1
|
Mejía Delgado EM, Quiroz-Aldave JE, Durand-Vásquez MDC, Aldave-Pita LN, Fuentes-Mendoza JM, Concepción-Urteaga LA, Paz-Ibarra J, Concepción-Zavaleta MJ. Immunomodulatory effect of allium sativum in type 2 diabetes mellitus. World J Exp Med 2025; 15:103481. [DOI: 10.5493/wjem.v15.i2.103481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 03/10/2025] [Accepted: 03/21/2025] [Indexed: 04/16/2025] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a metabolic disorder marked by chronic hyperglycemia and low-grade inflammation, contributing to various complications. Natural agents with immunomodulatory and antioxidant properties have gained attention as adjunct therapies. To review the effects of Allium sativum on inflammatory pathways and metabolic alterations associated with T2DM. A narrative review was performed using PubMed/MEDLINE, EMBASE, and Scielo databases. The search included terms such as “allium sativum”, “inflammation", “oxidative stress”, and “diabetes mellitus”. Studies in English and Spanish - ranging from clinical trials to meta-analyses - were selected based on relevance. Bioactive compounds such as allicin, S-allyl cysteine, and diallyl disulfide exhibit anti-inflammatory, antioxidant, hypoglycemic, and lipid-lowering actions. Preclinical studies show improved glucose metabolism, insulin sensitivity, and organ function. Moreover, clinical evidence supports reductions in fasting glucose, hemoglobin A1c, blood pressure, and oxidative stress, with good safety profiles. Allium sativum appears to be a promising adjuvant in T2DM management, offering metabolic and anti-inflammatory benefits. Nonetheless, further high-quality clinical trials are needed to confirm its long-term efficacy and standardize its therapeutic use.
Collapse
Affiliation(s)
- Elva Manuela Mejía Delgado
- Basic Sciences of Microbiology and Immunology, School of Medicine, Universidad Nacional de Trujillo, Trujillo 13011, La Libertad, Peru
| | - Juan Eduardo Quiroz-Aldave
- Non-Communicable Diseases, Endocrinology Research Line, Hospital de Apoyo Chepén, Chepén 13871, La Libertad, Peru
| | | | - Lea Noemí Aldave-Pita
- School of Pharmacy and Biochemistry, Universidad Nacional de Trujillo, Trujillo 13011, La Libertad, Peru
| | | | | | - José Paz-Ibarra
- School of Medicine, Universidad Nacional Mayor de San Marcos, Lima 15081, Peru
- Department of Endocrinology, Hospital Nacional Edgardo Rebagliati Martins, Lima 15072, Peru
| | | |
Collapse
|
2
|
Andary J, El Ballouz H, Abou-Khalil R. Lebanese Medicinal Plants with Ophthalmic Properties. Pharmaceuticals (Basel) 2025; 18:155. [PMID: 40005969 PMCID: PMC11858532 DOI: 10.3390/ph18020155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/13/2025] [Accepted: 01/19/2025] [Indexed: 02/27/2025] Open
Abstract
Lebanon benefits from a rich biodiversity, with medicinal and aromatic plants (MAPs) representing an important part of the country's natural wealth; however, limited data are available documenting medicinal plants being employed in eye health. This review is the first to document Lebanese medicinal plants with ophthalmic characteristics and phytochemistry that might be beneficial in the development of new, accessible, and efficient ocular medications. In this study, we searched for studies on ocular therapeutic plants using known resources, including PubMed, ScienceDirect, and Google Scholar, and confirmed these plants' presence within the Lebanese flora. The efficacy of 52 species from 28 families, including two endemic species (Crepis libanotica and Salvia libanotica), has been documented. Their Latin names, regional names, ocular medical applications, the plant parts used, and preparation forms are detailed below. The largest number of species belongs to the Lamiaceae family (21%), followed by Asteraceae (14%) and Solanaceae (7%). The most commonly used plant parts are the stems, leaves, and seeds. Ocular treatments fall into several categories: inflammation, infection, irritation, dry-eye, eyewash, the prevention or delay of cataracts, and general eye problems. A significant percentage (68%) of the medicinal plants target the anterior part of the eye. Some of the reported plants can be harmful to the eyes and should be handled with caution. The Lebanese medicinal plants listed, constituting a local heritage with global importance, could be used for treating ophthalmic ailments and require special screening and preservation.
Collapse
Affiliation(s)
- Jeanne Andary
- Faculty of Health Sciences, Modern University for Business and Science, Beirut P.O. Box 113-7501, Lebanon
- Department of Optics and Optometry, Faculty of Health Sciences, American University of Science and Technology, Beirut P.O. Box 16-6452, Lebanon;
| | - Haitham El Ballouz
- Department of Optics and Optometry, Faculty of Health Sciences, American University of Science and Technology, Beirut P.O. Box 16-6452, Lebanon;
| | - Rony Abou-Khalil
- Biology Department, Faculty of Arts and Sciences, Holy Spirit University of Kaslik, Jounieh P.O. Box 446, Lebanon;
| |
Collapse
|
3
|
Xiao X. Comments on "health-promoting properties of bioactive proteins and peptides of garlic (Allium sativum)", food chemistry 435 (2024) 137632-137,643, DOI: 10.1016/j.foodchem.2023.137632. Food Chem 2024; 459:140331. [PMID: 38996636 DOI: 10.1016/j.foodchem.2024.140331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/14/2024]
Abstract
The article "Health-promoting properties of bioactive proteins and peptides of garlic (Allium sativum)" by Ezeorba et al. (Food Chemistry 435 (2024) 137632-137,643, DOI: https://doi.org/10.1016/j.foodchem.2023.137632), offers a comprehensive review of the literature on the bioactive proteins and peptides found in garlic. This study serves as a valuable resource for professionals in the fields of research, nutrition, and healthcare who are interested in the medicinal and nutritional aspects of garlic. This Letter to the Editor aims to address some inaccuracies and omissions found in the above-mentioned article. It corrects the reported lack of biological activity data for certain peptides, clarifies the immunomodulatory effects attributed to garlic's components, and adjusts the reported protein content range for garlic varieties. These refinements aim to enhance the accuracy and utility of the information presented in this article for future research.
Collapse
Affiliation(s)
- Xixiang Xiao
- Modern Agricultural and Forestry Engineering College, Ji'an College, Ji'an City, 343000, China.
| |
Collapse
|
4
|
Deng Y, Zhang S, Luo Z, He P, Ma X, Ma Y, Wang J, Zheng L, Tian N, Dong S, Zhang X, Zhang M. VCAM1: an effective diagnostic marker related to immune cell infiltration in diabetic nephropathy. Front Endocrinol (Lausanne) 2024; 15:1426913. [PMID: 39319258 PMCID: PMC11420029 DOI: 10.3389/fendo.2024.1426913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 08/13/2024] [Indexed: 09/26/2024] Open
Abstract
Introduction The role of immune cells in the pathogenesis and advancement of diabetic nephropathy (DN) is crucial. The objective of this study was to identify immune-cell-related biomarkers that could potentially aid in the diagnosis and management of DN. Methods The GSE96804 dataset was obtained from the Gene Expression Omnibus (GEO) database. Then, screen for intersections between differentially expressed genes (DEGs) and immune-related genes (IRGs). Identify core genes through protein-protein interaction (PPI) networks and the Cytoscape plugin. Subsequently, functional enrichment analysis was conducted. In addition, ROC analysis is performed to accurately identify diagnostic biomarkers. Apply the CIBERSORT algorithm to evaluate the proportion of immune cell infiltration. Finally, the mRNA, protein, and immunofluorescence expression of the biomarker was validated in the DN rat model. Results The study yielded 74 shared genes associated with DN. Enrichment analysis indicated significant enrichment of these genes in focal adhesion, the humoral immune response, activation of the immune response, Cytokine-cytokine receptor interaction, and IL-17 signaling pathway. The optimal candidate gene VCAM1 was identified. The presence of VCAM1 in DN was further validated using the ROC curve. Analysis of immune cell infiltration matrices revealed a high abundance of monocytes, naïve B cells, memory B cells, and Macrophages M1/M2 in DN tissues. Correlation analysis identified one hub biomarker associated with immune-infiltrated cells in DN. Furthermore, our findings were validated through in vivo RT qPCR, WB, and IF techniques. Conclusions Our research indicates that VCAM1 is a signature gene associated with DN and is linked to the progression, treatment, and prognosis of DN. A comprehensive examination of immune infiltration signature genes may offer new perspectives on the clinical diagnosis and management of DN.
Collapse
Affiliation(s)
- Yuanyuan Deng
- Department of Nephrology, Tianjin Academy of Traditional Chinese Medicine, Tianjin, China
| | - Sai Zhang
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Zheng Luo
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Pengfei He
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xinyu Ma
- Department of Clinical Medicine, Tianjin Medical University, Tianjin, China
| | - Yu Ma
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jing Wang
- Department of Nephrology, Tianjin Academy of Traditional Chinese Medicine, Tianjin, China
| | - Liyang Zheng
- Department of Nephrology, Tianjin Academy of Traditional Chinese Medicine, Tianjin, China
| | - Ni Tian
- Department of Nephrology, Tianjin Academy of Traditional Chinese Medicine, Tianjin, China
| | - Shaoning Dong
- Department of Nephrology, Tianjin Academy of Traditional Chinese Medicine, Tianjin, China
| | - Xingkun Zhang
- Department of Nephrology, Tianjin Academy of Traditional Chinese Medicine, Tianjin, China
| | - Mianzhi Zhang
- Department of Nephrology, Tianjin Academy of Traditional Chinese Medicine, Tianjin, China
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
5
|
Kong S, Li J, Pan X, Zhao C, Li Y. Allicin regulates Sestrin2 ubiquitination to affect macrophage autophagy and senescence, thus inhibiting the growth of hepatoma cells. Tissue Cell 2024; 88:102398. [PMID: 38728949 DOI: 10.1016/j.tice.2024.102398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/17/2024] [Accepted: 04/29/2024] [Indexed: 05/12/2024]
Abstract
BACKGROUND Allicin regulates macrophage autophagy and senescence, and inhibits hepatoma cell growth. This study investigated the mechanism by which allicin inhibits the growth of hepatoma cells. METHODS Hepa1-6 mouse hepatoma cells were subcutaneously injected into C57BL/6 J mice to construct a tumor transplantation model. Macrophages were cultured with the supernatant of hepatoma cells to construct a cell model. The levels of mRNA and proteins and the level of Sestrin2 ubiquitination were measured by RTqPCR, immunofluorescence and Western blotting. The levels of autophagy-related factors and the activity of senescence-associated β-galactosidase were determined by kits, and protein stability was detected by cycloheximide (CHX) tracking. RESULTS Data analysis of clinical samples revealed that RBX1 was highly expressed in tumor tissues, while Sestrin2 was expressed at low levels in tumor tissues. Allicin can promote the expression of the autophagy-related proteins LC3 and Beclin-1 in tumor macrophages and inhibit the expression of the aging-related proteins p16 and p21, thus promoting autophagy in macrophages and inhibiting cell senescence. Moreover, allicin can inhibit the expression of RBX1, thereby reducing the ubiquitination of Sestrin2, enhancing the stability of Sestrin2, activating autophagy in tumor macrophages and inhibiting senescence. In addition, allicin treatment inhibited the proliferation and migration of hepatoma carcinoma cells cocultured with macrophages and significantly improved the development of liver cancer in mice. CONCLUSION Allicin can affect the autophagy of macrophages and restrain the growth of hepatoma cells by regulating the ubiquitination of Sestrin2.
Collapse
Affiliation(s)
- Shujia Kong
- Department of Pharmacy, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650118, China
| | - Jiaxun Li
- Department of Pharmacy, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650118, China
| | - Xin Pan
- Department of Pharmacy, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650118, China
| | - Chen Zhao
- Department of Pharmacy, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650118, China
| | - Yanwen Li
- Intensive Care Unit, The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650118, China.
| |
Collapse
|
6
|
Alvarenga L, Reis DCMV, Kemp JA, Teixeira KTR, Fouque D, Mafra D. Using the concept of food as medicine to mitigate inflammation in patients undergoing peritoneal dialysis. Ther Apher Dial 2024; 28:341-353. [PMID: 38163858 DOI: 10.1111/1744-9987.14101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/29/2023] [Accepted: 12/13/2023] [Indexed: 01/03/2024]
Abstract
The most common kidney replacement therapy (KRT) worldwide is hemodialysis (HD), and only 5%-10% of patients are prescribed peritoneal dialysis (PD) as KRT. Despite PD being a different method, these patients also present particular complications, such as oxidative stress, gut dysbiosis, premature aging, and mitochondrial dysfunction, leading to an inflammation process and high cardiovascular mortality risk. Although recent studies have reported nutritional strategies in patients undergoing HD with attempts to mitigate these complications, more information must be needed for PD patients. Therefore, this review provides a comprehensive analysis of recent studies of nutritional intervention to mitigate inflammation in PD patients.
Collapse
Affiliation(s)
- Livia Alvarenga
- Graduate Program in Nutrition Sciences, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
- Graduate Program in Biological Sciences - Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Drielly C M V Reis
- Division of Nephrology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Julie Ann Kemp
- Graduate Program in Nutrition Sciences, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
| | | | - Denis Fouque
- Department of Nephrology, Centre Hopitalier Lyon Sud, INSERM 1060, CENS, Université de Lyon, Lyon, France
| | - Denise Mafra
- Graduate Program in Nutrition Sciences, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
- Graduate Program in Biological Sciences - Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
- Graduate Program in Medical Sciences, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
| |
Collapse
|
7
|
Ghose S, Satariano M, Korada S, Cahill T, Shah R, Raina R. Advancements in diabetic kidney disease management: integrating innovative therapies and targeted drug development. Am J Physiol Endocrinol Metab 2024; 326:E791-E806. [PMID: 38630049 DOI: 10.1152/ajpendo.00026.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/27/2024] [Accepted: 04/01/2024] [Indexed: 05/21/2024]
Abstract
Diabetic kidney disease (DKD) is a leading cause of chronic kidney disease and affects approximately 40% of individuals with diabetes . Cases of DKD continue to rise globally as the prevalence of diabetes mellitus increases, with an estimated 415 million people living with diabetes in 2015 and a projected 642 million by 2040. DKD is associated with significant morbidity and mortality, representing 34% and 36% of all chronic kidney disease deaths in men and women, respectively. Common comorbidities including hypertension and ageing-related nephron loss further complicate disease diagnosis and progression. The progression of DKD involves several mechanisms including glomerular endothelial cell dysfunction, inflammation, and fibrosis. Targeting these mechanisms has formed the basis of several therapeutic agents. Renin-angiotensin-aldosterone system (RAAS) blockers, specifically angiotensin receptor blockers (ARBs), demonstrate significant reductions in macroalbuminuria. Sodium-glucose transporter type 2 (SGLT-2) inhibitors demonstrate kidney protection independent of diabetes control while also decreasing the incidence of cardiovascular events. Emerging agents including glucagon-like peptide 1 (GLP-1) agonists, anti-inflammatory agents like bardoxolone, and mineralocorticoid receptor antagonists show promise in mitigating DKD progression. Many novel therapies including monoclonal antibodies CSL346, lixudebart, and tozorakimab; mesenchymal stem/stromal cell infusion; and cannabinoid-1 receptor inverse agonism via INV-202 are currently in clinical trials and present opportunities for further drug development.
Collapse
Affiliation(s)
- Shaarav Ghose
- Department of Medicine, Northeast Ohio Medical University, Rootstown, Ohio, United States
| | - Matthew Satariano
- Department of Medicine, Northeast Ohio Medical University, Rootstown, Ohio, United States
| | - Saichidroopi Korada
- Department of Medicine, Northeast Ohio Medical University, Rootstown, Ohio, United States
| | - Thomas Cahill
- Department of Medicine, Northeast Ohio Medical University, Rootstown, Ohio, United States
| | - Raghav Shah
- Department of Medicine, Northeast Ohio Medical University, Rootstown, Ohio, United States
| | - Rupesh Raina
- Department of Medicine, Akron Nephrology Associates/Cleveland Clinic Akron General Medical Center, Akron, Ohio, United States
- Department of Nephrology, Akron Children's Hospital, Akron, Ohio, United States
| |
Collapse
|
8
|
Jiang Y, Li Z, Yue R, Liu G, Yang M, Long C, Yan D. Evidential support for garlic supplements against diabetic kidney disease: a preclinical meta-analysis and systematic review. Food Funct 2024; 15:12-36. [PMID: 38051214 DOI: 10.1039/d3fo02407e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Garlic (Allium sativum L.) is a popular spice that is widely used for food and medicinal purposes and has shown potential effects on diabetic kidney disease (DKD). Nevertheless, systematic preclinical studies are still lacking. In this meta-analysis and systematic review, we evaluated the role and potential mechanisms of action of garlic and its derived components in animal models of DKD. We searched eight databases for relevant studies from the establishment of the databases to December 2022 and updated in April 2023 before the completion of this review. A total of 24 trials were included in the meta-analysis. It provided preliminary evidence that supplementing with garlic could improve the indicators of renal function (BUN, Scr, 24 h urine volume, proteinuria, and KI) and metabolic disorders (BG, insulin, and body weight). Meanwhile, the beneficial effects of garlic and its components in DKD could be related to alleviating oxidative stress, suppressing inflammatory reactions, delaying renal fibrosis, and improving glucose metabolism. Furthermore, time-dose interval analysis exhibited relatively greater effectiveness when garlic products were supplied at doses of 500 mg kg-1 with interventions lasting 8-10 weeks, and garlic components were administered at doses of 45-150 mg kg-1 with interventions lasting 4-10 weeks. This meta-analysis and systematic review highlights for the first time the therapeutic potential of garlic supplementation in animal models of DKD and offers a more thorough evaluation of its effects and mechanisms to establish an evidence-based basis for designing future clinical trials.
Collapse
Affiliation(s)
- Yayi Jiang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.
| | - Zihan Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.
| | - Rensong Yue
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.
| | - Guojie Liu
- School of Chemical Engineering, Sichuan University, Chengdu, China
| | - Maoyi Yang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.
| | - Caiyi Long
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.
| | - Dawei Yan
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.
| |
Collapse
|
9
|
Li XJ, Liu T, Wang Y. Allicin ameliorates sepsis-induced acute kidney injury through Nrf2/HO-1 signaling pathway. J Nat Med 2024; 78:53-67. [PMID: 37668824 PMCID: PMC10764392 DOI: 10.1007/s11418-023-01745-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/17/2023] [Indexed: 09/06/2023]
Abstract
Acute kidney injury (AKI) is a complication that can be induced by different factors. Allicin is a class of organic sulfur compounds with anticancer and antibacterial effects, and has not been reported in sepsis-induced AKI (S-AKI). S-AKI was induced in c57BL/6 mice by cecal ligation puncture. In response to the treatment of allicin, the survival rate of mice with S-AKI was increased. Reduced levels of serum creatinine, blood urea nitrogen, UALB, KIM-1 and NGAL indicated an improvement in renal function of S-AKI mice. Allicin inhibited the inflammation and cell apoptosis, which evidenced by decreased levels of inflammatory cytokines and apoptosis-related proteins. Oxidative stress was evaluated by the levels of oxidative stress biomarkers, and suppressed by allicin. In addition, allicin-alleviated mitochondrial dysfunction was characterized by decreased JC-1 green monomer. These effects of allicin were also evidenced in HK2 cells primed with lipopolysaccharide (LPS). Both in vivo and in vitro experiments showed that the nuclear translocation of Nrf2 and the expression of HO-1 increased after allicin treatment, which was confirmed by ML385 and CDDO-Me. In summary, this study revealed the alleviating effect of allicin on S-AKI and demonstrated the promotive effect of allicin on nuclear translocation of Nrf2 for the first time. It was inferred that allicin inhibited the progression of S-AKI through Nrf2/HO-1 signaling pathway. This study makes contributions to the understanding of the roles of allicin in S-AKI.
Collapse
Affiliation(s)
- Xiao-Jun Li
- Department of Nephrology, The Second Hospital of Dalian Medical University, 467 Zhongshan Road, Dalian, 116027, Liaoning, China
| | - Ting Liu
- Department of General Practice, The Second Hospital of Dalian Medical University, 467 Zhongshan Road, Dalian, 116027, Liaoning, China
| | - Yuan Wang
- Department of Nephrology, The Second Hospital of Dalian Medical University, 467 Zhongshan Road, Dalian, 116027, Liaoning, China.
| |
Collapse
|
10
|
Deng Y, Ho CT, Lan Y, Xiao J, Lu M. Bioavailability, Health Benefits, and Delivery Systems of Allicin: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:19207-19220. [PMID: 37943254 DOI: 10.1021/acs.jafc.3c05602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Garlic has been used worldwide as a spice due to its pungent taste and flavor-enhancing properties. As a main biologically active component of the freshly crushed garlic extracts, allicin (diallyl thiosulfinate) is converted from alliin by alliinase upon damaging the garlic clove, which has been reported to have many potent beneficial biological functions. In this work, allicin formation, stability, bioavailability, and metabolism process are examined and summarized. The biological functions of allicin and potential underlying mechanisms are reviewed and discussed, including antioxidation, anti-inflammation, antidiabetic, cardioprotective, antineurodegenerative, antitumor, and antiobesity effects. Novel delivery systems of allicin with enhanced stability, encapsulation efficiency, and bioavailability are also evaluated, such as nanoparticles, gels, liposomes, and micelles. This study could provide a comprehensive understanding of the physiochemical properties and health benefits of allicin, with great potential for further applications in the food and nutraceutical industries.
Collapse
Affiliation(s)
- Yupei Deng
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, People's Republic of China
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, New Jersey 08901, United States
| | - Yaqi Lan
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, People's Republic of China
| | - Jie Xiao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, People's Republic of China
| | - Muwen Lu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, People's Republic of China
| |
Collapse
|
11
|
Arellano Buendia AS, Juárez Rojas JG, García-Arroyo F, Aparicio Trejo OE, Sánchez-Muñoz F, Argüello-García R, Sánchez-Lozada LG, Bojalil R, Osorio-Alonso H. Antioxidant and anti-inflammatory effects of allicin in the kidney of an experimental model of metabolic syndrome. PeerJ 2023; 11:e16132. [PMID: 37786577 PMCID: PMC10541809 DOI: 10.7717/peerj.16132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 08/28/2023] [Indexed: 10/04/2023] Open
Abstract
Background Recent studies have suggested that metabolic syndrome (MS) encompasses a group of risk factors for developing chronic kidney disease (CKD). This work aimed to evaluate the antioxidant and anti-inflammatory effects of allicin in the kidney from an experimental model of MS. Methods Male Wistar rats (220-250 g) were used, and three experimental groups (n = 6) were formed: control (C), metabolic syndrome (MS), and MS treated with allicin (16 mg/Kg/day, gastric gavage) (MS+A). MS was considered when an increase of 20% in at least three parameters (body weight, systolic blood pressure (SBP), fasting blood glucose (FBG), or dyslipidemia) was observed compared to the C group. After the MS diagnosis, allicin was administered for 30 days. Results Before the treatment with allicin, the MS group showed more significant body weight gain, increased SBP, and FBG, glucose intolerance, and dyslipidemia. In addition, increased markers of kidney damage in urine and blood. Moreover, the MS increased oxidative stress and inflammation in the kidney compared to group C. The allicin treatment prevented further weight gain, reduced SBP, FBG, glucose intolerance, and dyslipidemia. Also, markers of kidney damage in urine and blood were decreased. Further, the oxidative stress and inflammation were decreased in the renal cortex of the MS+A compared to the MS group. Conclusion Allicin exerts its beneficial effects on the metabolic syndrome by considerably reducing systemic and renal inflammation as well as the oxidative stress. These effects were mediated through the Nrf2 pathway. The results suggest allicin may be a therapeutic alternative for treating kidney injury induced by the metabolic syndrome risk factors.
Collapse
Affiliation(s)
- Abraham Said Arellano Buendia
- Doctorado en Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Mexico, Xochimilco, Mexico
- Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, Mexico, Tlalpan, México
| | | | - Fernando García-Arroyo
- Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, Mexico, Tlalpan, México
| | | | - Fausto Sánchez-Muñoz
- Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Mexico, Tlalpan, México
| | - Raúl Argüello-García
- Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del IPN, México, Gustavo A. Madero, México
| | | | - Rafael Bojalil
- Atención a la Salud, Universidad Autónoma Metropolitana, Mexico, Xochimilco, México
| | - Horacio Osorio-Alonso
- Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, Mexico, Tlalpan, México
| |
Collapse
|
12
|
Putra IMWA, Fakhrudin N, Nurrochmad A, Wahyuono S. A Review of Medicinal Plants with Renoprotective Activity in Diabetic Nephropathy Animal Models. Life (Basel) 2023; 13:560. [PMID: 36836916 PMCID: PMC9963806 DOI: 10.3390/life13020560] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 02/19/2023] Open
Abstract
Diabetic nephropathy (DN), also recognized as diabetic kidney disease, is a kidney malfunction caused by diabetes mellitus. A possible contributing factor to the onset of DN is hyperglycemia. Poorly regulated hyperglycemia can damage blood vessel clusters in the kidneys, leading to kidney damage. Its treatment is difficult and expensive because its causes are extremely complex and poorly understood. Extracts from medicinal plants can be an alternative treatment for DN. The bioactive content in medicinal plants inhibits the progression of DN. This work explores the renoprotective activity and possible mechanisms of various medicinal plant extracts administered to diabetic animal models. Research articles published from 2011 to 2022 were gathered from several databases including PubMed, Scopus, ProQuest, and ScienceDirect to ensure up-to-date findings. Results showed that medicinal plant extracts ameliorated the progression of DN via the reduction in oxidative stress and suppression of inflammation, advanced glycation end-product formation, cell apoptosis, and tissue injury-related protein expression.
Collapse
Affiliation(s)
- I Made Wisnu Adhi Putra
- Department of Biology, University of Dhyana Pura, Badung 80351, Indonesia
- Doctorate Program of Pharmacy, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Nanang Fakhrudin
- Department of Pharmaceutical Biology, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
- Medicinal Plants and Natural Products Research Center, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Arief Nurrochmad
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Subagus Wahyuono
- Department of Pharmaceutical Biology, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
- Medicinal Plants and Natural Products Research Center, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| |
Collapse
|
13
|
Qian R, Chen H, Lin H, Jiang Y, He P, Ding Y, Wu H, Peng Y, Wang L, Chen C, Wang D, Ji W, Guo X, Shan X. The protective roles of allicin on type 1 diabetes mellitus through AMPK/mTOR mediated autophagy pathway. Front Pharmacol 2023; 14:1108730. [PMID: 36817124 PMCID: PMC9937553 DOI: 10.3389/fphar.2023.1108730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 01/25/2023] [Indexed: 02/05/2023] Open
Abstract
Background: Type 1 diabetes mellitus (T1DM) is one of the most common endocrine and metabolic diseases in children. Pancreatic β cells are thought to be critical cells involved in the progression of T1DM, and their injury would directly lead to impaired insulin secretion. Purpose: To investigate the protective effects of allicin on pancreatic β cell injury and elucidate the underlying mechanism. Methods: The streptozotocin (STZ)-induced mouse T1DM model in vivo and STZ-induced pancreatic β cell Min6 model in vitro were used to explore the effects of allicin on T1DM. The experiments include fasting blood glucose test, oral glucose tolerance detection, HE staining, immunohistochemistry, immunofluorescence, TUNEL staining, western blot, real-time quantitative PCR (RT-qPCR), and flow cytometry. Results: Allicin could significantly decrease blood glucose level, improve islet structure and insulin expression, and inhibit apoptosis to reduce STZ-induced pancreatic β cell injury and loss through activating AMPK/mTOR mediated autophagy pathway. Conclusion: Allicin treatment significantly reduced STZ-induced T1DM progression, suggesting that allicin may be a potential therapy option for T1DM patients.
Collapse
Affiliation(s)
- Rengcheng Qian
- Department of Pediatrics, The Second Schoozl of Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Huihui Chen
- Department of Pediatrics, The Second Schoozl of Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hongzhou Lin
- Department of Pediatrics, The Second Schoozl of Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yalan Jiang
- Department of Pediatrics, The Second Schoozl of Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Pingping He
- Department of Pediatrics, The Second Schoozl of Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yinjuan Ding
- Department of Pediatrics, The Second Schoozl of Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Huilan Wu
- Department of Pediatrics, The Second Schoozl of Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yongmiao Peng
- Department of Pediatrics, The Second Schoozl of Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lingfei Wang
- Department of Pediatrics, The Second Schoozl of Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Congde Chen
- Department of Pediatrics, The Second Schoozl of Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China,Key Laboratory of Children Genitourinary Diseases of Wenzhou, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China,Key Laboratory of Structural Malformations in Children of Zhejiang Province, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Dexuan Wang
- Department of Pediatrics, The Second Schoozl of Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China,Key Laboratory of Children Genitourinary Diseases of Wenzhou, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China,Key Laboratory of Structural Malformations in Children of Zhejiang Province, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Weiping Ji
- Department of General Surgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China,*Correspondence: Weiping Ji, ; Xiaoling Guo, ; Xiaoou Shan,
| | - Xiaoling Guo
- Department of Pediatrics, The Second Schoozl of Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China,Key Laboratory of Children Genitourinary Diseases of Wenzhou, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China,Key Laboratory of Structural Malformations in Children of Zhejiang Province, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China,Basic Medical Research Center, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China,*Correspondence: Weiping Ji, ; Xiaoling Guo, ; Xiaoou Shan,
| | - Xiaoou Shan
- Department of Pediatrics, The Second Schoozl of Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China,Key Laboratory of Children Genitourinary Diseases of Wenzhou, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China,Key Laboratory of Structural Malformations in Children of Zhejiang Province, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China,*Correspondence: Weiping Ji, ; Xiaoling Guo, ; Xiaoou Shan,
| |
Collapse
|
14
|
Savira M, Sari DK, Machrina Y, Widjaja SS, Unitly AJA, Ilyas S, Siregar J, Pandia P, Rusda M, Amin MM. Effect of Garlic Ethanol Extract Administration on Gluthatione Levels to Prevent Oxidative Stress in Smoker Rat Model. Med Arch 2023; 77:418-421. [PMID: 38313106 PMCID: PMC10834041 DOI: 10.5455/medarh.2023.77.418-421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 11/27/2023] [Indexed: 02/06/2024] Open
Abstract
Background Sickle Garlic (Allium sativum L.) is known as a spice native to western Asia has a strong antioxidant effect and revealed it functions as an antioxidant by increasing ROS-capture activity, cellular antioxidants, SOD, CAT, and GSH levels in cells. Cigarette smoke is very dangerous because it can cause serious illness and death. Cigarette smoke is a major source of exogenous ROS because its particles are high in free radicals. Smoking is also related to a decrease in the body's natural antioxidant levels. Glutathione (GSH) synthesis and expression were found to increase initially and then decrease after being exposed to cigarette smoke. Objective The aim of this study is; to analyze effect of garlic ethanol extract administration on gluthatione levels to prevent oxidative stress in smoker rat model. Methods This was a case-control study with a control group design, with 15 healthy rats (Rattus norvegicus, sp.) divided into three groups, KN untreated animals (control), K1 animals exposed to cigarette smoke for 40 days (smoker), and K2 animals exposed to cigarette smoke for 40 days and treated with Allium sativum 0.1 g per day for 40 days (smoker and Allium sativum L.). After 40 days of treatment, all animals, including the control, were sacrificed with 30 mg/IP ketamine injections, and the blood plasma were taken for examination. Results there were significant difference in glutathione levels between the treatment groups (K2) with the control group (KN) and the smokers group (K1) (p <0.05). Conclusion garlic ethanol extract administration can increase gluthatione levels and prevent oxidative stress in smoker rat model.
Collapse
Affiliation(s)
- Maya Savira
- Philosophy Doctor in Medicine Program, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
- Department of Physiology, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| | - Dina Keumala Sari
- Department of Nutrition, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| | - Yetty Machrina
- Department of Physiology, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| | - Sry Suryani Widjaja
- Department of Biochemistry, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| | - Adrien Jems Akiles Unitly
- Department of Biology, Faculty of Mathematics and Natural Sciences, Pattimura University, Ambon,Indonesia
| | - Syafruddin Ilyas
- Study Program of Biology, Faculty of Mathematics and Natural Sciences, Universitas Sumatera Utara, Indonesia
| | - Jelita Siregar
- Department of Clinical Pathology, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| | - Pandiaman Pandia
- Department of Pulmonology and Respiratory, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| | - M. Rusda
- Department of Obstetrics and Gynecology, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| | - Mustafa M. Amin
- Department of Psychiatry, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| |
Collapse
|
15
|
Ma J, Wang X, Xu M, Chang Y, Dong M, Sun C, Wang Y, Zhang J, Xu N, Liu W. Raspberry Ketone Protects Kidney Damage in Diabetic Nephropathy by Improving Kidney Mitochondrial Dysfunction. Nat Prod Commun 2023. [DOI: 10.1177/1934578x221148619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Mitochondrial dysfunction and oxidative stress play essential roles in the pathogenesis of diabetic nephropathy (DN). The respiratory oxygen consumption and oxidative stress status of kidney mitochondria are closely associated with the development of DN. In this study, raspberry ketone (RK), the predominant bioactive component extracted from raspberry, was applied to treat the established DN mice model. This study investigated whether RK protects the kidneys of high-fat and high-sugar/streptozotocin (STZ)-induced diabetic rats by inhibiting oxidative stress and ameliorating mitochondrial dysfunction. Besides, the DN mice models were established by injecting high-fat and high-sugar/STZ (130 mg/kg, intraperitoneal injection). The animals were randomly divided into the control group (normal saline, ig), DN group (normal saline, ig), DN + RK group (200 mg/kg RK + normal saline, ig), DN + RK group (400 mg/kg RK + normal saline, ig), and DN + Metformin (Met) (200 mg/kg Met + normal saline, ig). Regular monitoring of fasting blood glucose (FBG) levels was observed in mice. After 10 weeks of drug treatment, the kidneys of mice in each group were analyzed using ultrasound, and the mice were euthanized humanely. Kidney weight (KW)/body weight (BW) and kidney injury, mitochondrial function, and oxidative stress indicators were determined. The histopathological changes in renal tissue were observed after hematoxylin and eosin (H&E) staining. The results recommended that RK has a renoprotective function on DN mice by improving mitochondrial dysfunction and inhibiting oxidative stress.
Collapse
Affiliation(s)
- Jiawang Ma
- College of Life Science, Jilin Agricultural University, Changchun, PR China
| | - Xin Wang
- College of Life Science, Jilin Agricultural University, Changchun, PR China
| | - Meng Xu
- College of Life Science, Jilin Agricultural University, Changchun, PR China
| | - Ying Chang
- Teaching Affairs Office, Jilin Medical University, Jilin, PR China
| | - Mingxin Dong
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, PR China
| | - Chengbiao Sun
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, PR China
| | - Yan Wang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, PR China
| | - Jianxu Zhang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, PR China
| | - Na Xu
- Teaching Affairs Office, Jilin Medical University, Jilin, PR China
| | - Wensen Liu
- College of Life Science, Jilin Agricultural University, Changchun, PR China
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, PR China
| |
Collapse
|
16
|
Savira M, Sari DK, Machrina Y, Widjaja SS, Unitly AJA, Ilyas S, Siregar J, Pandia P, Rusda M, Amin MM. Anti Inflammatory Action of Allium Sativum Ethanol Extract to Prevent Lung Damage in Smoker Rat Model. Med Arch 2023; 77:178-182. [PMID: 37700925 PMCID: PMC10495143 DOI: 10.5455/medarh.2023.77.178-182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 05/14/2023] [Indexed: 09/14/2023] Open
Abstract
Background Smoking is the leading cause of death in worldwide and is known as one of the risk factors in the development and pathogenesis of several diseases and most are respiratory and cardiovascular diseases. Secondhand smoke (SHS) exposure is associated with negative health consequences including respiratory tract infection, asthma, and cancer. One of the pathogenesis that has known to cause these diseases is inflammation. Garlic (Allium sativum) is a medicinal herb that contains Allicin and other active constituents that are known to have anti-inflammatory ability by suppressing the expression and production of proinflammatory cytokines that will cause inflammation. Objective The aim of this study is; to analyze the anti-inflammatory action of Allium sativum ethanol extract to prevent lung damage in the smoker rat model. Methods This is a case-control study with five groups of rats each group contains of three rats. The five groups were negative control (KN), 10 days (10d) smoker (K1), 20 days (20d) smoker (K2), 20d smoker treated with Allium sativum for 10 days (K3) and 20d smoker treated with Allium sativum for 20 days (K4). After 20 days all animals were sacrificed and histological preparation of lung organs was observed under a microscope with 100 dan 400 times magnification and then captured by photomicrograph for analyzed. Results There were improvements in lung structure both in group K3 and K4 . there was a decrease of leucocytes and inflammatory cells infiltration that covered almost all alveolar surface to 10-20% surface area and the dilated alveoli decrease from more than 50% to less than 30% area. The bronchus was clean in both two groups compared to the groups that were not treated with Allium sativum. Conclusion This study shows that Allium sativum ethanol extract has the ability to prevent lung damage in the smoker rat model.
Collapse
Affiliation(s)
- Maya Savira
- Philosophy Doctor in Medicine Program, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
- Department of Physiology, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| | - Dina Keumala Sari
- Department of Nutrition, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| | - Yetty Machrina
- Department of Physiology, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| | - Sry Suryani Widjaja
- Department of Biochemistry, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| | - Adrien Jems Akiles Unitly
- Department of Biology, Faculty of Mathematics and Natural Sciences, Pattimura University, Ambon,Indonesia
| | - Syafruddin Ilyas
- Study Program of Biology, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Indonesia
| | - Jelita Siregar
- Department of Clinical Pathology, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| | - Pandiaman Pandia
- Department of Pulmonology and Respiratory, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| | - M. Rusda
- Department of Obstetrics and Gynecology, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| | - Mustafa M Amin
- Department of Psychiatry, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| |
Collapse
|
17
|
Hu Q, Jiang L, Yan Q, Zeng J, Ma X, Zhao Y. A natural products solution to diabetic nephropathy therapy. Pharmacol Ther 2023; 241:108314. [PMID: 36427568 DOI: 10.1016/j.pharmthera.2022.108314] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/02/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022]
Abstract
Diabetic nephropathy is one of the most common complications in diabetes. It has been shown to be the leading cause of end-stage renal disease. However, due to their complex pathological mechanisms, effective therapeutic drugs other than angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin receptor blockers (ARBs), which have been used for 20 years, have not been developed so far. Recent studies have shown that diabetic nephropathy is characterized by multiple signalling pathways and multiple targets, including inflammation, apoptosis, pyroptosis, autophagy, oxidative stress, endoplasmic reticulum stress and their interactions. It definitely exacerbates the difficulty of therapy, but at the same time it also brings out the chance for natural products treatment. In the most recent two decades, a large number of natural products have displayed their potential in preclinical studies and a few compounds are under invetigation in clinical trials. Hence, many compounds targeting these singals have been emerged as a comprehensive blueprint for treating strategy of diabetic nephropathy. This review focuses on the cellular and molecular mechanisms of natural prouducts that alleviate this condition, including preclinical studies and clinical trials, which will provide new insights into the treatment of diabetic nephropathy and suggest novel ideas for new drug development.
Collapse
Affiliation(s)
- Qichao Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Department of Pharmacy, Chinese PLA General Hospital, Beijing 100039, China
| | - Lan Jiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Qi Yan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jinhao Zeng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Yanling Zhao
- Department of Pharmacy, Chinese PLA General Hospital, Beijing 100039, China.
| |
Collapse
|
18
|
Allicin Alleviates Diabetes Mellitus by Inhibiting the Formation of Advanced Glycation End Products. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248793. [PMID: 36557926 PMCID: PMC9787121 DOI: 10.3390/molecules27248793] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022]
Abstract
Advanced glycation end products (AGEs) cause damage to pancreatic β-cells and trigger oxidative stress and inflammation, which promotes the development and progression of diabetes and its complications. Therefore, it is important to inhibit the formation of AGEs as part of the treatment of diabetes. Allicin is a natural antimicrobial agent with abundant pharmacological activities, and recent studies have reported its therapeutic effects in diabetes; however, the mechanism of these therapeutic effects is still unclear. Thus, the purpose of this study was to further investigate the association between allicin treatment of diabetes and AGEs. First, we established a streptozocin (STZ)-induced diabetic rat model and treated the rats with allicin for six weeks. We measured glycolipid metabolism, AGE levels, receptor of advanced glycation end products (RAGE) levels, oxidative stress, and other related indicators. The results showed that allicin improved blood glucose and body weight, reduced lipid accumulation, and inhibited AGE formation in rats. Treatment with allicin also inhibited RAGEs and thereby prevented AGE activity, which, in turn, alleviated oxidative stress and promoted insulin secretion. To further verify the effect of allicin on AGEs, we also performed in vitro nonenzymatic glycation simulation experiments. These results showed that allicin inhibited the production of AGEs by suppressing the production of AGEs intermediates. Thus, our research suggests that allicin may alleviate diabetes by inhibiting the formation of AGEs and reducing RAGE levels to relieve oxidative stress and promote insulin secretion.
Collapse
|
19
|
Vellapandian C, R R, Ramachandram DS. Renoprotective activity of anethole- rich fraction from aromatic herbs on junk food induced diabetic nephropathy in rats. J Diabetes Metab Disord 2022; 21:1557-1567. [PMID: 36404830 PMCID: PMC9672211 DOI: 10.1007/s40200-022-01101-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 07/12/2022] [Accepted: 07/16/2022] [Indexed: 10/15/2022]
Abstract
Purpose This study was carried out to study the effect of anethole rich fraction on the Diabetic Nephropathy (DN) rats, and explore the mechanisms. Methods Male wistar rats were grouped into 4 (n = 6 per group): Control, junk food fed DN induced rats, low dose and high dose groups. DN was induced by oral junk food feeding. They were monitored for blood glucose levels and urine protein content at regular intervals. At the end of the study, the biological and hematological parameters were measured. Pancreatic and kidney viscera were taken to observe histopathological changes. Results Both the doses of anethole rich fraction could drastically lower blood glucose levels, Low Density Lipoprotein (LDL), Glycated Serum Protein (GSP), Total Cholesterol (TC), Triglycerides (TG) (P < 0.01), Malondialdehyde (MDA) level (P < 0.01 or P < 0.05), increases insulin level (P < 0.01), High Density Lipoproteins (HDL), Glutathione Reductase (GSH) and Superoxide Dismutase (SOD) (P < 0.01 or P < 0.05 or P > 0.05). Both doses of anethole rich fraction also improved the pathological changes of kidney and pancreatic tissues in DN rats (P < 0.01 or P < 0.05 or P > 0.05). Conclusions Hence it can be hypothesized that the high dose of anethole rich fraction (100 mg/kg) could reach the intervention effect and could ameliorate renal damage in DN rats by improving the renal functions, oxidative stress levels, glycometabolism and pathological changes of pancreas and kidney.
Collapse
Affiliation(s)
- Chitra Vellapandian
- Department Of Pharmacology, SRM College Of Pharmacy, SRM Institute of Science and Technology, 603203 Kattankulathur, Chengalpet, India
| | - Rini R
- Department Of Pharmacology, SRM College Of Pharmacy, SRM Institute of Science and Technology, 603203 Kattankulathur, Chengalpet, India
| | - Dinesh Sangarran Ramachandram
- Monash School of Pharmacy, Monash University, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor Darul Ehsan, Monash, Malaysia
| |
Collapse
|
20
|
Health benefits of bioactive components in pungent spices mediated via the involvement of TRPV1 channel. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
21
|
Cellular Mechanisms Underlying the Cardioprotective Role of Allicin on Cardiovascular Diseases. Int J Mol Sci 2022; 23:ijms23169082. [PMID: 36012349 PMCID: PMC9409331 DOI: 10.3390/ijms23169082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/05/2022] [Accepted: 08/09/2022] [Indexed: 11/18/2022] Open
Abstract
Cardiovascular diseases (CVDs) are a group of diseases in which the common denominator is the affection of blood vessels, heart tissue, and heart rhythm. The genesis of CVD is complex and multifactorial; therefore, approaches are often based on multidisciplinary management and more than one drug is used to achieve the optimal control of risk factors (dyslipidemia, hypertension, hypertrophy, oxidative stress, endothelial dysfunction, inflammation). In this context, allicin, a sulfur compound naturally derived from garlic, has shown beneficial effects on several cardiovascular risk factors through the modulation of cellular mechanisms and signaling pathways. Effective pharmacological treatments for CVD or its risk factors have not been developed or are unknown in clinical practice. Thus, this work aimed to review the cellular mechanisms through which allicin exerts its therapeutic effects and to show why it could be a therapeutic option for the prevention or treatment of CVD and its risk factors.
Collapse
|
22
|
Shahin D. H. H, Sultana R, Farooq J, Taj T, Khaiser UF, Alanazi NSA, Alshammari MK, Alshammari MN, Alsubaie FH, Asdaq SMB, Alotaibi AA, Alamir AA, Imran M, Jomah S. Insights into the Uses of Traditional Plants for Diabetes Nephropathy: A Review. Curr Issues Mol Biol 2022; 44:2887-2902. [PMID: 35877423 PMCID: PMC9316237 DOI: 10.3390/cimb44070199] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/21/2022] [Accepted: 06/24/2022] [Indexed: 11/16/2022] Open
Abstract
Diabetic nephropathy (DN) is a serious kidney illness characterized by proteinuria, glomerular enlargement, reduced glomerular filtration, and renal fibrosis. DN is the most common cause of end-stage kidney disease, accounting for nearly one-third of all cases of diabetes worldwide. Hyperglycemia is a major factor in the onset and progression of diabetic nephropathy. Many contemporary medicines are derived from plants since they have therapeutic properties and are relatively free of adverse effects. Glycosides, alkaloids, terpenoids, and flavonoids are among the few chemical compounds found in plants that are utilized to treat diabetic nephropathy. The purpose of this review was to consolidate information on the clinical and pharmacological evidence supporting the use of a variety of medicinal plants to treat diabetic nephropathy.
Collapse
Affiliation(s)
- Haleema Shahin D. H.
- Department of Pharmacology, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University) Mangaluru, Karnataka 575018, India; (H.S.D.H.); (J.F.); (T.T.); (U.F.K.)
| | - Rokeya Sultana
- Department of Pharmacognosy, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University) Mangaluru, Karnataka 575018, India
- Correspondence: (R.S.); (S.M.B.A.)
| | - Juveriya Farooq
- Department of Pharmacology, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University) Mangaluru, Karnataka 575018, India; (H.S.D.H.); (J.F.); (T.T.); (U.F.K.)
| | - Tahreen Taj
- Department of Pharmacology, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University) Mangaluru, Karnataka 575018, India; (H.S.D.H.); (J.F.); (T.T.); (U.F.K.)
| | - Umaima Farheen Khaiser
- Department of Pharmacology, Yenepoya Pharmacy College & Research Centre, Yenepoya (Deemed to be University) Mangaluru, Karnataka 575018, India; (H.S.D.H.); (J.F.); (T.T.); (U.F.K.)
| | | | | | | | - Firas Hamdan Alsubaie
- Faculty of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia; (M.N.A.); (F.H.A.)
| | - Syed Mohammed Basheeruddin Asdaq
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Dariyah, Riyadh 13713, Saudi Arabia
- Correspondence: (R.S.); (S.M.B.A.)
| | - Abdulmueen A. Alotaibi
- Department of Anaesthesia Technology, College of Applied Sciences, AlMaarefa University, Dariyah, Riyadh 13713, Saudi Arabia;
| | - Abdulrhman ahmed Alamir
- Department of Emergency Medicine, Prince Sultan Military Medical City, Riyadh 12233, Saudi Arabia;
| | - Mohd. Imran
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia;
| | - Shahamah Jomah
- Pharmacy Department, Dr.Sulaiman Al-Habib Medical Group, Riyadh 11372, Saudi Arabia;
| |
Collapse
|
23
|
Xu S, Liao Y, Wang Q, Liu L, Yang W. Current studies and potential future research directions on biological effects and related mechanisms of allicin. Crit Rev Food Sci Nutr 2022; 63:7722-7748. [PMID: 35293826 DOI: 10.1080/10408398.2022.2049691] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Allicin, a thiosulfonate extract from freshly minced garlic, has been reported to have various biological effects on different organs and systems of animals and human. It can reduce oxidative stress, inhibit inflammatory response, resist pathogen infection and regulate intestinal flora. In addition, dozens of studies also demonstrated allicin could reduce blood glucose level, protect cardiovascular system and nervous system, and fight against cancers. Allicin was widely used in disease prevention and health care. However, more investigations on human cohort study are needed to verify the biological or clinical effects of allicin in the future. In this review, we summarized the biological effects of allicin from previous outstanding and valuable studies and provided useful information for future studies on the health effects of allicin.
Collapse
Affiliation(s)
- Shiyin Xu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- China-DRIs Expert Committee on Other Dietary Ingredients, Sun Yat-sen University, Guangzhou, China
| | - Yuxiao Liao
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- China-DRIs Expert Committee on Other Dietary Ingredients, Sun Yat-sen University, Guangzhou, China
| | - Qi Wang
- Department of Epidemiology and Biostatistics, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liegang Liu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- China-DRIs Expert Committee on Other Dietary Ingredients, Sun Yat-sen University, Guangzhou, China
| | - Wei Yang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- China-DRIs Expert Committee on Other Dietary Ingredients, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
24
|
Chang Z, An L, He Z, Zhang Y, Li S, Lei M, Xu P, Lai Y, Jiang Z, Huang Y, Duan X, Wu W. Allicin supressed Escherichia coli-induced urinary tract infections by a Novel MALT1/NF-κB pathway. Food Funct 2022; 13:3495-3511. [PMID: 35246671 DOI: 10.1039/d1fo03853b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Escherichia coli (E. coli) strains cause the majority of urinary tract infections (UTIs) and are resistant to various antibiotics. Therefore, it is imperative to explore novel host-target therapies. As a...
Collapse
Affiliation(s)
- Zhenglin Chang
- Department of Urology, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510260, China.
- Department of Urology, the First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Urology, Guangzhou, 510230, China
| | - Lingyue An
- Department of Urology, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510260, China.
- Department of Urology, the First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Urology, Guangzhou, 510230, China
| | - Zhican He
- Department of Urology, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510260, China.
- Department of Urology, the First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Urology, Guangzhou, 510230, China
| | - Yuyan Zhang
- Guangzhou Institute of Dermatology, Guangzhou, 510095, China
| | - Shujue Li
- Department of Urology, the First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Urology, Guangzhou, 510230, China
| | - Min Lei
- Department of Urology, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510260, China.
- Department of Urology, the First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Urology, Guangzhou, 510230, China
| | - Peng Xu
- Department of Urology, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510260, China.
- Department of Urology, the First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Urology, Guangzhou, 510230, China
| | - Yongchang Lai
- Department of Urology, Shenzhen Shockwave Lithotripsy Research Institute, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518033, China
| | - Zheng Jiang
- Department of Urology, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510260, China.
- Department of Urology, the First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Urology, Guangzhou, 510230, China
| | - Yapeng Huang
- Department of Urology, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510260, China.
- Department of Urology, the First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Urology, Guangzhou, 510230, China
| | - Xiaolu Duan
- Department of Urology, the First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Urology, Guangzhou, 510230, China
| | - Wenqi Wu
- Department of Urology, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510260, China.
- Department of Urology, the First Affiliated Hospital of Guangzhou Medical University, Guangdong Key Laboratory of Urology, Guangzhou, 510230, China
| |
Collapse
|
25
|
Li J, Li R, Zhang C, Guo Z, Wu X, An H. Co-Application of Allicin and Chitosan Increases Resistance of Rosa roxburghii against Powdery Mildew and Enhances Its Yield and Quality. Antibiotics (Basel) 2021; 10:antibiotics10121449. [PMID: 34943661 PMCID: PMC8698363 DOI: 10.3390/antibiotics10121449] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/21/2021] [Accepted: 11/22/2021] [Indexed: 12/25/2022] Open
Abstract
Powdery mildew, caused by Sphaerotheca sp., annually causes severe losses in yield and quality in Rosa roxburghii production areas of southwest China. In this study, the role of the co-application of allicin and chitosan in the resistance of R. roxburghii against powdery mildew and its effects on growth, yield and quality of R. roxburghii were investigated. The laboratory toxicity test results show that allicin exhibited a superior antifungal activity against Sphaerotheca sp. with EC50 value of 148.65 mg kg−1. In the field, the foliar application of allicin could effectively enhance chitosan against powdery mildew with control efficacy of 85.97% by spraying 5% allicin microemulsion (ME) 100–time liquid + chitosan 100–time liquid, which was significantly (p < 0.01) higher than 76.70% of allicin, 70.93% of chitosan and 60.23% of polyoxin. The co-application of allicin and chitosan effectively enhanced the photosynthetic rate and chlorophyll of R. roxburghii compared with allicin, chitosan or polyoxin alone. Moreover, allicin used together with chitosan was more effective than allicin or chitosan alone in enhancing R. roxburghii plant growth and fruit yield as well as improving R. roxburghii fruit quality. This work highlights that the co-application of allicin and chitosan can be used as a green, cost-effective and environmentally friendly alternative strategy to conventional antibiotics for controlling powdery mildew of R. roxburghii.
Collapse
Affiliation(s)
- Jiaohong Li
- College of Forestry, Guizhou University, Guiyang 550025, China;
| | - Rongyu Li
- Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang 550025, China; (R.L.); (C.Z.); (Z.G.)
| | - Cheng Zhang
- Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang 550025, China; (R.L.); (C.Z.); (Z.G.)
| | - Zhenxiang Guo
- Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang 550025, China; (R.L.); (C.Z.); (Z.G.)
| | - Xiaomao Wu
- Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang 550025, China; (R.L.); (C.Z.); (Z.G.)
- Correspondence: (X.W.); (H.A.)
| | - Huaming An
- Research Center for Fruit Tree Engineering and Technology of Guizhou Province, College of Agriculture, Guizhou University, Guiyang 550025, China
- Correspondence: (X.W.); (H.A.)
| |
Collapse
|
26
|
Wang FX, Zhu N, Zhou F, Lin DX. Natural Aporphine Alkaloids with Potential to Impact Metabolic Syndrome. Molecules 2021; 26:molecules26206117. [PMID: 34684698 PMCID: PMC8540223 DOI: 10.3390/molecules26206117] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/25/2021] [Accepted: 10/06/2021] [Indexed: 12/28/2022] Open
Abstract
The incidence and prevalence of metabolic syndrome has steadily increased worldwide. As a major risk factor for various diseases, metabolic syndrome has come into focus in recent years. Some natural aporphine alkaloids are very promising agents in the prevention and treatment of metabolic syndrome and its components because of their wide variety of biological activities. These natural aporphine alkaloids have protective effects on the different risk factors characterizing metabolic syndrome. In this review, we highlight the activities of bioactive aporphine alkaloids: thaliporphine, boldine, nuciferine, pronuciferine, roemerine, dicentrine, magnoflorine, anonaine, apomorphine, glaucine, predicentrine, isolaureline, xylopine, methylbulbocapnine, and crebanine. We particularly focused on their impact on metabolic syndrome and its components, including insulin resistance and type 2 diabetes mellitus, endothelial dysfunction, hypertension and cardiovascular disease, hyperlipidemia and obesity, non-alcoholic fatty liver disease, hyperuricemia and kidney damage, erectile dysfunction, central nervous system-related disorder, and intestinal microbiota dysbiosis. We also discussed the potential mechanisms of actions by aporphine alkaloids in metabolic syndrome.
Collapse
Affiliation(s)
- Fei-Xuan Wang
- Nanjing Institute of Product Quality Inspection, Nanjing 210019, China; (N.Z.); (F.Z.); (D.-X.L.)
- Correspondence: ; Tel.: +86-13505140525
| | - Nan Zhu
- Nanjing Institute of Product Quality Inspection, Nanjing 210019, China; (N.Z.); (F.Z.); (D.-X.L.)
| | - Fan Zhou
- Nanjing Institute of Product Quality Inspection, Nanjing 210019, China; (N.Z.); (F.Z.); (D.-X.L.)
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210096, China
| | - Dong-Xiang Lin
- Nanjing Institute of Product Quality Inspection, Nanjing 210019, China; (N.Z.); (F.Z.); (D.-X.L.)
| |
Collapse
|
27
|
Sánchez-Gloria JL, Martínez-Olivares CE, Rojas-Morales P, Hernández-Pando R, Carbó R, Rubio-Gayosso I, Arellano-Buendía AS, Rada KM, Sánchez-Muñoz F, Osorio-Alonso H. Anti-Inflammatory Effect of Allicin Associated with Fibrosis in Pulmonary Arterial Hypertension. Int J Mol Sci 2021; 22:ijms22168600. [PMID: 34445305 PMCID: PMC8395330 DOI: 10.3390/ijms22168600] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/28/2021] [Accepted: 08/02/2021] [Indexed: 12/27/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is characterized by pulmonary vascular remodeling. Recent evidence supports that inflammation plays a key role in triggering and maintaining pulmonary vascular remodeling. Recent studies have shown that garlic extract has protective effects in PAH, but the precise role of allicin, a compound derived from garlic, is unknown. Thus, we used allicin to evaluate its effects on inflammation and fibrosis in PAH. Male Wistar rats were divided into three groups: control (CON), monocrotaline (60 mg/kg) (MCT), and MCT plus allicin (16 mg/kg/oral gavage) (MCT + A). Right ventricle (RV) hypertrophy and pulmonary arterial medial wall thickness were determined. IL-1β, IL-6, TNF-α, NFκB p65, Iκβ, TGF-β, and α-SMA were determined by Western blot analysis. In addition, TNF-α and TGF-β were determined by immunohistochemistry, and miR-21-5p and mRNA expressions of Cd68, Bmpr2, and Smad5 were determined by RT-qPCR. Results: Allicin prevented increases in vessel wall thickness due to TNF-α, IL-6, IL-1β, and Cd68 in the lung. In addition, TGF-β, α-SMA, and fibrosis were lower in the MCT + A group compared with the MCT group. In the RV, allicin prevented increases in TNF-α, IL-6, and TGF-β. These observations suggest that, through the modulation of proinflammatory and profibrotic markers in the lung and heart, allicin delays the progression of PAH.
Collapse
MESH Headings
- Animals
- Anti-Inflammatory Agents/therapeutic use
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Antigens, Differentiation, Myelomonocytic/genetics
- Antigens, Differentiation, Myelomonocytic/metabolism
- Bone Morphogenetic Protein Receptors, Type II/genetics
- Bone Morphogenetic Protein Receptors, Type II/metabolism
- Cytokines/genetics
- Cytokines/metabolism
- Disulfides/therapeutic use
- Fibrosis
- Heart Ventricles/drug effects
- Heart Ventricles/metabolism
- Heart Ventricles/pathology
- Hypertension, Pulmonary/drug therapy
- Male
- NF-kappa B/genetics
- NF-kappa B/metabolism
- Pulmonary Artery/drug effects
- Pulmonary Artery/metabolism
- Pulmonary Artery/pathology
- Rats
- Rats, Wistar
- Smad5 Protein/genetics
- Smad5 Protein/metabolism
- Sulfinic Acids/therapeutic use
Collapse
Affiliation(s)
- José L. Sánchez-Gloria
- Sección de Estudios de Posgrado, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (J.L.S.-G.); (I.R.-G.)
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico;
| | - Constanza Estefanía Martínez-Olivares
- Sección de Patología Experimental, Departamento de Patología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubiran, Mexico City 14080, Mexico; (C.E.M.-O.); (R.H.-P.)
| | - Pedro Rojas-Morales
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico; (P.R.-M.); (A.S.A.-B.)
| | - Rogelio Hernández-Pando
- Sección de Patología Experimental, Departamento de Patología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubiran, Mexico City 14080, Mexico; (C.E.M.-O.); (R.H.-P.)
| | - Roxana Carbó
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico;
| | - Ivan Rubio-Gayosso
- Sección de Estudios de Posgrado, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (J.L.S.-G.); (I.R.-G.)
| | - Abraham S. Arellano-Buendía
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico; (P.R.-M.); (A.S.A.-B.)
| | - Karla M. Rada
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico;
| | - Fausto Sánchez-Muñoz
- Sección de Estudios de Posgrado, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (J.L.S.-G.); (I.R.-G.)
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico;
- Correspondence: (F.S.-M.); (H.O.-A.)
| | - Horacio Osorio-Alonso
- Departamento de Fisiopatología Cardio-Renal, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico; (P.R.-M.); (A.S.A.-B.)
- Correspondence: (F.S.-M.); (H.O.-A.)
| |
Collapse
|
28
|
Sun D, Sun C, Qiu G, Yao L, Yu J, Al Sberi H, Fouda MS, Othman MS, Lokman MS, Kassab RB, Abdel Moneim AE. Allicin mitigates hepatic injury following cyclophosphamide administration via activation of Nrf2/ARE pathways and through inhibition of inflammatory and apoptotic machinery. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:39625-39636. [PMID: 33763830 DOI: 10.1007/s11356-021-13392-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 03/08/2021] [Indexed: 06/12/2023]
Abstract
Treatment with anti-neoplastic agents, including cyclophosphamide (CP), is associated with several adverse reactions. Here, we distinguished the potential protective effect of allicin against CP-mediated hepatotoxicity in rats. To assess the effect of allicin, four experimental groups were used, with 7 rats per group, including control, allicin (10 mg/kg), CP (200 mg/kg), and allicin + CP-treated groups. All groups were treated for 10 days. Blood and liver samples were collected for biochemical, molecular, and histological analyses. Treatment with CP led to deformations in the liver tissue that were associated with higher liver function markers (alanine transaminase, aspartate transaminase, and alkaline phosphatase). Additionally, a disturbance in the redox balance was observed after CP exposure, as indicated by increased levels of oxidants, including malondialdehyde and nitric oxide, and the decreased levels of endogenous antioxidants, including glutathione, glutathione peroxidase, glutathione reductase, superoxide dismutase, and catalase. At the molecular level, CP treatment resulted in reduced expression of the Nrf2/ARE pathway and other genes related to this pathway, including NAD(P)H quinone dehydrogenase 1 and glutamate-cysteine ligase catalytic subunit. CP also led to a hyper-inflammatory response in hepatic tissue, with increased production of pro-inflammatory cytokines, including tumor necrosis factor-alpha and interlukin-1beta, and upregulation of nitric oxide synthase 2. CP also enhanced the immunoreactivity of the profibrogenic cytokine, transforming growth factor-beta, in liver tissue. Upregulation of caspase 3 and Bcl-2-associated X protein and downregulation of B-cell lymphoma 2 were also observed in response to CP treatment. Treatment with allicin reversed the molecular, biochemical, and histological changes that occurred with CP exposure. These results suggest that allicin can be used in combination with CP to avoid hepatotoxicity.
Collapse
Affiliation(s)
- Dongsheng Sun
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Chen Sun
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Gongcai Qiu
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Lei Yao
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Jian Yu
- Department of General Surgery, Shandong Provincial Qianfoshan Hospital, The First Affiliated Hospital of Shandong First Medical University, Jinan, 250014, Shandong, China.
| | - Hassan Al Sberi
- Basic Medical Science, Histopathology Department, National Organization for Drug Control and Research, Giza, Egypt
- Department of Biology, Faculty of Science, Taif University, Taif, Saudi Arabia
| | - Manar S Fouda
- Chemistry Department, Faculty of Science, Helwan University, Helwan, 11795, Egypt
| | - Mohamed S Othman
- Basic Sciences Department, Preparatory Year, University of Ha'il, Hail, Saudi Arabia
- Chemistry Department, Faculty of Biotechnology, October University for Modern Science and Arts (MSA), Giza, Egypt
| | - Maha S Lokman
- Biology Department, College of Science and Humanities, Prince Sattam Bin Abdul Aziz University, Alkharj, Saudi Arabia
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
| | - Rami B Kassab
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
- Biology Department, Faculty of Science and Arts, Al Baha University, Almakhwah Branch, Al Baha, Saudi Arabia
| | - Ahmed E Abdel Moneim
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
| |
Collapse
|
29
|
Proanthocyanidins and Where to Find Them: A Meta-Analytic Approach to Investigate Their Chemistry, Biosynthesis, Distribution, and Effect on Human Health. Antioxidants (Basel) 2021; 10:antiox10081229. [PMID: 34439477 PMCID: PMC8389005 DOI: 10.3390/antiox10081229] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/22/2022] Open
Abstract
Proanthocyanidins (PACs) are a class of polyphenolic compounds that are attracting considerable interest in the nutraceutical field due to their potential health benefits. However, knowledge about the chemistry, biosynthesis, and distribution of PACs is limited. This review summarizes the main chemical characteristics and biosynthetic pathways and the main analytical methods aimed at their identification and quantification in raw plant matrices. Furthermore, meta-analytic approaches were used to identify the main plant sources in which PACs were contained and to investigate their potential effect on human health. In particular, a cluster analysis identified PACs in 35 different plant families and 60 different plant parts normally consumed in the human diet. On the other hand, a literature search, coupled with forest plot analyses, highlighted how PACs can be actively involved in both local and systemic effects. Finally, the potential mechanisms of action through which PACs may impact human health were investigated, focusing on their systemic hypoglycemic and lipid-lowering effects and their local anti-inflammatory actions on the intestinal epithelium. Overall, this review may be considered a complete report in which chemical, biosynthetic, ecological, and pharmacological aspects of PACs are discussed.
Collapse
|
30
|
Han Q, Zhang Y, Jiao T, Li Q, Ding X, Zhang D, Cai G, Zhu H. Urinary sediment microRNAs can be used as potential noninvasive biomarkers for diagnosis, reflecting the severity and prognosis of diabetic nephropathy. Nutr Diabetes 2021; 11:24. [PMID: 34193814 PMCID: PMC8245546 DOI: 10.1038/s41387-021-00166-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 05/20/2021] [Accepted: 06/01/2021] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Patients with both diabetes mellitus (DM) and kidney disease could have diabetic nephropathy (DN) or non-diabetic renal disease (NDRD). IgA nephropathy (IgAN) and membranous nephropathy (MN) are the major types of NDRD. No ideal noninvasive diagnostic model exists for differentiating them. Our study sought to construct diagnostic models for these diseases and to identify noninvasive biomarkers that can reflect the severity and prognosis of DN. METHODS The diagnostic models were constructed using logistic regression analysis and were validated in an external cohort by receiver operating characteristic curve analysis method. The associations between these microRNAs and disease severity and prognosis were explored using Pearson correlation analysis, Cox regression, Kaplan-Meier survival curves, and log-rank tests. RESULTS Our diagnostic models showed that miR-95-3p, miR-185-5p, miR-1246, and miR-631 could serve as simple and noninvasive tools to distinguish patients with DM, DN, DM with IgAN, and DM with MN. The areas under the curve of the diagnostic models for the four diseases were 0.995, 0.863, 0.859, and 0.792, respectively. The miR-95-3p level was positively correlated with the estimated glomerular filtration rate (p < 0.001) but was negatively correlated with serum creatinine (p < 0.01), classes of glomerular lesions (p < 0.05), and scores of interstitial and vascular lesions (p < 0.05). However, the miR-631 level was positively correlated with proteinuria (p < 0.001). A low miR-95-3p level and a high miR-631 level increased the risk of progression to end-stage renal disease (p = 0.002, p = 0.011). CONCLUSIONS These four microRNAs could be noninvasive tools for distinguishing patients with DN and NDRD. The levels of miR-95-3p and miR-631 could reflect the severity and prognosis of DN.
Collapse
Affiliation(s)
- Qiuxia Han
- School of Medicine, Nankai University, State Key Laboratory of Kidney Diseases, National Clinical Research Center of Kidney Diseases, First Medical Center of Chinese PLA General Hospital, Tianjin, China.,Department of Nephrology, First Medical Center of Chinese People's Liberation Army General Hospital, Nephrology Institute of the Chinese People's Liberation Army, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Youcai Zhang
- Department of Nephrology, Jiaozuo People's Hospital, Jiaozuo, China
| | - Tingting Jiao
- Department of Nephrology, Jiaozuo People's Hospital, Jiaozuo, China
| | - Qi Li
- Department of Nephrology, First Medical Center of Chinese People's Liberation Army General Hospital, Nephrology Institute of the Chinese People's Liberation Army, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Xiaonan Ding
- Department of Nephrology, First Medical Center of Chinese People's Liberation Army General Hospital, Nephrology Institute of the Chinese People's Liberation Army, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Dong Zhang
- School of Medicine, Nankai University, State Key Laboratory of Kidney Diseases, National Clinical Research Center of Kidney Diseases, First Medical Center of Chinese PLA General Hospital, Tianjin, China. .,Department of Nephrology, First Medical Center of Chinese People's Liberation Army General Hospital, Nephrology Institute of the Chinese People's Liberation Army, Beijing Key Laboratory of Kidney Disease Research, Beijing, China.
| | - Guangyan Cai
- School of Medicine, Nankai University, State Key Laboratory of Kidney Diseases, National Clinical Research Center of Kidney Diseases, First Medical Center of Chinese PLA General Hospital, Tianjin, China.,Department of Nephrology, First Medical Center of Chinese People's Liberation Army General Hospital, Nephrology Institute of the Chinese People's Liberation Army, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Hanyu Zhu
- Department of Nephrology, First Medical Center of Chinese People's Liberation Army General Hospital, Nephrology Institute of the Chinese People's Liberation Army, Beijing Key Laboratory of Kidney Disease Research, Beijing, China.
| |
Collapse
|
31
|
Ribeiro M, Alvarenga L, Cardozo LFMF, Chermut TR, Sequeira J, de Souza Gouveia Moreira L, Teixeira KTR, Shiels PG, Stenvinkel P, Mafra D. From the distinctive smell to therapeutic effects: Garlic for cardiovascular, hepatic, gut, diabetes and chronic kidney disease. Clin Nutr 2021; 40:4807-4819. [PMID: 34147285 DOI: 10.1016/j.clnu.2021.03.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/01/2021] [Accepted: 03/04/2021] [Indexed: 02/06/2023]
Abstract
Garlic, a member of the Allium family, widely used in cooking for many centuries, displays well described antioxidant and anti-inflammatory properties, as a result of its constituent organosulfur compounds, such as alliin, allicin, ajoene S-allyl-cysteine, diallyl sulfide and diallyl disulfide, among others. Although garlic has demonstrated beneficial effects in cardiovascular disease, diabetes, and cancer, its efficacy as a therapeutic intervention in chronic kidney disease remains to be proven. This review thus focuses on the potential benefits of garlic as a treatment option in chronic kidney disease. and its ability to mitigate associated cardiovascular complications and gut dysbiosis.
Collapse
Affiliation(s)
- Marcia Ribeiro
- Graduate Program in Nutrition Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | - Livia Alvarenga
- Graduate Program in Medical Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | - Ludmila F M F Cardozo
- Graduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | - Tuany R Chermut
- Graduate Program in Nutrition Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | - Joana Sequeira
- Graduate Program in Nutrition Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | | | | | - Paul G Shiels
- Wolfson Wohl Translational Research Centre, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1QH, UK
| | - Peter Stenvinkel
- Division of Renal Medicine and Baxter Novum, Department of Clinical Science, Technology and Intervention, Karolinska Instituted, Stockholm, Sweden
| | - Denise Mafra
- Graduate Program in Nutrition Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil; Graduate Program in Medical Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil; Graduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil.
| |
Collapse
|
32
|
Arellano-Buendía AS, Castañeda-Lara LG, Loredo-Mendoza ML, García-Arroyo FE, Rojas-Morales P, Argüello-García R, Juárez-Rojas JG, Tapia E, Pedraza-Chaverri J, Sánchez-Lozada LG, Osorio-Alonso H. Effects of Allicin on Pathophysiological Mechanisms during the Progression of Nephropathy Associated to Diabetes. Antioxidants (Basel) 2020; 9:antiox9111134. [PMID: 33203103 PMCID: PMC7697950 DOI: 10.3390/antiox9111134] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/03/2020] [Accepted: 11/13/2020] [Indexed: 02/06/2023] Open
Abstract
This study aimed to assess the impact of allicin on the course of diabetic nephropathy. Study groups included control, diabetes, and diabetes-treated rats. Allicin treatment (16 mg/kg day/p.o.) started after 1 month of diabetes onset and was administered for 30 days. In the diabetes group, the systolic blood pressure (SBP) increased, also, the oxidative stress and hypoxia in the kidney cortex were evidenced by alterations in the total antioxidant capacity as well as the expression of nuclear factor (erythroid-derived 2)-like 2/Kelch ECH associating protein 1 (Nrf2/Keap1), hypoxia-inducible factor 1-alpha (HIF-1α), vascular endothelial growth factor (VEGF), erythropoietin (Epo) and its receptor (Epo-R). Moreover, diabetes increased nephrin, and kidney injury molecule-1 (KIM-1) expression that correlated with mesangial matrix, the fibrosis index and with the expression of connective tissue growth factor (CTGF), transforming growth factor-β1 (TGF-β1), and α-smooth muscle actin (α-SMA). The insulin levels and glucose transporter protein type-4 (GLUT4) expression were decreased; otherwise, insulin receptor substrates 1 and 2 (IRS-1 and IRS-2) expression was increased. Allicin increased Nrf2 expression and decreased SBP, Keap1, HIF-1α, and VEGF expression. Concurrently, nephrin, KIM-1, the mesangial matrix, fibrosis index, and the fibrotic proteins were decreased. Additionally, allicin decreased hyperglycemia, improved insulin levels, and prevented changes in (GLUT4) and IRSs expression induced by diabetes. In conclusion, our results demonstrate that allicin has the potential to help in the treatment of diabetic nephropathy. The cellular mechanisms underlying its effects mainly rely on the regulation of antioxidant, antifibrotic, and antidiabetic mechanisms, which can contribute towards delay in the progression of renal disease.
Collapse
Affiliation(s)
- Abraham Said Arellano-Buendía
- Department of Cardio-Renal Physiopathology, Instituto Nacional de Cardiología “Ignacio Chávez”, México City 14080, Mexico; (A.S.A.-B.); (L.G.C.-L.); (F.E.G.-A.); (P.R.-M.); (E.T.); (L.G.S.-L.)
| | - Luis Gerardo Castañeda-Lara
- Department of Cardio-Renal Physiopathology, Instituto Nacional de Cardiología “Ignacio Chávez”, México City 14080, Mexico; (A.S.A.-B.); (L.G.C.-L.); (F.E.G.-A.); (P.R.-M.); (E.T.); (L.G.S.-L.)
| | - María L. Loredo-Mendoza
- Histopathology Laboratory, Research Subdivision, School of Medicine, Universidad Panamericana, Donatello 43, Mexico City 03910, Mexico;
| | - Fernando E. García-Arroyo
- Department of Cardio-Renal Physiopathology, Instituto Nacional de Cardiología “Ignacio Chávez”, México City 14080, Mexico; (A.S.A.-B.); (L.G.C.-L.); (F.E.G.-A.); (P.R.-M.); (E.T.); (L.G.S.-L.)
| | - Pedro Rojas-Morales
- Department of Cardio-Renal Physiopathology, Instituto Nacional de Cardiología “Ignacio Chávez”, México City 14080, Mexico; (A.S.A.-B.); (L.G.C.-L.); (F.E.G.-A.); (P.R.-M.); (E.T.); (L.G.S.-L.)
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
| | - Raúl Argüello-García
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City 07360, Mexico;
| | - Juan G. Juárez-Rojas
- Department of Endocrinology, Instituto Nacional de Cardiología “Ignacio Chávez” México City 14080, Mexico;
| | - Edilia Tapia
- Department of Cardio-Renal Physiopathology, Instituto Nacional de Cardiología “Ignacio Chávez”, México City 14080, Mexico; (A.S.A.-B.); (L.G.C.-L.); (F.E.G.-A.); (P.R.-M.); (E.T.); (L.G.S.-L.)
| | - José Pedraza-Chaverri
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
| | - Laura Gabriela Sánchez-Lozada
- Department of Cardio-Renal Physiopathology, Instituto Nacional de Cardiología “Ignacio Chávez”, México City 14080, Mexico; (A.S.A.-B.); (L.G.C.-L.); (F.E.G.-A.); (P.R.-M.); (E.T.); (L.G.S.-L.)
| | - Horacio Osorio-Alonso
- Department of Cardio-Renal Physiopathology, Instituto Nacional de Cardiología “Ignacio Chávez”, México City 14080, Mexico; (A.S.A.-B.); (L.G.C.-L.); (F.E.G.-A.); (P.R.-M.); (E.T.); (L.G.S.-L.)
- Correspondence: or
| |
Collapse
|
33
|
Huang W, Yao C, Liu Y, Xu N, Yin Z, Xu W, Miao Y, Mai K, Ai Q. Dietary Allicin Improved the Survival and Growth of Large Yellow Croaker ( Larimichthys crocea) Larvae via Promoting Intestinal Development, Alleviating Inflammation and Enhancing Appetite. Front Physiol 2020; 11:587674. [PMID: 33162901 PMCID: PMC7583326 DOI: 10.3389/fphys.2020.587674] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/16/2020] [Indexed: 12/17/2022] Open
Abstract
A 30-day feeding experiment was conducted to investigate effects of dietary allicin on survival, growth, antioxidant capacity, innate immunity and expression of inflammatory and appetite related genes in large yellow croaker larvae. Four iso-nitrogenous (53% crude protein) and iso-lipidic (19% crude lipid) diets were formulated via supplementing graded levels of allicin (0.0 (the control), 0.005, 0.01, and 0.02% dry diet, respectively). Results showed that, among dietary treatments, larvae fed the diet with 0.005% allicin had the highest survival rate (SR) (P < 0.05), while larvae fed the diet with 0.01% allicin had the highest specific growth rate (SGR) (P < 0.05). Activities of α-amylase in both pancreatic (PS) and intestine segments (IS) of larvae fed the diet with 0.01% allicin were significantly lower than that in the control (P < 0.05). On the other hand, the supplementation of 0.01% allicin in diets significantly increased activities of alkaline phosphatase (AKP) and leucine aminopeptidase (LAP) in the intestinal brush border membrane (BBM) of larvae than the control (P < 0.05), indicating the promoting roles of allicin on fish larval intestinal development. Moreover, compared to the control, both the nitric oxide (NO) content and the activity of nitric oxide synthase (NOS) were significantly up-regulated in larvae fed the diet with 0.005% allicin, and catalase (CAT) were significantly upregulated in larvae fed the diet with 0.02% allicin (P < 0.05). Transcriptional levels of pro-inflammatory genes including cyclooxygenase-2 (cox-2), interleukin-1β (il-1β) and interleukin-6 (il-6) significantly decreased with increasing allicin, compared to the control. The expression of appetite genes including npy, ghrelin and leptin significantly increased with the prolonged fasting period, and dietary allicin supplementation significantly increased the transcriptional level of neuropeptide Y (npy) at 0.01%, while increased the transcriptional level of leptin in larvae at 0.02% dosages (P < 0.05). These results showed that the supplementation of 0.005% – 0.01% allicin in diets could improve the survival and growth of large yellow croaker larvae probably by promoting intestinal development, alleviating inflammation and enhancing appetite.
Collapse
Affiliation(s)
- Wenxing Huang
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affair), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China
| | - Chuanwei Yao
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affair), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China
| | - Yongtao Liu
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affair), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China
| | - Ning Xu
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affair), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China
| | - Zhaoyang Yin
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affair), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China
| | - Wenxuan Xu
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affair), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China
| | - Youqing Miao
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affair), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China
| | - Kangsen Mai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affair), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Qinghui Ai
- Key Laboratory of Aquaculture Nutrition and Feed (Ministry of Agriculture and Rural Affair), Key Laboratory of Mariculture (Ministry of Education), Ocean University of China, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
34
|
Zhou J, Yang J, Dai M, Lin D, Zhang R, Liu H, Yu A, Vakal S, Wang Y, Li X. A combination of inhibiting microglia activity and remodeling gut microenvironment suppresses the development and progression of experimental autoimmune uveitis. Biochem Pharmacol 2020; 180:114108. [PMID: 32569628 DOI: 10.1016/j.bcp.2020.114108] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/17/2020] [Accepted: 06/17/2020] [Indexed: 12/11/2022]
Abstract
Noninfectious (autoimmune and immune-mediated) uveitis is an ocular inflammatory disease which can lead to blindness in severe cases. Due to the potential side effects of first-line drugs for clinical uveitis, novel drugs and targets against uveitis are still urgently needed. In the present study, using rat experimental autoimmune uveitis (EAU) model, we first found that minocycline treatment can substantially inhibit the development of EAU and improve the retinal function by suppressing the retinal microglial activation, and block the infiltration of inflammatory cells, including Th17, into the retina by decreasing the major histocompatibility complex class II (MHC II) expression in resident and infiltrating cells. Moreover, we demonstrated that minocycline treatment can remodel the gut microenvironment of EAU rats by restoring the relative abundance of Ruminococcus bromii, Streptococcus hyointestinalis, and Desulfovibrio sp. ABHU2SB and promoting a functional shift in the gut via reversing the levels of L-proline, allicin, aceturic acid, xanthine, and leukotriene B4, and especially increasing the production of propionic acid, histamine, and pantothenic acid. At last, we revealed that minocycline treatment can significantly attenuate the progression of EAU after inflammation onset, which may be explained by the role of minocycline in the remodeling of the gut microenvironment since selective elimination of retinal microglia on the later stages of EAU was shown to have little effect. These data clearly demonstrated that inhibition of microglial activation and remodeling of the gut microenvironment can suppress the development and progression of experimental autoimmune uveitis. Considering the excellent safety profile of minocycline in multiple clinical experiments, we suggest that minocycline may have therapeutic implications for clinical uveitis.
Collapse
Affiliation(s)
- Jianhong Zhou
- School of Ophthalmology & Optometry and Eye Hospital, Institute of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China; State Key Laboratory of Optometry & Vision Science, Wenzhou 325027, Zhejiang, China
| | - Jingjing Yang
- School of Ophthalmology & Optometry and Eye Hospital, Institute of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China; State Key Laboratory of Optometry & Vision Science, Wenzhou 325027, Zhejiang, China
| | - Mali Dai
- School of Ophthalmology & Optometry and Eye Hospital, Institute of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China; State Key Laboratory of Optometry & Vision Science, Wenzhou 325027, Zhejiang, China
| | - Dan Lin
- School of Ophthalmology & Optometry and Eye Hospital, Institute of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China; State Key Laboratory of Optometry & Vision Science, Wenzhou 325027, Zhejiang, China
| | - Renshu Zhang
- School of Ophthalmology & Optometry and Eye Hospital, Institute of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China; State Key Laboratory of Optometry & Vision Science, Wenzhou 325027, Zhejiang, China
| | - Hui Liu
- School of Ophthalmology & Optometry and Eye Hospital, Institute of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China; State Key Laboratory of Optometry & Vision Science, Wenzhou 325027, Zhejiang, China
| | - Ailing Yu
- School of Ophthalmology & Optometry and Eye Hospital, Institute of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China; State Key Laboratory of Optometry & Vision Science, Wenzhou 325027, Zhejiang, China
| | - Serhii Vakal
- Structural Bioinformatics Laboratory, Biochemistry, Åbo Akademi University, Turku 20541, Finland
| | - Yuqin Wang
- School of Ophthalmology & Optometry and Eye Hospital, Institute of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China; State Key Laboratory of Optometry & Vision Science, Wenzhou 325027, Zhejiang, China.
| | - Xingyi Li
- School of Ophthalmology & Optometry and Eye Hospital, Institute of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China; State Key Laboratory of Optometry & Vision Science, Wenzhou 325027, Zhejiang, China.
| |
Collapse
|
35
|
Choo S, Chin VK, Wong EH, Madhavan P, Tay ST, Yong PVC, Chong PP. Review: antimicrobial properties of allicin used alone or in combination with other medications. Folia Microbiol (Praha) 2020; 65:451-465. [DOI: 10.1007/s12223-020-00786-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 03/10/2020] [Indexed: 12/11/2022]
|
36
|
Jiang W, Zhao W, Ye F, Huang S, Wu Y, Chen H, Zhou R, Fu G. Inhibiting PKCβ2 protects HK-2 cells against meglumine diatrizoate and AGEs-induced apoptosis and autophagy. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:293. [PMID: 32355737 PMCID: PMC7186606 DOI: 10.21037/atm.2020.02.172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background Contrast induced diabetic nephropathy (CIN) is an important cause of hospital-acquired acute renal failure. Our aim was to observe the effect of protein kinase C β2 (PKCβ2) knockdown on human proximal tubular epithelial cells (HK-2 cells) against meglumine diatrizoate and advanced glycation end products (AGEs)-induced apoptosis and autophagy. Methods Cell viability was detected using cell counting kit-8 (CCK-8) assay in HK-2 cells after disposal with meglumine diatrizoate and AGEs with or without PKCβ2 siRNA/inhibitor LY333531. Flow cytometry and western blot were used to test cell apoptosis and the related protein levels in meglumine diatrizoate and AGEs co-treated HK-2 cells with or without PKCβ2 siRNA/inhibitor LY333531. Autophagy related proteins were detected using western blot. Immunofluorescence staining was used to examine the autophagy-specific protein light chain 3 (LC3), and autophagosome and autolysosome formation was observed under a transmission electron microscopy. Results CCK-8 assay results showed that meglumine diatrizoate inhibited AGEs-induced HK-2 cell viability. Furthermore, meglumine diatrizoate promoted cell apoptosis and the expression level of caspase3 in AGEs-induced HK-2. Western blot results showed that meglumine diatrizoate elevated the expression levels of PKCβ2 and p-PKCβ2 in AGEs-induced HK-2 cells, and up-regulated the expression level of Beclin-1 and the ratio of LC3 II/LC3 I, and down-regulated the expression level of p62 in AGEs-induced HK-2 cells. We found that PKCβ2 knockdown alleviated meglumine diatrizoate and AGEs-induced HK-2 cell apoptosis and autophagy. Intriguingly, PKCβ2 inhibitor LY333531 reversed 3-methyladenine (3-MA)-induced autophagy inhibition in meglumine diatrizoate and AGEs-induced HK-2 cells. Conclusions Our findings reveal that inhibiting PKCβ2 protects HK-2 cells against meglumine diatrizoate and AGEs-induced apoptosis and autophagy, which provide a novel therapeutic insight for CIN in diabetic patients.
Collapse
Affiliation(s)
- Wenbing Jiang
- Department of Cardiology, The Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou 325000, China
| | - Wei Zhao
- Department of Cardiology, The Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou 325000, China
| | - Fanhao Ye
- Department of Cardiology, The Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou 325000, China
| | - Shiwei Huang
- Department of Cardiology, The Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou 325000, China
| | - Youyang Wu
- Department of Cardiology, The Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou 325000, China
| | - Hao Chen
- Department of Cardiology, The Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou 325000, China
| | - Rui Zhou
- Department of Cardiology, The Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou 325000, China
| | - Guosheng Fu
- Department of Cardiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou 310016, China
| |
Collapse
|
37
|
Pârvu M, Moţ CA, Pârvu AE, Mircea C, Stoeber L, Roşca-Casian O, Ţigu AB. Allium sativum Extract Chemical Composition, Antioxidant Activity and Antifungal Effect against Meyerozyma guilliermondii and Rhodotorula mucilaginosa Causing Onychomycosis. Molecules 2019; 24:molecules24213958. [PMID: 31683743 PMCID: PMC6865177 DOI: 10.3390/molecules24213958] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 10/28/2019] [Accepted: 10/29/2019] [Indexed: 01/10/2023] Open
Abstract
Onychomycosis is a major health problem due to its chronicity and resistance to therapy. Because some cases associate paronychia, any therapy must target the fungus and the inflammation. Medicinal plants represent an alternative for onychomycosis control. In the present work the antifungal and antioxidant activities of Alium sativum extract against Meyerozyma guilliermondii (Wick.) Kurtzman & M. Suzuki and Rhodotorula mucilaginosa (A. Jörg.) F.C. Harrison, isolated for the first time from a toenail onychomycosis case, were investigated. The fungal species were confirmed by DNA molecular analysis. A. sativum minimum inhibitory concentration (MIC) and ultrastructural effects were examined. At the MIC concentration (120 mg/mL) the micrographs indicated severe structural alterations with cell death. The antioxidant properties of the A. sativum extract were evaluated is a rat turpentine oil induced inflammation, and compared to an anti-inflammatory drug, diclofenac, and the main compound from the extract, allicin. A. sativum reduced serum total oxidative status, malondialdehyde and nitric oxide production, and increased total thiols. The effects were comparable to those of allicin and diclofenac. In conclusion, the garlic extract had antifungal effects against M. guilliermondii and R. mucilaginosa, and antioxidant effect in turpentine-induced inflammation. Together, the antifungal and antioxidant activities support that A. sativum is a potential alternative treatment in onychomycosis.
Collapse
Affiliation(s)
- Marcel Pârvu
- Department of Biology, Faculty of Biology and Geology, Babeș-Bolyai University, 42 Republicii Street, 400015 Cluj-Napoca, Romania.
| | - Cătălin A Moţ
- Department of Chemistry, Faculty of Chemistry and Chemical Engineering, Babeș-Bolyai University, 11 Arany Janos Street, 400028 Cluj-Napoca, Romania.
| | - Alina E Pârvu
- Department of Pathophysiology, Faculty of Medicine, Iuliu Haţieganu University of Medicine and Pharmacy, 3 Victor Babeş Street, 400012 Cluj-Napoca, Romania.
| | - Cristina Mircea
- Department of Biology, Faculty of Biology and Geology, Babeș-Bolyai University, 42 Republicii Street, 400015 Cluj-Napoca, Romania.
| | - Leander Stoeber
- Faculty of Medicine, Iuliu Haţieganu University of Medicine and Pharmacy, 3 Victor Babeş Street, 400012 Cluj-Napoca, Romania.
| | - Oana Roşca-Casian
- Alexandru-Borza Botanical Garden, Babeș-Bolyai University, 42 Republicii Street, 400015 Cluj-Napoca, Romania.
| | - Adrian B Ţigu
- Department of Biology, Faculty of Biology and Geology, Babeș-Bolyai University, 42 Republicii Street, 400015 Cluj-Napoca, Romania.
- MEDFUTURE-Research Center for Advanced Medicine, "Iuliu-Hatieganu" University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania.
| |
Collapse
|