1
|
Liu W, Xu H, Wang C, Geng G, Yang Y, Chen G. Osthole's capacity to prevent tau aggregation, a key protein in tauopathy and Alzheimer's disease. Int J Biol Macromol 2025:143235. [PMID: 40246112 DOI: 10.1016/j.ijbiomac.2025.143235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 04/08/2025] [Accepted: 04/15/2025] [Indexed: 04/19/2025]
Abstract
Aggregated forms of protein arising from misfolded variants under physiological conditions can lead to the development of disorders related to proteinopathy, including Alzheimer's disease (AD). Some small molecules derived from plants can enhance the process of protein disaggregation via various pathways. Among the different bioactive substances, osthole-a natural coumarin compound-can be highly effective against protein aggregation and associated proteinopathies. In this research, we investigated osthole's capacity to prevent tau aggregation, a key protein in tauopathy and AD. Osthole was discovered to impede amyloid fibril formation by modulating the kinetics of fibril assembly. In addition, osthole has the potential to enhance the α-helix percentage of tau, while the fractions of β-sheet and random coil were reduced, suggesting that osthole can proficiently stabilize tau structure. Osthole hindered the structural shift from random coil to β-sheet and the creation of hydrophobic areas. Fluorescence spectroscopy and docking analysis indicated that nonpolar and intermolecular energies play a greater role in forming the osthole-tau complex than polar energy, and hydrophobic residues LEU344, ILE354, and PHE346 participating in the strong interaction (logKb values ranging from 5.09 to 5.41 across the studied temperature range). Osthole effectively reduced amyloid-induced neurotoxicity in SH-SY5Y cells by inhibiting ROS production and caspase-3 mRNA expression and activity. In summary, we suggest that osthole could serve as a small molecule for treating different tauopathy-related disorders, justifying additional research moving forward.
Collapse
Affiliation(s)
- Weiwei Liu
- Department of Neurology, Xuzhou Central Hospital, Xuzhou, Jiangsu 221009, China
| | - Hui Xu
- Department of Neurology, Xuzhou Central Hospital, Xuzhou, Jiangsu 221009, China
| | - Chen Wang
- Department of Neurology, Xuzhou Central Hospital, Xuzhou, Jiangsu 221009, China
| | - Geng Geng
- Department of Neurology, Xuzhou Central Hospital, Xuzhou, Jiangsu 221009, China
| | - Yuying Yang
- Department of Pain, Yantai Hospital of Traditional Chinese Medicine, Shandong Province, China.
| | - Guofang Chen
- Department of Neurology, Xuzhou Central Hospital, Xuzhou, Jiangsu 221009, China.
| |
Collapse
|
2
|
Balistreri A, Kolli D, Jayaweera SW, Lundahl D, Han Y, Kalcec L, Goetzler E, Alessio R, Ruotolo B, Olofsson A, Chapman MR. The bacterial chaperone CsgC inhibits functional amyloid CsgA formation by promoting the intrinsically disordered pre-nuclear state. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.21.644623. [PMID: 40166156 PMCID: PMC11957129 DOI: 10.1101/2025.03.21.644623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
E. coli secretes a functional amyloid called curli during biofilm formation. Curli fibers are composed of polymers of the CsgA protein, which adopts a beta-sheet rich fold upon fibrillization. A chaperone-like protein called CsgC inhibits CsgA amyloid formation. Like other amyloidogenic proteins, CsgA undergoes a 3-stage aggregation process: an initial lag phase where a beta-rich nucleus forms, an exponential elongation phase, and a plateau phase. It is currently not known if CsgC inhibits amyloid formation by inhibiting formation of the pre-fibril nucleus, or rather, if CsgC inhibits a later stage of amyloid formation by blocking monomer addition to a growing fiber. Here, CsgC homologs from C. youngae , C. davisae , and H. alvei were purified and characterized for their ability to interrogate CsgA amyloid formation. Each of the CsgC homologs prolonged the lag phase of E. coli CsgA amyloid formation in a similar fashion as E. coli CsgC. Additionally, we found that E. coli CsgC interacted transiently and weakly with a monomeric, pre-nucleus species of CsgA and that this interaction delayed amyloid formation. A transient CsgC-CsgA heterodimer was observed using ion mobility-mass spectrometry. When CsgC was added to actively polymerizing CsgA, exponential growth commonly associated with nucleation-dependent amyloid formation was lost. However, the addition of preformed CsgA seeds did not rescue exponential growth indicating that CsgC also has inhibitory activity during fibril elongation. Indeed, CsgC interacted strongly with CsgA fibers, suggesting that the interaction between CsgC and CsgA fibers can slow new fiber growth. CsgC displays a unique inhibitory activity at multiple stages of amyloid formation. CsgC acts as an energy-independent chaperone that transiently interacts with prefibrillar CsgA as well as an amyloid fiber.
Collapse
|
3
|
Kung YH, Chang CY, Lai YR, Li JX, How SC. Examining the inhibitory potency of metal polyphenolic network-coated silver nanoparticles against amyloid fibrillogenesis of lysozyme. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 327:125375. [PMID: 39527883 DOI: 10.1016/j.saa.2024.125375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 10/11/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
There are currently over forty degenerative diseases that are correlated with abnormal accumulation of peptide/protein aggregates in the human body, such as Alzheimer's disease. Due to their unique physiochemical properties (e.g., small size, large surface-to-volume ratio, and facile surface modification), silver nanoparticles (AgNPs) have been considered potential substrates for designing inhibitors against amyloid fibrillogenesis. Metal polyphenolic network (MPN) that combines the characteristics of organic and inorganic components has been used to suppress amyloid fibril formation. This study is aimed at investigating the effects of MPN-coated AgNPs (MPN-AgNPs) on the in vitro amyloid fibrillogenesis of hen lysozyme (HEWL). The two types of MPN-AgNPs (Zn/MPN-AgNPs and Co/MPN-AgNPs) were synthesized through chemical reduction and metal chelation, and their particle sizes were determined to be in the range of 40-60 nm. The characterization of MPN-AgNPs by ζ-potential and transmission electron microscopy showed that the MPN-AgNPs had negative surface charge and spherical-shaped morphology. Furthermore, the elemental analysis demonstrated that the MPN was uniformly coated on the surface of AgNPs. The thioflavin T fluorescence results revealed that the Co/MPN-AgNPs showed a better percent of inhibition compared to Zn/MPN-AgNPs and TA-AgNPs. The kinetics data of amyloid fibril formation in the presence of MPN-AgNPs were analyzed using the sigmoidal curve, showing that the MPN-AgNPs reduced fibril growth rate and prolonged lag time. Our findings also demonstrated that MPN-AgNPs could effectively suppress HEWL aggregation upon binding to aggregation-prone regions. The quenching of intrinsic fluorescence of HEWL by MPN-AgNPs was found to be a static type. Moreover, the fluorescence quenching data were analyzed using the modified Stern-Volmer equation to determine the number of binding sites. Notably, our findings indicated that the binding between HEWL and MPN-AgNPs was mainly governed by hydrophobic interaction. This work offers an excellent example of utilizing MPN-based materials as anti-aggregating/anti-fibrillogenic nano-drugs for the treatment of amyloidosis.
Collapse
Affiliation(s)
- Yu-Hsuan Kung
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Chia-Yu Chang
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - You-Ren Lai
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Jia-Xun Li
- Department of Chemical Engineering and Biotechnology, Tatung University, Taipei 104, Taiwan
| | - Su-Chun How
- Department of Chemical Engineering and Biotechnology, Tatung University, Taipei 104, Taiwan.
| |
Collapse
|
4
|
Dhariwal R, Jain M, Mir YR, Singh A, Jain B, Kumar P, Tariq M, Verma D, Deshmukh K, Yadav VK, Malik T. Targeted drug delivery in neurodegenerative diseases: the role of nanotechnology. Front Med (Lausanne) 2025; 12:1522223. [PMID: 39963432 PMCID: PMC11831571 DOI: 10.3389/fmed.2025.1522223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 01/06/2025] [Indexed: 02/20/2025] Open
Abstract
Neurodegenerative diseases, characterized by progressive neuronal loss and cognitive impairments, pose a significant global health challenge. This study explores the potential of nanotherapeutics as a promising approach to enhance drug delivery across physiological barriers, particularly the blood-brain barrier (BBB) and blood-cerebrospinal fluid barrier (B-CSFB). By employing nanoparticles, this research aims to address critical challenges in the diagnosis and treatment of conditions such as Alzheimer's, Parkinson's, and Huntington's diseases. The multifactorial nature of these disorders necessitates innovative solutions that leverage nanomedicine to improve drug solubility, circulation time, and targeted delivery while minimizing off-target effects. The findings underscore the importance of advancing nanomedicine applications to develop effective therapeutic strategies that can alleviate the burden of neurodegenerative diseases on individuals and healthcare systems.
Collapse
Affiliation(s)
- Rupal Dhariwal
- Research and Development Cell, Parul University, Vadodara, India
- Department of Life Sciences, Parul Institute of Applied Sciences, Parul University, Vadodara, India
| | - Mukul Jain
- Research and Development Cell, Parul University, Vadodara, India
- Department of Life Sciences, Parul Institute of Applied Sciences, Parul University, Vadodara, India
| | - Yaser Rafiq Mir
- Department of Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, India
| | - Abhayveer Singh
- Centre for Research Impact and Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, India
| | - Bhavik Jain
- Chitkara Centre for Research and Development, Chitkara University, Baddi, India
| | - Pankaj Kumar
- Department of Environmental Science, Parul Institute of Applied Sciences, Parul University, Vadodara, India
| | - Mohd Tariq
- Department of Life Sciences, Parul Institute of Applied Sciences, Parul University, Vadodara, India
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun, India
| | - Devvret Verma
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun, India
| | - Khemraj Deshmukh
- Department of Biomedical Engineering, Parul Institute of Technology, Parul University, Vadodara, India
| | | | - Tabarak Malik
- Department of Biomedical Sciences, Institute of Health, Jimma University, Jimma, Ethiopia
- Division of Research & Development, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
5
|
Ghosh P, Kundu A, Ganguly D. From experimental studies to computational approaches: recent trends in designing novel therapeutics for amyloidogenesis. J Mater Chem B 2025; 13:858-881. [PMID: 39664012 DOI: 10.1039/d4tb01890g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Amyloidosis is a condition marked by misfolded proteins that build up in tissues and eventually destroy organs. It has been connected to a number of fatal illnesses, including non-neuropathic and neurodegenerative conditions, which in turn have a significant influence on the worldwide health sector. The inability to identify the underlying etiology of amyloidosis has hampered efforts to find a treatment for the condition. Despite the identification of a multitude of putative pathogenic variables that may operate independently or in combination, the molecular mechanisms responsible for the development and progression of the disease remain unclear. A thorough investigation into protein aggregation and the impacts of toxic aggregated species will help to clarify the cytotoxicity of aggregation-mediated cellular apoptosis and lay the groundwork for future studies aimed at creating effective treatments and medications. This review article provides a thorough summary of the combination of various experimental and computational approaches to modulate amyloid aggregation. Further, an overview of the latest developments of novel therapeutic agents is given, along with a discussion of the possible obstacles and viewpoints on this developing field. We believe that the information provided by this review will help scientists create innovative treatment strategies that affect the way proteins aggregate.
Collapse
Affiliation(s)
- Pooja Ghosh
- Centre for Interdisciplinary Sciences, JIS Institute of Advanced Studies & Research (JISIASR) Kolkata, JIS University, GP Block, Sector-5, Salt Lake, Kolkata 700091, West Bengal, India.
| | - Agnibin Kundu
- Department of Medicine, District Hospital Howrah, 10, Biplabi Haren Ghosh Sarani Lane, Howrah 711101, West Bengal, India
| | - Debabani Ganguly
- Centre for Health Science & Technology, JIS Institute of Advanced Studies & Research (JISIASR) Kolkata, JIS University, GP Block, Sector-5, Salt Lake, Kolkata 700091, West Bengal, India.
| |
Collapse
|
6
|
Khan S, Upadhyay S, Hassan MI. Novel prospects in targeting neurodegenerative disorders via autophagy. Eur J Pharmacol 2024; 984:177060. [PMID: 39426466 DOI: 10.1016/j.ejphar.2024.177060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/12/2024] [Accepted: 10/17/2024] [Indexed: 10/21/2024]
Abstract
Protein aggregation occurs as a consequence of dysfunction in the normal cellular proteostasis, which leads to the accumulation of toxic fibrillar aggregates of certain proteins in the cell. Enhancing the activity of proteolytic pathways may serve as a way of clearing these aggregates in a cell, and consequently, autophagy has surfaced as a promising target for the treatment of neurodegenerative disorders. Several strategies involving small molecule compounds that stimulate autophagic pathway of cell have been discovered. However, despite many compounds having demonstrated favorable outcomes in experimental disease models, the translation of these findings into clinical benefits for patient's remains limited. Consequently, alternative strategies are actively being explored to effectively target neurodegeneration via autophagy modulation. Recently, newer approaches such as modulation of expression of autophagic genes have emerged as novel and interesting areas of research in this field, which hold promising potential in neuroprotection. Similarly, as discussed for the first time in this review, the use of autophagy-inducing nanoparticles by utilizing their physicochemical properties to stimulate the autophagic process, rather than relying on their role as drug carriers, offers a completely fresh avenue for targeting neurodegeneration without the risk of drug-associated adverse effects. This review provides fresh perspectives on developing autophagy-targeted therapies for neurodegenerative disorders. Additionally, it discusses the challenges and impediments of implementing these strategies to alleviate the pathogenesis of neurodegenerative disorders in clinical settings and highlights the prospects and directions of future research in this context.
Collapse
Affiliation(s)
- Shumayila Khan
- International Health Division, Indian Council of Medical Research, Ansari Nagar, New Delhi, 110029, India
| | - Saurabh Upadhyay
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, 110025, India.
| |
Collapse
|
7
|
Li R, Qin T, Guo Y, Zhang S, Guo X. CEAM is a mitochondrial-localized, amyloid-like motif-containing microprotein expressed in human cardiomyocytes. Biochem Biophys Res Commun 2024; 734:150737. [PMID: 39388734 DOI: 10.1016/j.bbrc.2024.150737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/22/2024] [Accepted: 09/22/2024] [Indexed: 10/12/2024]
Abstract
Microproteins synthesized through non-canonical translation pathways are frequently found within mitochondria. However, the functional significance of these mitochondria-localized microproteins in energy-intensive organs such as the heart remains largely unexplored. In this study, we demonstrate that the long non-coding RNA CD63-AS1 encodes a mitochondrial microprotein. Notably, in ribosome profiling data of human hearts, there is a positive correlation between the expression of CD63-AS1 and genes associated with cardiomyopathy. We have termed this microprotein CEAM (CD63-AS1 encoded amyloid-like motif containing microprotein), reflecting its sequence characteristics. Our biochemical assays show that CEAM forms protease-resistant aggregates within mitochondria, whereas deletion of the amyloid-like motif transforms CEAM into a soluble cytosolic protein. Overexpression of CEAM triggers mitochondrial stress responses and adversely affect mitochondrial bioenergetics in cultured cardiomyocytes. In turn, the expression of CEAM is reciprocally inhibited by the activation of mitochondrial stresses induced by oligomycin. When expressed in mouse hearts via adeno-associated virus, CEAM impairs cardiac function. However, under conditions of pressure overload-induced cardiac hypertrophy, CEAM expression appears to offer a protective benefit and mitigates the expression of genes associated with cardiac remodeling, presumably through a mechanism that suppresses stress-induced translation reprogramming. Collectively, our study uncovers a hitherto unexplored amyloid-like microprotein expressed in the human cardiomyocytes, offering novel insights into myocardial hypertrophy pathophysiology.
Collapse
Affiliation(s)
- Ruobing Li
- Department of Cardiology of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Ti Qin
- Department of Biochemistry, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Yabo Guo
- Department of Biochemistry, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Shan Zhang
- Department of Cardiology of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China; Department of Biochemistry, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| | - Xiaogang Guo
- Department of Cardiology of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China.
| |
Collapse
|
8
|
Seychell RM, El Saghir A, Vassallo N. Modulation of Biological Membranes Using Small-Molecule Compounds to Counter Toxicity Caused by Amyloidogenic Proteins. MEMBRANES 2024; 14:231. [PMID: 39590617 PMCID: PMC11596372 DOI: 10.3390/membranes14110231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/01/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024]
Abstract
The transition of peptides or proteins along a misfolding continuum from soluble functional states to pathological aggregates, to ultimately deposit as amyloid fibrils, is a process that underlies an expanding group of human diseases-collectively known as protein-misfolding disorders (PMDs). These include common and debilitating conditions, such as Alzheimer's disease, Parkinson's disease, and type-2 diabetes. Compelling evidence has emerged that the complex interplay between the misfolded proteins and biological membranes is a key determinant of the pathogenic mechanisms by which harmful amyloid entities are formed and exert their cytotoxicity. Most efforts thus far to develop disease-modifying treatments for PMDs have largely focused on anti-aggregation strategies: to neutralise, or prevent the formation of, toxic amyloid species. Herein, we review the critical role of the phospholipid membrane in mediating and enabling amyloid pathogenicity. We consequently propose that the development of small molecules, which have the potential to uniquely modify the physicochemical properties of the membrane and make it more resilient against damage by misfolded proteins, could provide a novel therapeutic approach in PMDs. By way of an example, natural compounds shown to intercalate into lipid bilayers and inhibit amyloid-lipid interactions, such as the aminosterols, squalamine and trodusquamine, cholesterol, ubiquinone, and select polyphenols, are discussed. Such a strategy would provide a novel approach to counter a wide range of toxic biomolecules implicit in numerous human amyloid pathologies.
Collapse
Affiliation(s)
- Raina Marie Seychell
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, MSD 2080 Msida, Malta
| | - Adam El Saghir
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, MSD 2080 Msida, Malta
| | - Neville Vassallo
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, MSD 2080 Msida, Malta
- Centre for Molecular Medicine and Biobanking, University of Malta, MSD 2080 Msida, Malta
| |
Collapse
|
9
|
Di Lorenzo D. Tau Protein and Tauopathies: Exploring Tau Protein-Protein and Microtubule Interactions, Cross-Interactions and Therapeutic Strategies. ChemMedChem 2024; 19:e202400180. [PMID: 39031682 DOI: 10.1002/cmdc.202400180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/22/2024]
Abstract
Tau, a microtubule-associated protein (MAP), is essential to maintaining neuronal stability and function in the healthy brain. However, aberrant modifications and pathological aggregations of Tau are implicated in various neurodegenerative disorders, collectively known as tauopathies. The most common Tauopathy is Alzheimer's Disease (AD) counting nowadays more than 60 million patients worldwide. This comprehensive review delves into the multifaceted realm of Tau protein, puzzling out its intricate involvement in both physiological and pathological roles. Emphasis is put on Tau Protein-Protein Interactions (PPIs), depicting its interaction with tubulin, microtubules and its cross-interaction with other proteins such as Aβ1-42, α-synuclein, and the chaperone machinery. In the realm of therapeutic strategies, an overview of diverse possibilities is presented with their relative clinical progresses. The focus is mostly addressed to Tau protein aggregation inhibitors including recent small molecules, short peptides and peptidomimetics with specific focus on compounds that showed a double anti aggregative activity on both Tau protein and Aβ amyloid peptide. This review amalgamates current knowledge on Tau protein and evolving therapeutic strategies, providing a comprehensive resource for researchers seeking to deepen their understanding of the Tau protein and for scientists involved in the development of new peptide-based anti-aggregative Tau compounds.
Collapse
Affiliation(s)
- Davide Di Lorenzo
- Department of Chemistry, Organic and Bioorganic Chemistry, Bielefeld University, Universitätsstraße 25, D-33615, Bielefeld, Germany
| |
Collapse
|
10
|
Suhandi C, Wilar G, Narsa AC, Mohammed AFA, El-Rayyes A, Muchtaridi M, Shamsuddin S, Safuan S, Wathoni N. Updating the Pharmacological Effects of α-Mangostin Compound and Unraveling Its Mechanism of Action: A Computational Study Review. Drug Des Devel Ther 2024; 18:4723-4748. [PMID: 39469723 PMCID: PMC11514645 DOI: 10.2147/dddt.s478388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 10/07/2024] [Indexed: 10/30/2024] Open
Abstract
α-Mangostin, initially identified in 1855, is a xanthone derivative compound predominantly located in the pericarp of the mangosteen fruit (Garcinia mangostana L). This compound is known for its beneficial properties as an antioxidant and anti-inflammatory agent, still holding promise for potential benefits in other related pathologies. In the investigative process, computational studies have proven highly valuable in providing evidence and initial screening before progressing to preclinical and clinical studies. This review aims to present the pharmacological findings and mechanisms of action of α-mangostin based on computational studies. The compilation of this review is founded on the analysis of relevant articles obtained from PubMed, Scopus, and ScienceDirect databases. The study commences with an elucidation of the physicochemical characteristics, drug-likeness, pharmacokinetics, and toxicity profile of α-mangostin, which demonstrates that α-mangostin complies with the Lipinski's Rule of Five, exhibits favorable profiles of absorption, distribution, metabolism, and excretion, and presents low toxicity. Subsequent investigations have revealed that computational studies employing various software tools including ArgusLab, AutoDock, AutoDock Vina, Glide, HEX, and MOE, have been pivotal to comprehend the pharmacology of α-mangostin. Beyond its well established roles as an antioxidant and anti-inflammatory agent, α-mangostin is now recognized for its pharmacological effects in Alzheimer's disease, diabetes, cancer, chronic kidney disease, chronic periodontitis, infectious diseases, and rheumatoid arthritis. Moreover, α-mangostin is projected to have applications in pain management and as a potent mosquito larvicide. All of these findings are based on the attainment of adequate binding affinity to specific target receptors associated with each respective pathological condition. Consequently, it is anticipated that these findings will serve as a foundation for future scientific endeavours, encompassing both in vitro and in vivo studies, as well as clinical investigations, to better understand the pharmacological effects of α-mangostin.
Collapse
Affiliation(s)
- Cecep Suhandi
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, 45363, Indonesia
| | - Gofarana Wilar
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, 45363, Indonesia
| | - Angga Cipta Narsa
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Mulawarman University, Samarinda, 71157, Indonesia
| | | | - Ali El-Rayyes
- Department of Chemistry, College of Science, Northern Border University, Arar, Saudi Arabia
| | - Muchtaridi Muchtaridi
- Department of Analytical Pharmacy and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, 45363, Indonesia
| | - Shaharum Shamsuddin
- School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, 16150, Malaysia
| | - Sabreena Safuan
- Department of Biomedicine, School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, 16150, Malaysia
| | - Nasrul Wathoni
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor, 45363, Indonesia
| |
Collapse
|
11
|
Visansirikul S, Yanaso S, Boondam Y, Prasittisa K, Prutthiwanasan B, Chongruchiroj S, Sripha K. Discovery of novel coumarin triazolyl and phenoxyphenyl triazolyl derivatives targeting amyloid beta aggregation-mediated oxidative stress and neuroinflammation for enhanced neuroprotection. RSC Med Chem 2024; 15:2745-2765. [PMID: 39149102 PMCID: PMC11324061 DOI: 10.1039/d4md00270a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/20/2024] [Indexed: 08/17/2024] Open
Abstract
This study involved designing, synthesizing, and evaluating the protective potential of compounds on microglial cells (BV-2 cells) and neurons (SH-SY5Y cells) against cell death induced by Aβ1-42. It aimed to identify biologically specific activities associated with anti-Aβ aggregation and understand their role in oxidative stress initiation and modulation of proinflammatory cytokine expression. Actively designed compounds CE5, CA5, PE5, and PA5 showed protective effects on BV-2 and SH-SY5Y cells, with cell viability ranging from 60.78 ± 2.32% to 75.38 ± 2.75% for BV-2 cells and 87.21% ± 1.76% to 91.55% ± 1.78% for SH-SY5Y cells. The transformation from ester in CE5 to amide in CA5 resulted in significant antioxidant properties. Molecular docking studies revealed strong binding of CE5 to critical Aβ aggregation regions, disrupting both intra- and intermolecular formations. TEM assessment supported CE5's anti-Aβ aggregation efficacy. Structural variations in PE5 and PA5 had diverse effects on IL-1β and IL-6, suggesting further specificity studies for Alzheimer's disease. Log P values suggested potential blood-brain barrier permeation for CE5 and CA5, indicating suitability for CNS drug development. In silico ADMET and toxicological screening revealed that CE5, PA5, and PE5 have favorable safety profiles, while CA5 shows a propensity for hepatotoxicity. According to this prediction, coumarin triazolyl derivatives are likely to exhibit mutagenicity. Nevertheless, CE5 and CA5 emerge as promising lead compounds for Alzheimer's therapeutic intervention, with further insights expected from subsequent in vivo studies.
Collapse
Affiliation(s)
- Satsawat Visansirikul
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Mahidol University Bangkok 10400 Thailand
- Unit of Compounds Library for Drug Discovery Mahidol University Bangkok 10400 Thailand
| | - Suthira Yanaso
- Faculty of Pharmaceutical Sciences, Huachiew Chalermprakiet University Samut Prakan 10540 Thailand
| | - Yingrak Boondam
- Department of Physiology, Faculty of Pharmacy, Mahidol University Bangkok 10400 Thailand
- Centre of Biopharmaceutical Science for Healthy Ageing, Mahidol University Bangkok 10400 Thailand
| | - Kanjanawadee Prasittisa
- Division of Science, Faculty of Education, Nakhon Phanom University Nakhon Phanom 48000 Thailand
| | - Brompoj Prutthiwanasan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Mahidol University Bangkok 10400 Thailand
- Unit of Compounds Library for Drug Discovery Mahidol University Bangkok 10400 Thailand
| | - Sumet Chongruchiroj
- Department of Microbiology, Faculty of Pharmacy, Mahidol University Bangkok 10400 Thailand
- Molecular Simulations in Drug Discovery, Faculty of Pharmacy, Mahidol University Bangkok 10400 Thailand
| | - Kittisak Sripha
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Mahidol University Bangkok 10400 Thailand
- Unit of Compounds Library for Drug Discovery Mahidol University Bangkok 10400 Thailand
| |
Collapse
|
12
|
Gialama D, Vadukul DM, Thrush RJ, Radford SE, Aprile FA. A Potent Sybody Selectively Inhibits α-Synuclein Amyloid Formation by Binding to the P1 Region. J Med Chem 2024; 67:9857-9868. [PMID: 38842931 PMCID: PMC11215725 DOI: 10.1021/acs.jmedchem.3c02408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/25/2024] [Accepted: 05/17/2024] [Indexed: 06/07/2024]
Abstract
Increasing research efforts focus on exploiting antibodies to inhibit the amyloid formation of neurodegenerative proteins. Nevertheless, it is challenging to discover antibodies that inhibit this process in a specific manner. Using ribosome display, we screened for synthetic single-domain antibodies, i.e., sybodies, of the P1 region of α-synuclein (residues 36-42), a protein that forms amyloid in Parkinson's disease and multiple-system atrophy. Hits were assessed for direct binding to a P1 peptide and the inhibition of amyloid formation. We discovered a sybody, named αSP1, that inhibits amyloid formation of α-synuclein at substoichiometric concentrations in a specific manner, even within highly crowded heterogeneous mixtures. Fluorescence resonance energy transfer-based binding assays and seeding experiments with and without αSP1 further demonstrate the importance of the P1 region for both primary and secondary nucleation mechanisms of amyloid assembly.
Collapse
Affiliation(s)
- Dimitra Gialama
- Department
of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, U.K.
| | - Devkee M. Vadukul
- Department
of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, U.K.
| | - Rebecca J. Thrush
- Department
of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, U.K.
- Institute
of Chemical Biology, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, U.K.
| | - Sheena E. Radford
- Astbury
Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, U.K.
| | - Francesco A. Aprile
- Department
of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, U.K.
- Institute
of Chemical Biology, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, U.K.
| |
Collapse
|
13
|
Juković M, Ratkaj I, Kalafatovic D, Bradshaw NJ. Amyloids, amorphous aggregates and assemblies of peptides - Assessing aggregation. Biophys Chem 2024; 308:107202. [PMID: 38382283 DOI: 10.1016/j.bpc.2024.107202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/31/2024] [Accepted: 02/14/2024] [Indexed: 02/23/2024]
Abstract
Amyloid and amorphous aggregates represent the two major categories of aggregates associated with diseases, and although exhibiting distinct features, researchers often treat them as equivalent, which demonstrates the need for more thorough characterization. Here, we compare amyloid and amorphous aggregates based on their biochemical properties, kinetics, and morphological features. To further decipher this issue, we propose the use of peptide self-assemblies as minimalistic models for understanding the aggregation process. Peptide building blocks are significantly smaller than proteins that participate in aggregation, however, they make a plausible means to bridge the gap in discerning the aggregation process at the more complex, protein level. Additionally, we explore the potential use of peptide-inspired models to research the liquid-liquid phase separation as a feasible mechanism preceding amyloid formation. Connecting these concepts can help clarify our understanding of aggregation-related disorders and potentially provide novel drug targets to impede and reverse these serious illnesses.
Collapse
Affiliation(s)
- Maja Juković
- Faculty of Biotechnology and Drug Development, University of Rijeka, 51000 Rijeka, Croatia
| | - Ivana Ratkaj
- Faculty of Biotechnology and Drug Development, University of Rijeka, 51000 Rijeka, Croatia
| | - Daniela Kalafatovic
- Faculty of Biotechnology and Drug Development, University of Rijeka, 51000 Rijeka, Croatia.
| | - Nicholas J Bradshaw
- Faculty of Biotechnology and Drug Development, University of Rijeka, 51000 Rijeka, Croatia.
| |
Collapse
|
14
|
Kumar N, Khatua P, Sinha SK. Can local heating and molecular crowders disintegrate amyloid aggregates? Chem Sci 2024; 15:6095-6105. [PMID: 38665536 PMCID: PMC11040654 DOI: 10.1039/d4sc00103f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 03/18/2024] [Indexed: 04/28/2024] Open
Abstract
The present study employs a blend of molecular dynamics simulations and a theoretical model to explore the potential disintegration mechanism of a matured Aβ octamer, aiming to offer a strategy to combat Alzheimer's disease. We investigate local heating and crowding effects on Aβ disintegration by selectively heating key Aβ segments and varying the concentration of sodium dodecyl sulphate (SDS), respectively. Despite initiation of disruption, Aβ aggregates resist complete disintegration during local heating due to rapid thermal energy distribution to the surrounding water. Conversely, although SDS molecules effectively inhibit Aβ aggregation at higher concentration through micelle formation, they fail to completely disintegrate the aggregate due to the exceedingly high energy barrier. To address the sampling challenge posed by the formidable energy barrier, we have performed well-tempered metadynamics simulations. Simulations reveal a multi-step disintegration mechanism for the Aβ octamer, suggesting a probable sequence: octamer → pentamer/hexamer ⇌ tetramer → monomer, with a rate-determining step constituting 45 kJ mol-1 barrier during the octamer to pentamer/hexamer transition. Additionally, we have proposed a novel two-state mean-field model based on Ising spins that offers an insight into the kinetics of the Aβ growth process and external perturbation effects on disintegration. Thus, the current simulation study, coupled with the newly introduced mean-field model, offers an insight into the detailed mechanisms underlying the Aβ aggregation process, guiding potential strategies for effective disintegration of Aβ aggregates.
Collapse
Affiliation(s)
- Naresh Kumar
- Department of Chemistry, Theoretical and Computational Biophysical Chemistry Group, Indian Institute of Technology Ropar Rupnagar Punjab 140001 India +91-01881-232066
| | - Prabir Khatua
- Department of Chemistry, GITAM School of Science, GITAM (Deemed to be University) Bengaluru 562163 India
| | - Sudipta Kumar Sinha
- Department of Chemistry, Theoretical and Computational Biophysical Chemistry Group, Indian Institute of Technology Ropar Rupnagar Punjab 140001 India +91-01881-232066
| |
Collapse
|
15
|
Chaki S, Santra S, Dasgupta S. Fibrillation of Human Serum Albumin Differentially Affected by Asp-, Arg-, and Tyr-Capped Gold Nanoparticles. J Phys Chem B 2024; 128:3538-3553. [PMID: 38507578 DOI: 10.1021/acs.jpcb.3c06932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Fibrillation of proteins is associated with a number of debilitating diseases, including various neurodegenerative disorders. Prevention of the protein fibrillation process is therefore of immense importance. We investigated the effect of amino acid-capped AuNPs on the prevention of the fibrillation process of human serum albumin (HSA), a model protein. Amino acid-capped AuNPs of varying sizes and agglomeration extents were synthesized under physiological conditions. The AuNPs were characterized by their characteristic surface plasmon resonance (SPR), and their interactions with HSA were investigated through emission spectroscopy in addition to circular dichroism (CD) spectral analyses. Fluorescence lifetime imaging (FLIM) as well as transmission electron microscopy (TEM) were used to observe the fibrillar network. Thermodynamic and kinetic analyses from CD and fluorescence emission spectra provided insights into the fibrillation pathway adopted by HSA in the presence of capped AuNPs. Kinetics of the fibrillation pathway followed by ThT fluorescence emission confirmed the sigmoidal nature of the process. The highest cooperativity was observed in the case of Asp-AuNPs with HSA. This was in accordance with the ΔG value obtained from the CD spectral analyses, where Arg-AuNPs with HSA showed the highest positive ΔG value and Asp-AuNPs with HSA showed the most negative ΔG value. The study provides information about the potential use of conjugate AuNPs to monitor the fibrillation process in proteins.
Collapse
Affiliation(s)
- Sreshtha Chaki
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Sujan Santra
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Swagata Dasgupta
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
16
|
Dabirmanesh B, Khajeh K, Uversky VN. The hidden world of protein aggregation. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 206:473-494. [PMID: 38811088 DOI: 10.1016/bs.pmbts.2024.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Though the book's journey into The Hidden World of Protein Aggregation has come to an end, the search for knowledge, the development of healthier lives, and the discovery of nature's mysteries continue, promising new horizons and discoveries yet to be discovered. The intricacies of protein misfolding and aggregation remain a mystery in cellular biology, despite advances made in unraveling them. In this chapter, we will summarize the specific conclusions from the previous chapters and explore the persistent obstacles and unanswered questions that motivate scientists to pursue exploration of protein misfolding and aggregation.
Collapse
Affiliation(s)
- Bahareh Dabirmanesh
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Khosro Khajeh
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Vladimir N Uversky
- Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institute for Biological Instrumentation, Pushchino, Moscow, Russia; Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| |
Collapse
|
17
|
Sinha T, Bokhari SFH, Khan MU, Sarim Shaheer M, Amir M, Zia BF, Bakht D, Javed MA, Almadhoun MKIK, Burhanuddin M, Puli ST. Gazing Beyond the Horizon: A Systematic Review Unveiling the Theranostic Potential of Quantum Dots in Alzheimer's Disease. Cureus 2024; 16:e58677. [PMID: 38770476 PMCID: PMC11103116 DOI: 10.7759/cureus.58677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2024] [Indexed: 05/22/2024] Open
Abstract
Alzheimer's disease (AD), a neurodegenerative disorder characterized by cognitive decline, poses a significant healthcare challenge worldwide. The accumulation of amyloid-beta (Aβ) plaques and hyperphosphorylated tau protein drives neuronal degeneration and neuroinflammation, perpetuating disease progression. Despite advancements in understanding the cellular and molecular mechanisms, treatment hurdles persist, emphasizing the need for innovative intervention strategies. Quantum dots (QDs) emerge as promising nanotechnological tools with unique photo-physical properties, offering advantages over conventional imaging modalities. This systematic review endeavors to elucidate the theranostic potential of QDs in AD by synthesizing preclinical and clinical evidence. A comprehensive search across electronic databases yielded 20 eligible studies investigating the diagnostic, therapeutic, or combined theranostic applications of various QDs in AD. The findings unveil the diverse roles of QDs, including inhibiting Aβ and tau aggregation, modulating amyloidogenesis pathways, restoring membrane fluidity, and enabling simultaneous detection of AD biomarkers. The review highlights the potential of QDs in targeting multiple pathological hallmarks, delivering therapeutic payloads across the blood-brain barrier, and facilitating real-time imaging and high-throughput screening. While promising, challenges such as biocompatibility, surface modifications, and clinical translation warrant further investigation. This systematic review provides a comprehensive synthesis of the theranostic potential of QDs in AD, paving the way for translational research and clinical implementation.
Collapse
Affiliation(s)
- Tanya Sinha
- Medical Education, Tribhuvan University, Kathmandu, NPL
| | | | | | - Muhammad Sarim Shaheer
- Internal Medicine, Faisalabad Medical University, Faisalabad, PAK
- Biochemistry, ABWA Medical College, Faisalabad, PAK
| | - Maaz Amir
- Medicine and Surgery, King Edward Medical University, Lahore, PAK
| | - Beenish Fatima Zia
- Medicine, Fatima Memorial Hospital College of Medicine and Dentistry, Lahore, PAK
| | - Danyal Bakht
- Medicine and Surgery, King Edward Medical University, Lahore, PAK
| | | | | | | | - Sai Teja Puli
- Internal Medicine, Bhaskar Medical College, Hyderabad, IND
| |
Collapse
|
18
|
Saremi S, Khajeh K. Amyloid fibril cytotoxicity and associated disorders. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 206:265-290. [PMID: 38811083 DOI: 10.1016/bs.pmbts.2024.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Misfolded proteins assemble into fibril structures that are called amyloids. Unlike usually folded proteins, misfolded fibrils are insoluble and deposit extracellularly or intracellularly. Misfolded proteins interrupt the function and structure of cells and cause amyloid disease. There is increasing evidence that the most pernicious species are oligomers. Misfolded proteins disrupt cell function and cause cytotoxicity by calcium imbalance, mitochondrial dysfunction, and intracellular reactive oxygen species. Despite profound impacts on health, social, and economic factors, amyloid diseases remain untreatable. To develop new therapeutics and to understand the pathological manifestations of amyloidosis, research into the origin and pathology of amyloidosis is urgently needed. This chapter describes the basic concept of amyloid disease and the function of atypical amyloid deposits in them.
Collapse
Affiliation(s)
- Sabereh Saremi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Khosro Khajeh
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
19
|
Nayak K, Ghosh P, Barman S, Sudhamalla B, Theato P, De P. Amyloid β-Peptide Segment Conjugated Side-Chain Proline-Based Polymers as Potent Inhibitors in Lysozyme Amyloidosis. Bioconjug Chem 2024; 35:312-323. [PMID: 38420925 DOI: 10.1021/acs.bioconjchem.3c00509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Developing effective amyloidosis inhibitors poses a significant challenge due to the dynamic nature of the protein structures, the complex interplay of interfaces in protein-protein interactions, and the irreversible nature of amyloid assembly. The interactions of amyloidogenic polypeptides with other peptides play a pivotal role in modulating amyloidosis and fibril formation. This study presents a novel approach for designing and synthesizing amyloid interaction surfaces using segments derived from the amyloid-promoting sequence of amyloid β-peptide [VF(Aβ(18-19)/FF(Aβ(19-20)/LVF(Aβ(17-19)/LVFF(Aβ(17-20)], where VF, FF, LVF and LVFF stands for valine phenylalanine dipeptide, phenylalanine phenylalanine dipeptide, leucine valine phenylalanine tripeptide and leucine valine phenylalanine phenylalanine tetrapeptide, respectively. These segments are conjugated with side-chain proline-based methacrylate polymers serving as potent lysozyme amyloidosis inhibitors and demonstrating reduced cytotoxicity of amyloid aggregations. Di-, tri-, and tetra-peptide conjugated chain transfer agents (CTAs) were synthesized and used for the reversible addition-fragmentation chain transfer polymerization of tert-butoxycarbonyl (Boc)-proline methacryloyloxyethyl ester (Boc-Pro-HEMA). Deprotection of Boc-groups from the side-chain proline pendants resulted in water-soluble polymers with defined peptide chain ends as peptide-polymer bioconjugates. Among them, the LVFF-conjugated polymer acted as a potent inhibitor with significantly suppressed lysozyme amyloidosis, a finding supported by comprehensive spectroscopic, microscopic, and computational analyses. These results unveil the synergistic effect between the segment-derived amyloid β-peptide and side-chain proline-based polymers, offering new prospects for targeting lysozyme amyloidosis.
Collapse
Affiliation(s)
- Kasturee Nayak
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal 741246, India
| | - Pooja Ghosh
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal 741246, India
- Centre for Interdisciplinary Sciences, JIS Institute of Advanced Studies & Research (JISIASR) Kolkata, JIS University, GP Block, Sector-5, Salt Lake, Kolkata, West Bengal 700091, India
| | - Soumen Barman
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal 741246, India
| | - Babu Sudhamalla
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal 741246, India
| | - Patrick Theato
- Karlsruhe Institute of Technology (KIT), Institute for Chemical Technology and Polymer Chemistry (ITCP), Engesserstraße 18, Karlsruhe 76131, Germany
- Karlsruhe Institute of Technology (KIT), Soft Matter Synthesis Laboratory,Institute for Biological Interfaces III (IBG-3), Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen 76344, Germany
| | - Priyadarsi De
- Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, West Bengal 741246, India
| |
Collapse
|
20
|
Mohapatra SS, Singh Bisht K, Dhar S, Biswas VK, Raghav SK, Kar RK, Maiti TK, Biswas A. Inhibition of amyloidal aggregation of insulin by amino acid conjugated bile acids: An insight into the possible role of biosurfactants in modulating the fibrillation kinetics and cytotoxicity. J Mol Liq 2024; 397:124142. [DOI: 10.1016/j.molliq.2024.124142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
21
|
Manzoor S, Gabr MT, Nafie MS, Raza MK, Khan A, Nayeem SM, Arafa RK, Hoda N. Discovery of Quinolinone Hybrids as Dual Inhibitors of Acetylcholinesterase and Aβ Aggregation for Alzheimer's Disease Therapy. ACS Chem Neurosci 2024; 15:539-559. [PMID: 38149821 DOI: 10.1021/acschemneuro.3c00588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023] Open
Abstract
The development of multitargeted therapeutics has evolved as a promising strategy to identify efficient therapeutics for neurological disorders. We report herein new quinolinone hybrids as dual inhibitors of acetylcholinesterase (AChE) and Aβ aggregation that function as multitargeted ligands for Alzheimer's disease. The quinoline hybrids (AM1-AM16) were screened for their ability to inhibit AChE, BACE1, amyloid fibrillation, α-syn aggregation, and tau aggregation. Among the tested compounds, AM5 and AM10 inhibited AChE activity by more than 80% at single-dose screening and possessed a remarkable ability to inhibit the fibrillation of Aβ42 oligomers at 10 μM. In addition, dose-dependent screening of AM5 and AM10 was performed, giving half-maximal AChE inhibitory concentration (IC50) values of 1.29 ± 0.13 and 1.72 ± 0.18 μM, respectively. In addition, AM5 and AM10 demonstrated concentration-dependent inhibitory profiles for the aggregation of Aβ42 oligomers with estimated IC50 values of 4.93 ± 0.8 and 1.42 ± 0.3 μM, respectively. Moreover, the neuroprotective properties of the lead compounds AM5 and AM10 were determined in SH-SY5Y cells incubated with Aβ oligomers. This work would enable future research efforts aiming at the structural optimization of AM5 and AM10 to develop potent dual inhibitors of AChE and amyloid aggregation. Furthermore, the in vivo assay confirmed the antioxidant activity of compounds AM5 and AM10 through increasing GSH, CAT, and SOD activities that are responsible for scavenging the ROS and restoring its normal level. Blood investigation illustrated the protective activity of the two compounds against lead-induced neurotoxicity through retaining hematological and liver enzymes near normal levels. Finally, immunohistochemistry investigation revealed the inhibitory activity of β-amyloid (Aβ) aggregation.
Collapse
Affiliation(s)
- Shoaib Manzoor
- Drug Design and Synthesis Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India
- Department of Pharmacy and Pharmacology, University of Bath, Bath BA2 7AY, U.K
| | - Moustafa T Gabr
- Molecular Imaging Innovations Institute, Department of Radiology, Weill Cornell Medicine, New York, New York10021, United States
| | - Mohamed S Nafie
- Department of Chemistry, College of Sciences, University of Sharjah, Sharjah (P.O. Box 27272), United Arab Emirates
- Chemistry Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
| | - Md Kausar Raza
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Ashma Khan
- Department of Chemistry, Aligarh Muslim University, Aligarh, UP 202002, India
| | - Shahid M Nayeem
- Department of Chemistry, Aligarh Muslim University, Aligarh, UP 202002, India
| | - Reem K Arafa
- Drug Design and Discovery Lab, Helmy Institute for Medical Sciences, Zewail City of Science, Technology and Innovation, Giza 12578, Egypt
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science, Technology and Innovation, Giza12578,Egypt
| | - Nasimul Hoda
- Drug Design and Synthesis Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India
| |
Collapse
|
22
|
Uttarkar A, Rao V, Bhat D, Niranjan V. Disaggregation of amyloid-beta fibrils via natural metabolites using long timescale replica exchange molecular dynamics simulation studies. J Mol Model 2024; 30:61. [PMID: 38321243 DOI: 10.1007/s00894-024-05860-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 01/30/2024] [Indexed: 02/08/2024]
Abstract
CONTEXT Amyloid fibrils are self-assembled fibrous protein aggregates that are associated with several presently incurable diseases such as Alzheimer's. disease that is characterized by the accumulation of amyloid fibrils in the brain, which leads to the formation of plaques and the death of brain cells. Disaggregation of amyloid fibrils is considered a promising approach to cure Alzheimer's disease. The mechanism of amyloid fibril formation is complex and not fully understood, making it difficult to develop drugs that can target the process. Diacetonamine and cystathionine are potential lead compounds to induce disaggregation of amyloid fibrils. METHODS In the current research, we have used long timescale molecular simulation studies and replica exchange molecular dynamics (REMD) for 1000 ns (1 μs) to examine the mechanisms by which natural metabolites can disaggregate amyloid-beta fibrils. Molecular docking was carried out using Glide and with prior protein minimization and ligand preparation. We focused on a screening a database of natural metabolites, as potential candidates for disaggregating amyloid fibrils. We used Desmond with OPLS 3e as a force field. MM-GBSA calculations were performed. Blood-brain barrier permeability, SASA, and radius of gyration parameters were calculated.
Collapse
Affiliation(s)
- Akshay Uttarkar
- Department of Biotechnology, R V College of Engineering, Mysuru Road, Kengeri, Bangalore, 560059, affiliated to Visvesvaraya Technological University, Belagavi, 590018, India
| | - Vibha Rao
- Department of Biotechnology, R V College of Engineering, Mysuru Road, Kengeri, Bangalore, 560059, affiliated to Visvesvaraya Technological University, Belagavi, 590018, India
| | - Dhrithi Bhat
- Department of Biotechnology, R V College of Engineering, Mysuru Road, Kengeri, Bangalore, 560059, affiliated to Visvesvaraya Technological University, Belagavi, 590018, India
| | - Vidya Niranjan
- Department of Biotechnology, R V College of Engineering, Mysuru Road, Kengeri, Bangalore, 560059, affiliated to Visvesvaraya Technological University, Belagavi, 590018, India.
| |
Collapse
|
23
|
Pijeira MSO, Nunes PSG, Chaviano SL, Diaz AMA, DaSilva JN, Ricci-Junior E, Alencar LMR, Chen X, Santos-Oliveira R. Medicinal (Radio) Chemistry: Building Radiopharmaceuticals for the Future. Curr Med Chem 2024; 31:5481-5534. [PMID: 37594105 DOI: 10.2174/0929867331666230818092634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/30/2023] [Accepted: 07/13/2023] [Indexed: 08/19/2023]
Abstract
Radiopharmaceuticals are increasingly playing a leading role in diagnosing, monitoring, and treating disease. In comparison with conventional pharmaceuticals, the development of radiopharmaceuticals does follow the principles of medicinal chemistry in the context of imaging-altered physiological processes. The design of a novel radiopharmaceutical has several steps similar to conventional drug discovery and some particularity. In the present work, we revisited the insights of medicinal chemistry in the current radiopharmaceutical development giving examples in oncology, neurology, and cardiology. In this regard, we overviewed the literature on radiopharmaceutical development to study overexpressed targets such as prostate-specific membrane antigen and fibroblast activation protein in cancer; β-amyloid plaques and tau protein in brain disorders; and angiotensin II type 1 receptor in cardiac disease. The work addresses concepts in the field of radiopharmacy with a special focus on the potential use of radiopharmaceuticals for nuclear imaging and theranostics.
Collapse
Affiliation(s)
- Martha Sahylí Ortega Pijeira
- Laboratory of Nanoradiopharmaceuticals and Synthesis of Novel Radiopharmaceuticals, Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Rio de Janeiro 21941906, Brazil
| | - Paulo Sérgio Gonçalves Nunes
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas SP13083-970, Brazil
| | - Samila Leon Chaviano
- Laboratoire de Biomatériaux pour l'Imagerie Médicale, Axe Médicine Régénératrice, Centre de Recherche du Centre Hospitalier Universitaire de Québec - Université Laval, Québec, QC, Canada
| | - Aida M Abreu Diaz
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada
- Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada
- Institute de Génie Biomédical, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada
| | - Jean N DaSilva
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada
- Département de Pharmacologie et Physiologie, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada
- Institute de Génie Biomédical, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada
| | - Eduardo Ricci-Junior
- Laboratório de Desenvolvimento Galênico, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
| | - Luciana Magalhães Rebelo Alencar
- Laboratory of Biophysics and Nanosystems, Federal University of Maranhão, Av. dos Portugueses, 1966, Vila Bacanga, São Luís MA65080-805, Brazil
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore 117597, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 117599, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore 117597, Singapore
| | - Ralph Santos-Oliveira
- Laboratory of Nanoradiopharmaceuticals and Synthesis of Novel Radiopharmaceuticals, Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Rio de Janeiro 21941906, Brazil
- Laboratory of Radiopharmacy and Nanoradiopharmaceuticals, Rio de Janeiro State University, Rio de Janeiro 23070200, Brazil
| |
Collapse
|
24
|
Monteiro KLC, de Aquino TM, da Silva-Júnior EF. Natural Compounds as Inhibitors of Aβ Peptide and Tau Aggregation. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:1234-1250. [PMID: 38018200 DOI: 10.2174/0118715273273539231114095300] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 10/08/2023] [Accepted: 10/16/2023] [Indexed: 11/30/2023]
Abstract
Neurodegenerative conditions like Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS) encompass disorders characterized by the degeneration of neurons in specific circumstances. The quest for novel agents to influence these diseases, particularly AD, has unearthed various natural compounds displaying multifaceted activities and diverse pharmacological mechanisms. Given the ongoing extensive study of pathways associated with the accumulation of neurofibrillary aggregates and amyloid plaques, this paper aims to comprehensively review around 130 studies exploring natural products. These studies focus on inhibiting the formation of amyloid plaques and tau protein tangles, with the objective of potentially alleviating or delaying AD.
Collapse
Affiliation(s)
- Kadja Luana Chagas Monteiro
- Research Group on Therapeutic Strategies - GPET, Laboratory of Synthesis and Research in Medicinal Chemistry - LSPMED, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió, Alagoas, Brazil
| | - Thiago Mendonça de Aquino
- Research Group on Therapeutic Strategies - GPET, Laboratory of Synthesis and Research in Medicinal Chemistry - LSPMED, Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió, Alagoas, Brazil
| | | |
Collapse
|
25
|
Siposova K, Huntosova V, Sedlakova D, Macajova M, Bilcik B, Nair AV, Nair S, Hovhannisyan V, Chen SJ, Musatov A. Biocompatible zeolite-dye composites with anti-amyloidogenic properties. Int J Biol Macromol 2023; 251:126331. [PMID: 37579899 DOI: 10.1016/j.ijbiomac.2023.126331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 08/07/2023] [Accepted: 08/11/2023] [Indexed: 08/16/2023]
Abstract
One of the most attractive approaches in biomedicine and pharmacy is the application of multifunctional materials. The mesoporous structure of clinoptilolite (CZ) absorbs various types of substances and can be used as a model for studying the carriers for targeted drug delivery with controlled release. CZ-dye composites are fabricated by incorporation into clinoptilolite pores commonly used dyes, aluminum phthalocyanine, zinc porphine, and hypericin. We examined and compared the effect of pure dyes and CZ-dye composites on insulin amyloidogenesis. The formation of insulin amyloid fibrils and the disassembly of preformed fibrils is significantly affected by any of the three compounds, however, the strongest effect is observed for aluminum phthalocyanine indicating a structurally-dependent anti-amyloidogenic activity of the dyes. The incorporation of dyes into CZ particles resulted in enhanced anti-amyloidogenic activity in comparison to pure CZ particles. The cell metabolic activity, biocompatibility and fluorescence biodistribution of the dyes entrapped in the composites were tested in vitro (U87 MG cells) and in vivo in the quail chorioallantoic membrane model. Considering the photoactive properties of the dyes used, we assume their applicability in photodiagnostics and photodynamic therapy. It can also be expected that their anti-amyloidogenic potential can be enhanced by photodynamic effect.
Collapse
Affiliation(s)
- Katarina Siposova
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 04001, Kosice, Slovakia; College of Photonics, National Yang Ming Chiao Tung University, Tainan 711, Taiwan.
| | - Veronika Huntosova
- Center for Interdisciplinary Biosciences, Technology, and Innovation Park, P.J. Safarik University in Kosice, Jesenna 5, 041 54, Kosice, Slovakia.
| | - Dagmar Sedlakova
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 04001, Kosice, Slovakia.
| | - Mariana Macajova
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dubravska cesta 9, 840 05 Bratislava, Slovakia.
| | - Boris Bilcik
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dubravska cesta 9, 840 05 Bratislava, Slovakia.
| | | | - Sumesh Nair
- College of Photonics, National Yang Ming Chiao Tung University, Tainan 711, Taiwan
| | | | - Shean-Jen Chen
- College of Photonics, National Yang Ming Chiao Tung University, Tainan 711, Taiwan.
| | - Andrey Musatov
- Department of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 04001, Kosice, Slovakia.
| |
Collapse
|
26
|
Holubová M, Kronek J, Datta S, Lobaz V, Hromádková J, Štěpánek P, Hrubý M. Amphiphilic (di-)gradient copoly(2-oxazoline)s are potent amyloid fibril formation inhibitors. Colloids Surf B Biointerfaces 2023; 230:113521. [PMID: 37634283 DOI: 10.1016/j.colsurfb.2023.113521] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/07/2023] [Accepted: 08/19/2023] [Indexed: 08/29/2023]
Abstract
MOTIVATION Amyloidoses are diseases caused by the accumulation of normally soluble proteins in the form of insoluble amyloids, leading to the gradual dysfunction and failure of various organs and tissues. Inhibiting amyloid formation is therefore an important therapeutic target. HYPOTHESIS We hypothesized that mono- and di-gradient amphiphilic copolymers of hydrophilic 2-(m)ethyl-2-oxazoline and hydrophobic 2-aryl-2-oxazolines may inhibit amyloid fibril formation. EXPERIMENTS In the model system with hen egg white lysozyme (HEWL) as amyloidogenic protein we determined the effect of these polymers on the amyloid formation by making use of the thioflavin T fluorescence, transmission electron microscopy, isothermal titration calorimetry, and dynamic light scattering. FINDINGS We found that some gradient copolymers possess very potent concentration-dependent inhibitory effects on HEWL amyloid formation. Structure-activity relationship revealed that copolymers with higher ratios of aromatic monomeric units had stronger amyloid suppression effects, most plausibly due to the combination of hydrophobic and π-π interactions. The measurements also revealed that the polymers that inhibit amyloid formation most plausibly do so in the form of micelles that interact with the growing amyloid fibril ends, not with isolated HEWL molecules in solution. These findings suggest the potential use of these gradient copolymers as therapeutic agents for amyloidoses.
Collapse
Affiliation(s)
- Monika Holubová
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovský Sq. 2, 162 06 Prague 6, Czech Republic; Charles University in Prague, Faculty of Science, Albertov 6, 128 43 Prague 2, Czech Republic
| | - Juraj Kronek
- Department for Biomaterials Research, Polymer Institute, Slovak Academy of Sciences, Dúbravská cesta 9, 845 41 Bratislava 45, Slovak Republic
| | - Shubhashis Datta
- Center for Interdisciplinary Biosciences, Technology and Innovation Park, P. J. Safarik University in Kosice, Jesenna 5, 04154 Košice, Slovakia
| | - Volodymyr Lobaz
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovský Sq. 2, 162 06 Prague 6, Czech Republic
| | - Jiřina Hromádková
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovský Sq. 2, 162 06 Prague 6, Czech Republic
| | - Petr Štěpánek
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovský Sq. 2, 162 06 Prague 6, Czech Republic
| | - Martin Hrubý
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovský Sq. 2, 162 06 Prague 6, Czech Republic.
| |
Collapse
|
27
|
Sahoo BR, Bardwell JCA. SERF, a family of tiny highly conserved, highly charged proteins with enigmatic functions. FEBS J 2023; 290:4150-4162. [PMID: 35694898 DOI: 10.1111/febs.16555] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/07/2022] [Accepted: 06/10/2022] [Indexed: 11/27/2022]
Abstract
Amyloid formation is a misfolding process that has been linked to age-related diseases, including Alzheimer's and Huntington's. Understanding how cellular factors affect this process in vivo is vital in realizing the dream of controlling this insidious process that robs so many people of their humanity. SERF (small EDRK-rich factor) was initially isolated as a factor that accelerated polyglutamine amyloid formation in a C. elegans model. SERF knockouts inhibit amyloid formation of a number of proteins that include huntingtin, α-synuclein and β-amyloid which are associated with Huntington's, Parkinson's and Alzheimer's disease, respectively, and purified SERF protein speeds their amyloid formation in vitro. SERF proteins are highly conserved, highly charged and conformationally dynamic proteins that form a fuzzy complex with amyloid precursors. They appear to act by specifically accelerating the primary step of amyloid nucleation. Brain-specific SERF knockout mice, though viable, appear to be more prone to deposition of amyloids, and show modified fibril morphology. Whole-body knockouts are perinatally lethal due to an apparently unrelated developmental issue. Recently, it was found that SERF binds RNA and is localized to nucleic acid-rich membraneless compartments. SERF-related sequences are commonly found fused to zinc finger sequences. These results point towards a nucleic acid-binding function. How this function relates to their ability to accelerate amyloid formation is currently obscure. In this review, we discuss the possible biological functions of SERF family proteins in the context of their structural fuzziness, modulation of amyloid pathway, nucleic acid binding and their fusion to folded proteins.
Collapse
Affiliation(s)
- Bikash R Sahoo
- Department of Molecular, Cellular and Developmental Biology, Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, USA
| | - James C A Bardwell
- Department of Molecular, Cellular and Developmental Biology, Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
28
|
Bhopatkar AA, Kayed R. Flanking regions, amyloid cores, and polymorphism: the potential interplay underlying structural diversity. J Biol Chem 2023; 299:105122. [PMID: 37536631 PMCID: PMC10482755 DOI: 10.1016/j.jbc.2023.105122] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/10/2023] [Accepted: 07/28/2023] [Indexed: 08/05/2023] Open
Abstract
The β-sheet-rich amyloid core is the defining feature of protein aggregates associated with neurodegenerative disorders. Recent investigations have revealed that there exist multiple examples of the same protein, with the same sequence, forming a variety of amyloid cores with distinct structural characteristics. These structural variants, termed as polymorphs, are hypothesized to influence the pathological profile and the progression of different neurodegenerative diseases, giving rise to unique phenotypic differences. Thus, identifying the origin and properties of these structural variants remain a focus of studies, as a preliminary step in the development of therapeutic strategies. Here, we review the potential role of the flanking regions of amyloid cores in inducing polymorphism. These regions, adjacent to the amyloid cores, show a preponderance for being structurally disordered, imbuing them with functional promiscuity. The dynamic nature of the flanking regions can then manifest in the form of conformational polymorphism of the aggregates. We take a closer look at the sequences flanking the amyloid cores, followed by a review of the polymorphic aggregates of the well-characterized proteins amyloid-β, α-synuclein, Tau, and TDP-43. We also consider different factors that can potentially influence aggregate structure and how these regions can be viewed as novel targets for therapeutic strategies by utilizing their unique structural properties.
Collapse
Affiliation(s)
- Anukool A Bhopatkar
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, Texas, USA; Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Rakez Kayed
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, Texas, USA; Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas, USA.
| |
Collapse
|
29
|
Salehi N, Lohrasebi A, Bordbar AK. Preventing the amyloid-beta peptides accumulation on the cell membrane by applying GHz electric fields: A molecular dynamic simulation. J Mol Graph Model 2023; 123:108516. [PMID: 37216829 DOI: 10.1016/j.jmgm.2023.108516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 05/03/2023] [Accepted: 05/07/2023] [Indexed: 05/24/2023]
Abstract
Alzheimer's disease is associated with accumulating different amyloid peptides on the nerve cell membranes. The non-thermal effects of the GHz electric fields in this topic have yet to be well recognized. Hence, in this study, the impacts of 1 and 5 GHz electric fields on the amyloid peptide proteins accumulation on the cell membrane have been investigated, utilizing molecular dynamics (MD) simulation. The obtained results indicated that this range of electric fields did not significantly affect the peptide structure. Moreover, it was found that the peptide penetration into the membrane was increased as the field frequency was increased when the system was exposed to a 20 mv/nm oscillating electric field. In addition, it was observed that the protein-membrane interaction is reduced significantly in the presence of the 70 mv/nm electric field. The molecular level results reported in this study could be helpful in better understanding Alzheimer's disease.
Collapse
Affiliation(s)
- N Salehi
- Department of Chemistry, University of Isfahan, Isfahan, 81746-73441, Iran
| | - A Lohrasebi
- Department of Physics, University of Isfahan, Isfahan, 81746-73441, Iran.
| | - A K Bordbar
- Department of Chemistry and Biochemistry, California Polytechnic State University, San Luis Obispo, CA, USA.
| |
Collapse
|
30
|
Hosoi T, Yazawa K, Imada M, Tawara A, Tohda C, Nomura Y, Ozawa K. Alkannin Attenuates Amyloid β Aggregation and Alzheimer's Disease Pathology. Mol Pharmacol 2023; 103:266-273. [PMID: 36868792 DOI: 10.1124/molpharm.121.000468] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/01/2022] [Accepted: 01/04/2023] [Indexed: 03/05/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease that is accompanied by memory decline and cognitive dysfunction. Aggregated amyloid β formation and accumulation may be one of the underlying mechanisms of the pathophysiology of AD. Therefore, compounds that can inhibit amyloid β aggregation may be useful for treatment. Based on this hypothesis, we screened plant compounds used in Kampo medicine for chemical chaperone activity and identified that alkannin had this property. Further analysis indicated that alkannin could inhibit amyloid β aggregation. Importantly, we also found that alkannin inhibited amyloid β aggregation after aggregates had already formed. Through the analysis of circular dichroism spectra, alkannin was found to inhibit β-sheet structure formation, which is an aggregation-prone toxic structure. Furthermore, alkannin attenuated amyloid β-induced neuronal cell death in PC12 cells, ameliorated amyloid β aggregation in the AD model of Caenorhabditis elegans (C. elegans), and inhibited chemotaxis observed in AD C. elegans, suggesting that alkannin could potentially inhibit neurodegeneration in vivo. Overall, these results suggest that alkannin may have novel pharmacological properties for inhibiting amyloid β aggregation and neuronal cell death in AD. SIGNIFICANCE STATEMENT: Aggregated amyloid β formation and accumulation is one of the underlying mechanisms of the pathophysiology of Alzheimer's disease. We found that alkannin had chemical chaperone activity, which can inhibit β-sheet structure formation of amyloid β and its aggregation, neuronal cell death, and Alzheimer's disease phenotype in C. elegans. Overall, alkannin may have novel pharmacological properties for inhibiting amyloid β aggregation and neuronal cell death in Alzheimer's disease.
Collapse
Affiliation(s)
- Toru Hosoi
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Sanyo Onoda, Japan (T.H.); Department of Pharmacotherapy, Graduate School of Biomedical and Health Sciences, Hiroshima University, Minami-ku, Japan (K.Y., M.I., A.T., K.O.); Department of Pharmacology, Kurume University School of Medicine, Kurume, Japan (Y.N.); and Section of Neuromedical Science, Division of Bioscience, Institute of Natural Medicine, University of Toyama, Toyama, Japan (C.T.)
| | - Kyosuke Yazawa
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Sanyo Onoda, Japan (T.H.); Department of Pharmacotherapy, Graduate School of Biomedical and Health Sciences, Hiroshima University, Minami-ku, Japan (K.Y., M.I., A.T., K.O.); Department of Pharmacology, Kurume University School of Medicine, Kurume, Japan (Y.N.); and Section of Neuromedical Science, Division of Bioscience, Institute of Natural Medicine, University of Toyama, Toyama, Japan (C.T.)
| | - Michihiro Imada
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Sanyo Onoda, Japan (T.H.); Department of Pharmacotherapy, Graduate School of Biomedical and Health Sciences, Hiroshima University, Minami-ku, Japan (K.Y., M.I., A.T., K.O.); Department of Pharmacology, Kurume University School of Medicine, Kurume, Japan (Y.N.); and Section of Neuromedical Science, Division of Bioscience, Institute of Natural Medicine, University of Toyama, Toyama, Japan (C.T.)
| | - Akari Tawara
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Sanyo Onoda, Japan (T.H.); Department of Pharmacotherapy, Graduate School of Biomedical and Health Sciences, Hiroshima University, Minami-ku, Japan (K.Y., M.I., A.T., K.O.); Department of Pharmacology, Kurume University School of Medicine, Kurume, Japan (Y.N.); and Section of Neuromedical Science, Division of Bioscience, Institute of Natural Medicine, University of Toyama, Toyama, Japan (C.T.)
| | - Chihiro Tohda
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Sanyo Onoda, Japan (T.H.); Department of Pharmacotherapy, Graduate School of Biomedical and Health Sciences, Hiroshima University, Minami-ku, Japan (K.Y., M.I., A.T., K.O.); Department of Pharmacology, Kurume University School of Medicine, Kurume, Japan (Y.N.); and Section of Neuromedical Science, Division of Bioscience, Institute of Natural Medicine, University of Toyama, Toyama, Japan (C.T.)
| | - Yasuyuki Nomura
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Sanyo Onoda, Japan (T.H.); Department of Pharmacotherapy, Graduate School of Biomedical and Health Sciences, Hiroshima University, Minami-ku, Japan (K.Y., M.I., A.T., K.O.); Department of Pharmacology, Kurume University School of Medicine, Kurume, Japan (Y.N.); and Section of Neuromedical Science, Division of Bioscience, Institute of Natural Medicine, University of Toyama, Toyama, Japan (C.T.)
| | - Koichiro Ozawa
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Sanyo Onoda, Japan (T.H.); Department of Pharmacotherapy, Graduate School of Biomedical and Health Sciences, Hiroshima University, Minami-ku, Japan (K.Y., M.I., A.T., K.O.); Department of Pharmacology, Kurume University School of Medicine, Kurume, Japan (Y.N.); and Section of Neuromedical Science, Division of Bioscience, Institute of Natural Medicine, University of Toyama, Toyama, Japan (C.T.)
| |
Collapse
|
31
|
Martins GF, Nascimento C, Galamba N. Mechanistic Insights into Polyphenols' Aggregation Inhibition of α-Synuclein and Related Peptides. ACS Chem Neurosci 2023; 14:1905-1920. [PMID: 37125909 DOI: 10.1021/acschemneuro.3c00162] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
Abstract
While several polyphenols were found to either inhibit or modulate the aggregation of proteins implicated in neurodegenerative diseases, such as Parkinson's disease (PD), discrepant action mechanisms have been reported. This, in addition to some polyphenols' pan-assay interference compounds' reputation, casts some doubts concerning their therapeutic relevance. Here, we studied, through molecular dynamics and enhanced sampling methods, the aggregation of 11-mer peptides from the non-amyloid-β component, an aggregation-prone domain of α-synuclein (α-syn) implicated in PD and other synucleinopathies, in neat water and aqueous solutions of resveratrol (RSV) and gallic acid (GA). Further, simulations of the complete protein were carried out in aqueous urea, RSV, and GA solutions. Our results show that peptide aggregation is not disrupted by either phenolic compound. Thus, instead, intrusion of RSV and GA in the inter-peptide region induces a peptide-peptide re-orientation, favoring terminal interactions that manifest in the formation of barrierless solvent-separated configurations. Moreover, although the (poly)phenols induce a pronounced peptide dewetting at high concentrations, β-sheet-rich regions, a hallmark of α-syn aggregation, are not disrupted. Thus, our results indicate that, if anything, RSV and GA delay or modulate peptide aggregation at high concentrations via the stabilization of solvent-separated conformations as opposed to aggregation inhibition. Structural analysis of the full protein, however, shows that the (poly)phenols induce more extended conformations of α-syn, similar to urea, possibly also influencing its aggregation propensity. However, opposite to urea, the (poly)phenols reduce α-syn's conformational space, likely due to steric effects and a slowdown of the solvent dynamics. These effects are concentration-dependent and possibly unattainable at therapeutic-relevant concentrations. These results suggest that the aggregation inhibition activity of RSV and GA in vitro should involve, instead, either the non-covalent binding to oligomeric intermediates or the stabilization of the monomer and/or oligomers through the formation of covalent bonds of the respective quinones with α-syn. In addition, the enhanced aggregation tendency of the peptides observed here could be associated with the formation of non-toxic oligomers, reported for some polyphenols.
Collapse
Affiliation(s)
- G F Martins
- BioISI─Biosystems and Integrative Sciences Institute, Faculty of Sciences of the University of Lisbon, C8, Campo Grande, Lisbon 1749-016, Portugal
| | - C Nascimento
- BioISI─Biosystems and Integrative Sciences Institute, Faculty of Sciences of the University of Lisbon, C8, Campo Grande, Lisbon 1749-016, Portugal
| | - N Galamba
- BioISI─Biosystems and Integrative Sciences Institute, Faculty of Sciences of the University of Lisbon, C8, Campo Grande, Lisbon 1749-016, Portugal
| |
Collapse
|
32
|
Impact of nanoparticles on amyloid β-induced Alzheimer's disease, tuberculosis, leprosy and cancer: a systematic review. Biosci Rep 2023; 43:232435. [PMID: 36630532 PMCID: PMC9905792 DOI: 10.1042/bsr20220324] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/13/2023] Open
Abstract
Nanotechnology is an interdisciplinary domain of science, technology and engineering that deals with nano-sized materials/particles. Usually, the size of nanoparticles lies between 1 and 100 nm. Due to their small size and large surface area-to-volume ratio, nanoparticles exhibit high reactivity, greater stability and adsorption capacity. These important physicochemical properties attract scientific community to utilize them in biomedical field. Various types of nanoparticles (inorganic and organic) have broad applications in medical field ranging from imaging to gene therapy. These are also effective drug carriers. In recent times, nanoparticles are utilized to circumvent different treatment limitations. For example, the ability of nanoparticles to cross the blood-brain barrier and having a certain degree of specificity towards amyloid deposits makes themselves important candidates for the treatment of Alzheimer's disease. Furthermore, nanotechnology has been used extensively to overcome several pertinent issues like drug-resistance phenomenon, side effects of conventional drugs and targeted drug delivery issue in leprosy, tuberculosis and cancer. Thus, in this review, the application of different nanoparticles for the treatment of these four important diseases (Alzheimer's disease, tuberculosis, leprosy and cancer) as well as for the effective delivery of drugs used in these diseases has been presented systematically. Although nanoformulations have many advantages over traditional therapeutics for treating these diseases, nanotoxicity is a major concern that has been discussed subsequently. Lastly, we have presented the promising future prospective of nanoparticles as alternative therapeutics. In that section, we have discussed about the futuristic approach(es) that could provide promising candidate(s) for the treatment of these four diseases.
Collapse
|
33
|
Gabriel JM, Tan T, Rinauro DJ, Hsu CM, Buettner CJ, Gilmer M, Kaur A, McKenzie TL, Park M, Cohen S, Errico S, Wright AK, Chiti F, Vendruscolo M, Limbocker R. EGCG inactivates a pore-forming toxin by promoting its oligomerization and decreasing its solvent-exposed hydrophobicity. Chem Biol Interact 2023; 371:110307. [PMID: 36535315 DOI: 10.1016/j.cbi.2022.110307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 12/02/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Natural proteinaceous pore-forming agents can bind and permeabilize cell membranes, leading to ion dyshomeostasis and cell death. In the search for antidotes that can protect cells from peptide toxins, we discovered that the polyphenol epigallocatechin gallate (EGCG) interacts directly with melittin from honeybee venom, resulting in the elimination of its binding to the cell membrane and toxicity by markedly lowering the extent of its solvent-exposed hydrophobicity and promoting its oligomerization into larger species. These physicochemical parameters have also been shown to play a key role in the binding to cells of misfolded protein oligomers in a host of neurodegenerative diseases, where oligomer-membrane binding and associated toxicity have been shown to correlate negatively with oligomer size and positively with solvent-exposed hydrophobicity. For melittin, which is not an amyloid-forming protein and has a very distinct mechanism of toxicity compared to misfolded oligomers, we find that the size-hydrophobicity-toxicity relationship also rationalizes the pharmacological attenuation of melittin toxicity by EGCG. These results highlight the importance of the physicochemical properties of pore forming agents in mediating their interactions with cell membranes and suggest a possible therapeutic approach based on compounds with a similar mechanism of action as EGCG.
Collapse
Affiliation(s)
- Justus M Gabriel
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA
| | - Thomas Tan
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA
| | - Dillon J Rinauro
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Claire M Hsu
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA
| | - Caleb J Buettner
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA
| | - Marshall Gilmer
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA
| | - Amrita Kaur
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA
| | - Tristan L McKenzie
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA
| | - Martin Park
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA
| | - Sophie Cohen
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA
| | - Silvia Errico
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK; Department of Experimental and Clinical Biomedical Sciences, Section of Biochemistry, University of Florence, Florence, Italy
| | - Aidan K Wright
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA
| | - Fabrizio Chiti
- Department of Experimental and Clinical Biomedical Sciences, Section of Biochemistry, University of Florence, Florence, Italy
| | - Michele Vendruscolo
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Ryan Limbocker
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA.
| |
Collapse
|
34
|
Gracia P, Cremades N. Single-Particle Analysis of the Interaction Between Molecules and Protein Aggregated Species by Dual-Color Time-Resolved Fluorescence Spectroscopy. Methods Mol Biol 2023; 2551:379-394. [PMID: 36310216 DOI: 10.1007/978-1-0716-2597-2_25] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Amyloid protein aggregation is widely involved in a number of neurodegenerative diseases for which novel therapeutic and diagnostic strategies are still needed. Owing to the complex and heterogeneous nature of the aggregated species responsible for toxicity in these disorders, a detailed characterization of the interaction of molecules of interest with the amyloid aggregates is a challenging endeavor. Here, we present the experimental and analytical steps of a protocol which combines dual-color fluorescence cross-correlation spectroscopy and dual-color single-particle fluorescence spectroscopy to quantify the binding affinity and stoichiometry of an inhibitor of α-synuclein amyloid aggregation. This approach allows studying the interaction in detail and through two independent analytical methods, thus yielding a remarkably robust tool that could be extended to investigating the interaction of molecules of interest to other pathogenic protein aggregates as well as multi-ligand/multi-receptor complexes.
Collapse
Affiliation(s)
- Pablo Gracia
- Institute for Biocomputation and Physics of Complex Systems (BIFI) and Department of Biochemistry and Molecular and Cellular Biology, University of Zaragoza, Zaragoza, Spain
| | - Nunilo Cremades
- Institute for Biocomputation and Physics of Complex Systems (BIFI) and Department of Biochemistry and Molecular and Cellular Biology, University of Zaragoza, Zaragoza, Spain.
| |
Collapse
|
35
|
Controlling amyloid formation of intrinsically disordered proteins and peptides: slowing down or speeding up? Essays Biochem 2022; 66:959-975. [PMID: 35975807 DOI: 10.1042/ebc20220046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/04/2022] [Accepted: 08/08/2022] [Indexed: 12/30/2022]
Abstract
The pathological assembly of intrinsically disordered proteins/peptides (IDPs) into amyloid fibrils is associated with a range of human pathologies, including neurodegeneration, metabolic diseases and systemic amyloidosis. These debilitating disorders affect hundreds of millions of people worldwide, and the number of people affected is increasing sharply. However, the discovery of therapeutic agents has been immensely challenging largely because of (i) the diverse number of aggregation pathways and the multi-conformational and transient nature of the related proteins or peptides and (ii) the under-development of experimental pipelines for the identification of disease-modifying molecules and their mode-of-action. Here, we describe current approaches used in the search for small-molecule modulators able to control or arrest amyloid formation commencing from IDPs and review recently reported accelerators and inhibitors of amyloid formation for this class of proteins. We compare their targets, mode-of-action and effects on amyloid-associated cytotoxicity. Recent successes in the control of IDP-associated amyloid formation using small molecules highlight exciting possibilities for future intervention in protein-misfolding diseases, despite the challenges of targeting these highly dynamic precursors of amyloid assembly.
Collapse
|
36
|
Reichelderfer VT, Chaparro Sosa AF, Kaar JL, Schwartz DK. Tuning the surface charge of phospholipid bilayers inhibits insulin fibrilization. Colloids Surf B Biointerfaces 2022; 220:112904. [PMID: 36265317 PMCID: PMC10164472 DOI: 10.1016/j.colsurfb.2022.112904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/27/2022] [Accepted: 10/02/2022] [Indexed: 11/27/2022]
Abstract
The interactions between proteins and materials, in particular lipid bilayers, have been studied extensively for their relevance in diseases and for the formulation of protein-based therapeutics and vaccines. However, the precise rules by which material properties induce favorable or unfavorable structural states in biomolecules are incompletely understood, and as a result, the rational design of materials remains challenging. Here, we investigated the influence of lipid bilayers (in the form of small unilamellar vesicles) on the formation of insulin amyloid fibrils using a fibril-specific assay (thioflavin T), polyacrylamide gel electrophoresis, and circular dichroism spectroscopy. Lipid bilayers composed of equal mixtures of cationic and anionic lipids effectively inhibited fibril formation and stabilized insulin in its native conformation. However, other lipid bilayer compositions failed to inhibit fibril formation or even destabilized insulin, exacerbating fibrilization and/or non-amyloid aggregation. Our findings suggest that electrostatic interactions with lipid bilayers can play a critical role in stabilizing or destabilizing insulin, and preventing the conversion of insulin to its amyloidogenic, disease-associated state.
Collapse
Affiliation(s)
- Victoria T Reichelderfer
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO 80309, USA
| | - Andres F Chaparro Sosa
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO 80309, USA
| | - Joel L Kaar
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO 80309, USA.
| | - Daniel K Schwartz
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO 80309, USA.
| |
Collapse
|
37
|
Manzoor S, Prajapati SK, Majumdar S, Khurana S, Krishnamurthy S, Hoda N. Pharmacological Investigations of Selected Multitarget‐Direct Ligands for the Treatment of Alzheimer's Disease. ChemistrySelect 2022. [DOI: 10.1002/slct.202200975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Shoaib Manzoor
- Drug Design and Synthesis Laboratory Department of Chemistry, Jamia Millia Islamia New Delhi India- 110025
| | - Santosh Kumar Prajapati
- Neurotherapeutics Laboratory Department of Pharmaceutical Engineering and Technology Indian Institute of Technology (Banaras Hindu University) Varanasi, U.P India- 221005
| | - Shreyasi Majumdar
- Neurotherapeutics Laboratory Department of Pharmaceutical Engineering and Technology Indian Institute of Technology (Banaras Hindu University) Varanasi, U.P India- 221005
| | - Shilpi Khurana
- Department of Chemistry Deshbandhu College Kalkaji Main Rd, Block H, Kalkaji New Delhi India- 110019
| | - Sairam Krishnamurthy
- Neurotherapeutics Laboratory Department of Pharmaceutical Engineering and Technology Indian Institute of Technology (Banaras Hindu University) Varanasi, U.P India- 221005
| | - Nasimul Hoda
- Drug Design and Synthesis Laboratory Department of Chemistry, Jamia Millia Islamia New Delhi India- 110025
| |
Collapse
|
38
|
Wu R, Ou X, Zhang L, Song X, Wang Z, Dong M, Liu L. Electric Field Effect on Inhibiting the Co-fibrillation of Amyloid Peptides by Modulating the Aggregation Pathway. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:12346-12355. [PMID: 36173231 DOI: 10.1021/acs.langmuir.2c02055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
With the revelation of the close link between Alzheimer's disease (AD) and type II diabetes (T2D) and the possible assembly of multiple amyloid peptides therein, it is critical to understand and regulate the co-fibrillation pathway between related amyloid peptides. Here, we show experimentally and theoretically that electric field (EF) inhibited hybrid amyloid fibrillation of β-amyloid peptide (Aβ) and human islet amyloid peptide (hIAPP) by modulating the hetero-aggregation pathway. Experimental results confirm that the β-sheet secondary structure of amyloid peptides would be disrupted under small static EF and accompanied by transforming fibril aggregates into amorphous particles in vitro. Molecular dynamics simulations further demonstrate that even with the transformation of the secondary structure from β-sheet to random coil, the strong interaction between Aβ and hIAPP peptides would remain largely unaffected under the small static EF, leading to the formation of amorphous nanoparticles observed in the experiments. This inhibitory effect of EF on the co-fibrillation of multiple amyloid peptides might contribute to reducing the mutual deterioration of different degenerative diseases and show great potential for the noninvasive treatment of amyloid-related diseases.
Collapse
Affiliation(s)
- Rongrong Wu
- Institute for Advanced Materials, Jiangsu University, Zhenjiang 212013, China
| | - Xinwen Ou
- Zhejiang Province Key Laboratory of Quantum Technology and Device, School of Physics, Zhejiang University, Zheda Road 38, Hangzhou 310027, China
| | - Liwei Zhang
- Institute for Advanced Materials, Jiangsu University, Zhenjiang 212013, China
| | - Xiaolu Song
- Institute for Advanced Materials, Jiangsu University, Zhenjiang 212013, China
| | - Zengkai Wang
- Institute for Advanced Materials, Jiangsu University, Zhenjiang 212013, China
| | - Mingdong Dong
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus C DK-8000, Denmark
| | - Lei Liu
- Institute for Advanced Materials, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
39
|
Smith AA, Moore KBE, Ambs PM, Saraswati AP, Fortin JS. Recent Advances in the Discovery of Therapeutics to Curtail Islet Amyloid Polypeptide Aggregation for Type 2 Diabetes Treatment. Adv Biol (Weinh) 2022; 6:e2101301. [PMID: 35931462 DOI: 10.1002/adbi.202101301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 07/04/2022] [Indexed: 01/28/2023]
Abstract
In humans with type 2 diabetes, at least 70% of patients exhibit islet amyloid plaques formed by misfolding islet amyloid polypeptides (IAPP). The oligomeric conformation and accumulation of the IAPP plaques lead to a panoply of cytotoxic effects on the islet β-cells. Currently, no marketed therapies for the prevention or elimination of these amyloid deposits exist, and therefore significant efforts are required to address this gap. To date, most of the experimental treatments are limited to only in vitro stages of testing. In general, the proposed therapeutics use various targeting strategies, such as binding to the N-terminal region of islet amyloid polypeptide on residues 1-19 or the hydrophobic region of IAPP. Other strategies include targeting the peptide self-assembly through π-stacking. These methods are realized by using several different families of compounds, four of which are highlighted in this review: naturally occurring products, small molecules, organometallic compounds, and nanoparticles. Each of these categories holds immense potential to optimize and develop inhibitor(s) of pancreatic amyloidosis in the near future.
Collapse
Affiliation(s)
- Alyssa A Smith
- Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, 47907, USA
| | - Kendall B E Moore
- Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, 47907, USA
| | | | - Akella Prasanth Saraswati
- Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, 47907, USA
| | - Jessica S Fortin
- Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
40
|
Das Saha N, Pradhan S, Sasmal R, Sarkar A, Berač CM, Kölsch JC, Pahwa M, Show S, Rozenholc Y, Topçu Z, Alessandrini V, Guibourdenche J, Tsatsaris V, Gagey-Eilstein N, Agasti SS. Cucurbit[7]uril Macrocyclic Sensors for Optical Fingerprinting: Predicting Protein Structural Changes to Identifying Disease-Specific Amyloid Assemblies. J Am Chem Soc 2022; 144:14363-14379. [PMID: 35913703 DOI: 10.1021/jacs.2c05969] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In a three-dimensional (3D) representation, each protein molecule displays a specific pattern of chemical and topological features, which are altered during its misfolding and aggregation pathway. Generating a recognizable fingerprint from such features could provide an enticing approach not only to identify these biomolecules but also to gain clues regarding their folding state and the occurrence of pathologically lethal misfolded aggregates. We report here a universal strategy to generate a fluorescent fingerprint from biomolecules by employing the pan-selective molecular recognition feature of a cucurbit[7]uril (CB[7]) macrocyclic receptor. We implemented a direct sensing strategy by covalently tethering CB[7] with a library of fluorescent reporters. When CB[7] recognizes the chemical and geometrical features of a biomolecule, it brings the tethered fluorophore into the vicinity, concomitantly reporting the nature of its binding microenvironment through a change in their optical signature. The photophysical properties of the fluorophores allow a multitude of probing modes, while their structural features provide additional binding diversity, generating a distinct fluorescence fingerprint from the biomolecule. We first used this strategy to rapidly discriminate a diverse range of protein analytes. The macrocyclic sensor was then applied to probe conformational changes in the protein structure and identify the formation of oligomeric and fibrillar species from misfolded proteins. Notably, the sensor system allowed us to differentiate between different self-assembled forms of the disease-specific amyloid-β (Aβ) aggregates and segregated them from other generic amyloid structures with a 100% identification accuracy. Ultimately, this sensor system predicted clinically relevant changes by fingerprinting serum samples from a cohort of pregnant women.
Collapse
Affiliation(s)
- Nilanjana Das Saha
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, Karnataka 560064, India.,Chemistry & Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, Karnataka 560064, India
| | - Soumen Pradhan
- Chemistry & Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, Karnataka 560064, India
| | - Ranjan Sasmal
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, Karnataka 560064, India
| | - Aritra Sarkar
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, Karnataka 560064, India
| | - Christian M Berač
- Department of Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany.,Graduate School of Materials Science in Mainz, Staudingerweg 9, 55128 Mainz, Germany
| | - Jonas C Kölsch
- Department of Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Meenakshi Pahwa
- Chemistry & Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, Karnataka 560064, India
| | - Sushanta Show
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, Karnataka 560064, India
| | - Yves Rozenholc
- UR 7537 BioSTM, Université Paris Cité, 4 avenue de l'Observatoire, 75006 Paris, France
| | - Zeki Topçu
- UR 7537 BioSTM, Université Paris Cité, 4 avenue de l'Observatoire, 75006 Paris, France
| | - Vivien Alessandrini
- INSERM UMR-S 1139, Université Paris Cité, 4 avenue de l'Observatoire, 75006 Paris, France.,Department of Obstetrics, Cochin Hospital, AP-HP, Université Paris Cité, FHU PREMA, 123 Bd Port-Royal, 75014 Paris, France
| | - Jean Guibourdenche
- INSERM UMR-S 1139, Université Paris Cité, 4 avenue de l'Observatoire, 75006 Paris, France.,Department of Obstetrics, Cochin Hospital, AP-HP, Université Paris Cité, FHU PREMA, 123 Bd Port-Royal, 75014 Paris, France
| | - Vassilis Tsatsaris
- INSERM UMR-S 1139, Université Paris Cité, 4 avenue de l'Observatoire, 75006 Paris, France.,Department of Obstetrics, Cochin Hospital, AP-HP, Université Paris Cité, FHU PREMA, 123 Bd Port-Royal, 75014 Paris, France
| | | | - Sarit S Agasti
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, Karnataka 560064, India.,Chemistry & Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, Karnataka 560064, India
| |
Collapse
|
41
|
Serebryany E, Chowdhury S, Woods CN, Thorn DC, Watson NE, McClelland AA, Klevit RE, Shakhnovich EI. A native chemical chaperone in the human eye lens. eLife 2022; 11:76923. [PMID: 35723573 PMCID: PMC9246369 DOI: 10.7554/elife.76923] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 06/13/2022] [Indexed: 12/02/2022] Open
Abstract
Cataract is one of the most prevalent protein aggregation disorders and still the most common cause of vision loss worldwide. The metabolically quiescent core region of the human lens lacks cellular or protein turnover; it has therefore evolved remarkable mechanisms to resist light-scattering protein aggregation for a lifetime. We now report that one such mechanism involves an unusually abundant lens metabolite, myo-inositol, suppressing aggregation of lens crystallins. We quantified aggregation suppression using our previously well-characterized in vitro aggregation assays of oxidation-mimicking human γD-crystallin variants and investigated myo-inositol’s molecular mechanism of action using solution NMR, negative-stain TEM, differential scanning fluorometry, thermal scanning Raman spectroscopy, turbidimetry in redox buffers, and free thiol quantitation. Unlike many known chemical chaperones, myo-inositol’s primary target was not the native, unfolded, or final aggregated states of the protein; rather, we propose that it was the rate-limiting bimolecular step on the aggregation pathway. Given recent metabolomic evidence that it is severely depleted in human cataractous lenses compared to age-matched controls, we suggest that maintaining or restoring healthy levels of myo-inositol in the lens may be a simple, safe, and globally accessible strategy to prevent or delay lens opacification due to age-onset cataract.
Collapse
Affiliation(s)
- Eugene Serebryany
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, United States
| | - Sourav Chowdhury
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, United States
| | - Christopher N Woods
- Department of Biochemistry, University of Washington, Seattle, United States
| | - David C Thorn
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, United States
| | - Nicki E Watson
- Center for Nanoscale Systems, Harvard University, Cambridge, United States
| | | | - Rachel E Klevit
- Department of Biochemistry, University of Washington, Seattle, United States
| | - Eugene I Shakhnovich
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, United States
| |
Collapse
|
42
|
Intrinsically disordered proteins and proteins with intrinsically disordered regions in neurodegenerative diseases. Biophys Rev 2022; 14:679-707. [DOI: 10.1007/s12551-022-00968-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 05/28/2022] [Indexed: 12/14/2022] Open
|
43
|
Vidović M, Rikalovic MG. Alpha-Synuclein Aggregation Pathway in Parkinson's Disease: Current Status and Novel Therapeutic Approaches. Cells 2022; 11:cells11111732. [PMID: 35681426 PMCID: PMC9179656 DOI: 10.3390/cells11111732] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/20/2022] [Accepted: 05/22/2022] [Indexed: 01/27/2023] Open
Abstract
Following Alzheimer’s, Parkinson’s disease (PD) is the second-most common neurodegenerative disorder, sharing an unclear pathophysiology, a multifactorial profile, and massive social costs worldwide. Despite this, no disease-modifying therapy is available. PD is tightly associated with α-synuclein (α-Syn) deposits, which become organised into insoluble, amyloid fibrils. As a typical intrinsically disordered protein, α-Syn adopts a monomeric, random coil conformation in an aqueous solution, while its interaction with lipid membranes drives the transition of the molecule part into an α-helical structure. The central unstructured region of α-Syn is involved in fibril formation by converting to well-defined, β-sheet rich secondary structures. Presently, most therapeutic strategies against PD are focused on designing small molecules, peptides, and peptidomimetics that can directly target α-Syn and its aggregation pathway. Other approaches include gene silencing, cell transplantation, stimulation of intracellular clearance with autophagy promoters, and degradation pathways based on immunotherapy of amyloid fibrils. In the present review, we sum marise the current advances related to α-Syn aggregation/neurotoxicity. These findings present a valuable arsenal for the further development of efficient, nontoxic, and non-invasive therapeutic protocols for disease-modifying therapy that tackles disease onset and progression in the future.
Collapse
Affiliation(s)
- Marija Vidović
- Laboratory for Plant Molecular Biology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia
- Correspondence: ; Tel.: +38-16-4276-3221
| | - Milena G. Rikalovic
- Environment and Sustainable Development, Singidunum Univeristy, Danijelova 32, 11010 Belgrade, Serbia;
| |
Collapse
|
44
|
Li L, Liu J, Li X, Tang Y, Shi C, Zhang X, Cui Y, Wang L, Xu W. Influencing factors and characterization methods of nanoparticles regulating amyloid aggregation. SOFT MATTER 2022; 18:3278-3290. [PMID: 35437550 DOI: 10.1039/d1sm01704g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Human disorders associated with amyloid aggregation, such as Alzheimer's disease and Parkinson's disease, afflict the lives of millions worldwide. When peptides and proteins in the body are converted to amyloids, which have a tendency to aggregate, the toxic oligomers produced during the aggregation process can trigger a range of diseases. Nanoparticles (NPs) have been found to possess surface effects that can modulate the amyloid aggregation process and they have potential application value in the treatment of diseases related to amyloid aggregation and fibrillary tangles. In this review, we discuss recent progress relating to studies of nanoparticles that regulate amyloid aggregation. The review focuses on the factors influencing this regulation, which are important as guidelines for the future design of NPs for the treatment of amyloid aggregation. We describe the characterization methods that have been utilized so far in such studies. This review provides research information and characterization methods for the rational design of NPs, which should result in therapeutic strategies for amyloid diseases.
Collapse
Affiliation(s)
- Lingyi Li
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China.
| | - Jianhui Liu
- Yantai Center of Ecology and Environment Monitoring of Shandong Province, Yantai 264025, China
| | - Xinyue Li
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China.
| | - Yuanhan Tang
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China.
| | - Changxin Shi
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China.
| | - Xin Zhang
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China.
| | - Yuming Cui
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China.
| | - Linlin Wang
- State Key Laboratory of Long-Acting and Targeting Drug Delivery System, Shandong Luye Pharmaceutical Co., Ltd, Yantai 264000, China.
| | - Wenlong Xu
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China.
| |
Collapse
|
45
|
Michaels TCT, Dear AJ, Cohen SIA, Vendruscolo M, Knowles TPJ. Kinetic profiling of therapeutic strategies for inhibiting the formation of amyloid oligomers. J Chem Phys 2022; 156:164904. [PMID: 35490011 DOI: 10.1063/5.0077609] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Protein self-assembly into amyloid fibrils underlies several neurodegenerative conditions, including Alzheimer's and Parkinson's diseases. It has become apparent that the small oligomers formed during this process constitute neurotoxic molecular species associated with amyloid aggregation. Targeting the formation of oligomers represents, therefore, a possible therapeutic avenue to combat these diseases. However, it remains challenging to establish which microscopic steps should be targeted to suppress most effectively the generation of oligomeric aggregates. Recently, we have developed a kinetic model of oligomer dynamics during amyloid aggregation. Here, we use this approach to derive explicit scaling relationships that reveal how key features of the time evolution of oligomers, including oligomer peak concentration and lifetime, are controlled by the different rate parameters. We discuss the therapeutic implications of our framework by predicting changes in oligomer concentrations when the rates of the individual microscopic events are varied. Our results identify the kinetic parameters that control most effectively the generation of oligomers, thus opening a new path for the systematic rational design of therapeutic strategies against amyloid-related diseases.
Collapse
Affiliation(s)
- Thomas C T Michaels
- Department of Physics and Astronomy, Institute for the Physics of Living Systems, University College London, London, United Kingdom
| | - Alexander J Dear
- Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Samuel I A Cohen
- Department of Physics and Astronomy, Institute for the Physics of Living Systems, University College London, London, United Kingdom
| | - Michele Vendruscolo
- Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Tuomas P J Knowles
- Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
46
|
Mechanisms of enhanced aggregation and fibril formation of Parkinson's disease-related variants of α-synuclein. Sci Rep 2022; 12:6770. [PMID: 35474118 PMCID: PMC9043213 DOI: 10.1038/s41598-022-10789-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 04/08/2022] [Indexed: 12/18/2022] Open
Abstract
Aggregation of α-synuclein (α-syn) into amyloid fibrils is closely associated with Parkinson’s disease (PD). Familial mutations or posttranslational truncations in α-syn are known as risk factor for PD. Here, we examined the effects of the PD-related A30P or A53T point mutation and C-terminal 123–140 or 104–140 truncation on the aggregating property of α-syn based on the kinetic and thermodynamic analyses. Thioflavin T fluorescence measurements indicated that A53T, Δ123‒140, and Δ104–140 variants aggregated faster than WT α-syn, in which the A53T mutation markedly increases nucleation rate whereas the Δ123‒140 or Δ104‒140 truncation significantly increases both nucleation and fibril elongation rates. Ultracentrifugation and western blotting analyses demonstrated that these mutations or truncations promote the conversion of monomer to aggregated forms of α-syn. Analysis of the dependence of aggregation reaction of α-syn variants on the monomer concentration suggested that the A53T mutation enhances conversion of monomers to amyloid nuclei whereas the C-terminal truncations, especially the Δ104–140, enhance autocatalytic aggregation on existing fibrils. In addition, thermodynamic analysis of the kinetics of nucleation and fibril elongation of α-syn variants indicated that both nucleation and fibril elongation of WT α-syn are enthalpically and entropically unfavorable. Interestingly, the unfavorable activation enthalpy of nucleation greatly decreases for the A53T and becomes reversed in sign for the C-terminally truncated variants. Taken together, our results indicate that the A53T mutation and the C-terminal truncation enhance α-syn aggregation by reducing unfavorable activation enthalpy of nucleation, and the C-terminal truncation further triggers the autocatalytic fibril elongation on the fibril surfaces.
Collapse
|
47
|
Lebold KM, Best RB. Tuning Formation of Protein-DNA Coacervates by Sequence and Environment. J Phys Chem B 2022; 126:2407-2419. [PMID: 35317553 DOI: 10.1021/acs.jpcb.2c00424] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The high concentration of nucleic acids and positively charged proteins in the cell nucleus provides many possibilities for complex coacervation. We consider a prototypical mixture of nucleic acids together with the polycationic C-terminus of histone H1 (CH1). Using a minimal coarse-grained model that captures the shape, flexibility, and charge distributions of the molecules, we find that coacervates are readily formed at physiological ionic strengths, in agreement with experiment, with a progressive increase in local ordering at low ionic strength. Variation of the positions of charged residues in the protein tunes phase separation: for well-mixed or only moderately blocky distributions of charge, there is a modest increase of local ordering with increasing blockiness that is also associated with an increased propensity to phase separate. This ordering is also associated with a slowdown of rotational and translational diffusion in the dense phase. However, for more extreme blockiness (and consequently higher local charge density), we see a qualitative change in the condensed phase to become a segregated structure with a dramatically increased ordering of the DNA. Naturally occurring proteins with these sequence properties, such as protamines in sperm cells, are found to be associated with very dense packing of nucleic acids.
Collapse
Affiliation(s)
- Kathryn M Lebold
- Laboratory of Chemical Physics, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Robert B Best
- Laboratory of Chemical Physics, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
48
|
Xu Y, Maya-Martinez R, Guthertz N, Heath GR, Manfield IW, Breeze AL, Sobott F, Foster R, Radford SE. Tuning the rate of aggregation of hIAPP into amyloid using small-molecule modulators of assembly. Nat Commun 2022; 13:1040. [PMID: 35210421 PMCID: PMC8873464 DOI: 10.1038/s41467-022-28660-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 01/28/2022] [Indexed: 02/06/2023] Open
Abstract
Human islet amyloid polypeptide (hIAPP) self-assembles into amyloid fibrils which deposit in pancreatic islets of type 2 diabetes (T2D) patients. Here, we applied chemical kinetics to study the mechanism of amyloid assembly of wild-type hIAPP and its more amyloidogenic natural variant S20G. We show that the aggregation of both peptides involves primary nucleation, secondary nucleation and elongation. We also report the discovery of two structurally distinct small-molecule modulators of hIAPP assembly, one delaying the aggregation of wt hIAPP, but not S20G; while the other enhances the rate of aggregation of both variants at substoichiometric concentrations. Investigation into the inhibition mechanism(s) using chemical kinetics, native mass spectrometry, fluorescence titration, SPR and NMR revealed that the inhibitor retards primary nucleation, secondary nucleation and elongation, by binding peptide monomers. By contrast, the accelerator predominantly interacts with species formed in the lag phase. These compounds represent useful chemical tools to study hIAPP aggregation and may serve as promising starting-points for the development of therapeutics for T2D.
Collapse
Affiliation(s)
- Yong Xu
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Roberto Maya-Martinez
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Nicolas Guthertz
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - George R Heath
- Astbury Centre for Structural Molecular Biology, School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT, UK
| | - Iain W Manfield
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Alexander L Breeze
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Frank Sobott
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Richard Foster
- Astbury Centre for Structural Molecular Biology, School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK.
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
49
|
Nedaei H, Rezaei-Ghaleh N, Giller K, Becker S, Karami L, Moosavi-Movahedi AA, Griesinger C, Saboury AA. The Calcium-free form of Atorvastatin inhibits amyloid-β(1-42) aggregation in vitro. J Biol Chem 2022; 298:101662. [PMID: 35104501 PMCID: PMC8898965 DOI: 10.1016/j.jbc.2022.101662] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/13/2022] [Accepted: 01/16/2022] [Indexed: 11/29/2022] Open
Abstract
Alzheimer's disease is characterized by the presence of extraneuronal amyloid plaques composed of amyloid-beta (Aβ) fibrillar aggregates in the brains of patients. In mouse models, it has previously been shown that atorvastatin (Ator), a cholesterol-lowering drug, has some reducing effect on the production of cerebral Aβ. A meta-analysis on humans showed moderate effects in the short term but no improvement in the Alzheimer's Disease Assessment Scale—Cognitive Subscale behavioral test. Here, we explore a potential direct effect of Ator on Aβ42 aggregation. Using NMR-based monomer consumption assays and CD spectroscopy, we observed a promoting effect of Ator in its original form (Ator-calcium) on Aβ42 aggregation, as expected because of the presence of calcium ions. The effect was reversed when applying a CaCO3-based calcium ion scavenging method, which was validated by the aforementioned methods as well as thioflavin-T fluorescence assays and transmission electron microscopy. We found that the aggregation was inhibited significantly when the concentration of calcium-free Ator exceeded that of Aβ by at least a factor of 2. The 1H–15N heteronuclear single quantum correlation and saturation-transfer difference NMR data suggest that calcium-free Ator exerts its effect through interaction with the 16KLVF19 binding site on the Aβ peptide via its aromatic rings as well as hydroxyl and methyl groups. On the other hand, molecular dynamics simulations confirmed that the increasing concentration of Ator is necessary for the inhibition of the conformational transition of Aβ from an α-helix-dominant to a β-sheet-dominant structure.
Collapse
Affiliation(s)
- Hadi Nedaei
- Department of Biophysics, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Nasrollah Rezaei-Ghaleh
- Department of NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany; Institute of Physical Biology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Karin Giller
- Department of NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Stefan Becker
- Department of NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Leila Karami
- Department of Cell and Molecular Biology, Kharazmi University, Tehran, Iran
| | - Ali Akbar Moosavi-Movahedi
- Department of Biophysics, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Christian Griesinger
- Department of NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.
| | - Ali Akbar Saboury
- Department of Biophysics, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran.
| |
Collapse
|
50
|
Petri L, Ábrányi-Balogh P, Vagrys D, Imre T, Varró N, Mándity I, Rácz A, Wittner L, Tóth K, Tóth EZ, Juhász T, Davis B, Keserű GM. A covalent strategy to target intrinsically disordered proteins:Discovery of novel tau aggregation inhibitors. Eur J Med Chem 2022; 231:114163. [DOI: 10.1016/j.ejmech.2022.114163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/17/2022] [Accepted: 01/26/2022] [Indexed: 12/28/2022]
|