1
|
Yatera K, Nishida C, Mukae H. Up-to-date nucleic acid assays for diagnosing respiratory infection. Respir Investig 2025; 63:383-393. [PMID: 40107222 DOI: 10.1016/j.resinv.2025.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/26/2025] [Accepted: 03/07/2025] [Indexed: 03/22/2025]
Abstract
Nucleic acid assays have been widely used as rapid tests for diagnosing respiratory infections during and after the coronavirus disease 2019 (COVID-19) pandemic. An ideal point-of-care diagnostic must be affordable, sensitive, specific, user-friendly, rapid/robust, equipment-free and deliverable (ASSURED), and in addition to improvements to conventional methods based on polymerase chain reaction (PCR), point-of-care testing aiming for "REASSURED" are emerging through integration with microfluidic technology. Compared to conventional immunoassays, nucleic acid assays, especially rapid nucleic acid assays as point-of-care testing, contribute to improvements in various clinical outcomes, such as diagnostic yield, turnaround time, length of hospital stay, disease treatment, and infection control management. Rapid and diverse development of new nucleic acid-based molecular diagnostic technologies, such as those based on the CRISPR/Cas system or biosensor nucleic acid assays, is expected to become increasingly diverse in the future as point-of-care testing. In addition, laboratory-based DNA sequencing technology has been used to perform microbiome analyses over a wide area and is expected to shed light on the pathological mechanisms of various respiratory infectious diseases. One example of the benefits of nucleic acid amplification analysis methods is their ability to reveal the true nature of the bacterial flora in pneumonia lesions. This has been demonstrated based on the results of 16S ribosomal RNA gene sequencing analyses using bronchoalveolar lavage fluid directly obtained from pneumonia lesions in patients with pneumonia.
Collapse
Affiliation(s)
- Kazuhiro Yatera
- Department of Respiratory Medicine, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahata-nishi-ku, Fukuoka, Kitakyushu City, 807-8555, Japan.
| | - Chinatsu Nishida
- Department of Environmental Health Engineering, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahata-nishi-ku, Fukuoka, Kitakyushu City, 807-8555, Japan
| | - Hiroshi Mukae
- Department of Respiratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| |
Collapse
|
2
|
Liu Y, Yu G, Liang H, Sun W, Zhang L, Mauk MG, Li H, Chen L. Detection and identification of SARS-CoV-2 and influenza a based on microfluidic technology. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:4582-4589. [PMID: 38919038 DOI: 10.1039/d4ay00847b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
As of now, the global COVID-19 pandemic caused by SARS-CoV-2, which began in 2019, has been effectively controlled. However, the symptoms of influenza A virus infection were similar to those of SARS-CoV-2 infection, but they required different treatment approaches. To make the detection more accurate and the treatment more targeted. We developed a system that integrates RPA and CRISPR assays, allowing for the rapid, highly specific, and sensitive detection and differentiation of SARS-CoV-2, H1N1, and H3N2. Under isothermal amplification conditions, the RPA-CRISPR Cas12a detection system achieved a detection limit as low as 5 copies per μL, demonstrating excellent specificity. The measurement time was approximately 30 minutes. The RPA-CRISPR Cas12a detection system combined with the microfluidic chip we designed to simultaneously detect three viruses, providing a potential solution for efficient and reliable diagnosis.
Collapse
Affiliation(s)
- Yujie Liu
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan Shandong, China.
| | - Guanliu Yu
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan Shandong, China.
| | - Hongkun Liang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan Shandong, China.
| | - Wenbo Sun
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan Shandong, China
| | - Lulu Zhang
- College of Information Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Michael G Mauk
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| | - Hua Li
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan Shandong, China.
| | - Lei Chen
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, Jinan Shandong, China.
| |
Collapse
|
3
|
Iyer RR, Applegate CC, Arogundade OH, Bangru S, Berg IC, Emon B, Porras-Gomez M, Hsieh PH, Jeong Y, Kim Y, Knox HJ, Moghaddam AO, Renteria CA, Richard C, Santaliz-Casiano A, Sengupta S, Wang J, Zambuto SG, Zeballos MA, Pool M, Bhargava R, Gaskins HR. Inspiring a convergent engineering approach to measure and model the tissue microenvironment. Heliyon 2024; 10:e32546. [PMID: 38975228 PMCID: PMC11226808 DOI: 10.1016/j.heliyon.2024.e32546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/22/2024] [Accepted: 06/05/2024] [Indexed: 07/09/2024] Open
Abstract
Understanding the molecular and physical complexity of the tissue microenvironment (TiME) in the context of its spatiotemporal organization has remained an enduring challenge. Recent advances in engineering and data science are now promising the ability to study the structure, functions, and dynamics of the TiME in unprecedented detail; however, many advances still occur in silos that rarely integrate information to study the TiME in its full detail. This review provides an integrative overview of the engineering principles underlying chemical, optical, electrical, mechanical, and computational science to probe, sense, model, and fabricate the TiME. In individual sections, we first summarize the underlying principles, capabilities, and scope of emerging technologies, the breakthrough discoveries enabled by each technology and recent, promising innovations. We provide perspectives on the potential of these advances in answering critical questions about the TiME and its role in various disease and developmental processes. Finally, we present an integrative view that appreciates the major scientific and educational aspects in the study of the TiME.
Collapse
Affiliation(s)
- Rishyashring R. Iyer
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Catherine C. Applegate
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Opeyemi H. Arogundade
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Sushant Bangru
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Ian C. Berg
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Bashar Emon
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Marilyn Porras-Gomez
- Department of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Pei-Hsuan Hsieh
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Yoon Jeong
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Yongdeok Kim
- Department of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Hailey J. Knox
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Amir Ostadi Moghaddam
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Carlos A. Renteria
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Craig Richard
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Ashlie Santaliz-Casiano
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Sourya Sengupta
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Jason Wang
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Samantha G. Zambuto
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Maria A. Zeballos
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Marcia Pool
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Rohit Bhargava
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Chemical and Biochemical Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- NIH/NIBIB P41 Center for Label-free Imaging and Multiscale Biophotonics (CLIMB), University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - H. Rex Gaskins
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Biomedical and Translational Sciences, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Pathobiology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| |
Collapse
|
4
|
Jeyaraman M, Jeyaraman N, Nallakumarasamy A, Ramasubramanian S, Muthu S. Beginning of the era of Organ-on-Chip models in osteoarthritis research. J Clin Orthop Trauma 2024; 52:102422. [PMID: 38708089 PMCID: PMC11067495 DOI: 10.1016/j.jcot.2024.102422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/12/2024] [Accepted: 04/23/2024] [Indexed: 05/07/2024] Open
Abstract
Osteoarthritis (OA) is a prevalent degenerative joint disease characterized by the progressive breakdown of joint cartilage and underlying bone, affecting millions globally. Traditional research models, including in-vitro cell cultures and in-vivo animal studies, have provided valuable insights but exhibit limitations in replicating the complex human joint environment. This review article focuses on the transformative role of Organ-on-Chip (OoC) and Joint-on-Chip (JoC) technologies in OA research. OoC and JoC models, rooted in microfluidics, integrate cellular biology with engineered environments to create dynamic, physiologically relevant models that closely resemble human tissues and organs. These models enable an accurate depiction of pathogenesis, offering deeper insights into molecular and cellular mechanisms driving the disease. This review explores the evolution of OoC technology in OA research, highlighting its contributions to disease modeling, therapeutic discovery, and personalized medicine. It delves into the design concepts, fabrication techniques, and integration strategies of joint components in JoC models, emphasizing their role in accurately mimicking joint tissues and facilitating the study of intricate cellular interactions. The article also discusses the significant advancements made in OA research through published JoC models and projects the future scope of these technologies, including their potential in personalized medicine and high-throughput drug screening. The evolution of JoC models signifies a paradigm shift in OA research, offering a promising path toward more effective and targeted therapeutic strategies.
Collapse
Affiliation(s)
- Madhan Jeyaraman
- Department of Orthopaedics, ACS Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai, 600077, Tamil Nadu, India
| | - Naveen Jeyaraman
- Department of Orthopaedics, ACS Medical College and Hospital, Dr MGR Educational and Research Institute, Chennai, 600077, Tamil Nadu, India
| | - Arulkumar Nallakumarasamy
- Department of Orthopaedics, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Karaikal, 609602, Puducherry, India
| | - Swaminathan Ramasubramanian
- Department of Orthopaedics, Government Medical College, Omandurar Government Estate, Chennai, 600002, Tamil Nadu, India
| | - Sathish Muthu
- Department of Orthopaedics, Government Medical College and Hospital, Karur, 639004, Tamil Nadu, India
- Orthopaedic Research Group, Coimbatore, 641045, Tamil Nadu, India
- Department of Biotechnology, Faculty of Engineering, Karpagam Academy of Higher Education, Coimbatore, 641021, Tamil Nadu, India
| |
Collapse
|
5
|
Uttam I, Sudarsan S, Ray R, Chinnappan R, Yaqinuddin A, Al-Kattan K, Mani NK. A Hypothetical Approach to Concentrate Microorganisms from Human Urine Samples Using Paper-Based Adsorbents for Point-of-Care Molecular Assays. Life (Basel) 2023; 14:38. [PMID: 38255653 PMCID: PMC10820215 DOI: 10.3390/life14010038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024] Open
Abstract
This hypothesis demonstrates that the efficiency of loop-mediated isothermal amplification (LAMP) for nucleic acid detection can be positively influenced by the preconcentration of microbial cells onto hydrophobic paper surfaces. The mechanism of this model is based on the high affinity of microbes towards hydrophobic surfaces. Extensive studies have demonstrated that hydrophobic surfaces exhibit enhanced bacterial and fungal adhesion. By exploiting this inherent affinity of hydrophobic paper substrates, the preconcentration approach enables the adherence of a greater number of target cells, resulting in a higher concentration of target templates for amplification directly from urine samples. In contrast to conventional methods, which often involve complex procedures, this approach offers a simpler, cost-effective, and user-friendly alternative. Moreover, the integration of cell adhesion, LAMP amplification, and signal readout within paper origami-based devices can provide a portable, robust, and highly efficient platform for rapid nucleic acid detection. This innovative hypothesis holds significant potential for point-of-care (POC) diagnostics and field surveillance applications. Further research and development in this field will advance the implementation of this technology, contributing to improved healthcare systems and public health outcomes.
Collapse
Affiliation(s)
- Isha Uttam
- Microfluidics, Sensors and Diagnostics (µSenD) Laboratory, Centre for Microfluidics, Biomarkers, Photoceutics and Sensors (μBioPS), Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India; (I.U.); (S.S.)
| | - Sujesh Sudarsan
- Microfluidics, Sensors and Diagnostics (µSenD) Laboratory, Centre for Microfluidics, Biomarkers, Photoceutics and Sensors (μBioPS), Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India; (I.U.); (S.S.)
| | - Rohitraj Ray
- Department of BioSystems Science and Engineering (BSSE), Indian Institute of Science, CV Raman Rd, Bangalore 560012, Karnataka, India;
| | - Raja Chinnappan
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (A.Y.); (K.A.-K.)
- Tissue/Organ Bioengineering & BioMEMS Lab, Organ Transplant Centre of Excellence, Transplant Research & Innovation Department, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Ahmed Yaqinuddin
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (A.Y.); (K.A.-K.)
| | - Khaled Al-Kattan
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (A.Y.); (K.A.-K.)
| | - Naresh Kumar Mani
- Microfluidics, Sensors and Diagnostics (µSenD) Laboratory, Centre for Microfluidics, Biomarkers, Photoceutics and Sensors (μBioPS), Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India; (I.U.); (S.S.)
| |
Collapse
|
6
|
Zhu L, Tang Q, Mao Z, Chen H, Wu L, Qin Y. Microfluidic-based platforms for cell-to-cell communication studies. Biofabrication 2023; 16:012005. [PMID: 38035370 DOI: 10.1088/1758-5090/ad1116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 11/30/2023] [Indexed: 12/02/2023]
Abstract
Intercellular communication is critical to the understanding of human health and disease progression. However, compared to traditional methods with inefficient analysis, microfluidic co-culture technologies developed for cell-cell communication research can reliably analyze crucial biological processes, such as cell signaling, and monitor dynamic intercellular interactions under reproducible physiological cell co-culture conditions. Moreover, microfluidic-based technologies can achieve precise spatial control of two cell types at the single-cell level with high throughput. Herein, this review focuses on recent advances in microfluidic-based 2D and 3D devices developed to confine two or more heterogeneous cells in the study of intercellular communication and decipher the advantages and limitations of these models in specific cellular research scenarios. This review will stimulate the development of more functionalized microfluidic platforms for biomedical research, inspiring broader interests across various disciplines to better comprehend cell-cell communication and other fields, such as tumor heterogeneity and drug screening.
Collapse
Affiliation(s)
- Lvyang Zhu
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, No. 9, Seyuan Road, Nantong 226019, Jiangsu, People's Republic of China
| | - Qu Tang
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, No. 9, Seyuan Road, Nantong 226019, Jiangsu, People's Republic of China
| | - Zhenzhen Mao
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, No. 9, Seyuan Road, Nantong 226019, Jiangsu, People's Republic of China
| | - Huanhuan Chen
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, No. 9, Seyuan Road, Nantong 226019, Jiangsu, People's Republic of China
| | - Li Wu
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, No. 9, Seyuan Road, Nantong 226019, Jiangsu, People's Republic of China
| | - Yuling Qin
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Public Health, Nantong University, No. 9, Seyuan Road, Nantong 226019, Jiangsu, People's Republic of China
| |
Collapse
|
7
|
Escobar A, Diab-Liu A, Bosland K, Xu CQ. Microfluidic Device-Based Virus Detection and Quantification in Future Diagnostic Research: Lessons from the COVID-19 Pandemic. BIOSENSORS 2023; 13:935. [PMID: 37887128 PMCID: PMC10605122 DOI: 10.3390/bios13100935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 10/28/2023]
Abstract
The global economic and healthcare crises experienced over the past three years, as a result of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has significantly impacted the commonplace habits of humans around the world. SARS-CoV-2, the virus responsible for the coronavirus 2019 (COVID-19) phenomenon, has contributed to the deaths of millions of people around the world. The potential diagnostic applications of microfluidic devices have previously been demonstrated to effectively detect and quasi-quantify several different well-known viruses such as human immunodeficiency virus (HIV), influenza, and SARS-CoV-2. As a result, microfluidics has been further explored as a potential alternative to our currently available rapid tests for highly virulent diseases to better combat and manage future potential outbreaks. The outbreak management during COVID-19 was initially hindered, in part, by the lack of available quantitative rapid tests capable of confirming a person's active infectiousness status. Therefore, this review will explore the use of microfluidic technology, and more specifically RNA-based virus detection methods, as an integral part of improved diagnostic capabilities and will present methods for carrying the lessons learned from COVID-19 forward, toward improved diagnostic outcomes for future pandemic-level threats. This review will first explore the context of the COVID-19 pandemic and how diagnostic technology was shown to have required even greater advancements to keep pace with the transmission of such a highly infectious virus. Secondly, the historical significance of integrating microfluidic technology in diagnostics and how the different types of genetic-based detection methods may vary in their potential practical applications. Lastly, the review will summarize the past, present, and future potential of RNA-based virus detection/diagnosis and how it might be used to better prepare for a future pandemic.
Collapse
Affiliation(s)
- Andres Escobar
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada;
| | - Alex Diab-Liu
- Department of Engineering Physics, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada; (A.D.-L.); (K.B.)
| | - Kamaya Bosland
- Department of Engineering Physics, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada; (A.D.-L.); (K.B.)
| | - Chang-qing Xu
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada;
- Department of Engineering Physics, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada; (A.D.-L.); (K.B.)
| |
Collapse
|
8
|
Ren J, Chen W, Zhong Z, Wang N, Chen X, Yang H, Li J, Tang P, Fan Y, Lin F, Bai C, Wu J. Bronchoalveolar Lavage Fluid from Chronic Obstructive Pulmonary Disease Patients Increases Neutrophil Chemotaxis Measured by a Microfluidic Platform. MICROMACHINES 2023; 14:1740. [PMID: 37763903 PMCID: PMC10537285 DOI: 10.3390/mi14091740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/25/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is a persistent and progressive respiratory disorder characterized by expiratory airflow limitation caused by chronic inflammation. Evidence has shown that COPD is correlated with neutrophil chemotaxis towards the airways, resulting in neutrophilic airway inflammation. This study aimed to evaluate neutrophil chemotaxis in bronchoalveolar lavage fluid (BALF) from COPD patients using a high-throughput nine-unit microfluidic platform and explore the possible correlations between neutrophil migratory dynamics and COPD development. The results showed that BALF from COPD patients induced stronger neutrophil chemotaxis than the Control BALF. Our results also showed that the chemotactic migration of neutrophils isolated from the blood of COPD patients was not significantly different from neutrophils from healthy controls, and neutrophil migration in three known chemoattractants (fMLP, IL-8, and LTB4) was not affected by glucocorticoid treatment. Moreover, comparison with clinical data showed a trend of a negative relationship between neutrophil migration chemotactic index (C. I.) in COPD BALF and patient's spirometry data, suggesting a potential correlation between neutrophil migration and the severity of COPD. The present study demonstrated the feasibility of using the microfluidic platform to assess neutrophil chemotaxis in COPD pathogenesis, and it may serve as a potential marker for COPD evaluation in the future.
Collapse
Affiliation(s)
- Jiaqi Ren
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Wenfang Chen
- Department of Pulmonary and Critical Care Medicine, Shenzhen University General Hospital, Shenzhen 518055, China
| | - Zhicheng Zhong
- Department of Pulmonary and Critical Care Medicine, Shenzhen University General Hospital, Shenzhen 518055, China
| | - Ning Wang
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xi Chen
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Hui Yang
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jing Li
- Department of Pulmonary and Critical Care Medicine, Shenzhen University General Hospital, Shenzhen 518055, China
| | - Ping Tang
- Department of Pulmonary and Critical Care Medicine, Shenzhen University General Hospital, Shenzhen 518055, China
| | - Yanping Fan
- School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Francis Lin
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Changqing Bai
- Department of Pulmonary and Critical Care Medicine, Shenzhen University General Hospital, Shenzhen 518055, China
| | - Jiandong Wu
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
9
|
Fang W, Wu J, Cheng M, Zhu X, Du M, Chen C, Liao W, Zhi K, Pan W. Diagnosis of invasive fungal infections: challenges and recent developments. J Biomed Sci 2023; 30:42. [PMID: 37337179 DOI: 10.1186/s12929-023-00926-2] [Citation(s) in RCA: 98] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/13/2023] [Indexed: 06/21/2023] Open
Abstract
BACKGROUND The global burden of invasive fungal infections (IFIs) has shown an upsurge in recent years due to the higher load of immunocompromised patients suffering from various diseases. The role of early and accurate diagnosis in the aggressive containment of the fungal infection at the initial stages becomes crucial thus, preventing the development of a life-threatening situation. With the changing demands of clinical mycology, the field of fungal diagnostics has evolved and come a long way from traditional methods of microscopy and culturing to more advanced non-culture-based tools. With the advent of more powerful approaches such as novel PCR assays, T2 Candida, microfluidic chip technology, next generation sequencing, new generation biosensors, nanotechnology-based tools, artificial intelligence-based models, the face of fungal diagnostics is constantly changing for the better. All these advances have been reviewed here giving the latest update to our readers in the most orderly flow. MAIN TEXT A detailed literature survey was conducted by the team followed by data collection, pertinent data extraction, in-depth analysis, and composing the various sub-sections and the final review. The review is unique in its kind as it discusses the advances in molecular methods; advances in serology-based methods; advances in biosensor technology; and advances in machine learning-based models, all under one roof. To the best of our knowledge, there has been no review covering all of these fields (especially biosensor technology and machine learning using artificial intelligence) with relevance to invasive fungal infections. CONCLUSION The review will undoubtedly assist in updating the scientific community's understanding of the most recent advancements that are on the horizon and that may be implemented as adjuncts to the traditional diagnostic algorithms.
Collapse
Affiliation(s)
- Wenjie Fang
- Department of Dermatology, Shanghai Key Laboratory of Molecular Medical Mycology, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China
| | - Junqi Wu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
- Shanghai Engineering Research Center of Lung Transplantation, Shanghai, 200433, China
| | - Mingrong Cheng
- Department of Anorectal Surgery, The Third Affiliated Hospital of Guizhou Medical University, Guizhou, 558000, China
| | - Xinlin Zhu
- Department of Dermatology, Shanghai Key Laboratory of Molecular Medical Mycology, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China
| | - Mingwei Du
- Department of Dermatology, Shanghai Key Laboratory of Molecular Medical Mycology, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China
| | - Chang Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
- Shanghai Engineering Research Center of Lung Transplantation, Shanghai, 200433, China
| | - Wanqing Liao
- Department of Dermatology, Shanghai Key Laboratory of Molecular Medical Mycology, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China
| | - Kangkang Zhi
- Department of Vascular and Endovascular Surgery, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China.
| | - Weihua Pan
- Department of Dermatology, Shanghai Key Laboratory of Molecular Medical Mycology, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China.
| |
Collapse
|
10
|
Shi J, Zhang Y, Yang M. Recent development of microfluidics-based platforms for respiratory virus detection. BIOMICROFLUIDICS 2023; 17:024104. [PMID: 37035101 PMCID: PMC10076069 DOI: 10.1063/5.0135778] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 02/27/2023] [Indexed: 06/19/2023]
Abstract
With the global outbreak of SARS-CoV-2, the inadequacies of current detection technology for respiratory viruses have been recognized. Rapid, portable, accurate, and sensitive assays are needed to expedite diagnosis and early intervention. Conventional methods for detection of respiratory viruses include cell culture-based assays, serological tests, nucleic acid detection (e.g., RT-PCR), and direct immunoassays. However, these traditional methods are often time-consuming, labor-intensive, and require laboratory facilities, which cannot meet the testing needs, especially during pandemics of respiratory diseases, such as COVID-19. Microfluidics-based techniques can overcome these demerits and provide simple, rapid, accurate, and cost-effective analysis of intact virus, viral antigen/antibody, and viral nucleic acids. This review aims to summarize the recent development of microfluidics-based techniques for detection of respiratory viruses. Recent advances in different types of microfluidic devices for respiratory virus diagnostics are highlighted, including paper-based microfluidics, continuous-flow microfluidics, and droplet-based microfluidics. Finally, the future development of microfluidic technologies for respiratory virus diagnostics is discussed.
Collapse
Affiliation(s)
- Jingyu Shi
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon 999077, Hong Kong SAR, People's Republic of China
| | - Yu Zhang
- Department of Mechanical and Automotive Engineering, Royal Melbourne Institute of Technology, Melbourne, VIC 3000, Australia
| | - Mo Yang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Kowloon 999077, Hong Kong SAR, People's Republic of China
| |
Collapse
|
11
|
Grigorev GV, Lebedev AV, Wang X, Qian X, Maksimov GV, Lin L. Advances in Microfluidics for Single Red Blood Cell Analysis. BIOSENSORS 2023; 13:117. [PMID: 36671952 PMCID: PMC9856164 DOI: 10.3390/bios13010117] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/04/2022] [Accepted: 12/23/2022] [Indexed: 05/24/2023]
Abstract
The utilizations of microfluidic chips for single RBC (red blood cell) studies have attracted great interests in recent years to filter, trap, analyze, and release single erythrocytes for various applications. Researchers in this field have highlighted the vast potential in developing micro devices for industrial and academia usages, including lab-on-a-chip and organ-on-a-chip systems. This article critically reviews the current state-of-the-art and recent advances of microfluidics for single RBC analyses, including integrated sensors and microfluidic platforms for microscopic/tomographic/spectroscopic single RBC analyses, trapping arrays (including bifurcating channels), dielectrophoretic and agglutination/aggregation studies, as well as clinical implications covering cancer, sepsis, prenatal, and Sickle Cell diseases. Microfluidics based RBC microarrays, sorting/counting and trapping techniques (including acoustic, dielectrophoretic, hydrodynamic, magnetic, and optical techniques) are also reviewed. Lastly, organs on chips, multi-organ chips, and drug discovery involving single RBC are described. The limitations and drawbacks of each technology are addressed and future prospects are discussed.
Collapse
Affiliation(s)
- Georgii V. Grigorev
- Data Science and Information Technology Research Center, Tsinghua Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, China
- Mechanical Engineering Department, University of California in Berkeley, Berkeley, CA 94720, USA
- School of Information Technology, Cherepovets State University, 162600 Cherepovets, Russia
| | - Alexander V. Lebedev
- Machine Building Department, Bauman Moscow State University, 105005 Moscow, Russia
| | - Xiaohao Wang
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Xiang Qian
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - George V. Maksimov
- Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
- Physical metallurgy Department, Federal State Autonomous Educational Institution of Higher Education National Research Technological University “MISiS”, 119049 Moscow, Russia
| | - Liwei Lin
- Mechanical Engineering Department, University of California in Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
12
|
Muthamilselvan S, Ramasami Sundhar Baabu P, Palaniappan A. Microfluidics for Profiling miRNA Biomarker Panels in AI-Assisted Cancer Diagnosis and Prognosis. Technol Cancer Res Treat 2023; 22:15330338231185284. [PMID: 37365928 PMCID: PMC10331788 DOI: 10.1177/15330338231185284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/27/2023] [Accepted: 06/07/2023] [Indexed: 06/28/2023] Open
Abstract
Early detection of cancers and their precise subtyping are essential to patient stratification and effective cancer management. Data-driven identification of expression biomarkers coupled with microfluidics-based detection shows promise to revolutionize cancer diagnosis and prognosis. MicroRNAs play key roles in cancers and afford detection in tissue and liquid biopsies. In this review, we focus on the microfluidics-based detection of miRNA biomarkers in AI-based models for early-stage cancer subtyping and prognosis. We describe various subclasses of miRNA biomarkers that could be useful in machine-based predictive modeling of cancer staging and progression. Strategies for optimizing the feature space of miRNA biomarkers are necessary to obtain a robust signature panel. This is followed by a discussion of the issues in model construction and validation towards producing Software-as-Medical-Devices (SaMDs). Microfluidic devices could facilitate the multiplexed detection of miRNA biomarker panels, and an overview of the different strategies for designing such microfluidic systems is presented here, with an outline of the detection principles used and the corresponding performance measures. Microfluidics-based profiling of miRNAs coupled with SaMD represent high-performance point-of-care solutions that would aid clinical decision-making and pave the way for accessible precision personalized medicine.
Collapse
Affiliation(s)
- Sangeetha Muthamilselvan
- Department of Bioinformatics, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, India
| | | | - Ashok Palaniappan
- Department of Bioinformatics, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, India
| |
Collapse
|
13
|
Parween S, Asthana A, Nahar P. Fundamentals of Image-Based Assay (IBA) System for Affordable Point of Care Diagnostics. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
14
|
Yadav S, Tawade P, Bachal K, Rakshe MA, Pundlik Y, Gandhi PS, Majumder A. Scalable large-area mesh-structured microfluidic gradient generator for drug testing applications. BIOMICROFLUIDICS 2022; 16:064103. [PMID: 36483022 PMCID: PMC9726219 DOI: 10.1063/5.0126616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/10/2022] [Indexed: 06/17/2023]
Abstract
Microfluidic concentration gradient generators are useful in drug testing, drug screening, and other cellular applications to avoid manual errors, save time, and labor. However, expensive fabrication techniques make such devices prohibitively costly. Here, in the present work, we developed a microfluidic concentration gradient generator (μCGG) using a recently proposed non-conventional photolithography-less method. In this method, ceramic suspension fluid was shaped into a square mesh by controlling Saffman Taylor instability in a multiport lifted Hele-Shaw cell (MLHSC). Using the shaped ceramic structure as the template, μCGG was prepared by soft lithography. The concentration gradient was characterized and effect of the flow rates was studied using COMSOL simulations. The simulation result was further validated by creating a fluorescein dye (fluorescein isothiocanate) gradient in the fabricated μCGG. To demonstrate the use of this device for drug testing, we created various concentrations of an anticancer drug-curcumin-using the device and determined its inhibitory concentration on cervical cancer cell-line HeLa. We found that the IC50 of curcumin for HeLa matched well with the conventional multi-well drug testing method. This method of μCGG fabrication has multiple advantages over conventional photolithography such as: (i) the channel layout and inlet-outlet arrangements can be changed by simply wiping the ceramic fluid before it solidifies, (ii) it is cost effective, (iii) large area patterning is easily achievable, and (iv) the method is scalable. This technique can be utilized to achieve a broad range of concentration gradient to be used for various biological and non-biological applications.
Collapse
Affiliation(s)
- Shital Yadav
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Pratik Tawade
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Ketaki Bachal
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Makrand A. Rakshe
- Department of Mechanical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Yash Pundlik
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Prasanna S. Gandhi
- Department of Mechanical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Abhijit Majumder
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
15
|
Liu Y, Fan Z, Qiao L, Liu B. Advances in microfluidic strategies for single-cell research. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
16
|
Ghasemi F, Fahimi-Kashani N, Bigdeli A, Alshatteri AH, Abbasi-Moayed S, Al-Jaf SH, Merry MY, Omer KM, Hormozi-Nezhad MR. Paper-based optical nanosensors – A review. Anal Chim Acta 2022; 1238:340640. [DOI: 10.1016/j.aca.2022.340640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/23/2022]
|
17
|
Ahirwar R, Bhattacharya A, Kumar S. Unveiling the underpinnings of various non-conventional ELISA variants: a review article. Expert Rev Mol Diagn 2022; 22:761-774. [PMID: 36004453 DOI: 10.1080/14737159.2022.2117615] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Enzyme-linked immunosorbent assay (ELISA) is a key bio-analytical technique used for the detection of a large array of antigenic substances of scientific, clinical, food safety, and environmental importance. The assay primarily involves capturing and detecting target analytes using specific antigen-antibody interactions. The wide usage of ELISA shoulders on its high specificity and reproducibility. Notwithstanding, the conventional microwell plate-based format of ELISA has some major drawbacks, such as long assay time (4 - 18 h), large sample volumes requirement (100 - 200 μL), lack of multiplicity, and burdensome procedures that limit its utility in rapid and affordable diagnostics. AREAS COVERED Here, we reviewed microfluidic-ELISA, paper-ELISA, aptamer-ELISA, and those based on novel incubation such as heat-ELISA, pressure-ELISA, microwave-ELISA, and sound-ELISA. Further, the current trends and future prospects of these ELISA protocols in clinical diagnostics are discussed. EXPERT OPINION The reviewed non-conventional ELISA formats are relatively rapid, require low reagent volumes, are multiplexable, and could be performed in a low-cost setup. In our opinion, these non-conventional variants of ELISA are on a par with the conventional format for clinical diagnostics and fundamental biological research and hold added clinical translational potential for quick, inexpensive, and convenient measurements.
Collapse
Affiliation(s)
- Rajesh Ahirwar
- Department of Environmental Biochemistry, ICMR-National Institute for Research in Environmental Health, Bhopal-462030, India
| | - Akanksha Bhattacharya
- Department of Environmental Biochemistry, ICMR-National Institute for Research in Environmental Health, Bhopal-462030, India
| | - Saroj Kumar
- School of Biosciences, Apeejay Stya University, Gurgaon- 122103, India
| |
Collapse
|
18
|
Abdul Ghani MA, Nordin AN, Zulhairee M, Che Mohamad Nor A, Shihabuddin Ahmad Noorden M, Muhamad Atan MKF, Ab Rahim R, Mohd Zain Z. Portable Electrochemical Biosensors Based on Microcontrollers for Detection of Viruses: A Review. BIOSENSORS 2022; 12:666. [PMID: 36005062 PMCID: PMC9406062 DOI: 10.3390/bios12080666] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 02/07/2023]
Abstract
With the rise of zoonotic diseases in recent years, there is an urgent need for improved and more accessible screening and diagnostic methods to mitigate future outbreaks. The recent COVID-19 pandemic revealed an over-reliance on RT-PCR, a slow, costly and lab-based method for diagnostics. To better manage the pandemic, a high-throughput, rapid point-of-care device is needed for early detection and isolation of patients. Electrochemical biosensors offer a promising solution, as they can be used to perform on-site tests without the need for centralized labs, producing high-throughput and accurate measurements compared to rapid test kits. In this work, we detail important considerations for the use of electrochemical biosensors for the detection of respiratory viruses. Methods of enhancing signal outputs via amplification of the analyte, biorecognition of elements and modification of the transducer are also explained. The use of portable potentiostats and microfluidics chambers that create a miniature lab are also discussed in detail as an alternative to centralized laboratory settings. The state-of-the-art usage of portable potentiostats for detection of viruses is also elaborated and categorized according to detection technique: amperometry, voltammetry and electrochemical impedance spectroscopy. In terms of integration with microfluidics, RT-LAMP is identified as the preferred method for DNA amplification virus detection. RT-LAMP methods have shorter turnaround times compared to RT-PCR and do not require thermal cycling. Current applications of RT-LAMP for virus detection are also elaborated upon.
Collapse
Affiliation(s)
- Muhammad Afiq Abdul Ghani
- MEMS-VLSI Research Unit, Department of Electrical and Computer Engineering, Engineering Faculty, International Islamic University Malaysia, Kuala Lumpur 53100, Federal Territory of Kuala Lumpur, Malaysia
| | - Anis Nurashikin Nordin
- MEMS-VLSI Research Unit, Department of Electrical and Computer Engineering, Engineering Faculty, International Islamic University Malaysia, Kuala Lumpur 53100, Federal Territory of Kuala Lumpur, Malaysia
| | - Munirah Zulhairee
- Electrochemical Material and Sensor (EMaS) Research Group, Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam 40450, Selangor, Malaysia
| | - Adibah Che Mohamad Nor
- Faculty of Pharmacy, Universiti Teknologi MARA, Puncak Alam Campus, Bandar Puncak Alam 42300, Selangor, Malaysia
| | | | - Muhammad Khairul Faisal Muhamad Atan
- MEMS-VLSI Research Unit, Department of Electrical and Computer Engineering, Engineering Faculty, International Islamic University Malaysia, Kuala Lumpur 53100, Federal Territory of Kuala Lumpur, Malaysia
| | - Rosminazuin Ab Rahim
- MEMS-VLSI Research Unit, Department of Electrical and Computer Engineering, Engineering Faculty, International Islamic University Malaysia, Kuala Lumpur 53100, Federal Territory of Kuala Lumpur, Malaysia
| | - Zainiharyati Mohd Zain
- Electrochemical Material and Sensor (EMaS) Research Group, Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam 40450, Selangor, Malaysia
| |
Collapse
|
19
|
Banh L, Cheung KK, Chan MWY, Young EWK, Viswanathan S. Advances in organ-on-a-chip systems for modelling joint tissue and osteoarthritic diseases. Osteoarthritis Cartilage 2022; 30:1050-1061. [PMID: 35460872 DOI: 10.1016/j.joca.2022.03.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/24/2022] [Accepted: 03/30/2022] [Indexed: 02/07/2023]
Abstract
Joint-on-a-chip (JOC) models are powerful tools that aid in osteoarthritis (OA) research. These microfluidic devices apply emerging organ-on-a-chip technology to recapitulate a multifaceted joint tissue microenvironment. JOCs address the need for advanced, dynamic in vitro models that can mimic the in vivo tissue environment through joint-relevant biomechanical or fluidic integration, an aspect that existing in vitro OA models lack. There are existing review articles on OA models that focus on animal, tissue explant, and two-dimensional and three-dimensional (3D) culture systems, including microbioreactors and 3D printing technology, but there has been limited discussion of JOC models. The aim of this article is to review recent developments in human JOC technology and identify gaps for future advancements. Specifically, mechanical stimulation systems that mimic articular movement, multi-joint tissue cultures that enable crosstalk, and systems that aim to capture aspects of OA inflammation by incorporating immune cells are covered. The development of an advanced JOC model that captures the dynamic joint microenvironment will improve testing and translation of potential OA therapeutics.
Collapse
Affiliation(s)
- L Banh
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, University Health Network, Canada; Krembil Research Institute, University Health Network, Canada; Institute of Biomedical Engineering, University of Toronto, Canada.
| | - K K Cheung
- Department of Mechanical & Industrial Engineering, University of Toronto, Canada.
| | - M W Y Chan
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, University Health Network, Canada; Krembil Research Institute, University Health Network, Canada; Institute of Biomedical Engineering, University of Toronto, Canada.
| | - E W K Young
- Institute of Biomedical Engineering, University of Toronto, Canada; Department of Mechanical & Industrial Engineering, University of Toronto, Canada.
| | - S Viswanathan
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, University Health Network, Canada; Krembil Research Institute, University Health Network, Canada; Institute of Biomedical Engineering, University of Toronto, Canada; Division of Hematology, Department of Medicine, University of Toronto, Canada.
| |
Collapse
|
20
|
Patra I, Kadhim MM, Mahmood Saleh M, Yasin G, Abdulhussain Fadhil A, Sabah Jabr H, Hameed NM. Aptasensor Based on Microfluidic for Foodborne Pathogenic Bacteria and Virus Detection: A Review. Crit Rev Anal Chem 2022; 54:872-881. [PMID: 35831973 DOI: 10.1080/10408347.2022.2099222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
In today's world, which is entangled with numerous foodborne pathogenic bacteria and viruses, it appears to be essential to rethink detection methods of these due to the importance of food safety in our lives. The vast majority of detection methods for foodborne pathogenic bacteria and viruses have suffered from sensitivity and selectivity due to the small size of these pathogens. Besides, these types of sensing approaches can improve on-site detection platforms in the fields of food safety. In recent, microfluidics systems as new emerging types of portable sensing approaches can introduce efficient and simple biodevice by integration with several analytical methods such as electrochemical, optical and colorimetric techniques. Additionally, taking advantage of aptamer as a selective bioreceptor in the sensing of microfluidics system has provided selective, sensitive, portable and affordable sensing approaches. Furthermore, some papers use increased data transferability ability and computational power of these sensing platforms by exploiting smartphones. In this review, we attempted to provide an overview of the current state of the recent aptasensor based on microfluidic for screening of foodborne pathogenic bacteria and viruses. Working strategies, benefits and disadvantages of these sensing approaches are briefly discussed.
Collapse
Affiliation(s)
- Indrajit Patra
- An Independent Researcher, Ex Research Scholar at National Institute of Technology Durgapur, Durgapur, India
| | - Mustafa M Kadhim
- Medical Laboratory Techniques Department, Al-Farahidi University, Baghdad, Iraq
| | - Marwan Mahmood Saleh
- Department of Biophysics, College of Applied Sciences, University Of Anbar, Anbar, Iraq
| | - Ghulam Yasin
- Department of Botany, Bahauddin Zakariya University, Multan, Pakistan
| | - Ali Abdulhussain Fadhil
- College of Medical Technology, Medical Lab Techniques, Al-farahidi University, Baghdad, Iraq
| | - Huda Sabah Jabr
- Anesthesia Techniques Department, Al-Mustaqbal University College, Babylon, Iraq
| | - Noora M Hameed
- Anesthesia techniques, Al-Nisour University College, Babylon, Iraq
| |
Collapse
|
21
|
Pang R, Zhu Q, Wei J, Meng X, Wang Z. Enhancement of the Detection Performance of Paper-Based Analytical Devices by Nanomaterials. Molecules 2022; 27:508. [PMID: 35056823 PMCID: PMC8779822 DOI: 10.3390/molecules27020508] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/29/2021] [Accepted: 01/10/2022] [Indexed: 12/01/2022] Open
Abstract
Paper-based analytical devices (PADs), including lateral flow assays (LFAs), dipstick assays and microfluidic PADs (μPADs), have a great impact on the healthcare realm and environmental monitoring. This is especially evident in developing countries because PADs-based point-of-care testing (POCT) enables to rapidly determine various (bio)chemical analytes in a miniaturized, cost-effective and user-friendly manner. Low sensitivity and poor specificity are the main bottlenecks associated with PADs, which limit the entry of PADs into the real-life applications. The application of nanomaterials in PADs is showing great improvement in their detection performance in terms of sensitivity, selectivity and accuracy since the nanomaterials have unique physicochemical properties. In this review, the research progress on the nanomaterial-based PADs is summarized by highlighting representative recent publications. We mainly focus on the detection principles, the sensing mechanisms of how they work and applications in disease diagnosis, environmental monitoring and food safety management. In addition, the limitations and challenges associated with the development of nanomaterial-based PADs are discussed, and further directions in this research field are proposed.
Collapse
Affiliation(s)
- Renzhu Pang
- Department of Thyroid Surgery, The First Hospital of Jilin University, Changchun 130021, China; (R.P.); (J.W.)
| | - Qunyan Zhu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China;
| | - Jia Wei
- Department of Thyroid Surgery, The First Hospital of Jilin University, Changchun 130021, China; (R.P.); (J.W.)
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China;
| | - Xianying Meng
- Department of Thyroid Surgery, The First Hospital of Jilin University, Changchun 130021, China; (R.P.); (J.W.)
| | - Zhenxin Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China;
- School of Applied Chemical Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
22
|
Nichols ZE, Geddes CD. Sample Preparation and Diagnostic Methods for a Variety of Settings: A Comprehensive Review. Molecules 2021; 26:5666. [PMID: 34577137 PMCID: PMC8470389 DOI: 10.3390/molecules26185666] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/14/2021] [Accepted: 09/14/2021] [Indexed: 11/16/2022] Open
Abstract
Sample preparation is an essential step for nearly every type of biochemical analysis in use today. Among the most important of these analyses is the diagnosis of diseases, since their treatment may rely greatly on time and, in the case of infectious diseases, containing their spread within a population to prevent outbreaks. To address this, many different methods have been developed for use in the wide variety of settings for which they are needed. In this work, we have reviewed the literature and report on a broad range of methods that have been developed in recent years and their applications to point-of-care (POC), high-throughput screening, and low-resource and traditional clinical settings for diagnosis, including some of those that were developed in response to the coronavirus disease 2019 (COVID-19) pandemic. In addition to covering alternative approaches and improvements to traditional sample preparation techniques such as extractions and separations, techniques that have been developed with focuses on integration with smart devices, laboratory automation, and biosensors are also discussed.
Collapse
Affiliation(s)
- Zach E. Nichols
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, 1000 Hilltop Drive, Baltimore, MD 21250, USA;
- Institute of Fluorescence, University of Maryland, Baltimore County, 701 E Pratt Street, Baltimore, MD 21270, USA
| | - Chris D. Geddes
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, 1000 Hilltop Drive, Baltimore, MD 21250, USA;
- Institute of Fluorescence, University of Maryland, Baltimore County, 701 E Pratt Street, Baltimore, MD 21270, USA
| |
Collapse
|
23
|
Bukkitgar SD, Shetti NP, Aminabhavi TM. Electrochemical investigations for COVID-19 detection-A comparison with other viral detection methods. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2021; 420:127575. [PMID: 33162783 PMCID: PMC7605744 DOI: 10.1016/j.cej.2020.127575] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 10/07/2020] [Accepted: 10/26/2020] [Indexed: 05/02/2023]
Abstract
Virus-induced infection such as SARS-CoV-2 is a serious threat to human health and the economic setback of the world. Continued advances in the development of technologies are required before the viruses undergo mutation. The low concentration of viruses in environmental samples makes the detection extremely challenging; simple, accurate and rapid detection methods are in urgent need. Of all the analytical techniques, electrochemical methods have the established capabilities to address the issues. Particularly, the integration of nanotechnology would allow miniature devices to be made available at the point-of-care. This review outlines the capabilities of electrochemical methods in conjunction with nanotechnology for the detection of SARS-CoV-2. Future directions and challenges of the electrochemical biosensors for pathogen detection are covered including wearable and conformal biosensors, detection of plant pathogens, multiplexed detection, and reusable biosensors for on-site monitoring, thereby providing low-cost and disposable biosensors.
Collapse
Key Words
- AIV H5N1, Avian influenza
- AIV, Avian influenza virus
- ASFV, African swine fever virus
- BVDV, Bovine viral diarrhea virus
- CGV, Chikungunya viruses
- CMV, Cucumber mosaic virus
- COVID-19
- CSFV, Classic swine fever virus
- CV, Cyclic voltammetry
- DAstV-1, Duck astrovirus 1
- DAstV-2, Duck astrovirus 2
- DENV, Dengue virus
- DEV, Duck enteritis virus
- DHAV-1, Duck hepatitis A virus 1
- DHAV-3, Duck hepatitis A virus 3
- DPV, Differential pulse voltammetry
- DRV-1, Duck reovirus 1
- DRV-2, Duck reovirus 2
- Detection
- EBV, Epstein-Barr virus
- EIS, Electric impedance spectroscopy
- EPC, External positive controls
- EV, Human enterovirus
- EV71, Human enterovirus 71
- Electrochemical sensor
- FMI SMOF, Fluorescence molecularly imprinted sensor based on a metal–organic framework
- GCE, Glassy carbon electrode
- GCFaV-1, Ginger chlorotic fleck associated virus 1
- GCFaV-2, Ginger chlorotic fleck-associated virus 2
- GEV VN-96, Gastroenteritis virus VN-96
- GPV, Goose parvovirus
- HHV, Human herpes virus 6
- HIAV, Human influenza A viruses
- HPB19, Human parvovirus B19
- HSV, Herpes simplex
- IAV, influenza A virus
- IEA, Interdigitated electrode array
- IMA, Interdigitated microelectrode array
- INAA, Isothermal nucleic acid amplification-based
- JEV, Japanese encephalitis virus
- LAMP, Loop-Mediated Isothermal Amplification
- LSV, Linear sweep voltammetry
- MERS, Middle East respiratory syndrome
- MIEC, Molecularly imprinted electrochemiluminescence
- MNV, Murine norovirus
- MeV, Measles virus
- NNV, Nervous necrosis virus
- Nanotechnology
- PBoV, Porcine bocavirus
- PCNAME, Pt-coated nanostructured alumina membrane electrode
- PCR
- PCRLFS, Polymerase Chain Reaction with a lateral flow strip with a lateral flow strip
- PCV, Porcine circovirus 3
- PEDV, Porcine epidemic diarrhoea virus
- PRRSV, porcine reproductive and respiratory syndrome virus
- PSV, Pseudorabies virus
- RCA, Rolling circle amplification
- RGO, Reduced graphene oxide
- RT-LAMP-VF, RT-LAMP and a vertical flow visualization strip
- RV, Rubella virus
- SARS, Severe acute respiratory syndrome
- SIVH1N1, Swine influenza virus
- SWV, Square wave voltammetry
- TGEV, transmissible gastroenteritis coronavirus
- TMUV, Tembusu virus
- USEGFET, Ultra-sensitive electrolyte-gated field-effect transistor
- VZV, Varicella-zoster virus
- VZV, varicella-Zoster virus
- Viruses
- ZV, Zika virus
Collapse
Affiliation(s)
- Shikandar D Bukkitgar
- Centre for Electrochemical Science and Materials, Department of Chemistry, K.L.E. Institute of Technology, Gokul, Hubballi 580030, Karnataka, India
| | - Nagaraj P Shetti
- Centre for Electrochemical Science and Materials, Department of Chemistry, K.L.E. Institute of Technology, Gokul, Hubballi 580030, Karnataka, India
| | - Tejraj M Aminabhavi
- Pharmaceutical Engineering, Soniya College of Pharmacy, Dharwad 580-007, India
| |
Collapse
|
24
|
Wang L, Qi W, Liu Y, Essien D, Zhang Q, Lin J. Recent Advances on Bioaerosol Collection and Detection in Microfluidic Chips. Anal Chem 2021; 93:9013-9022. [PMID: 34160193 DOI: 10.1021/acs.analchem.1c00908] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Bioaerosols containing pathogenic microorganisms have posed a great threat to human and animal health. Effective monitoring of bioaerosols containing pathogenic viruses and bacteria is of great significance to prevent and control infectious diseases. This Feature summarizes recent advances on bioaerosol collection and detection based on microfluidic chips. Besides, the challenges and trends for bioaerosol collection and detection were also discussed.
Collapse
Affiliation(s)
- Lei Wang
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100083, China.,Department of Biosystems Engineering, University of Manitoba, Winnipeg, Manitoba R3T 5V6, Canada
| | - Wuzhen Qi
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100083, China
| | - Yuanjie Liu
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100083, China
| | - Desmond Essien
- Department of Biosystems Engineering, University of Manitoba, Winnipeg, Manitoba R3T 5V6, Canada
| | - Qiang Zhang
- Department of Biosystems Engineering, University of Manitoba, Winnipeg, Manitoba R3T 5V6, Canada
| | - Jianhan Lin
- Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100083, China
| |
Collapse
|
25
|
Nath P, Kabir MA, Doust SK, Ray A. Diagnosis of Herpes Simplex Virus: Laboratory and Point-of-Care Techniques. Infect Dis Rep 2021; 13:518-539. [PMID: 34199547 PMCID: PMC8293188 DOI: 10.3390/idr13020049] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 05/24/2021] [Indexed: 02/04/2023] Open
Abstract
Herpes is a widespread viral infection caused by the herpes simplex virus (HSV) that has no permanent cure to date. There are two subtypes, HSV-1 and HSV-2, that are known to cause a variety of symptoms, ranging from acute to chronic. HSV is highly contagious and can be transmitted via any type of physical contact. Additionally, viral shedding can also happen from asymptomatic infections. Thus, early and accurate detection of HSV is needed to prevent the transmission of this infection. Herpes can be diagnosed in two ways, by either detecting the presence of the virus in lesions or the antibodies in the blood. Different detection techniques are available based on both laboratory and point of care (POC) devices. Laboratory techniques include different biochemical assays, microscopy, and nucleic acid amplification. In contrast, POC techniques include microfluidics-based tests that enable on-spot testing. Here, we aim to review the different diagnostic techniques, both laboratory-based and POC, their limits of detection, sensitivity, and specificity, as well as their advantages and disadvantages.
Collapse
Affiliation(s)
| | | | | | - Aniruddha Ray
- Department of Physics and Astronomy, University of Toledo, Toledo, OH 43606, USA; (P.N.); (M.A.K.); (S.K.D.)
| |
Collapse
|
26
|
Tarim EA, Karakuzu B, Oksuz C, Sarigil O, Kizilkaya M, Al-Ruweidi MKAA, Yalcin HC, Ozcivici E, Tekin HC. Microfluidic-based virus detection methods for respiratory diseases. EMERGENT MATERIALS 2021; 4:143-168. [PMID: 33786415 PMCID: PMC7992628 DOI: 10.1007/s42247-021-00169-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 01/19/2021] [Indexed: 05/04/2023]
Abstract
With the recent SARS-CoV-2 outbreak, the importance of rapid and direct detection of respiratory disease viruses has been well recognized. The detection of these viruses with novel technologies is vital in timely prevention and treatment strategies for epidemics and pandemics. Respiratory viruses can be detected from saliva, swab samples, nasal fluid, and blood, and collected samples can be analyzed by various techniques. Conventional methods for virus detection are based on techniques relying on cell culture, antigen-antibody interactions, and nucleic acids. However, these methods require trained personnel as well as expensive equipment. Microfluidic technologies, on the other hand, are one of the most accurate and specific methods to directly detect respiratory tract viruses. During viral infections, the production of detectable amounts of relevant antibodies takes a few days to weeks, hampering the aim of prevention. Alternatively, nucleic acid-based methods can directly detect the virus-specific RNA or DNA region, even before the immune response. There are numerous methods to detect respiratory viruses, but direct detection techniques have higher specificity and sensitivity than other techniques. This review aims to summarize the methods and technologies developed for microfluidic-based direct detection of viruses that cause respiratory infection using different detection techniques. Microfluidics enables the use of minimal sample volumes and thereby leading to a time, cost, and labor effective operation. Microfluidic-based detection technologies provide affordable, portable, rapid, and sensitive analysis of intact virus or virus genetic material, which is very important in pandemic and epidemic events to control outbreaks with an effective diagnosis.
Collapse
Affiliation(s)
- E. Alperay Tarim
- Department of Bioengineering, Izmir Institute of Technology, Urla, Izmir, Turkey
| | - Betul Karakuzu
- Department of Bioengineering, Izmir Institute of Technology, Urla, Izmir, Turkey
| | - Cemre Oksuz
- Department of Bioengineering, Izmir Institute of Technology, Urla, Izmir, Turkey
| | - Oyku Sarigil
- Department of Bioengineering, Izmir Institute of Technology, Urla, Izmir, Turkey
| | - Melike Kizilkaya
- Department of Bioengineering, Izmir Institute of Technology, Urla, Izmir, Turkey
| | | | | | - Engin Ozcivici
- Department of Bioengineering, Izmir Institute of Technology, Urla, Izmir, Turkey
| | - H. Cumhur Tekin
- Department of Bioengineering, Izmir Institute of Technology, Urla, Izmir, Turkey
- METU MEMS Center, Ankara, Turkey
| |
Collapse
|
27
|
Basiri A, Heidari A, Nadi MF, Fallahy MTP, Nezamabadi SS, Sedighi M, Saghazadeh A, Rezaei N. Microfluidic devices for detection of RNA viruses. Rev Med Virol 2021; 31:1-11. [PMID: 32844526 PMCID: PMC7460878 DOI: 10.1002/rmv.2154] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 12/12/2022]
Abstract
There is a long way to go before the coronavirus disease 2019 (Covid-19) outbreak comes under control. qRT-PCR is currently used for the detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of Covid-19, but it is expensive, time-consuming, and not as sensitive as it should be. Finding a rapid, easy-to-use, and cheap diagnostic method is necessary to help control the current outbreak. Microfluidic systems provide a platform for many diagnostic tests, including RT-PCR, RT-LAMP, nested-PCR, nucleic acid hybridization, ELISA, fluorescence-Based Assays, rolling circle amplification, aptamers, sample preparation multiplexer (SPM), Porous Silicon Nanowire Forest, silica sol-gel coating/bonding, and CRISPR. They promise faster, cheaper, and easy-to-use methods with higher sensitivity, so microfluidic devices have a high potential to be an alternative method for the detection of viral RNA. These devices have previously been used to detect RNA viruses such as H1N1, Zika, HAV, HIV, and norovirus, with acceptable results. This paper provides an overview of microfluidic systems as diagnostic methods for RNA viruses with a focus on SARS-CoV-2.
Collapse
Affiliation(s)
- Arefeh Basiri
- Department of Biomaterials and Tissue Engineering, School of Advanced Technology in MedicineIsfahan University of Medical SciencesIsfahanIran
- Systematic Review and Meta‐analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), TehranIran
| | - Arash Heidari
- Systematic Review and Meta‐analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), TehranIran
- School of MedicineTehran University of Medical SciencesTehranIran
| | - Melina Farshbaf Nadi
- Systematic Review and Meta‐analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), TehranIran
- School of MedicineTehran University of Medical SciencesTehranIran
| | - Mohammad Taha Pahlevan Fallahy
- Systematic Review and Meta‐analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), TehranIran
- School of MedicineTehran University of Medical SciencesTehranIran
| | - Sasan Salehi Nezamabadi
- Systematic Review and Meta‐analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), TehranIran
- School of MedicineTehran University of Medical SciencesTehranIran
| | - Mohammadreza Sedighi
- Systematic Review and Meta‐analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), TehranIran
- School of MedicineTehran University of Medical SciencesTehranIran
| | - Amene Saghazadeh
- Systematic Review and Meta‐analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), TehranIran
- Research Center for Immunodeficiencies, Children's Medical CenterTehran University of Medical SciencesTehranIran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical CenterTehran University of Medical SciencesTehranIran
- Department of Immunology, School of MedicineTehran University of Medical SciencesTehranIran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), TehranIran
| |
Collapse
|
28
|
Zhuang J, Huo Q, Yang F, Xie N. Perspectives on the Role of Histone Modification in Breast Cancer Progression and the Advanced Technological Tools to Study Epigenetic Determinants of Metastasis. Front Genet 2020; 11:603552. [PMID: 33193750 PMCID: PMC7658393 DOI: 10.3389/fgene.2020.603552] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 10/09/2020] [Indexed: 12/11/2022] Open
Abstract
Metastasis is a complex process that involved in various genetic and epigenetic alterations during the progression of breast cancer. Recent evidences have indicated that the mutation in the genome sequence may not be the key factor for increasing metastatic potential. Epigenetic changes were revealed to be important for metastatic phenotypes transition with the development in understanding the epigenetic basis of breast cancer. Herein, we aim to present the potential epigenetic drivers that induce dysregulation of genes related to breast tumor growth and metastasis, with a particular focus on histone modification including histone acetylation and methylation. The pervasive role of major histone modification enzymes in cancer metastasis such as histone acetyltransferases (HAT), histone deacetylases (HDACs), DNA methyltransferases (DNMTs), and so on are demonstrated and further discussed. In addition, we summarize the recent advances of next-generation sequencing technologies and microfluidic-based devices for enhancing the study of epigenomic landscapes of breast cancer. This feature also introduces several important biotechnologists for identifying robust epigenetic biomarkers and enabling the translation of epigenetic analyses to the clinic. In summary, a comprehensive understanding of epigenetic determinants in metastasis will offer new insights of breast cancer progression and can be achieved in the near future with the development of innovative epigenomic mapping tools.
Collapse
Affiliation(s)
- Jialang Zhuang
- Biobank, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China.,Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Qin Huo
- Biobank, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Fan Yang
- Biobank, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Ni Xie
- Biobank, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China
| |
Collapse
|
29
|
Song B, Wang J, Yan Z, Liu Z, Pan X, Zhang Y, Zhang X. Microfluidics for the rapid detection of Staphylococcus aureus using antibody-coated microspheres. Bioengineered 2020; 11:1137-1145. [PMID: 33070676 PMCID: PMC8291883 DOI: 10.1080/21655979.2020.1831362] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Staphylococcus aureus is a common foodborne pathogenic microorganism which can cause food poisoning and it is pathogenic to both humans and animals. Therefore, rapid detection of S. aureus infection is of great significance. In this study, a microfluidic platform was introduced to detect S. aureus by fluorescence labeling method and a self-made microfluidic chip, which has immune spheres were used to study the effect of capturing S. aureus. Through this experiment, we found that the platform can be used for microbial culture, and S. aureus antibody coated on the diameter of 50 ~ 90 μm microspheres for detection. On the premise of optimizing the sample flow rate and detection time, the bacterial detection was quantitatively monitored. Results showed that our platform can detect S. aureus at injection rate of 5 μL·min−1 reacted for 4 min and the detection limit of bacteria is 1.5 × 101 CFU/μL. However, the detection time of traditional method is 24 hs to 72 hs, and the operation is complex and cumbersome. These findings indicated that the microfluidic chip in this study is portable, sensitive, and accurate, laying a good foundation for further research on the application of rapid bacterial detection platform.
Collapse
Affiliation(s)
- Bo Song
- Department of Clinical Pathogen Biology, Medical Technology College, Qiqihar Medical University , Qiqihar, Heilongjiang, China
| | - Junsheng Wang
- Department of Information Science and Technology, Dalian Maritime University , Dalian, Liaoning, China
| | - Zhijun Yan
- Department of Information Science and Technology, Dalian Maritime University , Dalian, Liaoning, China
| | - Zhijian Liu
- Department of Information Science and Technology, Dalian Maritime University , Dalian, Liaoning, China
| | - Xinxiang Pan
- Maritime College, Guangdong Ocean University , Zhanjiang, China
| | - Yingbo Zhang
- Department of Clinical Pathogen Biology, Medical Technology College, Qiqihar Medical University , Qiqihar, Heilongjiang, China
| | - Xiaojie Zhang
- Department of Clinical Pathogen Biology, Medical Technology College, Qiqihar Medical University , Qiqihar, Heilongjiang, China
| |
Collapse
|
30
|
Rahman SM, Campbell JM, Coates RN, Render KM, Byrne CE, Martin EC, Melvin AT. Evaluation of intercellular communication between breast cancer cells and adipose-derived stem cells via passive diffusion in a two-layer microfluidic device. LAB ON A CHIP 2020; 20:2009-2019. [PMID: 32379852 PMCID: PMC7331673 DOI: 10.1039/d0lc00142b] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Breast cancer tumorigenesis and response to therapy is regulated by cancer cell interactions with the tumor microenvironment (TME). Breast cancer signaling to the surrounding TME results in a heterogeneous and diverse tumor microenvironment, which includes the production of cancer-associated fibroblasts, macrophages, adipocytes, and stem cells. The secretory profile of these cancer-associated cell types results in elevated chemokines and growth factors that promote cell survival and proliferation within the tumor. Current co-culture approaches mostly rely on transwell chambers to study intercellular signaling between adipose-derived stem cells (ASCs) and cancer cells; however, these methods are limited to endpoint measurements and lack dynamic control. In this study, a 4-channel, "flow-free" microfluidic device was developed to co-culture triple-negative MDA-MB-231 breast cancer cells and ASCs to study intercellular communication between two distinct cell types found in the TME. The device consists of two layers: a top PDMS layer with four imprinted channels coupled with a bottom agarose slab enclosed in a Plexiglas chamber. For dynamic co-culture, the device geometry contained two centered, flow-free channels, which were supplied with media from two outer flow channels via orthogonal diffusion through the agarose. Continuous fresh media was provided to the cell culture channel via passive diffusion without creating any shearing effect on the cells. The device geometry also allowed for the passive diffusion of cytokines and growth factors between the two cell types cultured in parallel channels to initiate cell-to-cell crosstalk. The device was used to show that MDA-MB-231 cells co-cultured with ASCs exhibited enhanced growth, a more aggressive morphology, and polarization toward the ASCs. The MDA-MB-231 cells were found to exhibit a greater degree of resistance to the drug paclitaxel when co-cultured with ASCs when compared to single culture studies. This microfluidic device is an ideal platform to study intercellular communication for many types of cells during co-culture experiments and allows for new investigations into stromal cell-mediated drug resistance in the tumor microenvironment.
Collapse
Affiliation(s)
- Sharif M Rahman
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, LA, 70803 USA.
| | | | | | | | | | | | | |
Collapse
|
31
|
Miniaturized technologies for high-throughput drug screening enzymatic assays and diagnostics – A review. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115862] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
32
|
|
33
|
Hassan EM, DeRosa MC. Recent advances in cancer early detection and diagnosis: Role of nucleic acid based aptasensors. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115806] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
34
|
Quantum dot nanoconjugates for immuno-detection of circulating cell-free miRNAs. Talanta 2020; 208:120486. [PMID: 31816728 DOI: 10.1016/j.talanta.2019.120486] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/16/2019] [Accepted: 10/21/2019] [Indexed: 12/13/2022]
|
35
|
Kaneko K, Hara M, Nishino T, Maruyama T. One-Step Biotinylation of Cellulose Paper by Polymer Coating to Prepare a Paper-Based Analytical Device. Anal Chem 2020; 92:1978-1987. [PMID: 31876140 DOI: 10.1021/acs.analchem.9b04373] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cellulose paper has strong potential as an analytical platform owing to its unique characteristics. In the present study, we investigated a procedure for functionalizing the surface of cellulose paper by dip-coating a mixture of a functional polymer and a perfluoroalkylated surfactant (surfactant 1). The functional polymer comprised a mixture of methyl methacrylate and poly(ethylene glycol) methacrylate monomers. The monomer ratio in the functional polymer affected the hydrophilicity and water absorbance of the cellulose paper after dip-coating. Furthermore, the presence of surfactant 1 during dip-coating promoted the surface segregation of poly(ethylene glycol) (PEG) moieties in the polymer, which enhanced the hydrophilicity, prevented nonspecific protein adsorption, and maintained the water absorbance of the dip-coated cellulose paper. Dip-coating with another functional polymer containing biotin groups produced a cellulose paper with a biotin-decorated surface in a one-step procedure. The displayed biotin groups immobilized avidin on the surface, and the PEG moieties in the polymer prevented nonspecific protein adsorption. We then immobilized a thrombin-binding DNA aptamer on the avidin-immobilized cellulose paper to prepare a paper-based analytical device. It is possible to visualize thrombin in model solutions and serum using the paper-based analytical device.
Collapse
Affiliation(s)
- Kazuki Kaneko
- Department of Chemical Science and Engineering, Graduate School of Engineering , Kobe University , 1-1 Rokkodai, Nada-ku , Kobe 657-8501 , Japan
| | - Manami Hara
- Department of Chemical Science and Engineering, Graduate School of Engineering , Kobe University , 1-1 Rokkodai, Nada-ku , Kobe 657-8501 , Japan
| | - Takashi Nishino
- Department of Chemical Science and Engineering, Graduate School of Engineering , Kobe University , 1-1 Rokkodai, Nada-ku , Kobe 657-8501 , Japan
| | - Tatsuo Maruyama
- Department of Chemical Science and Engineering, Graduate School of Engineering , Kobe University , 1-1 Rokkodai, Nada-ku , Kobe 657-8501 , Japan
| |
Collapse
|
36
|
Sagcan H, Turgut Kara N. Detection of Potato ring rot Pathogen Clavibacter michiganensis subsp. sepedonicus by Loop-mediated isothermal amplification (LAMP) assay. Sci Rep 2019; 9:20393. [PMID: 31892706 PMCID: PMC6938510 DOI: 10.1038/s41598-019-56680-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 12/06/2019] [Indexed: 11/09/2022] Open
Abstract
Clavibacter michiganensis subsp. sepedonicus (CMS) is an important bacterial plant pathogen causing potato ring rot disease. Rapid diagnosis of CMS is crucial because of the economic losses caused by serious harvest losses. Although there are serological tests used in the rapid diagnosis of CMS, they are not widely used because of their low sensitivity. The DNA-based PCR methods, which are highly sensitive, do not have the possibility of on-site diagnosis, especially since they require serious laboratory infrastructure. In recent years, scientists have been working on alternative amplification methods to develop DNA-based point of care (POC) diagnostic methods. Accordingly, the loop-mediated isothermal amplification (LAMP) method, which was developed in the early 2000s, provides an important convenience for DNA-based tests to use in the field. Due to the unique design of primers, more amplification products could be create in a shorter time than conventional amplification methods without needing a temperature cycle, and it can be applied with the aid of a simple heater without requiring a laboratory environment. In this study, efficient LAMP method for the detection of CMS has optimized. For device-independent detection of LAMP products, colorimetric method and LFD has used.
Collapse
Affiliation(s)
- Hasan Sagcan
- Istanbul University, Institute of Science, Program of Molecular Biology and Genetics, Istanbul, Turkey
| | - Neslihan Turgut Kara
- Istanbul University, Faculty of Science, Department of Molecular Biology and Genetics, 34134, Istanbul, Turkey.
| |
Collapse
|
37
|
Wlodarczyk KL, Hand DP, Maroto-Valer MM. Maskless, rapid manufacturing of glass microfluidic devices using a picosecond pulsed laser. Sci Rep 2019; 9:20215. [PMID: 31882878 PMCID: PMC6934552 DOI: 10.1038/s41598-019-56711-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 12/10/2019] [Indexed: 12/20/2022] Open
Abstract
Conventional manufacturing of glass microfluidic devices is a complex, multi-step process that involves a combination of different fabrication techniques, typically photolithography, chemical/dry etching and thermal/anodic bonding. As a result, the process is time-consuming and expensive, in particular when developing microfluidic prototypes or even manufacturing them in low quantity. This report describes a fabrication technique in which a picosecond pulsed laser system is the only tool required to manufacture a microfluidic device from transparent glass substrates. The laser system is used for the generation of microfluidic patterns directly on glass, the drilling of inlet/outlet ports in glass covers, and the bonding of two glass plates together in order to enclose the laser-generated patterns from the top. This method enables the manufacturing of a fully-functional microfluidic device in a few hours, without using any projection masks, dangerous chemicals, and additional expensive tools, e.g., a mask writer or bonding machine. The method allows the fabrication of various types of microfluidic devices, e.g., Hele-Shaw cells and microfluidics comprising complex patterns resembling up-scaled cross-sections of realistic rock samples, suitable for the investigation of CO2 storage, water remediation and hydrocarbon recovery processes. The method also provides a route for embedding small 3D objects inside these devices.
Collapse
Affiliation(s)
- Krystian L Wlodarczyk
- Research Centre for Carbon Solutions (RCCS), Institute of Mechanical, Process and Energy Engineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, United Kingdom. .,Institute of Photonics and Quantum Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, United Kingdom.
| | - Duncan P Hand
- Institute of Photonics and Quantum Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, United Kingdom
| | - M Mercedes Maroto-Valer
- Research Centre for Carbon Solutions (RCCS), Institute of Mechanical, Process and Energy Engineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, United Kingdom
| |
Collapse
|
38
|
Sotoudegan MS, Mohd O, Ligler FS, Walker GM. Paper-based passive pumps to generate controllable whole blood flow through microfluidic devices. LAB ON A CHIP 2019; 19:3787-3795. [PMID: 31612163 DOI: 10.1039/c9lc00822e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Fluid manipulation in microfluidic systems is often controlled by active pumps that are relatively large in size and require external power sources which limit their portability and use in limited-resource settings. In this work, portable, detachable, low-cost, and power-free paper pumps with engineered capillary tubes (referred to as "grooves") that can passively drive viscous fluids based on capillary action are presented. The proposed grooved paper pumps are capable of generating a controllable flow of complex biofluids within microfluidic devices with minimal user intervention and no external power sources. The pumping performance of grooved paper pumps in this study is tested with undiluted, unseparated whole blood samples - demonstrating successful transport of approximately 150 μL of blood within an average time of 5 minutes to 50 minutes, depending on their design parameters. Results for the flow rate of grooved paper pumps indicate that the number of grooves created within the porous paper determines the profile of the generated flow rate. The experimental data also show that as the number of grooves in the pumps is increased, the flow rate approaches a constant value for the entire duration of pumping before the pump becomes saturated. The promising performance of grooved paper pumps with whole blood offers potential applications of these small, disposable pumps in point-of-care diagnostics in which time is crucial and access to external power is limited.
Collapse
Affiliation(s)
- Mohamad S Sotoudegan
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and, North Carolina State University, Raleigh, NC 27695, USA
| | - Omar Mohd
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Frances S Ligler
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and, North Carolina State University, Raleigh, NC 27695, USA
| | - Glenn M Walker
- Department of Biomedical Engineering, University of Mississippi, Oxford, MS 38677, USA.
| |
Collapse
|
39
|
Abstract
Microfluidics is an emerging field in diagnostics that allows for extremely precise fluid control and manipulation, enabling rapid and high-throughput sample processing in integrated micro-scale medical systems. These platforms are well-suited for both standard clinical settings and point-of-care applications. The unique features of microfluidics-based platforms make them attractive for early disease diagnosis and real-time monitoring of the disease and therapeutic efficacy. In this chapter, we will first provide a background on microfluidic fundamentals, microfluidic fabrication technologies, microfluidic reactors, and microfluidic total-analysis-systems. Next, we will move into a discussion on the clinical applications of existing and emerging microfluidic platforms for blood analysis, and for diagnosis and monitoring of cancer and infectious disease. Together, this chapter should elucidate the potential that microfluidic systems have in the development of effective diagnostic technologies through a review of existing technologies and promising directions.
Collapse
Affiliation(s)
- Alison Burklund
- Thayer School of Engineering, Dartmouth College, Hanover, NH, United States
| | - Amogha Tadimety
- Thayer School of Engineering, Dartmouth College, Hanover, NH, United States
| | - Yuan Nie
- Thayer School of Engineering, Dartmouth College, Hanover, NH, United States
| | - Nanjing Hao
- Thayer School of Engineering, Dartmouth College, Hanover, NH, United States
| | - John X J Zhang
- Thayer School of Engineering, Dartmouth College, Hanover, NH, United States; Norris Cotton Cancer Center, Dartmouth Hitchcock Medical Center, Lebanon, NH, United States.
| |
Collapse
|
40
|
Soum V, Park S, Brilian AI, Kwon OS, Shin K. Programmable Paper-Based Microfluidic Devices for Biomarker Detections. MICROMACHINES 2019; 10:E516. [PMID: 31382502 PMCID: PMC6722603 DOI: 10.3390/mi10080516] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 07/29/2019] [Accepted: 08/01/2019] [Indexed: 12/13/2022]
Abstract
Recent advanced paper-based microfluidic devices provide an alternative technology for the detection of biomarkers by using affordable and portable devices for point-of-care testing (POCT). Programmable paper-based microfluidic devices enable a wide range of biomarker detection with high sensitivity and automation for single- and multi-step assays because they provide better control for manipulating fluid samples. In this review, we examine the advances in programmable microfluidics, i.e., paper-based continuous-flow microfluidic (p-CMF) devices and paper-based digital microfluidic (p-DMF) devices, for biomarker detection. First, we discuss the methods used to fabricate these two types of paper-based microfluidic devices and the strategies for programming fluid delivery and for droplet manipulation. Next, we discuss the use of these programmable paper-based devices for the single- and multi-step detection of biomarkers. Finally, we present the current limitations of paper-based microfluidics for biomarker detection and the outlook for their development.
Collapse
Affiliation(s)
- Veasna Soum
- Department of Chemistry, Institute of Biological Interfaces, Sogang University, Seoul 04107, Korea
| | - Sooyong Park
- Department of Chemistry, Institute of Biological Interfaces, Sogang University, Seoul 04107, Korea
| | - Albertus Ivan Brilian
- Department of Chemistry, Institute of Biological Interfaces, Sogang University, Seoul 04107, Korea
| | - Oh-Sun Kwon
- Department of Chemistry, Institute of Biological Interfaces, Sogang University, Seoul 04107, Korea
| | - Kwanwoo Shin
- Department of Chemistry, Institute of Biological Interfaces, Sogang University, Seoul 04107, Korea.
| |
Collapse
|
41
|
Vaithiyanathan M, Safa N, Melvin AT. FluoroCellTrack: An algorithm for automated analysis of high-throughput droplet microfluidic data. PLoS One 2019; 14:e0215337. [PMID: 31042738 PMCID: PMC6493727 DOI: 10.1371/journal.pone.0215337] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 03/29/2019] [Indexed: 12/21/2022] Open
Abstract
High-throughput droplet microfluidic devices with fluorescence detection systems provide several advantages over conventional end-point cytometric techniques due to their ability to isolate single cells and investigate complex intracellular dynamics. While there have been significant advances in the field of experimental droplet microfluidics, the development of complementary software tools has lagged. Existing quantification tools have limitations including interdependent hardware platforms or challenges analyzing a wide range of high-throughput droplet microfluidic data using a single algorithm. To address these issues, an all-in-one Python algorithm called FluoroCellTrack was developed and its wide-range utility was tested on three different applications including quantification of cellular response to drugs, droplet tracking, and intracellular fluorescence. The algorithm imports all images collected using bright field and fluorescence microscopy and analyzes them to extract useful information. Two parallel steps are performed where droplets are detected using a mathematical Circular Hough Transform (CHT) while single cells (or other contours) are detected by a series of steps defining respective color boundaries involving edge detection, dilation, and erosion. These feature detection steps are strengthened by segmentation and radius/area thresholding for precise detection and removal of false positives. Individually detected droplet and contour center maps are overlaid to obtain encapsulation information for further analyses. FluoroCellTrack demonstrates an average of a ~92-99% similarity with manual analysis and exhibits a significant reduction in analysis time of 30 min to analyze an entire cohort compared to 20 h required for manual quantification.
Collapse
Affiliation(s)
- Manibarathi Vaithiyanathan
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Nora Safa
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Adam T Melvin
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana, United States of America
| |
Collapse
|
42
|
Shandilya R, Bhargava A, Bunkar N, Tiwari R, Goryacheva IY, Mishra PK. Nanobiosensors: Point-of-care approaches for cancer diagnostics. Biosens Bioelectron 2019; 130:147-165. [PMID: 30735948 DOI: 10.1016/j.bios.2019.01.034] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/21/2018] [Accepted: 01/12/2019] [Indexed: 12/24/2022]
|