ouabain binding that results in the activation of ERK 1/2 signaling pathway.
Collapse
Affiliation(s)
- Olga Dmitrievna Lopina
- Department of Biochemistry, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Artem Mikhaylovich Tverskoi
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences (RAS), Moscow, Russia
- Laboratory of Biological Membranes, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | | | | | - Sergei Nikolaevich Orlov
- Laboratory of Biological Membranes, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
16
|
Petrushanko IY, Mitkevich VA, Makarov AA. Molecular Mechanisms of the Redox Regulation of the Na,K-ATPase. Biophysics (Nagoya-shi) 2020. [DOI: 10.1134/s0006350920050139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
17
|
Affiliation(s)
- Fatimah K Khalaf
- University of Toledo College of Medicine and Life Sciences Toledo OH
| | | | | | - David J Kennedy
- University of Toledo College of Medicine and Life Sciences Toledo OH
| |
Collapse
|
18
|
Elucidating Potential Profibrotic Mechanisms of Emerging Biomarkers for Early Prognosis of Hepatic Fibrosis. Int J Mol Sci 2020; 21:ijms21134737. [PMID: 32635162 PMCID: PMC7369895 DOI: 10.3390/ijms21134737] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 06/29/2020] [Accepted: 07/01/2020] [Indexed: 02/06/2023] Open
Abstract
Hepatic fibrosis has been associated with a series of pathophysiological processes causing excessive accumulation of extracellular matrix proteins. Several cellular processes and molecular mechanisms have been implicated in the diseased liver that augments fibrogenesis, fibrogenic cytokines and associated liver complications. Liver biopsy remains an essential diagnostic tool for histological evaluation of hepatic fibrosis to establish a prognosis. In addition to being invasive, this methodology presents with several limitations including poor cost-effectiveness, prolonged hospitalizations, and risks of peritoneal bleeding, while the clinical use of this method does not reveal underlying pathogenic mechanisms. Several alternate noninvasive diagnostic strategies have been developed, to determine the extent of hepatic fibrosis, including the use of direct and indirect biomarkers. Immediate diagnosis of hepatic fibrosis by noninvasive means would be more palatable than a biopsy and could assist clinicians in taking early interventions timely, avoiding fatal complications, and improving prognosis. Therefore, we sought to review some common biomarkers of liver fibrosis along with some emerging candidates, including the oxidative stress-mediated biomarkers, epigenetic and genetic markers, exosomes, and miRNAs that needs further evaluation and would have better sensitivity and specificity. We also aim to elucidate the potential role of cardiotonic steroids (CTS) and evaluate the pro-inflammatory and profibrotic effects of CTS in exacerbating hepatic fibrosis. By understanding the underlying pathogenic processes, the efficacy of these biomarkers could allow for early diagnosis and treatment of hepatic fibrosis in chronic liver diseases, once validated.
Collapse
|
19
|
Klimanova EA, Fedorov DA, Sidorenko SV, Abramicheva PA, Lopina OD, Orlov SN. Ouabain and Marinobufagenin: Physiological Effects on Human Epithelial and Endothelial Cells. BIOCHEMISTRY (MOSCOW) 2020; 85:507-515. [PMID: 32569558 DOI: 10.1134/s0006297920040112] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Long-term study on the identification of Na,K-ATPase endogenous inhibitors in mammalian tissues has resulted in the discovery of ouabain, marinobufagenin (MBG), and other cardiotonic steroids (CTS) in the blood plasma. Production of ouabain and MBG is increased in essential hypertension and other diseases associated with hypervolemia. Here, we compared the effects of ouabain and MBG on the Na,K-ATPase activity (measured as the transport of Na+, K+, and Rb+ ions) and proliferation and death of human renal epithelial cells (HRECs) and human umbilical vein endothelial cells (HUVEC) expressing α1-Na,K-ATPase. Ouabain concentration that provided the half-maximal inhibition of the Rb+ influx (IC50) into HRECs and HUVECs was 0.07 μM. In both types of cells, the IC50 values for MBG were 10 times higher than for ouabain. Incubation of HREC and HUVEC with 0.001-0.01 μM ouabain for 30 h resulted in 40% increase in the [3H]thymidine incorporation into DNA; further elevation of ouabain concentration to 0.1 μM completely suppressed DNA synthesis. MBG at the concentration of 0.1 μM activated DNA synthesis by 25% in HRECs, but not in HUVECs; 1 μM MBG completely inhibited DNA synthesis in HRECs and by 50% in HUVECs. In contrast to HRECs, incubation of HUVECs in the serum-free medium induced apoptosis, which was almost completely suppressed by ouabain and MBG at the concentrations of 0.1 and 3 μM, respectively. Based on these data, we can conclude that (i) the effect of MBG at the concentrations detected in the blood plasma (<0.01 μM) on HRECs and HUVECs was not due to the changes in the [Na+]i/[K+]i ratio; (ii) the effect of physiological concentrations of ouabain on these cells might be mediated by the activation of Na,K-ATPase, leading to cell proliferation.
Collapse
Affiliation(s)
- E A Klimanova
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119234, Russia.
| | - D A Fedorov
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119234, Russia
| | - S V Sidorenko
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119234, Russia
| | - P A Abramicheva
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119234, Russia
| | - O D Lopina
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119234, Russia
| | - S N Orlov
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119234, Russia
| |
Collapse
|
20
|
Khalaf FK, Tassavvor I, Mohamed A, Chen Y, Malhotra D, Xie Z, Tian J, Haller ST, Westfall K, Tang WHW, Kennedy DJ. Epithelial and Endothelial Adhesion of Immune Cells Is Enhanced by Cardiotonic Steroid Signaling Through Na +/K +-ATPase-α-1. J Am Heart Assoc 2020; 9:e013933. [PMID: 32013704 PMCID: PMC7033897 DOI: 10.1161/jaha.119.013933] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Background Recent studies have highlighted a critical role for a group of natriuretic hormones, cardiotonic steroid (CTS), in mediating renal inflammation and fibrosis associated with volume expanded settings, such as chronic kidney disease. Immune cell adhesion is a critical step in the inflammatory response; however, little is currently understood about the potential regulatory role of CTS signaling in this setting. Herein, we tested the hypothesis that CTS signaling through Na+/K+‐ATPase α‐1 (NKA α‐1) enhances immune cell recruitment and adhesion to renal epithelium that ultimately advance renal inflammation. Methods and Results We demonstrate that knockdown of the α‐1 isoform of Na/K‐ATPase causes a reduction in CTS‐induced macrophage infiltration in renal tissue as well reduces the accumulation of immune cells in the peritoneal cavity in vivo. Next, using functional adhesion assay, we demonstrate that CTS‐induced increases in the adhesion of macrophages to renal epithelial cells were significantly diminished after reduction of NKA α‐1 in either macrophages or renal epithelial cells as well after inhibition of NKA α‐1‐Src signaling cascade with a specific peptide inhibitor, pNaKtide in vitro. Finally, CTS‐induced expression of adhesion markers in both endothelial and immune cells was significantly inhibited in an NKA α‐1‐Src signaling dependent manner in vitro. Conclusions These findings suggest that CTS potentiates immune cell migration and adhesion to renal epithelium through an NKA α‐1–dependent mechanism; our new findings suggest that pharmacological inhibition of this feed‐forward loop may be useful in the treatment of renal inflammation associated with renal disease.
Collapse
Affiliation(s)
- Fatimah K Khalaf
- University of Toledo College of Medicine and Life Sciences Toledo OH
| | - Iman Tassavvor
- University of Toledo College of Medicine and Life Sciences Toledo OH
| | - Amal Mohamed
- University of Toledo College of Medicine and Life Sciences Toledo OH
| | - Yiliang Chen
- Blood Research Institute Blood Center of Wisconsin Milwaukee WI
| | - Deepak Malhotra
- University of Toledo College of Medicine and Life Sciences Toledo OH
| | - Zijian Xie
- Marshall Institute for Interdisciplinary Research Marshall University Huntington WV
| | - Jiang Tian
- University of Toledo College of Medicine and Life Sciences Toledo OH
| | - Steven T Haller
- University of Toledo College of Medicine and Life Sciences Toledo OH
| | - Kristen Westfall
- Department of Cardiovascular and Metabolic Sciences Lerner Research Institute Cleveland Clinic Cleveland OH
| | - W H Wilson Tang
- Department of Cardiovascular and Metabolic Sciences Lerner Research Institute Cleveland Clinic Cleveland OH.,Center for Cardiovascular Diagnostics and Prevention Lerner Research Institute Cleveland Clinic Cleveland OH.,Department of Cardiovascular Medicine, Heart and Vascular Institute Cleveland Clinic Cleveland OH
| | - David J Kennedy
- University of Toledo College of Medicine and Life Sciences Toledo OH
| |
Collapse
|
21
|
Orlov SN, Tverskoi AM, Sidorenko SV, Smolyaninova LV, Lopina OD, Dulin NO, Klimanova EA. Na,K-ATPase as a target for endogenous cardiotonic steroids: What's the evidence? Genes Dis 2020; 8:259-271. [PMID: 33997173 PMCID: PMC8093582 DOI: 10.1016/j.gendis.2020.01.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/24/2019] [Accepted: 01/09/2020] [Indexed: 12/17/2022] Open
Abstract
With an exception of few reports, the plasma concentration of ouabain and marinobufagenin, mostly studied cardiotonic steroids (CTS) assessed by immunoassay techniques, is less than 1 nM. During the last 3 decades, the implication of these endogenous CTS in the pathogenesis of hypertension and other volume-expanded disorders is widely disputed. The threshold for inhibition by CTS of human and rodent α1-Na,K-ATPase is ∼1 and 1000 nM, respectively, that rules out the functioning of endogenous CTS (ECTS) as natriuretic hormones and regulators of cell adhesion, cell-to-cell communication, gene transcription and translation, which are mediated by dissipation of the transmembrane gradients of monovalent cations. In several types of cells ouabain and marinobufagenin at concentrations corresponding to its plasma level activate Na,K-ATPase, decrease the [Na+]i/[K+]i-ratio and increase cell proliferation. Possible physiological significance and mechanism of non-canonical Na+i/K+i-dependent and Na+i/K+i-independent cell responses to CTS are discussed.
Collapse
Affiliation(s)
- Sergei N Orlov
- MV Lomonosov Moscow State University, Moscow, 119234, Russia.,National Research Tomsk State University, Tomsk, 634050, Russia.,Siberian State Medical University, Tomsk, 634050, Russia
| | | | - Svetlana V Sidorenko
- MV Lomonosov Moscow State University, Moscow, 119234, Russia.,National Research Tomsk State University, Tomsk, 634050, Russia
| | - Larisa V Smolyaninova
- MV Lomonosov Moscow State University, Moscow, 119234, Russia.,National Research Tomsk State University, Tomsk, 634050, Russia
| | - Olga D Lopina
- MV Lomonosov Moscow State University, Moscow, 119234, Russia
| | | | - Elizaveta A Klimanova
- MV Lomonosov Moscow State University, Moscow, 119234, Russia.,National Research Tomsk State University, Tomsk, 634050, Russia
| |
Collapse
|
22
|
The Role of Cardiolipin and Mitochondrial Damage in Kidney Transplant. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:3836186. [PMID: 31885786 PMCID: PMC6899302 DOI: 10.1155/2019/3836186] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 08/27/2019] [Accepted: 09/11/2019] [Indexed: 02/06/2023]
Abstract
Chronic kidney disease (CKD) is highly incident and prevalent in the world. The death of patients with CKD is primarily due to cardiovascular disease. Renal transplantation (RT) emerges as the best management alternative for patients with CKD. However, the incidence of acute renal graft dysfunction is 11.8% of the related living donor and 17.4% of the cadaveric donor. Anticardiolipin antibodies (ACAs) or antiphospholipid antibodies (APAs) are important risk factors for acute renal graft dysfunction. The determination of ACA or APA to candidates for RT could serve as prognostic markers of early graft failure and would indicate which patients could benefit from anticoagulant therapy. Cardiolipin is a fundamental molecule that plays an important role in the adequate conformation of the mitochondrial cristae and the correct assembly of the mitochondrial respiratory supercomplexes and other proteins essential for proper mitochondrial function. Cardiolipin undergoes a nonrandom oxidation process by having pronounced specificity unrelated to the polyunsaturation pattern of its acyl groups. Accumulation of hydroxyl derivatives and cardiolipin hydroperoxides has been observed in the affected tissues, and recent studies showed that oxidation of cardiolipin is carried out by a cardiolipin-specific peroxidase activity of cardiolipin-bound cytochrome c. Cardiolipin could be responsible for the proapoptotic production of death signals. Cardiolipin modulates the production of energy and participates in inflammation, mitophagy, and cellular apoptosis. The determination of cardiolipin or its antibodies is an attractive therapeutic, diagnostic target in RT and kidney diseases.
Collapse
|
23
|
Kravtsova VV, Vilchinskaya NA, Rozlomii VL, Shenkman BS, Krivoi II. Low Ouabain Doses and AMP-Activated Protein Kinase as Factors Supporting Electrogenesis in Skeletal Muscle. BIOCHEMISTRY (MOSCOW) 2019; 84:1085-1092. [PMID: 31693468 DOI: 10.1134/s0006297919090116] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Many motor disorders are associated with depolarization of the membrane of skeletal muscle fibers due to the impaired functioning of Na,K-ATPase. Here, we studied the role of ouabain (specific Na,K-ATPase ligand) and AMP-activated protein kinase (key regulator of muscle metabolism) in the maintenance of muscle electrogenesis; the levels of these endogenous factors are directly related to the motor activity. After 4-day intraperitoneal administration of ouabain (1 µg/kg daily), a hyperpolarization of sarcolemma was registered in isolated rat diaphragm muscles due to an increase in the electrogenic activity of Na,K-ATPase. In acute experiments, addition of nanomolar ouabain concentrations to the bathing solution resulted in the muscle membrane hyperpolarization within 15 min. The effect of ouabain reversed to membrane depolarization with the increase in the external potassium concentration. It is possible that Na,K-ATPase activation by ouabain may be regulated by such factors as specific subcellular location, interaction with molecular partners, and changes in the ionic balance. Preventive administration of the AMP-activated protein kinase activator AICAR (5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside; 400 mg/kg body weight daily for 7 days) in chronic experiments resulted in the stabilization of the endplate structure and abolishment of depolarization of the rat soleus muscle membrane caused by the motor activity cessation. The obtained data can be useful for creating approaches for correction of muscle dysfunction, especially at the early stages, prior to the development of muscle atrophy.
Collapse
Affiliation(s)
- V V Kravtsova
- St. Petersburg State University, Department of General Physiology, St. Petersburg, 199034, Russia
| | - N A Vilchinskaya
- Institute of Biomedical Problems, Laboratory of Myology, Russian Academy of Sciences, Moscow, 123007, Russia
| | - V L Rozlomii
- St. Petersburg State University, Department of General Physiology, St. Petersburg, 199034, Russia
| | - B S Shenkman
- Institute of Biomedical Problems, Laboratory of Myology, Russian Academy of Sciences, Moscow, 123007, Russia
| | - I I Krivoi
- St. Petersburg State University, Department of General Physiology, St. Petersburg, 199034, Russia.
| |
Collapse
|
24
|
Penniyaynen VA, Plakhova VB, Rogachevskii IV, Terekhin SG, Podzorova SA, Krylov BV. Molecular mechanisms and signaling by comenic acid in nociceptive neurons influence the pathophysiology of neuropathic pain. ACTA ACUST UNITED AC 2019; 26:245-252. [PMID: 31257013 DOI: 10.1016/j.pathophys.2019.06.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 06/10/2019] [Accepted: 06/13/2019] [Indexed: 12/17/2022]
Abstract
Comenic acid (CA), a specific agonist of opioid-like receptors, effectively and safely relieves neuropathic pain by decreasing the NaV1.8 channel voltage sensitivity in the primary sensory neuron membrane. CA triggers downstream signaling cascades, in which the Na,K-ATPase/Src complex plays a key role. After leaving the complex, the signal diverges 'tangentially' and 'radially'. It is directed 'tangentially' along the neuron membrane to NaV1.8 channels, decreasing the effective charge of their activation gating system. In the radial direction moving towards the cell genome, the signal activates the downstream signaling pathway involving PKC and ERK1/2. A remarkable feature of CA is its ability to modulate NaV1.8 channels, which relieves neuropathic pain while simultaneously stimulating neurite growth via the receptor-coupled activation of the ERK1/2-dependent signaling pathway.
Collapse
Affiliation(s)
- Valentina A Penniyaynen
- Laboratory of Physiology of Excitable Membranes, Pavlov Institute of Physiology of the Russian Academy of Sciences, 6 Nab. Makarova, 199034, Saint Petersburg, Russia.
| | - Vera B Plakhova
- Laboratory of Physiology of Excitable Membranes, Pavlov Institute of Physiology of the Russian Academy of Sciences, 6 Nab. Makarova, 199034, Saint Petersburg, Russia.
| | - Ilya V Rogachevskii
- Laboratory of Physiology of Excitable Membranes, Pavlov Institute of Physiology of the Russian Academy of Sciences, 6 Nab. Makarova, 199034, Saint Petersburg, Russia.
| | - Stanislav G Terekhin
- Laboratory of Physiology of Excitable Membranes, Pavlov Institute of Physiology of the Russian Academy of Sciences, 6 Nab. Makarova, 199034, Saint Petersburg, Russia.
| | - Svetlana A Podzorova
- Laboratory of Physiology of Excitable Membranes, Pavlov Institute of Physiology of the Russian Academy of Sciences, 6 Nab. Makarova, 199034, Saint Petersburg, Russia.
| | - Boris V Krylov
- Laboratory of Physiology of Excitable Membranes, Pavlov Institute of Physiology of the Russian Academy of Sciences, 6 Nab. Makarova, 199034, Saint Petersburg, Russia.
| |
Collapse
|
25
|
Control of lung myofibroblast transformation by monovalent ion transporters. CURRENT TOPICS IN MEMBRANES 2019. [PMID: 31196603 DOI: 10.1016/bs.ctm.2019.01.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/07/2025]
Abstract
Myofibroblast differentiation is a critical process in the pathogenesis of tissue fibrosis. We focus our mini-review on recent data showing an implication of monovalent ion transporters in fibroblast to myofibroblast transformation of human lung fibroblasts (HLF). In cultured HLF, cardiotonic steroids (CTS) known as potent inhibitors of Na+,K+-ATPase suppress myofibroblast differentiation in parallel with up- and down-regulated expression of cyclooxygenase-2 (COX-2) and TGF-β receptor subunit TGFBR2, respectively. K+-free medium mimics antifibrotic action of CTS indicating a key role of elevated intracellular [Na+]i/[K+]i ratio. Augmented expression of COX-2 is abolished by inhibition of Na+/Ca2+ exchanger. Side-by-side with CTS acting via elevation of the [Na+]i/[K+]i ratio fibroblast to myofibroblast transformation is also suppressed by potent inhibitors of Ca2+-activated chloride channels tannic acid and K+,Cl- cotransporter DIOA. The relative impact of [Formula: see text] -mediated and -independent signaling triggered by elevated [Na+]i/[K+]i ratio and altered intracellular anion handling in transcriptomic changes involved in myofibroblast differentiation should be examined further.
Collapse
|
26
|
Endolymphatic hydrops and ionic transporters: genetic and biohumoral aspects. J Neurol 2019; 266:47-51. [DOI: 10.1007/s00415-019-09399-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 05/18/2019] [Accepted: 05/23/2019] [Indexed: 12/15/2022]
|
27
|
Khalaf FK, Dube P, Kleinhenz AL, Malhotra D, Gohara A, Drummond CA, Tian J, Haller ST, Xie Z, Kennedy DJ. Proinflammatory Effects of Cardiotonic Steroids Mediated by NKA α-1 (Na+/K+-ATPase α-1)/Src Complex in Renal Epithelial Cells and Immune Cells. Hypertension 2019; 74:73-82. [PMID: 31132948 DOI: 10.1161/hypertensionaha.118.12605] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cardiotonic steroids (CTSs) are NKA α-1 (Na+/K+-ATPase α-1) ligands that are increased in volume expanded states and associated with cardiac and renal diseases. Although initiation and resolution of inflammation is an important component of cellular injury and repair in renal disease, it is unknown whether CTS activation of NKA α-1 signaling in this setting regulates this inflammatory response. On this background, we hypothesized that CTS signaling through the NKA α-1-Src kinase complex promotes a proinflammatory response in renal epithelial and immune cells. First, we observed that the CTS telocinobufagin activated multiple proinflammatory cytokines/chemokines in renal epithelial cells, and these effects were attenuated after either NKA α-1 knockdown or with a specific inhibitor of the NKA α-1-Src kinase complex (pNaKtide). Similar findings were observed in immune cells, where we demonstrated that while telocinobufagin induced both oxidative burst and enhanced Nuclear factor kappa-light-chain-enhancer of activated B cells activation in macrophages ( P<0.05), the effects were abolished in NKA α-1+/- macrophages or by pretreatment with pNaKtide or the Src inhibitor PP2 ( P<0.01). In a series of in vivo studies, we found that 5/6th partial nephrectomy induced significantly less oxidative stress in the remnant kidney of NKA α-1+/- versus wild-type mice. Similarly, 5/6th partial nephrectomy yielded decreased levels of the urinary oxidative stress marker 8-Oxo-2'-deoxyguanosine in NKA α-1+/- versus wild-type mice. Finally, we found that in vivo inhibition of the NKA α-1-Src kinase complex with pNaKtide significantly inhibited renal proinflammatory gene expression after 5/6th partial nephrectomy. These findings suggest that the NKA α-1-Src kinase complex plays a central role in regulating the renal inflammatory response induced by elevated CTS both in vitro and in vivo.
Collapse
Affiliation(s)
- Fatimah K Khalaf
- From the Department of Medicine (F.K.K., P.D., A.L.K., D.M., C.A.D., J.T., S.T.H., D.J.K.) University of Toledo College of Medicine and Life Sciences, OH
| | - Prabhatchandra Dube
- From the Department of Medicine (F.K.K., P.D., A.L.K., D.M., C.A.D., J.T., S.T.H., D.J.K.) University of Toledo College of Medicine and Life Sciences, OH
| | - Andrew L Kleinhenz
- From the Department of Medicine (F.K.K., P.D., A.L.K., D.M., C.A.D., J.T., S.T.H., D.J.K.) University of Toledo College of Medicine and Life Sciences, OH
| | - Deepak Malhotra
- From the Department of Medicine (F.K.K., P.D., A.L.K., D.M., C.A.D., J.T., S.T.H., D.J.K.) University of Toledo College of Medicine and Life Sciences, OH
| | - Amira Gohara
- Department of Pathology (A.G.) University of Toledo College of Medicine and Life Sciences, OH
| | - Christopher A Drummond
- From the Department of Medicine (F.K.K., P.D., A.L.K., D.M., C.A.D., J.T., S.T.H., D.J.K.) University of Toledo College of Medicine and Life Sciences, OH
| | - Jiang Tian
- From the Department of Medicine (F.K.K., P.D., A.L.K., D.M., C.A.D., J.T., S.T.H., D.J.K.) University of Toledo College of Medicine and Life Sciences, OH
| | - Steven T Haller
- From the Department of Medicine (F.K.K., P.D., A.L.K., D.M., C.A.D., J.T., S.T.H., D.J.K.) University of Toledo College of Medicine and Life Sciences, OH
| | - Zijian Xie
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, WV (Z.X.)
| | - David J Kennedy
- From the Department of Medicine (F.K.K., P.D., A.L.K., D.M., C.A.D., J.T., S.T.H., D.J.K.) University of Toledo College of Medicine and Life Sciences, OH
| |
Collapse
|
28
|
Vilchis-Nestor CA, Roldán ML, Leonardi A, Navea JG, Padilla-Benavides T, Shoshani L. Ouabain Enhances Cell-Cell Adhesion Mediated by β 1 Subunits of the Na +,K +-ATPase in CHO Fibroblasts. Int J Mol Sci 2019; 20:E2111. [PMID: 31035668 PMCID: PMC6539428 DOI: 10.3390/ijms20092111] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 04/26/2019] [Accepted: 04/26/2019] [Indexed: 12/19/2022] Open
Abstract
Adhesion is a crucial characteristic of epithelial cells to form barriers to pathogens and toxic substances from the environment. Epithelial cells attach to each other using intercellular junctions on the lateral membrane, including tight and adherent junctions, as well as the Na+,K+-ATPase. Our group has shown that non-adherent chinese hamster ovary (CHO) cells transfected with the canine β1 subunit become adhesive, and those homotypic interactions amongst β1 subunits of the Na+,K+-ATPase occur between neighboring epithelial cells. Ouabain, a cardiotonic steroid, binds to the α subunit of the Na+,K+-ATPase, inhibits the pump activity and induces the detachment of epithelial cells when used at concentrations above 300 nM. At nanomolar non-inhibiting concentrations, ouabain affects the adhesive properties of epithelial cells by inducing the expression of cell adhesion molecules through the activation of signaling pathways associated with the α subunit. In this study, we investigated whether the adhesion between β1 subunits was also affected by ouabain. We used CHO fibroblasts stably expressing the β1 subunit of the Na+,K+-ATPase (CHO β1), and studied the effect of ouabain on cell adhesion. Aggregation assays showed that ouabain increased the adhesion between CHO β1 cells. Immunofluorescence and biotinylation assays showed that ouabain (50 nM) increases the expression of the β1 subunit of the Na+,K+-ATPase at the cell membrane. We also examined the effect of ouabain on the activation of signaling pathways in CHO β1 cells, and their subsequent effect on cell adhesion. We found that cSrc is activated by ouabain and, therefore, that it likely regulates the adhesive properties of CHO β1 cells. Collectively, our findings suggest that the β1 subunit adhesion is modulated by the expression levels of the Na+,K+-ATPase at the plasma membrane, which is regulated by ouabain.
Collapse
Affiliation(s)
- Claudia Andrea Vilchis-Nestor
- Department of Physiology Biophysics and Neurosciences, Center for Research and Advanced Studies, Cinvestav-Ipn, CDMX 07360, Mexico.
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| | - María Luisa Roldán
- Department of Physiology Biophysics and Neurosciences, Center for Research and Advanced Studies, Cinvestav-Ipn, CDMX 07360, Mexico.
| | - Angelina Leonardi
- Department of Chemistry, Skidmore College, 815 North Broadway, Saratoga Springs, NY 12866, USA.
| | - Juan G Navea
- Department of Chemistry, Skidmore College, 815 North Broadway, Saratoga Springs, NY 12866, USA.
| | - Teresita Padilla-Benavides
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| | - Liora Shoshani
- Department of Physiology Biophysics and Neurosciences, Center for Research and Advanced Studies, Cinvestav-Ipn, CDMX 07360, Mexico.
| |
Collapse
|
29
|
El-Mallakh RS, Brar KS, Yeruva RR. Cardiac Glycosides in Human Physiology and Disease: Update for Entomologists. INSECTS 2019; 10:E102. [PMID: 30974764 PMCID: PMC6523104 DOI: 10.3390/insects10040102] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/28/2019] [Accepted: 03/29/2019] [Indexed: 12/12/2022]
Abstract
Cardiac glycosides, cardenolides and bufadienolides, are elaborated by several plant or animal species to prevent grazing or predation. Entomologists have characterized several insect species that have evolved the ability to sequester these glycosides in their tissues to reduce their palatability and, thus, reduce predation. Cardiac glycosides are known to interact with the sodium- and potassium-activated adenosine triphosphatase, or sodium pump, through a specific receptor-binding site. Over the last couple of decades, and since entomologic studies, it has become clear that mammals synthesize endogenous cardenolides that closely resemble or are identical to compounds of plant origin and those sequestered by insects. The most important of these are ouabain-like compounds. These compounds are essential for the regulation of normal ionic physiology in mammals. Importantly, at physiologic picomolar or nanomolar concentrations, endogenous ouabain, a cardenolide, stimulates the sodium pump, activates second messengers, and may even function as a growth factor. This is in contrast to the pharmacologic or toxic micromolar or milimolar concentrations achieved after consumption of exogenous cardenolides (by consuming medications, plants, or insects), which inhibit the pump and result in either a desired medical outcome, or the toxic consequence of sodium pump inhibition.
Collapse
Affiliation(s)
- Rif S El-Mallakh
- Department of Psychiatry and Behavioral Sciences, University of Louisville School of Medicine, Louisville, KY 40202, USA.
| | - Kanwarjeet S Brar
- Department of Psychiatry and Behavioral Sciences, University of Louisville School of Medicine, Louisville, KY 40202, USA.
| | - Rajashekar Reddy Yeruva
- Department of Psychiatry and Behavioral Sciences, University of Louisville School of Medicine, Louisville, KY 40202, USA.
| |
Collapse
|
30
|
Wang J, Ullah SH, Li M, Zhang M, Zhang F, Zheng J, Yan X. DR region specific antibody ameliorated but ouabain worsened renal injury in nephrectomized rats through regulating Na,K-ATPase mediated signaling pathways. Aging (Albany NY) 2019; 11:1151-1162. [PMID: 30807290 PMCID: PMC6402514 DOI: 10.18632/aging.101815] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 02/01/2019] [Indexed: 04/11/2023]
Abstract
Reduced Na+-K+-ATPase function is reported in various renal diseases. This implies that increase of Na+-K+-ATPase function may be a new target in treatment of renal injury. We previously reported that Na+-K+-ATPase was stabilized by DRm217, a specific antibody against DR region of Na+-K+-ATPase. In this study, we compared the protective effect of DRm217 and ouabain on kidney in a chronic kidney disease rat model and investigated the mechanism under it. We found that DRm217 improved renal function, alleviated glomerulus atrophy, inhibited renal tubular cells apoptosis, tubulointerstitial injury and renal fibrosis in 5/6 nephrectomized rats. Contrary to DRm217, ouabain worsened renal damage. Activated Na+-K+-ATPase /Src signaling pathway, increased oxidant stress and activated inflammasome were responsible for nephrectomized or ouabain-induced renal injury. DRm217 inhibited Na+-K+-ATPase /Src signaling pathway, retarded oxidant stress, suppressed inflammasome activation, and improved renal function, suggesting a novel approach to prevent renal damage.
Collapse
Affiliation(s)
- Juan Wang
- Department of Biochemistry and Molecular Biology, Medical College of Xi'an Jiaotong University, Xi'an 710061, China
- Department of Pathology, Medical College of Xi'an Jiaotong University, Xi'an 710061, China
- Department of Pathology, Ankang Central Hostipal, An’kang 725000, China
| | - Sayyed Hanif Ullah
- Department of Biochemistry and Molecular Biology, Medical College of Xi'an Jiaotong University, Xi'an 710061, China
| | - Meihe Li
- Hospital of Nephrology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China
| | - Miao Zhang
- Hospital of Nephrology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China
| | - Fujun Zhang
- Department of Biochemistry and Molecular Biology, Medical College of Xi'an Jiaotong University, Xi'an 710061, China
| | - Jin Zheng
- Hospital of Nephrology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China
| | - Xiaofei Yan
- Department of Biochemistry and Molecular Biology, Medical College of Xi'an Jiaotong University, Xi'an 710061, China
| |
Collapse
|
31
|
Emelyanov IV, Konradi AO, Lakatta EG, Fedorova OV, Bagrov AY. Acute salt loading and cardiotonic steroids in resistant hypertension. CURRENT TOPICS IN MEMBRANES 2019; 83:1-13. [PMID: 31196601 DOI: 10.1016/bs.ctm.2019.01.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The study addresses the association of marinobufagenin (MBG), a natriuretic and vasoconstrictor steroid, and Na/K-ATPase (NKA) activity with pressor response to salt-loading and arterial stiffness in resistant hypertension (RH). Thirty-four patients (18 males and 16 females; 56±8 years) with RH on a combined (lisnopril/amlodipine/hydrochlorothiazide) therapy and 11 healthy age-matched normotensive subjects (7 males and 4 females; 54±2 years) were enrolled in this study. Salt-loading was performed via intravenous infusion of 1000mL saline (0.9% NaCl) for 1h. Arterial stiffness was measured by Sphygmocor Px device with a calculation of pulse-wave velocity (PWV). Activity of NKA was measured in erythrocytes. We demonstrated that plasma levels of MBG and magnitude of NaCl-induced MBG-dependent NKA inhibition are associated with PWV, and that this association has gender- and age-specific fashion in RH patients.
Collapse
Affiliation(s)
- Igor V Emelyanov
- Almazov Federal Heart, Blood and Endocrinology Centre, St. Petersburg, Russia
| | - Alexandra O Konradi
- Almazov Federal Heart, Blood and Endocrinology Centre, St. Petersburg, Russia
| | | | - Olga V Fedorova
- National Institute on Aging, NIH, Baltimore, MD, United States
| | - Alexei Y Bagrov
- National Institute on Aging, NIH, Baltimore, MD, United States; Sechenov Institute of Evolutionary Physiology and Biochemistry, St. Petersburg, Russia.
| |
Collapse
|
32
|
Paczula A, Wiecek A, Piecha G. Cardiotonic Steroids-A Possible Link Between High-Salt Diet and Organ Damage. Int J Mol Sci 2019; 20:ijms20030590. [PMID: 30704040 PMCID: PMC6386955 DOI: 10.3390/ijms20030590] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 01/24/2019] [Accepted: 01/28/2019] [Indexed: 02/07/2023] Open
Abstract
High dietary salt intake has been listed among the top ten risk factors for disability-adjusted life years. We discuss the role of endogenous cardiotonic steroids in mediating the dietary salt-induced hypertension and organ damage.
Collapse
Affiliation(s)
- Aneta Paczula
- Department of Nephrology, Transplantation and Internal Medicine, Medical University of Silesia, Francuska 20-24, 40-027 Katowice, Poland.
| | - Andrzej Wiecek
- Department of Nephrology, Transplantation and Internal Medicine, Medical University of Silesia, Francuska 20-24, 40-027 Katowice, Poland.
| | - Grzegorz Piecha
- Department of Nephrology, Transplantation and Internal Medicine, Medical University of Silesia, Francuska 20-24, 40-027 Katowice, Poland.
| |
Collapse
|