1
|
Zheng Z, Ke L, Ye S, Shi P, Yao H. Pharmacological Mechanisms of Cryptotanshinone: Recent Advances in Cardiovascular, Cancer, and Neurological Disease Applications. Drug Des Devel Ther 2024; 18:6031-6060. [PMID: 39703195 PMCID: PMC11658958 DOI: 10.2147/dddt.s494555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 11/26/2024] [Indexed: 12/21/2024] Open
Abstract
Cryptotanshinone (CTS) is an important active ingredient of Salvia miltiorrhiza Bge. In recent years, its remarkable pharmacological effects have triggered extensive and in-depth studies. The aim of this study is to retrieve the latest research progress on CTS and provide prospects for future research. The selection of literature for inclusion, data extraction and methodological quality assessment were discussed. Studies included (1) physicochemical and ADME/Tox properties, (2) pharmacological effects and mechanism, (3) conclusion and bioinformatics analysis. A total of 915 titles and abstracts were screened, resulting in 184 papers used in this review; CTS has shown therapeutic effects on a variety of diseases by modulating multiple molecular pathways. For example, CTS primarily targets NF-κB pathway and MAPK pathway to have a therapeutic role in cardiovascular diseases; in cancer, CTS shows superior efficacy through the PI3K/Akt/mTOR pathway and the JAK/STAT pathway; CTS act on the Nrf2/HO-1 pathway to combat neurological diseases. In addition, key targets of CTS were predicted by bioinformatics analysis, referring to disease ontology (DO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and gene ontology (GO) enrichment analysis, with R Studio; AKT1, MAPK1, STAT3, P53 and EGFR are predicted to be the key targets of CTS against diseases. The key proteins were then docked by Autodock software to preliminarily assess their binding activities. This review provided new insights into research of CTS and its potential applications in the future, and especially the targets and directly binding modes for CTS are waiting to be investigated.
Collapse
Affiliation(s)
- Ziyao Zheng
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, People’s Republic of China
| | - Liyuan Ke
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, People’s Republic of China
| | - Shumin Ye
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, People’s Republic of China
| | - Peiying Shi
- Department of Traditional Chinese Medicine Resource and Bee Products, College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, People’s Republic of China
| | - Hong Yao
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, People’s Republic of China
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fujian Medical University, Fuzhou, 350122, People’s Republic of China
| |
Collapse
|
2
|
Lu Z, Zhu G, Feng X, Xiang Y, Chen C, Yuan H, Chen Z. Exploring the therapeutic potency of cryptotanshinone in cervical cancer: a multi-omics and network pharmacology approach. Front Genet 2024; 15:1435132. [PMID: 39664731 PMCID: PMC11632102 DOI: 10.3389/fgene.2024.1435132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 11/11/2024] [Indexed: 12/13/2024] Open
Abstract
Introduction Cervical cancer remains a significant challenge in oncology with an escalating demand for novel therapeutic strategies that can navigate the complexities of its pathophysiology. This study elucidated the antineoplastic effects of cryptotanshinone, a derivative of danshen (Salvia miltiorrhiza), a herb widely utilized in traditional Chinese medicine practices. Methods Employing a comprehensive multi-omics approach, including transcriptomic, proteomic, and bioinformatics analyses, we investigated the potential effects of cryptotanshinone on cervical cancer through data mining and computational analysis. Results and Discussion Our results demonstrated that the potential of cryptotanshinone to disrupted cancer cell proliferation and induced apoptosis may be ascribed to its modulation of gene expression and interaction with specific protein networks. Furthermore, network pharmacology and pathway enrichment analyses identified critical hubs and signaling pathways, suggesting a multi-targeted mechanism of action. Furthermore, the establishment of a prognostic model, which is founded upon differentially expressed genes linked to cryptotanshinone treatment, underscores its promising role as both a prognostic biomarker and a therapeutic agent. These insights pave the way for the integration of cryptotanshinone into therapeutic regimens, offering a promising avenue for enhancing the efficacy of cervical cancer treatment and patient outcomes.
Collapse
Affiliation(s)
- Zenghong Lu
- Department of Oncology, The First Affiliated Hospital, Gannan Medical University, Ganzhou, China
| | - Gangfeng Zhu
- First Clinical Medical College, Gannan Medical University, Ganzhou, China
| | - Xiaofei Feng
- Department of Oncology, The First Affiliated Hospital, Gannan Medical University, Ganzhou, China
| | - Yi Xiang
- Department of Oncology, The First Affiliated Hospital, Gannan Medical University, Ganzhou, China
| | - Cixiang Chen
- First Clinical Medical College, Gannan Medical University, Ganzhou, China
| | - Huiting Yuan
- First Clinical Medical College, Gannan Medical University, Ganzhou, China
| | - Zhixing Chen
- Department of Gastroenterology, The First Affiliated Hospital, Gannan Medical University, Ganzhou, China
| |
Collapse
|
3
|
He L, Chen H, Ruan B, He L, Luo M, Fu Y, Zou R. UBQLN4 promotes the proliferation and invasion of non-small cell lung cancer cell by regulating PI3K/AKT pathway. J Cancer Res Clin Oncol 2024; 150:335. [PMID: 38969831 PMCID: PMC11226510 DOI: 10.1007/s00432-024-05862-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 06/19/2024] [Indexed: 07/07/2024]
Abstract
BACKGROUND Ubiquilin-4 (UBQLN4), a member of the ubiquilin family, has received limited attention in cancer research to date. Here, we investigated for the first time the functional role and mechanism of UBQLN4 in non-small cell lung cancer (NSCLC). METHODS The Cancer Genome Atlas (TCGA) database was employed to validate UBQLN4 as a differentially expressed gene. Expression differences of UBQLN4 in NSCLC cells and tissues were assessed using immunohistochemistry (IHC) experiment and western blotting (WB) experiment. Kaplan-Meier analysis was conducted to examine the association between UBQLN4 expression and NSCLC prognosis. Functional analyses of UBQLN4 were performed through cell counting kit-8 (CCK-8), colony formation, and transwell invasion assays. The impact of UBQLN4 on tumor-associated signaling pathways was assessed using the path scan intracellular signaling array. In vivo tumorigenesis experiments were conducted to further investigate the influence of UBQLN4 on tumor formation. RESULTS UBQLN4 exhibited up-regulation in both NSCLC tissues and cells. Additionally, over-expression of UBQLN4 was associated with an unfavorable prognosis in NSCLC patients. Functional loss analyses demonstrated that inhibiting UBQLN4 could suppress the proliferation and invasion of NSCLC cells in both in vitro and in vivo settings. Conversely, functional gain experiments yielded opposite results. Path scan intracellular signaling array results suggested that the role of UBQLN4 is associated with the PI3K/AKT pathway, a correlation substantiated by in vitro and in vivo tumorigenesis experiments. CONCLUSION We validated that UBQLN4 promotes proliferation and invasion of NSCLC cells by activating the PI3K/AKT pathway, thereby facilitating the progression of NSCLC. These findings underscore the potential of targeting UBQLN4 as a therapeutic strategy for NSCLC.
Collapse
Affiliation(s)
- Li He
- Department of Oncology, The People's Hospital of Xinyu City, Xinyu, Jiangxi, 338099, People's Republic of China
| | - Heng Chen
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical Collge, Nanchang University, 17 Yongwai Street, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Bin Ruan
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical Collge, Nanchang University, 17 Yongwai Street, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Li He
- Department of Pathology, Jingdezhen First People's Hospital, Jingdezhen, Jiangxi, 333000, People's Republic of China
| | - Ming Luo
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical Collge, Nanchang University, 17 Yongwai Street, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Yulun Fu
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical Collge, Nanchang University, 17 Yongwai Street, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Rui Zou
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical Collge, Nanchang University, 17 Yongwai Street, Nanchang, Jiangxi, 330006, People's Republic of China.
| |
Collapse
|
4
|
Meng J, Song Z, Cong S, Sun Q, Ma Q, Shi W, Wang L. Regulatory role of the miR-142-3p/ CDC25C axis in modulating autophagy in non-small cell lung cancer. Transl Lung Cancer Res 2024; 13:552-572. [PMID: 38601452 PMCID: PMC11002511 DOI: 10.21037/tlcr-24-82] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/15/2024] [Indexed: 04/12/2024]
Abstract
Background With its diverse genetic foundation and heterogeneous nature, non-small cell lung cancer (NSCLC) needs a better comprehension of prognostic evaluation and efficient treatment targeting. Methods Bioinformatics analysis was performed of The Cancer Genome Atlas (TCGA)-NSCLC and GSE68571 dataset. Overlapping differentially expressed genes (DEGs) were used for functional enrichment analysis and constructing the protein-protein interaction (PPI) network. In addition, key prognostic genes were identified through prognostic risk models, and their expression levels were verified. The phenotypic effects of cell division cycle 25C (CDC25C) regulation on NSCLC cell lines were assessed by in vitro experiments using various techniques such as flow cytometry, Transwell, and colony formation. Protein levels related to autophagy and apoptosis were assessed, specifically examining the impact of autophagy inhibition [3-methyladenine (3-MA)] and the miR-142-3p/CDC25C axis on this regulatory system. Results CDC25C was identified as a key prognostic marker in NSCLC, showing high expression in tumor samples. In vitro experiments showed that CDC25C knockdown markedly reduced the capacity of cells to proliferate, migrate, invade, trigger apoptosis, and initiate cell cycle arrest. CDC25C and miR-142-3p displayed a reciprocal regulatory relationship. CDC25C reversed the inhibitory impacts of miR-142-3p on NSCLC cell cycle proliferation and progression. The synergy of miR-142-3p inhibition, CDC25C silencing, and 3-MA treatment was shown to regulate NSCLC cell processes including proliferation, apoptosis, and autophagy. Conclusions MiR-142-3p emerged as a key player in governing autophagy and apoptosis by directly targeting CDC25C expression. This emphasizes the pivotal role of the miR-142-3p/CDC25C axis as a critical regulatory pathway in NSCLC.
Collapse
Affiliation(s)
- Jing Meng
- Department of Oncology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Zongchang Song
- Department of Oncology, Shanghai University Affiliated Mengchao Cancer Hospital, Shanghai, China
| | - Shuxian Cong
- Department of Thoracic Surgery, PKUCare Zibo Hospital, Zibo, China
| | - Qiong Sun
- Department of Oncology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Qinyun Ma
- Department of Thoracic Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Weiwei Shi
- Department of Oncology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Linxuan Wang
- Department of Pulmonary and Critical Care Medicine, Shanghai Pudong New Area People’s Hospital, Shanghai, China
| |
Collapse
|
5
|
Ahamed A, Hasan M, Samanta A, Alam SSM, Jamil Z, Ali S, Hoque M. Prospective pharmacological potential of cryptotanshinone in cancer therapy. PHARMACOLOGICAL RESEARCH - MODERN CHINESE MEDICINE 2023; 9:100308. [DOI: 10.1016/j.prmcm.2023.100308] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
|
6
|
Noser AA, Abdelmonsef AH, Salem MM. Design, synthesis and molecular docking of novel substituted azepines as inhibitors of PI3K/Akt/TSC2/mTOR signaling pathway in colorectal carcinoma. Bioorg Chem 2023; 131:106299. [PMID: 36493622 DOI: 10.1016/j.bioorg.2022.106299] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/29/2022] [Accepted: 11/21/2022] [Indexed: 12/03/2022]
Abstract
A series of novel substituted azepines (2-7) was synthesized using both traditional and ultrasonic techniques. The efficiency of the reaction rate and yield was improved by sonication technique. We identified the newly synthesized compounds based on their melting points, elemental analyses, and spectral data. Human cancers are regulated mainly by the phosphatidylinositol 3-kinase/protein kinases B (PI3K/Akt) pathway, and its abnormal activation is linked to carcinogenesis, and angiogenesis. Using in-silico studies, we evaluated the ability of all the novel substituted diazepines and oxazepines to prevent cancer growth and metastasis by targeting the PI3K/Akt signaling pathway. Based on our findings, compounds 4a and 7a were chosen for in-vitro testing as they ranked via molecular docking the highest binding energies of -10.9, -10.3, -10.6, and -10.4 kcal/mol respectively. Compounds 4a and 7a displayed significant cytotoxicity on Caco-2 colorectal cancer cells with IC50 values of 8.445 ± 2.26 and 33.04 ± 2.06 μM, respectively. Additionally, they considerably suppressed the PI3K/Akt proteins and generated reactive oxygen species (ROS), which increased p53 and Bax, decreased Bcl-2 levels, and arrested the cell cycle at sub-G0/G1 phase. We also observed a remarkable overexpression of the Tuberous Sclerosis Complex 2 (TSC2) gene, an inhibitor of the mammalian target of rapamycin (mTOR). These results showed that compounds 4a and 7a obeyed Lipinski's rule of five and might be potential cancer treatment scaffolds by preventing metastasis and proliferation via blocking the PI3K/Akt/TSC2/m-TOR signaling pathway. This supports our hypothesis that diazepine 4a and oxazepine 7a are promising drug candidates for colorectal cancer.
Collapse
Affiliation(s)
- Ahmed A Noser
- Organic Chemistry, Chemistry Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Aboubakr H Abdelmonsef
- Organic Chemistry, Chemistry Department, Faculty of Science, South Valley University, Qena 83523, Egypt
| | - Maha M Salem
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| |
Collapse
|
7
|
Yang Y, Chen Y, Wu JH, Ren Y, Liu B, Zhang Y, Yu H. Targeting regulated cell death with plant natural compounds for cancer therapy: A revisited review of apoptosis, autophagy-dependent cell death, and necroptosis. Phytother Res 2023; 37:1488-1525. [PMID: 36717200 DOI: 10.1002/ptr.7738] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 01/05/2023] [Accepted: 01/05/2023] [Indexed: 02/01/2023]
Abstract
Regulated cell death (RCD) refers to programmed cell death regulated by various protein molecules, such as apoptosis, autophagy-dependent cell death, and necroptosis. Accumulating evidence has recently revealed that RCD subroutines have several links to many types of human cancer; therefore, targeting RCD with pharmacological small-molecule compounds would be a promising therapeutic strategy. Moreover, plant natural compounds, small-molecule compounds synthesized from plant sources, and their derivatives have been widely reported to regulate different RCD subroutines to improve potential cancer therapy. Thus, in this review, we focus on updating the intricate mechanisms of apoptosis, autophagy-dependent cell death, and necroptosis in cancer. Moreover, we further discuss several representative plant natural compounds and their derivatives that regulate the above-mentioned three subroutines of RCD, and their potential as candidate small-molecule drugs for the future cancer treatment.
Collapse
Affiliation(s)
- Yuanyuan Yang
- State Key Laboratory of Biotherapy and Cancer Center, Department of Otolaryngology, Head and Neck Surgery and Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yanmei Chen
- State Key Laboratory of Biotherapy and Cancer Center, Department of Otolaryngology, Head and Neck Surgery and Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jun Hao Wu
- State Key Laboratory of Biotherapy and Cancer Center, Department of Otolaryngology, Head and Neck Surgery and Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yueting Ren
- Department of Pharmacology and Toxicology, Temerity Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Bo Liu
- State Key Laboratory of Biotherapy and Cancer Center, Department of Otolaryngology, Head and Neck Surgery and Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yan Zhang
- State Key Laboratory of Biotherapy and Cancer Center, Department of Otolaryngology, Head and Neck Surgery and Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Haiyang Yu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
8
|
Huang M, Liu C, Shao Y, Zhou S, Hu G, Yin S, Pu W, Yu H. Anti-tumor pharmacology of natural products targeting mitosis. Cancer Biol Med 2022; 19:j.issn.2095-3941.2022.0006. [PMID: 35699421 PMCID: PMC9257311 DOI: 10.20892/j.issn.2095-3941.2022.0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Cancer has been an insurmountable problem in the history of medical science. The uncontrollable proliferation of cancer cells is one of cancer’s main characteristics, which is closely associated with abnormal mitosis. Targeting mitosis is an effective method for cancer treatment. This review summarizes several natural products with anti-tumor effects related to mitosis, focusing on targeting microtubulin, inducing DNA damage, and modulating mitosis-associated kinases. Furthermore, the main disadvantages of several typical compounds, including drug resistance, toxicity to non-tumor tissues, and poor aqueous solubility and pharmacokinetic properties, are also discussed, together with strategies to address them. Improved understanding of cancer cell mitosis and natural products may pave the way to drug development for the treatment of cancer.
Collapse
Affiliation(s)
- Manru Huang
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.,State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Caiyan Liu
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.,State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yingying Shao
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.,State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Shiyue Zhou
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.,State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Gaoyong Hu
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.,State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Shuangshuang Yin
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.,State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Weiling Pu
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.,State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Haiyang Yu
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.,State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| |
Collapse
|
9
|
Combination of Sanguisorbigenin and Conventional Antibiotic Therapy for Methicillin-Resistant Staphylococcus aureus: Inhibition of Biofilm Formation and Alteration of Cell Membrane Permeability. Int J Mol Sci 2022; 23:ijms23084232. [PMID: 35457049 PMCID: PMC9032919 DOI: 10.3390/ijms23084232] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/08/2022] [Accepted: 04/08/2022] [Indexed: 02/04/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) infection is challenging to eradicate because of antibiotic resistance and biofilm formation. Novel antimicrobial agents and alternative therapies are urgently needed. This study aimed to evaluate the synergy of sanguisorbigenin (SGB) isolated from Sanguisorba officinalis L. with six conventional antibiotics to achieve broad-spectrum antibacterial action and prevent the development of resistance. A checkerboard dilution test and time-to-kill curve assay were used to determine the synergistic effect of SGB combined with antibiotics against MRSA. SGB showed significant synergy with antibiotics and reduced the minimum inhibitory concentration of antibiotics by 2-16-fold. Biofilm inhibition assay, quantitative RT-PCR, crystal violet absorption, and transmission electron microscopy were performed to evaluate the synergy mechanism. The results indicated that SGB could inhibit biofilm formation and alter cell membrane permeability in MRSA. In addition, SGB was found to exhibit quite low cytotoxicity and hemolysis. The discovery of the superiority of SGB suggests that SGB may be an antibiotic adjuvant for use in combination therapy and as a plant-derived antibacterial agent targeting biofilms.
Collapse
|
10
|
Qin X, Liu M, Xu C, Xing B, Xu X, Wu Y, Ding H, Zhao Q. ZDQ-0620, a Novel Phosphatidylinositol 3-Kinase Inhibitor, Inhibits Colorectal Carcinoma Cell Proliferation and Suppresses Angiogenesis by Attenuating PI3K/AKT/mTOR Pathway. Front Oncol 2022; 12:848952. [PMID: 35311154 PMCID: PMC8924359 DOI: 10.3389/fonc.2022.848952] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 02/10/2022] [Indexed: 12/11/2022] Open
Abstract
The PI3K/AKT pathway plays a central role in human cancers, aberrant activation of this pathway is associated with tumorigenesis, cancer progression and angiogenesis. Based on the importance of the PI3K/AKT pathway in malignancies, we developed a 4-aminoquinazoline derivative, ZDQ-0620, initially envisioned as a novel pan-PI3K inhibitor. This study aimed to evaluate the potential target of ZDQ-0620 and its anticancer effect in human colorectal carcinoma (CRC). PI3K-kinase activity test showed IC50 of ZDQ-0620 against PI3Ka was 0.5 nM; molecular docking, CETSA assay and western blotting was further performed to predict ZDQ-0620 was a PI3K/AKT pathway inhibitor by targeting PI3K. To identify the effect of ZDQ-0620 on CRC cells, Sulforhodamine B (SRB) assay, flow cytometry, and Cell morphology analysis were conducted. The results showed that ZDQ-0620 inhibited the proliferation, migration and invasion of CRC cells, induced apoptosis through G0/G1 cell cycle arrest and mitochondrial pathway. Additionally, ZDQ-0620 inhibited the migration and tube formation of human umbilical vein endothelial cells (HUVECs). In vivo, neovascularization of rat aortic ring and chick chorioallantoic membrane (CAM) induced by VEGF was diminished when treated with ZDQ-0620. These results indicate that ZDQ-0620 induce apoptosis and anti-angiogenesis via inhibits the PI3K/AKT pathway. We suggest that the great potential of ZDQ-0620 as an effective treatment candidate against CRC.
Collapse
Affiliation(s)
- Xiaochun Qin
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang, China.,Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, Shenyang, China
| | - Mingyue Liu
- Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, Shenyang, China
| | - Chang Xu
- Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, Shenyang, China
| | - Bo Xing
- Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, Shenyang, China
| | - Xiangbo Xu
- Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, Shenyang, China
| | - Yuting Wu
- Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, Shenyang, China
| | - Huaiwei Ding
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Qingchun Zhao
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang, China.,Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
11
|
Zhao W, Song Y, Wang QQ, Han S, Li XX, Cui Y, Gao H, Yuan R, Yang S. Cryptotanshinone Induces Necroptosis through Ca2+ Release and ROS Production in vitro and in vivo. Curr Mol Pharmacol 2022; 15:1009-1023. [PMID: 35086466 DOI: 10.2174/1874467215666220127112201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 10/15/2021] [Accepted: 11/01/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Necroptosis is a type of programmed necrosis mediated by receptor-interacting protein kinases 1 and 3 (RIP1 and RIP3), which is morphologically characterized by enlarged organelles, ruptured plasma membrane, and subsequent loss of intracellular contents. Cryptotanshinone (CPT), a diterpene quinone compound extracted from the root of Salvia miltiorrhiza Bunge, has been reported to have significant anticancer activities. However, the detailed mechanism of CPT has not been clearly illustrated. OBJECTIVE The present study aimed to explore the cell death type and mechanisms of CPT-induced in non-small cell lung cancer (NSCLC) cells. METHODS The cytotoxicity of CPT on A549 cells was assessed by MTS assay. Ca2+ release and reactive oxygen species (ROS) generation were detected by flow cytometry. The changes in mitochondrial membrane potential (MMP) were observed through JC-1 staining. The expressions of p-RIP1, p-RIP3, p-MLKL, and MAPKs pathway proteins were analyzed by western blotting analysis. The efficacy of CPT in vivo was evaluated by the Lewis lung carcinoma (LLC) xenograft mice model. Blood samples were collected for hematology analysis. ELISA investigated the effects of CPT on tumor necrosis factor α (TNF-α). Hematoxylin and eosin staining (HE) was used to determine the tumor tissues. Proteins' expression of tumor tissues was quantified by western blotting. RESULTS CPT inhibited the cell viability of A549 cells in a time- and concentration-dependent manner, which was reversed by Necrostatin-1 (Nec-1). In addition, CPT treatment increased the expression of p-RIP1, p-RIP3, p-MLKL, the release of Ca2+, ROS generation, and the MAPKs pathway activated in A549 cells. Moreover, animal experiment results showed that intraperitoneal injection of CPT (15 mg/kg and 30 mg/kg) significantly inhibited tumor growth in C57BL/6 mice without affecting the bodyweight and injuring the organs. CONCLUSION Our findings suggested that CPT-induced necroptosis via RIP1/RIP3/MLKL signaling pathway both in vitro and in vivo, indicating that CPT may be a promising agent in the treatment of NSCLC.
Collapse
Affiliation(s)
- Wentong Zhao
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530000, China
- Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Yuanbo Song
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine
| | - Qin-Qin Wang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning 530200, China
| | - Shan Han
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530000, China
- Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Xin-Xing Li
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530000, China
- Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Yushun Cui
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530000, China
- Guangxi Engineering Technology Research Center of Advantage Chinese Patent Drug and Ethnic Drug Development, Nanning 530200, China
| | - Hongwei Gao
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530000, China
- Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Renyikun Yuan
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530000, China
- Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Shilin Yang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530000, China
- Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| |
Collapse
|
12
|
Joshy KS, Augustine R, Hasan A, Ali Zahid A, Alex SM, Dalvi YB, Mraiche F, Thomas S, Kalarikkal N, Chi H. Cisplatin encapsulated nanoparticles from polymer blends for anti-cancer drug delivery. NEW J CHEM 2022. [DOI: 10.1039/d1nj04311k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Synthesis of cubic nanostructure for cisplatin encapsulation.
Collapse
Affiliation(s)
- K. S. Joshy
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, 2713, Doha, Qatar
- Biomedical Research Center (BRC), Qatar University, PO Box 2713, Doha, Qatar
| | - Robin Augustine
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, 2713, Doha, Qatar
- Biomedical Research Center (BRC), Qatar University, PO Box 2713, Doha, Qatar
| | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, 2713, Doha, Qatar
- Biomedical Research Center (BRC), Qatar University, PO Box 2713, Doha, Qatar
| | - Alap Ali Zahid
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, 2713, Doha, Qatar
- Biomedical Research Center (BRC), Qatar University, PO Box 2713, Doha, Qatar
| | | | - Yogesh B. Dalvi
- Pushpagiri Research Centre, Pushpagiri Institute of Medical Sciences, Tiruvalla, Kerala 689 101, India
| | | | - Sabu Thomas
- International and Inter University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam – 686 560, Kerala, India
| | - Nandakumar Kalarikkal
- School of Pure and Applied Physics, Mahatma Gandhi University, Kottayam – 686 560, Kerala, India
| | - Hong Chi
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| |
Collapse
|
13
|
Zhang Y, Yao Y, Fu Y, Yuan Z, Wu X, Wang T, Hong Z, Yang Y, Wu H. Inhibition effect of oxyepiberberine isolated from Coptis chinensis franch. On non-small cell lung cancer based on a network pharmacology approach and experimental validation. JOURNAL OF ETHNOPHARMACOLOGY 2021; 278:114267. [PMID: 34087401 DOI: 10.1016/j.jep.2021.114267] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/28/2021] [Accepted: 05/29/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE As an important Chinese herb, Coptis chinensis Franch. (Huanglian, HL) has a long history of usage for clearing heat, eliminating dampness, purging fire and detoxification in Traditional Chinese Medicine (TCM). HL, also called goldthread, was frequently used for the treatment of typhoid, tuberculosis, epidemic cerebrospinal meningitis, pertussis, and other lung-related diseases. Modern research has shown that HL and its main compounds also have anti-tumor effects. However, studies have not reported whether its main compounds inhibit Non-small cell lung cancer (NSCLC) development and progression. OBJECTIVE This study aimed to find out the potential targets and mechanisms of Oxyepiberberine (OPB) isolated from HL in the treatment of NSCLC, using network pharmacology and biological experimental. METHODS Silica gel chromatography column was used to isolate OPB from HL, and the structure of OPB was elucidated using different spectroscopic analysis methods, including 1H-nuclear magnetic resonance (NMR), 13C-NMR and electrospray ionization mass spectrometry (ESI/MS). MTT assay was performed to determine cell proliferation of OPB on A549, H1975 and BEAS-2B cells. Then, the potential targets, pathways and hub genes of OPB for treating NSCLC were screened out through network pharmacology. Based on the results of network pharmacology, core targets of OPB for treating NSCLC were docking with OPB via molecular docking. Wound healing, plate clone, Hoechst staining, and western blot assay were used to verify the function of OPB in treatment of NSCLC. RESULTS OPB was isolated from the HL, its molecular formula was identified as C20H17NO5. Through MTT, OPB significantly inhibited the proliferation of H1975 cells and A549 cells, and A549 was chosen as the test cancer cell. Through network pharmacology, 22 potential targets, 156 related-pathways, and 6 hub genes were screened out. The results of molecular docking showed that SRC, BRAF, and MMP9 were the core targets of OPB against NSCLC. Through biological experimental, it was found that OPB inhibited growth and migration of A549 cells. In addition, OPB induced apoptosis in A549 cells. Through western blot assay, the expressions of Src, ERK1/2 and other four proteins were down-regulated, which suggested that OPB inhibited the proliferation of lung cancer cells by down-regulating SRC-FAK-RAS-RAF-MEK-ERK pathway, so as to achieve the anti-NSCLC effect. CONCLUSION Our study demonstrated that anti-NSCLC effect of OPB through network and experiments, which provided a theoretical basis for the clinical antitumor of OPB, and provided a foundation for further study of OPB.
Collapse
Affiliation(s)
- Ying Zhang
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Yunfeng Yao
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Yingjie Fu
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Zixin Yuan
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Xingpan Wu
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Tianshun Wang
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Zongchao Hong
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Yanfang Yang
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China; Key Laboratory of Traditional Chinese Medicine Resources and Chemistry of Hubei Province, Wuhan, 430061, China.
| | - Hezhen Wu
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China; Key Laboratory of Traditional Chinese Medicine Resources and Chemistry of Hubei Province, Wuhan, 430061, China.
| |
Collapse
|
14
|
Qin X, Liu M, Wu Y, Wang S, Lian S, Jia H, Wu Q, Ding H, Zhao Q. Dual blocking of PI3K and mTOR signaling by DHW-221, a novel benzimidazole derivative, exerts antitumor activity in human non-small cell lung cancer. Clin Transl Med 2021; 11:e514. [PMID: 34586727 PMCID: PMC8473641 DOI: 10.1002/ctm2.514] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/15/2021] [Accepted: 07/20/2021] [Indexed: 01/17/2023] Open
Affiliation(s)
- Xiaochun Qin
- Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, Shenyang, China
| | - Mingyue Liu
- Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, Shenyang, China
| | - Yuting Wu
- Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, Shenyang, China
| | - Shu Wang
- Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, Shenyang, China
| | - Siheng Lian
- Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, Shenyang, China
| | - Hui Jia
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang, China
| | - Qiong Wu
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang, China
| | - Huaiwei Ding
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Qingchun Zhao
- Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, Shenyang, China.,Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang, China
| |
Collapse
|
15
|
Li D, Guo J, Jia R. Histone code reader SPIN1 is a promising target of cancer therapy. Biochimie 2021; 191:78-86. [PMID: 34492335 DOI: 10.1016/j.biochi.2021.09.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 08/07/2021] [Accepted: 09/03/2021] [Indexed: 12/19/2022]
Abstract
SPIN1 is a histone methylation reader, which can epigenetically control multiple tumorigenesis-associated signaling pathways, including the Wnt, PI3K/AKT, and RET pathways. Considerable evidence has shown that SPIN1 is overexpressed in many cancers, which can promote cell proliferation, transformation, metastasis, and chemical or radiation resistance. With the growing understanding of the SPIN1 protein structure, some inhibitors have been developed to interfere with the recognition between SPIN1 and histone H3K4me3 and H3R8me2a methylation and block the oncogenic functions of SPIN1. Therefore, SPIN1 is a potential target of cancer therapy. However, the mechanism by which SPIN1-transformed cells overcome the significant mitotic spindle defects and the factors promoting SPIN1 overexpression in cancers remain unclear. In this review, we described the current understanding of the SPIN1 protein structure and its expression, functions, and regulatory mechanisms in carcinogenesis, and discussed the challenges faced in the mechanisms of SPIN1 overexpression and oncogenic functions, and the potential application of anti-SPIN1 treatment in human cancers.
Collapse
Affiliation(s)
- Di Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jihua Guo
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China; Department of Endodontics, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
| | - Rong Jia
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
| |
Collapse
|
16
|
Gu Y, Liu W, Liu G, Li X, Lu P. Assessing the protective effects of cryptotanshinone on CoCl 2‑induced hypoxia in RPE cells. Mol Med Rep 2021; 24:739. [PMID: 34435647 PMCID: PMC8404095 DOI: 10.3892/mmr.2021.12379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 06/24/2021] [Indexed: 12/27/2022] Open
Abstract
The development of several retinal diseases is closely related to hypoxia. As a component of the Traditional Chinese medicine Salvia miltiorrhiza, the effects of cryptotanshinone (CT) on retinal cells under hypoxic conditions are not well understood. The aim of the present study was to explore how CT exerted its protective effects on retinal pigment epithelium (RPE) cells under hypoxic conditions induced by cobalt chloride (CoCl2). The effects of CT were investigated using a Cell Counting Kit-8 assay, Annexin V-FITC/PI staining, reverse transcription-quantitative PCR and western blotting in ARPE-19 cells. CT (10 and 20 µM) reduced the CoCl2-induced increase in vascular endothelial growth factor expression and hypoxia-inducible transcription factor-1α expression in ARPE-19 cells. Additionally, CT alleviated hypoxia-induced apoptosis by regulating Bcl-2 and Bax protein expression. CT treatment also reduced the increase in the mRNA levels of IL-6, IL-1β and TNF-α induced by CoCl2. In summary, CT may protect RPE cells against apoptosis and inflammation in CoCl2-induced hypoxia, and these results warrant further in vivo study into its value as a drug for treating hypoxic eye diseases.
Collapse
Affiliation(s)
- Yu Gu
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Weiming Liu
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Gaoqin Liu
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Xin Li
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Peirong Lu
- Department of Ophthalmology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| |
Collapse
|
17
|
Wei D, Zhu X, Li S, Liu G, Wang Y, Wang W, Zhang Q, Jiang S. Tideglusib suppresses stem-cell-like features and progression of osteosarcoma by inhibiting GSK-3β/NOTCH1 signaling. Biochem Biophys Res Commun 2021; 554:206-213. [PMID: 33813076 DOI: 10.1016/j.bbrc.2020.12.055] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 12/15/2020] [Indexed: 12/14/2022]
Abstract
Osteosarcoma is the most common primary bone tumor in children, teenagers and adolescents. Cancer stem cells (CSCs) have the function to self-renew and keep the phenotype of tumor, causing clinical treatment failure. Therefore, developing effective therapies to inhibit osteosarcoma progression is urgently necessary. Glycogen synthase kinase 3β (GSK-3β)is highly expressed in osteosarcoma. In the present study, we made an exploration on the anti-tumor effect of tideglusib (TID), a small-molecule inhibitor of GSK-3β, and revealed the underlying mechanisms. Here, we found that TID markedly reduced the cell viability of different osteosarcoma cell lines. Cell cycle arrest distributed in G2/M was markedly up-regulated in TID-incubated osteosarcoma cells through enhancing p21 expression levels. Apoptosis was evidently induced in osteosarcoma cells via blocking Caspase-3 activation. Consistently, tumor growth was effectively suppressed in an established murine xenograft model with few toxicity and side effects in vivo. Furthermore, TID markedly repressed stem-cell-like activity in osteosarcoma cells through down-regulating NOTCH1 expression. Notably, rescuing NOTCH1 significantly abolished the role of TID in reducing cell proliferation and sarcosphere-formation. Mechanistically, we found that TID-inhibited NOTCH1 expression was associated with the blockage of AKT/GSK-3β signaling pathway. In summary, we for the first time provided evidence that TID could effectively inhibit osteosarcoma progression through repressing cell proliferation, inducing apoptosis, suppressing stem-cell-like properties via down-regulating AKT/GSK-3β/NOTCH1 signaling pathway. Thus, TID may be a promising therapeutic strategy for osteosarcoma treatment without side effects.
Collapse
Affiliation(s)
- Dandan Wei
- School of the First Clinical Medical, Henan University of Chinese Medicine, Longzihu University Park, Zhengdong New District, 156 Jinshui East Road, Zhengzhou, 450000, China
| | - Xinghao Zhu
- School of the First Clinical Medical, Henan University of Chinese Medicine, Longzihu University Park, Zhengdong New District, 156 Jinshui East Road, Zhengzhou, 450000, China
| | - Shanshan Li
- School of the First Clinical Medical, Henan University of Chinese Medicine, Longzihu University Park, Zhengdong New District, 156 Jinshui East Road, Zhengzhou, 450000, China
| | - Guangyao Liu
- Biomedical Research and Development Center, Jilin Institute of Biomedicine Ltd.Co, Changchun, 130033, China
| | - Yongkun Wang
- Biomedical Research and Development Center, Jilin Institute of Biomedicine Ltd.Co, Changchun, 130033, China
| | - Wei Wang
- Biomedical Research and Development Center, Jilin Institute of Biomedicine Ltd.Co, Changchun, 130033, China
| | - Qiao Zhang
- Biomedical Research and Development Center, Jilin Institute of Biomedicine Ltd.Co, Changchun, 130033, China
| | - Shiqing Jiang
- Department of Oncology, The First Affiliated Hospital of Henan University of Chinese Medicine, 19 Renmin Road, Zhengzhou, 450000, China.
| |
Collapse
|
18
|
The Use of Traditional Chinese Medicine in Relieving EGFR-TKI-Associated Diarrhea Based on Network Pharmacology and Data Mining. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5530898. [PMID: 33868436 PMCID: PMC8032531 DOI: 10.1155/2021/5530898] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 03/23/2021] [Indexed: 12/19/2022]
Abstract
In this study, the role of traditional Chinese medicine (TCM) in relieving epidermal growth factor receptor-tyrosine kinase inhibitor- (EGFR-TKI-) associated diarrhea was discussed by network pharmacology and data mining. Prediction of drug targets by introducing the EGFR-TKI molecular structures into the SwissTargetPrediction platform and diarrhea-related targets in the DrugBank, GeneCards, DisGeNET, and OMIM databases were obtained. Compounds in the drug-disease target intersection were screened by absorption, distribution, metabolism, and excretion parameters and Lipinski's rule in Traditional Chinese Medicine Systems Pharmacology. TCM-containing compounds were selected, and information on the property, taste, and meridian tropism of these TCMs was summarized and analyzed. A target-compound-TCM network diagram was constructed, and core targets, compounds, and TCMs were selected. The core targets and components were docked by AutoDock Vina (Version 1.1.2) to explore the target combinations of related compounds and evaluate the docking activity of related targets and compounds. Twenty-three potential therapeutic TCM targets for the treatment of EGFR-TKI-related diarrhea were obtained. There were 339 compounds acting on potential therapeutic targets, involving a total of 402 TCMs. The results of molecular docking showed good binding between the core targets and compounds, and the binding between the core targets and compounds was similar to that of the core target and the recommended drug loperamide. TCMs have multitarget characteristics and are present in a variety of compounds used for relieving EGFR-TKI-associated diarrhea. Antitumor activity and the efficacy of alleviating diarrhea are the pharmacological basis of combining TCMs with EGFR-TKI in the treatment of non-small-cell lung cancer. The core targets, compounds, and TCMs can provide data to support experimental and clinical studies on the relief of EGFR-TKI-associated diarrhea in the future.
Collapse
|
19
|
Wang H, Pang W, Xu X, You B, Zhang C, Li D. Cryptotanshinone Attenuates Ischemia/Reperfusion-induced Apoptosis in Myocardium by Upregulating MAPK3. J Cardiovasc Pharmacol 2021; 77:370-377. [PMID: 33662979 DOI: 10.1097/fjc.0000000000000971] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 11/26/2020] [Indexed: 01/17/2023]
Abstract
ABSTRACT Chinese people have used the root of Salvia miltiorrhiza Bunge (called "Danshen" in Chinese) for centuries as an anticancer agent, anti-inflammatory agent, antioxidant, and cardiovascular disease drug. In addition, Danshen is considered to be a drug that can improve ischemia/reperfusion (I/R)-induced myocardium injury in traditional Chinese medicine. However, Danshen is a mixture that includes various bioactive substances. In this study, we aimed to identify the protective component and mechanism of Danshen on myocardium through network pharmacology and molecular simulation methods. First, cryptotanshinone (CTS) was identified as a potential active compound from Danshen that was associated with apoptosis by a network pharmacology approach. Subsequently, biological experiments validated that CTS inhibited ischemia/reperfusion-induced cardiomyocyte apoptosis in vivo and in vitro. Molecular docking techniques were used to screen key target information. Based on the simulative results, MAPKs were verified as well-connected molecules of CTS. Western blotting assays also demonstrated that CTS could enhance MAPK expression. Furthermore, we demonstrated that inhibition of the MAPK pathway reversed the CTS-mediated effect on cardiomyocyte apoptosis. Altogether, our work screened out CTS from Danshen and demonstrated that it protected cardiomyocytes from apoptosis.
Collapse
Affiliation(s)
- Hefeng Wang
- Department of Cardiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, Shandong, China
| | - Wenhui Pang
- Department of Otolaryngology Head and Neck Surgery, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Xingsheng Xu
- Department of Cardiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, Shandong, China
| | - Beian You
- Department of Cardiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, Shandong, China
| | - Cuijuan Zhang
- Department of Cardiology, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China; and
| | - Dan Li
- Department of Cardiology, the Affiliated Hospital of Qingdao University, Qingdao, Shandong, China; and
| |
Collapse
|
20
|
Chen ZQ, Zhou Y, Chen F, Huang JW, Zheng J, Li HL, Li T, Li L. Breviscapine Pretreatment Inhibits Myocardial Inflammation and Apoptosis in Rats After Coronary Microembolization by Activating the PI3K/Akt/GSK-3β Signaling Pathway. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:843-855. [PMID: 33658766 PMCID: PMC7920514 DOI: 10.2147/dddt.s293382] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 02/05/2021] [Indexed: 01/28/2023]
Abstract
Purpose Coronary microembolization (CME) can cause myocardial inflammation, apoptosis and progressive cardiac dysfunction. On the other hand, breviscapine exerts a significant cardioprotective effect in many cardiac diseases although its role and the potential mechanisms in CME remain unclear. Therefore, the present study aimed to ascertain whether pretreatment with breviscapine could improve CME-induced myocardial injury by alleviating myocardial inflammation and apoptosis. The possible underlying mechanisms were also explored. Methods In this study, 48 Sprague-Dawley (SD) rats were randomly assigned to the CME, CME + breviscapine (CME + BE), CME + breviscapine + LY294002 (CME + BE + LY) and sham groups (12 rats per group). In addition, the CME model was successfully established by injecting 42 μm inert plastic microspheres into the left ventricle of rats. Rats in the CME + BE and CME + BE + LY groups received 40 mg/kg/d of breviscapine for 7 days before inducing CME. Moreover, rats in the CME + BE + LY group were intraperitoneally injected with the phosphoinositide 3-kinase (PI3K) specific inhibitor, LY294002 (10 mg/kg) 30 minutes before CME modeling. 12 h after surgery, the study measured cardiac function, the serum levels of markers of myocardial injury, myocardial inflammation-associated mRNAs and proteins, myocardial apoptosis-associated mRNAs and proteins and conducted myocardial histopathology. Results The findings demonstrated that pretreatment with breviscapine alleviated myocardial injury following CME by improving cardiac dysfunction, decreasing the serum levels of markers of myocardial injury, reducing the size of myocardial microinfarct and lowering the cardiomyocyte apoptotic index. More importantly, pretreatment with breviscapine resulted to a decrease in the levels of inflammatory and pro-apoptotic mRNAs and proteins in myocardial tissues and there was an increase in the levels of anti-apoptotic mRNAs and proteins. However, these protective effects were eliminated when breviscapine was combined with LY294002. Conclusion The findings from this study indicated that breviscapine may inhibit myocardial inflammation and apoptosis by regulating the PI3K/protein kinase B (Akt)/glycogen synthase kinase-3β (GSK-3β) pathway, thereby ameliorating CME-induced cardiac dysfunction and reducing myocardial injury.
Collapse
Affiliation(s)
- Zhi-Qing Chen
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University & Guangxi Key Laboratory Base of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention & Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, People's Republic of China
| | - You Zhou
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University & Guangxi Key Laboratory Base of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention & Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, People's Republic of China
| | - Feng Chen
- Department of Emergency, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Jun-Wen Huang
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University & Guangxi Key Laboratory Base of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention & Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, People's Republic of China
| | - Jing Zheng
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University & Guangxi Key Laboratory Base of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention & Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, People's Republic of China
| | - Hao-Liang Li
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University & Guangxi Key Laboratory Base of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention & Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, People's Republic of China
| | - Tao Li
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University & Guangxi Key Laboratory Base of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention & Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, People's Republic of China
| | - Lang Li
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University & Guangxi Key Laboratory Base of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention & Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, People's Republic of China
| |
Collapse
|
21
|
Network pharmacology and molecular docking reveal the mechanism of Scopoletin against non-small cell lung cancer. Life Sci 2021; 270:119105. [PMID: 33497736 DOI: 10.1016/j.lfs.2021.119105] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/04/2021] [Accepted: 01/08/2021] [Indexed: 12/19/2022]
Abstract
AIMS Scopoletin is a natural anticarcinogenic and antiviral coumarin component. Many studies have proved its anti-cancer effect, and after the preliminary screening of this study, Scopoletin had the best inhibitory effect on Non-small cell lung cancer (NSCLC). But its mechanism for treating NSCLC is still unclear. Therefore, network pharmacology and molecular docking technology were used to explore the potential anti-NSCLC targets and pathways of Scopoletin. The results were verified in vitro. MAIN METHODS First, Scopoletin was isolated from Fennel and screened to conduct cell proliferation assay on Human lung cancer cell line A549, Human colon cancer cell line HCT-116 and Human hepatoma cell line HepG2 respectively, through the MTT test. Then, the key targets and related pathways were screened through Protein-protein Interaction (PPI) network and "component-target-pathway" (C-TP) network constructed by network pharmacology. And the key targets were selected to dock with Scopoletin via molecular docking. A549 and Human normal lung epithelial cell BEAS-2B were used to verify the results, finally. KEY FINDINGS Through MTT, A549 was chosen as the test cancer cell. From network pharmacology, 16 targets, 27 signaling pathways and 16 GO items were obtained (P < 0.05). The results of PPI network and molecular docking showed that EGFR, BRAF and AKT1 were the key targets of Scopoletin against NSCLC, which were consistent with the western-blot results. SIGNIFICANCE Through network pharmacology, molecular docking and experiments in vitro, Scopoletin was verified to against NSCLC through RAS-RAF-MEK-ERK pathway and PI3K/AKT pathway.
Collapse
|
22
|
AT1R/GSK-3 β/mTOR Signaling Pathway Involved in Angiotensin II-Induced Neuronal Apoptosis after HIE Both In Vitro and In Vivo. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:8864323. [PMID: 33425219 PMCID: PMC7773460 DOI: 10.1155/2020/8864323] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/17/2020] [Accepted: 12/02/2020] [Indexed: 12/11/2022]
Abstract
Objective The focus of the present study is to evaluate the effects of Angiotensin II (Ang II) on neuronal apoptosis after HIE and the potential underlying mechanisms. Methods Primary neonatal rat cortical neurons were used to study the oxygen-glucose deprivation (OGD) cell model. The expressions of Ang II, AT1R, GSK-3β, p-GSK-3β, mTOR, p-mTOR, Bax, Bcl-2, and cleaved caspase-3 were detected via western blot. IF and flow cytometry were used to evaluate neuronal apoptosis. Hypoxic-ischemic encephalopathy (HIE) was established to evaluate the therapeutic effects of Ang II in vivo. Cerebral infarction areas were detected by 2,3,5-Triphenyltetrazolium chloride staining. The righting and geotaxis reflexes were also recorded. In addition, Fluoro-Jade C staining and TUNEL staining were performed to evaluate neuronal degeneration and apoptosis. Results Ang II significantly increased the rate of neuronal apoptosis, upregulated the expression of cleaved caspase-3, and downregulated Bcl-2/Bax ratio after OGD insult. For vivo assay, the expressions of endogenous Ang II and AT1R gradually increased and peaked at 24 h after HIE. Ang II increased NeuN-positive AT1R cell expression. In addition, Ang II increased the area of cerebral infarction, promoted neuronal degeneration and apoptosis, aggravated neurological deficits on righting and geotaxis reflexes, and was accompanied by increased expressions of phosphorylated GSK-3β and mTOR. The application of valsartan (Ang II inhibitor) or SB216763 (GSK-3β inhibitor) reversed these phenomena triggered by Ang II following HIE. Conclusion Ang II increased neuronal apoptosis through the AT1R/GSK-3β/mTOR signaling pathway after experimental HIE both in vitro and in vivo, and Ang II may serve as a novel therapeutic target to ameliorate brain injury after HIE.
Collapse
|
23
|
Gong K, Miao S, Yang L, Wu Y, Guo J, Chen W, Dai J, Du J, Xi S. Aaptamine attenuates the proliferation and progression of non-small cell lung carcinoma. PHARMACEUTICAL BIOLOGY 2020; 58:1044-1054. [PMID: 33027592 PMCID: PMC7580566 DOI: 10.1080/13880209.2020.1822420] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
CONTEXT Aaptamine is a potent ocean-derived non-traditional drug candidate against human cancers. However, the underlying molecular mechanisms governing aaptamine-mediated repression of lung cancer cells remain largely undefined. OBJECTIVE To examine the inhibitory effect of aaptamine on proliferation and progression of non-small cell lung carcinoma (NSCLC) and dissect the potential mechanisms involved in its anticancer functions. MATERIALS AND METHODS In vitro assays of cell proliferation, cell cycle analysis, clonal formation, apoptosis and migration were performed to examine the inhibitory effects of aaptamine (8, 16 and 32 μg/mL) on NSCLC cells. The expression levels of proteins were analysed using western blotting analysis when cells were treated with a single drug or a combination treatment for 48 h. RESULTS Aaptamine significantly inhibited A549 and H1299 cells proliferation with IC50 values of 13.91 and 10.47 μg/mL. At the concentrations of 16 and 32 μg/mL, aaptamine significantly reduced capacities in clonogenicity, enhanced cellular apoptosis and decreased the motile and invasive cellular phenotype. In addition, aaptamine arrested cell cycle at G1 phase via selectively abating cell cycle regulation drivers (CDK2/4 and Cyclin D1/E). Western blotting results showed that aaptamine attenuated the protein expression of MMP-7, MMP-9 and upregulated the expression of cleaved-PARP and cleaved-caspase 3. Moreover, aaptamine inhibited PI3K/AKT/GSK3β signalling cascades through specifically degrading the phosphorylated AKT and GSK3β. DISCUSSION AND CONCLUSIONS Aaptamine retarded the proliferation and invasion of NSCLC cells by selectively targeting the pathway PI3K/AKT/GSK3β suggesting it as a potential chemotherapeutic agent for repressing tumorigenesis and progression of NSCLC in humans.
Collapse
Affiliation(s)
- Kaikai Gong
- Cancer Research Institute, Binzhou Medical University Hospital, Binzhou, PR China
| | - Shuang Miao
- Cancer Research Institute, Binzhou Medical University Hospital, Binzhou, PR China
| | - Lijuan Yang
- Cancer Research Institute, Binzhou Medical University Hospital, Binzhou, PR China
| | - Yan Wu
- Cancer Research Institute, Binzhou Medical University Hospital, Binzhou, PR China
| | - Jiwei Guo
- Cancer Research Institute, Binzhou Medical University Hospital, Binzhou, PR China
| | - Weiwei Chen
- Cancer Research Institute, Binzhou Medical University Hospital, Binzhou, PR China
| | - Juanjuan Dai
- Cancer Research Institute, Binzhou Medical University Hospital, Binzhou, PR China
| | - Jing Du
- Cancer Research Institute, Binzhou Medical University Hospital, Binzhou, PR China
- Jing Du Cancer Research Institute, Binzhou Medical University Hospital, Binzhou, PR China
| | - Sichuan Xi
- Cancer Research Institute, Binzhou Medical University Hospital, Binzhou, PR China
- CONTACT Sichuan Xi
| |
Collapse
|
24
|
Mo XM, Qin PF, Wang B, Liu FH, Li HH. miR-421 promotes the viability of A549 lung cancer cells by targeting forkhead box O1. Oncol Lett 2020; 20:306. [PMID: 33093915 PMCID: PMC7573922 DOI: 10.3892/ol.2020.12169] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 07/16/2020] [Indexed: 12/02/2022] Open
Abstract
MicroRNA (miR)-421 has been reported to serve various important roles in numerous types of cancer, including neuroblastoma and gastric cancer. However, to the best of our knowledge, few reports have determined the role of miR-421 in lung cancer. The aim of the current study was to analyze the expression levels of miR-421 in A549 lung cancer cells, to determine the target gene of miR-421, and to investigate the function and mechanism of miR-421 in cellular cytotoxicity. miR-421 expression levels were analyzed in A549 lung cancer cells using reverse transcription-quantitative PCR, a MTT assay was performed to determine the effect of miR-421 on A549 cell cytotoxicity and the protein expression levels of forkhead box O1 (FOXO1) were determined via western blotting. The target gene of miR-421 was predicted and verified using TargetScan and a dual-luciferase reporter assay, respectively. The results revealed that miR-421 expression levels were significantly upregulated in A549 lung cancer cell lines compared with the normal cells (P<0.01). Additionally, it was discovered that miR-421 promoted A549 cell viability (P<0.01) compared with A549 transfected with negative control. miR-421 was also identified to bind to the 3′-untranslated region of FOXO1. In A549 cells transfected with miR-421-mimics, the expression levels of phosphorylated (p)-AKT, p-glycogen synthase kinase-3β, p-retinoblastoma and cyclin D1 were significantly upregulated (P<0.01), whereas the expression levels of FOXO1 and p21 were significantly downregulated (P<0.01) compared with the control group. In conclusion, the results of the present study suggested that miR-421 may promote the viability of A549 lung cancer cells by targeting FOXO1 and modulating cell cycle, indicating that targeting miR-421 and FOXO1 may represent future therapeutic strategies for the treatment of patients with lung cancer.
Collapse
Affiliation(s)
- Xiao-Mei Mo
- Pharmacy Department, Qingdao Women and Children's Hospital, Qingdao University, Qingdao, Shandong 266034, P.R. China
| | - Peng-Fei Qin
- Pharmacy Department, Qingdao Women and Children's Hospital, Qingdao University, Qingdao, Shandong 266034, P.R. China
| | - Bing Wang
- Pharmacy Department, Qingdao Women and Children's Hospital, Qingdao University, Qingdao, Shandong 266034, P.R. China
| | - Feng-Hai Liu
- Department of Laboratory Medicine, Qingdao Municipal Hospital, Qingdao, Shandong 266071, P.R. China
| | - Hua-Hui Li
- Department of Laboratory Medicine, Qingdao Municipal Hospital, Qingdao, Shandong 266071, P.R. China
| |
Collapse
|
25
|
Exploration in the Mechanism of Kaempferol for the Treatment of Gastric Cancer Based on Network Pharmacology. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5891016. [PMID: 33145355 PMCID: PMC7596434 DOI: 10.1155/2020/5891016] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/07/2020] [Accepted: 10/09/2020] [Indexed: 12/11/2022]
Abstract
Background Kaempferol is a natural polyphenol in lots of Chinese herbs, which has shown promising treatment for gastric cancer (GC). However, the molecular mechanisms of its action have not been systematically revealed yet. In this work, a network pharmacology approach was used to elucidate the potential mechanisms of kaempferol in the treatment of GC. Methods The kaempferol was input into the PharmMapper and SwissTargetPrediction database to get its targets, and the targets of GC were obtained by retrieving the Online Mendelian Inheritance in Man (OMIM) database, MalaCards database, Therapeutic Target Database (TTD), and Coolgen database. The molecular docking was performed to assess the interactions between kaempferol and these targets. Next, the overlap targets of kaempferol and GC were identified for GO and KEGG enrichment analyses. Afterward, a protein-protein interaction (PPI) network was constructed to get the hub targets, and the expression and overall survival analysis of the hub target were investigated. Finally, the overall survival (OS) analysis of hub targets was performed using the Kaplan-Meier Plotter online tool. Results A total of 990 genes related to GC and 10 overlapping genes were determined through matching the 24 potential targets of kaempferol with disease-associated genes. The result of molecular docking indicated that kaempferol can bind with these hub targets with good binding scores. These targets were further mapped to 140 GO biological process terms and 11 remarkable pathways. In the PPI network analysis, 3 key targets were identified, including ESR1, EGFR, and SRC. The mRNA and protein expression levels of EGFR and SRC were obviously higher in GC tissues. High expression of these targets was related to poor OS in GC patients. Conclusions This study provided a novel approach to reveal the therapeutic mechanisms of kaempferol on GC, which will ease the future clinical application of kaempferol in the treatment of GC.
Collapse
|
26
|
Xanthohumol and Gossypol Are Promising Inhibitors against Babesia microti by In Vitro Culture via High-Throughput Screening of 133 Natural Products. Vaccines (Basel) 2020; 8:vaccines8040613. [PMID: 33081295 PMCID: PMC7711813 DOI: 10.3390/vaccines8040613] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/06/2020] [Accepted: 10/13/2020] [Indexed: 01/09/2023] Open
Abstract
Human babesiosis caused by Babesia microti is an emerging threat for severe illness and even death, with an increasing impact worldwide. Currently, the regimen of atovaquone and azithromycin is considered as the standard therapy for treating human babesiosis, which, however, may result in drug resistance and relapse, suggesting the necessity of developing new drugs to control B. microti. In this regard, natural products are promising candidates for drug design against B. microti due to their active therapeutic efficacy, lower toxicity, and fewer adverse reactions to host. Here, the potential inhibitors against B. microti were preliminarily screened from 133 natural products, and 47 of them were selected for further screening. Gossypol (Gp) and xanthohumol (Xn) were finally shown to effectively inhibit the growth of B. microti with IC50 values of 8.47 μm and 21.40 μm, respectively. The cytotoxicity results showed that Gp and Xn were non-toxic to erythrocytes at a concentration below 100 μm. Furthermore, both of them were confirmed to be non-toxic to different types of cells in previous studies. Our findings suggest the potential of Gp and Xn as effective drugs against B. microti infection.
Collapse
|
27
|
Ashrafizadeh M, Zarrabi A, Orouei S, Saberifar S, Salami S, Hushmandi K, Najafi M. Recent advances and future directions in anti-tumor activity of cryptotanshinone: A mechanistic review. Phytother Res 2020; 35:155-179. [PMID: 33507609 DOI: 10.1002/ptr.6815] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/29/2020] [Accepted: 07/02/2020] [Indexed: 12/13/2022]
Abstract
In respect to the enhanced incidence rate of cancer worldwide, studies have focused on cancer therapy using novel strategies. Chemotherapy is a common strategy in cancer therapy, but its adverse effects and chemoresistance have limited its efficacy. So, attempts have been directed towards minimally invasive cancer therapy using plant derived-natural compounds. Cryptotanshinone (CT) is a component of salvia miltiorrihiza Bunge, well-known as Danshen and has a variety of therapeutic and biological activities such as antioxidant, anti-inflammatory, anti-diabetic and neuroprotective. Recently, studies have focused on anti-tumor activity of CT against different cancers. Notably, this herbal compound is efficient in cancer therapy by targeting various molecular signaling pathways. In the present review, we mechanistically describe the anti-tumor activity of CT with an emphasis on molecular signaling pathways. Then, we evaluate the potential of CT in cancer immunotherapy and enhancing the efficacy of chemotherapy by sensitizing cancer cells into anti-tumor activity of chemotherapeutic agents, and elevating accumulation of anti-tumor drugs in cancer cells. Finally, we mention strategies to enhance the anti-tumor activity of CT, for instance, using nanoparticles to provide targeted drug delivery.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956, Istanbul, Turkey.,Center of Excellence for Functional Surfaces and Interfaces (EFSUN), Faculty of Engineering and Natural Sciences, Sabanci University, Tuzla, Istanbul, Turkey
| | - Sima Orouei
- MSc. Student, Department of Genetics, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sedigheh Saberifar
- Department of Basic Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Saeed Salami
- DVM. Graduated, Kazerun Branch, Islamic Azad University, Kazeroon, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
28
|
Sun D, Wang J, Zhang H, Liu S, Wei P, Wang H, Xu Z, Fu Q, Zhang K. MK2206 Enhances Cisplatin-Induced Cytotoxicity and Apoptosis in Testicular Cancer Through Akt Signaling Pathway Inhibition. Transl Oncol 2020; 13:100769. [PMID: 32422572 PMCID: PMC7231864 DOI: 10.1016/j.tranon.2020.100769] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 03/19/2020] [Accepted: 03/24/2020] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE To improve conventional chemotherapeutic efficacy, it is significant to identify novel molecular markers for chemosensitivity as well as possible molecules accelerating cell-killing mechanisms. In this study, we attempted to elucidate how MK2206, an allosteric Akt inhibitor, enhances the cisplatin (CDDP)-induced cytotoxicity and apoptosis in testicular cancer. MATERIALS AND METHODS We checked three testicular cancer cell lines for the expression of phospho(p)-Akt and its downstream molecules targets by Western blot. The potential antitumor effects were analyzed by MTT assay in vitro and by subcutaneous xenograft models in vivo. The cell invasion was analyzed by transwell invasion assay, and the activities of Akt signaling pathway and expression of apoptosis-related proteins were measured by Western blot. RESULTS Our results indicated that there was overactivation of p-Akt and its downstream molecules in testicular cancer cell lines compared with normal testis epithelium cells. MK2206 (600 nM) inhibited cell invasion in TCAM-2 and P19 cell lines and significantly increased the susceptibility of testicular cancer to CDDP. Combined with CDDP, MK2206 potentiated CDDP-induced cytotoxicity and apoptosis, with repressed expression of p-Akt and its downstream targets. The subcutaneous xenograft models also showed that a combined CDDP/MK2206 therapy completely suppressed tumor growth without any side effects. CONCLUSION These results suggested that the concomitant use of MK2206 could enhance the CDDP-induced cytotoxicity and apoptosis in testicular cancer with the suppressed expression of Akt pathway.
Collapse
Affiliation(s)
- Dingqi Sun
- Department of Urology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, People's Republic of China; Department of Urology, Shandong Provincial Hospital affiliated to Shandong University, Jinan, Shandong, People's Republic of China
| | - Jinhua Wang
- Department of Radiotherapy, Shandong Provincial ENT Hospital affiliated to Shandong University, Jinan, Shandong, People's Republic of China
| | - Hui Zhang
- Department of Urology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, People's Republic of China; Department of Urology, Shandong Provincial Hospital affiliated to Shandong University, Jinan, Shandong, People's Republic of China
| | - Shuai Liu
- Department of Urology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, People's Republic of China; Department of Urology, Shandong Provincial Hospital affiliated to Shandong University, Jinan, Shandong, People's Republic of China
| | - Peng Wei
- Department of Urology, Shandong Provincial Hospital affiliated to Shandong University, Jinan, Shandong, People's Republic of China
| | - Haoran Wang
- Department of Urology, Shandong Provincial Hospital affiliated to Shandong University, Jinan, Shandong, People's Republic of China
| | - Zhen Xu
- Department of Urology, Shandong Provincial Hospital affiliated to Shandong University, Jinan, Shandong, People's Republic of China
| | - Qiang Fu
- Department of Urology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, People's Republic of China; Department of Urology, Shandong Provincial Hospital affiliated to Shandong University, Jinan, Shandong, People's Republic of China.
| | - Keqin Zhang
- Department of Urology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, People's Republic of China; Department of Urology, Shandong Provincial Hospital affiliated to Shandong University, Jinan, Shandong, People's Republic of China.
| |
Collapse
|
29
|
Pyrroloquinoline Quinine and LY294002 Changed Cell Cycle and Apoptosis by Regulating PI3K-AKT-GSK3β Pathway in SH-SY5Y Cells. Neurotox Res 2020; 38:266-273. [PMID: 32385839 DOI: 10.1007/s12640-020-00210-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/28/2020] [Accepted: 04/14/2020] [Indexed: 12/13/2022]
Abstract
To verify the role of PI3K-AKT-GSK3β pathway during manganese (Mn)-induced cell death, apoptosis, related indicators were investigated. SH-SY5Y cells were directly exposed to different concentrations of MnCl2. Then, cell viability, apoptosis, necrosis rate, and cell cycle were detected by MTT, FITC Annexin V Apoptosis Detection Kit with PI and PI staining. Then, in two intervention groups, cells were preconditioned with agonist (PQQ) and suppressant (LY294002). The cell viability decreased with a dose-response relationship (p < 0.05), while apoptosis and necrosis increased (p < 0.05). The ratio of G0/G1 and G2/M also decreased, but the percentage of S phase increased (p < 0.05). During above process, PI3K-AKT-GSK3β pathway was involved by regulating the expression of PI3K, AKT, p-AKT, and GSK3β (p < 0.05). For further research, cell cycle and apoptosis were detected pretreatment with PQQ and LY294002 before Mn exposure. The result showed cell ability, apoptosis, and necrosis rate changed obviously compared with non-pretreated group (p < 0.05). The variance of G0/G1 and G2/M ratio and percentage of S phase were also different, especially in 2.0 mM (p < 0.05). Mn can cause apoptosis and necrosis, varying cell cycle of SH-SY5Y cells, which could be changed by PQQ and LY294002 by regulating PI3K-AKT-GSK3β pathway.
Collapse
|
30
|
Thaichinda S, Tancharoen S, Kanekura T, Higashi Y, Dararat P, Kikuchi K, Nararatwanchai T. Pinus maritima Extract Induces Apoptosis in Human Malignant Melanoma Cells via ROS/Caspase-3 Signaling. Nat Prod Commun 2020. [DOI: 10.1177/1934578x20926889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Melanoma is the most aggressive type of skin cancer due to its rapid metastasis with a high recurrence rate following conventional therapy. Pine bark extract (PBE) from Pinus maritima contains numerous phenolic compounds and functions as a potent antioxidant. The present study aimed to analyze the potential anticancer properties of PBE on human malignant melanoma A375 cells. The chemical composition of PBE was determined by high-performance liquid chromatography/photodiode array detector. The effects of PBE on cell death, migration, and invasion were determined using xCELLigence Technology real-time cell analysis. Annexin/propidium iodide flow cytometry and Hoechst 33342 staining were conducted to detect cell apoptosis. PBE induced apoptosis and inhibited cell migration and invasion. Cleaved caspase-3 expression and activity were significantly increased ( P < 0.01) in cells treated with PBE compared with control cells. PBE ameliorated hydrogen peroxide (H2O2)-induced reactive oxygen species (ROS) formation. Treatment of the cells with PBE in the presence of H2O2 led to significant ( P < 0.001) reduction of matrix metallopeptidase-9, which is a mediator responsible for advanced melanoma. PBE induces A375 programmed cell death and suppresses cellular invasion by attenuating the ROS-dependent pathway associated with MMP-9 reduction.
Collapse
Affiliation(s)
- Sunisa Thaichinda
- Department of Anti-aging Medicine, School of Anti-Aging and Regenerative Medicine, Mae Fah Luang University, Muang, Chiang Rai, Thailand
| | - Salunya Tancharoen
- Department of Pharmacology, Faculty of Dentistry, Mahidol University, Rajthevee, Bangkok, Thailand
| | - Takuro Kanekura
- Department of Dermatology, Kagoshima University Medical and Dental Science, Sakuragaoka, Kagoshima, Japan
| | - Yuko Higashi
- Department of Dermatology, Kagoshima University Medical and Dental Science, Sakuragaoka, Kagoshima, Japan
| | - Pornpen Dararat
- Department of Pharmacology, Faculty of Dentistry, Mahidol University, Rajthevee, Bangkok, Thailand
| | - Kiyoshi Kikuchi
- Division of Brain Science, Department of Physiology, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Thamthiwat Nararatwanchai
- Department of Anti-aging Medicine, School of Anti-Aging and Regenerative Medicine, Mae Fah Luang University, Muang, Chiang Rai, Thailand
| |
Collapse
|
31
|
Gopal Krishnan PD, Golden E, Woodward EA, Pavlos NJ, Blancafort P. Rab GTPases: Emerging Oncogenes and Tumor Suppressive Regulators for the Editing of Survival Pathways in Cancer. Cancers (Basel) 2020; 12:cancers12020259. [PMID: 31973201 PMCID: PMC7072214 DOI: 10.3390/cancers12020259] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/16/2020] [Accepted: 01/17/2020] [Indexed: 12/19/2022] Open
Abstract
The Rab GTPase family of proteins are mediators of membrane trafficking, conferring identity to the cell membranes. Recently, Rab and Rab-associated factors have been recognized as major regulators of the intracellular positioning and activity of signaling pathways regulating cell growth, survival and programmed cell death or apoptosis. Membrane trafficking mediated by Rab proteins is controlled by intracellular localization of Rab proteins, Rab-membrane interactions and GTP-activation processes. Aberrant expression of Rab proteins has been reported in multiple cancers such as lung, brain and breast malignancies. Mutations in Rab-coding genes and/or post-translational modifications in their protein products disrupt the cellular vesicle trafficking network modulating tumorigenic potential, cellular migration and metastatic behavior. Conversely, Rabs also act as tumor suppressive factors inducing apoptosis and inhibiting angiogenesis. Deconstructing the signaling mechanisms modulated by Rab proteins during apoptosis could unveil underlying molecular mechanisms that may be exploited therapeutically to selectively target malignant cells.
Collapse
Affiliation(s)
- Priya D. Gopal Krishnan
- Cancer Epigenetics Laboratory, The Harry Perkins Institute of Medical Research, 6 Verdun Street, Nedlands, WA 6009, Australia; (P.D.G.K.); (E.G.); (E.A.W.)
- School of Human Sciences, Faculty of Science, The University of Western Australia, 35 Stirling Highway Perth, Perth, WA 6009, Australia
| | - Emily Golden
- Cancer Epigenetics Laboratory, The Harry Perkins Institute of Medical Research, 6 Verdun Street, Nedlands, WA 6009, Australia; (P.D.G.K.); (E.G.); (E.A.W.)
| | - Eleanor A. Woodward
- Cancer Epigenetics Laboratory, The Harry Perkins Institute of Medical Research, 6 Verdun Street, Nedlands, WA 6009, Australia; (P.D.G.K.); (E.G.); (E.A.W.)
| | - Nathan J. Pavlos
- School of Biomedical Sciences, The University of Western Australia, Nedlands, WA 6009, Australia;
| | - Pilar Blancafort
- Cancer Epigenetics Laboratory, The Harry Perkins Institute of Medical Research, 6 Verdun Street, Nedlands, WA 6009, Australia; (P.D.G.K.); (E.G.); (E.A.W.)
- School of Human Sciences, Faculty of Science, The University of Western Australia, 35 Stirling Highway Perth, Perth, WA 6009, Australia
- Correspondence:
| |
Collapse
|
32
|
Alehaideb Z, AlGhamdi S, Yahya WB, Al-Eidi H, Alharbi M, Alaujan M, Albaz A, Tukruni M, Nehdi A, Abdulla MH, Matou-Nasri S. Anti-Proliferative and Pro-Apoptotic Effects of Calligonum comosum (L'Her.) Methanolic Extract in Human Triple-Negative MDA-MB-231 Breast Cancer Cells. J Evid Based Integr Med 2020; 25:2515690X20978391. [PMID: 33302699 PMCID: PMC7734547 DOI: 10.1177/2515690x20978391] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 10/29/2020] [Accepted: 11/10/2020] [Indexed: 12/21/2022] Open
Abstract
Triple-negative breast cancer (TNBC), the most aggressive subtype, does not respond to targeted therapy due to the lack of hormone receptors. There is an urgent need for alternative therapies, including natural product-based anti-cancer drugs, at lower cost. We investigated the impact of a Calligonum comosum L'Hér. methanolic extract (CcME) on the TNBC MDA-MB-231 cell line proliferation and related cell death mechanisms performing cell viability and cytotoxicity assays, flow cytometry to detect apoptosis and cell cycle analysis. The apoptosis-related protein array and cellular reactive oxygen species (ROS) assay were also carried out. We showed that the CcME inhibited the TNBC cell viability, in a dose-dependent manner, with low cytotoxic effects. The CcME-treated TNBC cells underwent apoptosis, associated with a concomitant increase of apoptosis-related protein expression, including cytochrome c, cleaved caspase-3, cyclin-dependent kinase inhibitor p21, and the anti-oxidant enzyme catalase, compared with the untreated cells. The CcME also enhanced the mitochondrial transition pore opening activity and induced G0/G1 cell growth arrest, which confirmed the cytochrome c release and the increase of the p21 expression detected in the CcME-treated TNBC cells. The CcME-treated TNBC cells resulted in intracellular ROS production, which, when blocked with a ROS scavenger, did not reduce the CcME-induced apoptosis. In conclusion, CcME exerts anti-proliferative effects against TNBC cells through the induction of apoptosis and cell growth arrest. In vivo studies are justified to verify the CcME anti-proliferative activities and to investigate any potential anti-metastatic activities of CcME against TNBC development and progression.
Collapse
Affiliation(s)
- Zeyad Alehaideb
- Cell and Gene Therapy Group, Medical Genomics Research Department, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Saleh AlGhamdi
- King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- Clinical Research Department, Research Center, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Wesam Bin Yahya
- Cell and Gene Therapy Group, Medical Genomics Research Department, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Hamad Al-Eidi
- Cell and Gene Therapy Group, Medical Genomics Research Department, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Mashael Alharbi
- Cell and Gene Therapy Group, Medical Genomics Research Department, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Monira Alaujan
- Cell and Gene Therapy Group, Medical Genomics Research Department, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Abeer Albaz
- Cell and Gene Therapy Group, Medical Genomics Research Department, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Muruj Tukruni
- Cell and Gene Therapy Group, Medical Genomics Research Department, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Atef Nehdi
- King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- Department of Medical Research Core Facility and Platforms, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Maha-Hamadien Abdulla
- Department of Surgery, King Khalid University Hospital and College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Sabine Matou-Nasri
- Cell and Gene Therapy Group, Medical Genomics Research Department, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| |
Collapse
|
33
|
Liu Y, Lin F, Chen Y, Wang R, Liu J, Jin Y, An R. Cryptotanshinone Inhibites Bladder Cancer Cell Proliferation and Promotes Apoptosis via the PTEN/PI3K/AKT Pathway. J Cancer 2020; 11:488-499. [PMID: 31897244 PMCID: PMC6930428 DOI: 10.7150/jca.31422] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 09/22/2019] [Indexed: 12/14/2022] Open
Abstract
Cryptotanshinone (CTT), extracted from the root of Salvia miltiorrhiza Bunge (Danshen), exhibits activities against a variety of human cancers in vitro and in vivo. The purpose of this study was to investigate the potential inhibitory effect of CTT on bladder cancer. In this study, we found that CTT inhibited bladder cancer cell proliferation, migration, and invasion and promoted apoptosis. In addition, CTT modulated the expression of proteins via the PI3K/AKT pathway, and the inhibition of PI3K/AKT signalling was due to induction of PTEN expression. Taken together, the results of the present study demonstrated the anticancer effect of CTT on bladder cancer cells, which might be associated with the downregulation of PI3K/AKT/mTOR and NF-κB signalling pathway proteins, and this inhibition was mediated by the induction of PTEN.
Collapse
Affiliation(s)
- Yadong Liu
- Department of Urology. The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, People's Republic of China
| | - Fanlu Lin
- Department of Urology. The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, People's Republic of China.,Department of Urology. Linyi Central Hospital, Linyi, Shandong, 276400, People's Republic of China
| | - Yaodong Chen
- Department of ultrasonic imaging, First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Rui Wang
- Department of Urology. The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, People's Republic of China
| | - Jiannan Liu
- Department of Urology. The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, People's Republic of China
| | - Yinshan Jin
- Department of Urology. The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, People's Republic of China
| | - Ruihua An
- Department of Urology. The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150001, People's Republic of China
| |
Collapse
|
34
|
Luo H, Vong CT, Chen H, Gao Y, Lyu P, Qiu L, Zhao M, Liu Q, Cheng Z, Zou J, Yao P, Gao C, Wei J, Ung COL, Wang S, Zhong Z, Wang Y. Naturally occurring anti-cancer compounds: shining from Chinese herbal medicine. Chin Med 2019; 14:48. [PMID: 31719837 PMCID: PMC6836491 DOI: 10.1186/s13020-019-0270-9] [Citation(s) in RCA: 318] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 10/23/2019] [Indexed: 12/24/2022] Open
Abstract
Numerous natural products originated from Chinese herbal medicine exhibit anti-cancer activities, including anti-proliferative, pro-apoptotic, anti-metastatic, anti-angiogenic effects, as well as regulate autophagy, reverse multidrug resistance, balance immunity, and enhance chemotherapy in vitro and in vivo. To provide new insights into the critical path ahead, we systemically reviewed the most recent advances (reported since 2011) on the key compounds with anti-cancer effects derived from Chinese herbal medicine (curcumin, epigallocatechin gallate, berberine, artemisinin, ginsenoside Rg3, ursolic acid, silibinin, emodin, triptolide, cucurbitacin B, tanshinone I, oridonin, shikonin, gambogic acid, artesunate, wogonin, β-elemene, and cepharanthine) in scientific databases (PubMed, Web of Science, Medline, Scopus, and Clinical Trials). With a broader perspective, we focused on their recently discovered and/or investigated pharmacological effects, novel mechanism of action, relevant clinical studies, and their innovative applications in combined therapy and immunomodulation. In addition, the present review has extended to describe other promising compounds including dihydroartemisinin, ginsenoside Rh2, compound K, cucurbitacins D, E, I, tanshinone IIA and cryptotanshinone in view of their potentials in cancer therapy. Up to now, the evidence about the immunomodulatory effects and clinical trials of natural anti-cancer compounds from Chinese herbal medicine is very limited, and further research is needed to monitor their immunoregulatory effects and explore their mechanisms of action as modulators of immune checkpoints.
Collapse
Affiliation(s)
- Hua Luo
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Chi Teng Vong
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Hanbin Chen
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Yan Gao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Peng Lyu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Ling Qiu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Mingming Zhao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Qiao Liu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Zehua Cheng
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Jian Zou
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Peifen Yao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Caifang Gao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Jinchao Wei
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Carolina Oi Lam Ung
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Shengpeng Wang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Zhangfeng Zhong
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| | - Yitao Wang
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, China
| |
Collapse
|
35
|
Liu L, Meng T, Zheng X, Liu Y, Hao R, Yan Y, Chen S, You H, Xing J, Dong Y. Transgelin 2 Promotes Paclitaxel Resistance, Migration, and Invasion of Breast Cancer by Directly Interacting with PTEN and Activating PI3K/Akt/GSK-3β Pathway. Mol Cancer Ther 2019; 18:2457-2468. [PMID: 31488699 DOI: 10.1158/1535-7163.mct-19-0261] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 07/03/2019] [Accepted: 08/27/2019] [Indexed: 11/16/2022]
Affiliation(s)
- Leichao Liu
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi';an, Shaanxi, P.R. China
| | - Ti Meng
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi';an, Shaanxi, P.R. China
| | - Xiaowei Zheng
- Department of Pharmacy, The First Hospital of Xi'an, Xi'an, Shaanxi, P.R. China
| | - Yang Liu
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi';an, Shaanxi, P.R. China
| | - Ruifang Hao
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi';an, Shaanxi, P.R. China
| | - Yan Yan
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi';an, Shaanxi, P.R. China
- School of pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, P.R. China
| | - Siying Chen
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi';an, Shaanxi, P.R. China
| | - Haisheng You
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi';an, Shaanxi, P.R. China
| | - Jianfeng Xing
- School of pharmacy, Xi'an Jiaotong University, Xi'an, Shaanxi, P.R. China.
| | - Yalin Dong
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi';an, Shaanxi, P.R. China.
| |
Collapse
|