1
|
Ronan V. An open window: the crucial role of the gut-brain axis in neurodevelopmental outcomes post-neurocritical illness. Front Pediatr 2025; 12:1499330. [PMID: 39902230 PMCID: PMC11788388 DOI: 10.3389/fped.2024.1499330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/24/2024] [Indexed: 02/05/2025] Open
Abstract
Among patients admitted to the pediatric intensive care unit, approximately 10% are discharged with a new functional morbidity. For those who were admitted with a neurocritical illness, the number can be as high as 60%. The most common diagnoses for a neurocritical illness admission include traumatic brain injury, status epilepticus, post-cardiac arrest, hypoxic ischemic encephalopathy, meningo/encephalitis, and stroke. The gut-brain axis is crucial to childhood development, particularly neurodevelopment. Alterations on either side of the bidirectional communication of the gut-brain axis have been shown to alter typical development and have been associated with autism spectrum disorder, anxiety, sleep disturbances, and learning disabilities, among others. For those patients who have experienced a direct neurologic insult, subsequent interventions may contribute to dysbiosis, which could compound injury to the brain. Increasing data suggests the existence of a critical window for both gut microbiome plasticity and neurodevelopment in which interventions could help or could harm and warrant further investigation.
Collapse
Affiliation(s)
- Victoria Ronan
- Department of Pediatrics, Section of Critical Care, Children’s Wisconsin/Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
2
|
Kéri S, Kelemen O. Motion and Form Perception in Childhood-Onset Schizophrenia. Pediatr Rep 2024; 16:88-99. [PMID: 38251318 PMCID: PMC10801474 DOI: 10.3390/pediatric16010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/26/2023] [Accepted: 01/03/2024] [Indexed: 01/23/2024] Open
Abstract
(1) Background: Childhood-onset schizophrenia (COS) is a rare type of psychotic disorder characterized by delusions, hallucinations, grossly disorganized behavior, and poor psychosocial functioning. The etiology of COS is unknown, but neurodevelopmental factors are likely to play a critical role. A potential neurodevelopmental anomaly marker is the dorsal visual system dysfunction, which is implicated in motion perception, spatial functions, and attention. (2) Methods: To elucidate the role of the dorsal visual system in COS, we investigated 21 patients with COS and 21 control participants matched for age, sex, education, IQ, and parental socioeconomic status. Participants completed a motion and form coherence task, during which one assesses an individual's ability to detect the direction of motion within a field of moving elements or dots and to recognize a meaningful form or object from a set of fragmented or disconnected visual elements, respectively. (3) Results: The patients with COS were impaired in both visual tasks compared to the control participants, but the evidence for the deficit was more substantial for motion perception than for form perception (form: BF10 = 27.22; motion: BF10 = 6.97 × 106). (4) Conclusions: These results highlight the importance of dorsal visual stream vulnerability in COS, a potential marker of neurodevelopmental anomalies.
Collapse
Affiliation(s)
- Szabolcs Kéri
- Sztárai Institute, University of Tokaj, 3944 Sárospatak, Hungary
- Department of Physiology, Albert Szent-Györgyi Medical School, University of Szeged, 6720 Szeged, Hungary
| | - Oguz Kelemen
- Department of Behavioral Science, Albert Szent Györgyi Medical School, University of Szeged, 6720 Szeged, Hungary;
- Department of Psychiatry, Bács-Kiskun County Hospital, 6000 Kecskemét, Hungary
| |
Collapse
|
3
|
Raabe FJ, Hausruckinger A, Gagliardi M, Ahmad R, Almeida V, Galinski S, Hoffmann A, Weigert L, Rummel CK, Murek V, Trastulla L, Jimenez-Barron L, Atella A, Maidl S, Menegaz D, Hauger B, Wagner EM, Gabellini N, Kauschat B, Riccardo S, Cesana M, Papiol S, Sportelli V, Rex-Haffner M, Stolte SJ, Wehr MC, Salcedo TO, Papazova I, Detera-Wadleigh S, McMahon FJ, Schmitt A, Falkai P, Hasan A, Cacchiarelli D, Dannlowski U, Nenadić I, Kircher T, Scheuss V, Eder M, Binder EB, Spengler D, Rossner MJ, Ziller MJ. Polygenic risk for schizophrenia converges on alternative polyadenylation as molecular mechanism underlying synaptic impairment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.09.574815. [PMID: 38260577 PMCID: PMC10802452 DOI: 10.1101/2024.01.09.574815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Schizophrenia (SCZ) is a genetically heterogenous psychiatric disorder of highly polygenic nature. Correlative evidence from genetic studies indicate that the aggregated effects of distinct genetic risk factor combinations found in each patient converge onto common molecular mechanisms. To prove this on a functional level, we employed a reductionistic cellular model system for polygenic risk by differentiating induced pluripotent stem cells (iPSCs) from 104 individuals with high polygenic risk load and controls into cortical glutamatergic neurons (iNs). Multi-omics profiling identified widespread differences in alternative polyadenylation (APA) in the 3' untranslated region of many synaptic transcripts between iNs from SCZ patients and healthy donors. On the cellular level, 3'APA was associated with a reduction in synaptic density of iNs. Importantly, differential APA was largely conserved between postmortem human prefrontal cortex from SCZ patients and healthy donors, and strongly enriched for transcripts related to synapse biology. 3'APA was highly correlated with SCZ polygenic risk and affected genes were significantly enriched for SCZ associated common genetic variation. Integrative functional genomic analysis identified the RNA binding protein and SCZ GWAS risk gene PTBP2 as a critical trans-acting factor mediating 3'APA of synaptic genes in SCZ subjects. Functional characterization of PTBP2 in iNs confirmed its key role in 3'APA of synaptic transcripts and regulation of synapse density. Jointly, our findings show that the aggregated effects of polygenic risk converge on 3'APA as one common molecular mechanism that underlies synaptic impairments in SCZ.
Collapse
Affiliation(s)
- Florian J. Raabe
- Lab for Genomics of Complex Diseases, Max Planck Institute of Psychiatry, 80804 Munich, Germany
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, 80336 Munich, Germany
- International Max Planck Research School for Translational Psychiatry (IMPRS-TP), 80804 Munich, Germany
| | - Anna Hausruckinger
- Lab for Genomics of Complex Diseases, Max Planck Institute of Psychiatry, 80804 Munich, Germany
- Department of Psychiatry, University of Münster, 48149 Münster, Germany
| | - Miriam Gagliardi
- Department of Psychiatry, University of Münster, 48149 Münster, Germany
- Center for Soft Nanoscience, University of Münster, 48149 Münster, Germany
| | - Ruhel Ahmad
- Lab for Genomics of Complex Diseases, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Valeria Almeida
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, 80336 Munich, Germany
- Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Sabrina Galinski
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, 80336 Munich, Germany
- Systasy Bioscience GmbH, 81669 Munich, Germany
| | - Anke Hoffmann
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Liesa Weigert
- Lab for Genomics of Complex Diseases, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Christine K. Rummel
- Lab for Genomics of Complex Diseases, Max Planck Institute of Psychiatry, 80804 Munich, Germany
- International Max Planck Research School for Translational Psychiatry (IMPRS-TP), 80804 Munich, Germany
| | - Vanessa Murek
- Lab for Genomics of Complex Diseases, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Lucia Trastulla
- Lab for Genomics of Complex Diseases, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Laura Jimenez-Barron
- Lab for Genomics of Complex Diseases, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Alessia Atella
- Department of Psychiatry, University of Münster, 48149 Münster, Germany
- Center for Soft Nanoscience, University of Münster, 48149 Münster, Germany
| | - Susanne Maidl
- Lab for Genomics of Complex Diseases, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Danusa Menegaz
- Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Barbara Hauger
- Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | | | - Nadia Gabellini
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, 80336 Munich, Germany
| | - Beate Kauschat
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, 80336 Munich, Germany
| | - Sara Riccardo
- Telethon Institute of Genetics and Medicine (TIGEM), Armenise/Harvard Laboratory of Integrative Genomics, Pozzuoli, Italy
- NEGEDIA (Next Generation Diagnostic), Pozzuoli, Italy
| | - Marcella Cesana
- Telethon Institute of Genetics and Medicine (TIGEM), Armenise/Harvard Laboratory of Integrative Genomics, Pozzuoli, Italy
- Department of Advanced Biomedical Sciences, University of Naples “Federico II”, Naples, Italy
| | - Sergi Papiol
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, 80336 Munich, Germany
- Max Planck Institute of Psychiatry, 80804 Munich, Germany
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, 80336 Munich, Germany
| | - Vincenza Sportelli
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Monika Rex-Haffner
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Sebastian J. Stolte
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, 80336 Munich, Germany
| | - Michael C. Wehr
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, 80336 Munich, Germany
- Systasy Bioscience GmbH, 81669 Munich, Germany
| | - Tatiana Oviedo Salcedo
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, 80336 Munich, Germany
| | - Irina Papazova
- Department of Psychiatry, Psychotherapy, and Psychosomatics, Medical Faculty, University of Augsburg, 86156 Augsburg, Germany
| | - Sevilla Detera-Wadleigh
- Human Genetics Branch, National Institute of Mental Health Intramural Research Program (NIMH-IRP), Bethesda, MD, 20892, USA
| | - Francis J McMahon
- Human Genetics Branch, National Institute of Mental Health Intramural Research Program (NIMH-IRP), Bethesda, MD, 20892, USA
| | - Andrea Schmitt
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, 80336 Munich, Germany
- Laboratory of Neuroscience (LIM27), Institute of Psychiatry, University of São Paulo, São Paulo-SP 05403-903, Brazil
| | - Peter Falkai
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, 80336 Munich, Germany
- Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Alkomiet Hasan
- Department of Psychiatry, Psychotherapy, and Psychosomatics, Medical Faculty, University of Augsburg, 86156 Augsburg, Germany
| | - Davide Cacchiarelli
- Telethon Institute of Genetics and Medicine (TIGEM), Armenise/Harvard Laboratory of Integrative Genomics, Pozzuoli, Italy
- School for Advanced Studies, Genomics and Experimental Medicine Program, University of Naples “Federico II”, Naples, Italy
- Department of Translational Medicine, University of Naples “Federico II”, Naples, Italy
| | - Udo Dannlowski
- Institute for Translational Psychiatry, University of Münster, 48149 Münster, Germany
| | - Igor Nenadić
- Department of Psychiatry and Psychotherapy, Philipps-University and University Hospital Marburg, UKGM, 35039 Marburg, Germany
| | - Tilo Kircher
- Department of Psychiatry and Psychotherapy, Philipps-University and University Hospital Marburg, UKGM, 35039 Marburg, Germany
| | - Volker Scheuss
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, 80336 Munich, Germany
- MSH Medical School Hamburg, Hamburg, Germany
| | - Matthias Eder
- Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Elisabeth B. Binder
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Dietmar Spengler
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Moritz J. Rossner
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, 80336 Munich, Germany
| | - Michael J. Ziller
- Lab for Genomics of Complex Diseases, Max Planck Institute of Psychiatry, 80804 Munich, Germany
- Department of Psychiatry, University of Münster, 48149 Münster, Germany
- Center for Soft Nanoscience, University of Münster, 48149 Münster, Germany
| |
Collapse
|
4
|
Patterson EM, Lim J, Fuchs P, Smith JR, Moussa-Tooks A, Ward HB. Use of First-Generation Antipsychotics in an Adolescent Male with Catatonic Schizophrenia. Harv Rev Psychiatry 2023; 31:267-273. [PMID: 37823777 PMCID: PMC11530942 DOI: 10.1097/hrp.0000000000000381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Affiliation(s)
- Emmy Masur Patterson
- From Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN (Drs. Patterson, Moussa-Tooks, and Ward); Department of Psychiatry and Behavioral Sciences, Meharry Medical College, Nashville, TN (Dr. Lim); Sheppard Pratt Hospital, Baltimore, MD (Dr. Fuchs); Division of Child and Adolescent Psychiatry, Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN (Dr. Smith); Vanderbilt Kennedy Center, Vanderbilt University, Nashville, TN (Dr. Smith)
| | | | | | | | | | | |
Collapse
|
5
|
Büki G, Hadzsiev K, Bene J. Copy Number Variations in Neuropsychiatric Disorders. Int J Mol Sci 2023; 24:13671. [PMID: 37761973 PMCID: PMC10530736 DOI: 10.3390/ijms241813671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/23/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Neuropsychiatric disorders are complex conditions that represent a significant global health burden with complex and multifactorial etiologies. Technological advances in recent years have improved our understanding of the genetic architecture of the major neuropsychiatric disorders and the genetic loci involved. Previous studies mainly investigated genome-wide significant SNPs to elucidate the cross-disorder and disorder-specific genetic basis of neuropsychiatric disorders. Although copy number variations represent a major source of genetic variations, they are known risk factors in developing a variety of human disorders, including certain neuropsychiatric diseases. In this review, we demonstrate the current understanding of CNVs contributing to liability for schizophrenia, bipolar disorder, and major depressive disorder.
Collapse
Affiliation(s)
| | | | - Judit Bene
- Department of Medical Genetics, Clinical Center, Medical School, University of Pécs, 7624 Pécs, Hungary; (G.B.); (K.H.)
| |
Collapse
|
6
|
Parnell E, Culotta L, Forrest MP, Jalloul HA, Eckman BL, Loizzo DD, Horan KKE, Dos Santos M, Piguel NH, Tai DJC, Zhang H, Gertler TS, Simkin D, Sanders AR, Talkowski ME, Gejman PV, Kiskinis E, Duan J, Penzes P. Excitatory Dysfunction Drives Network and Calcium Handling Deficits in 16p11.2 Duplication Schizophrenia Induced Pluripotent Stem Cell-Derived Neurons. Biol Psychiatry 2023; 94:153-163. [PMID: 36581494 PMCID: PMC10166768 DOI: 10.1016/j.biopsych.2022.11.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 10/20/2022] [Accepted: 11/03/2022] [Indexed: 11/11/2022]
Abstract
BACKGROUND Schizophrenia (SCZ) is a debilitating psychiatric disorder with a large genetic contribution; however, its neurodevelopmental substrates remain largely unknown. Modeling pathogenic processes in SCZ using human induced pluripotent stem cell-derived neurons (iNs) has emerged as a promising strategy. Copy number variants confer high genetic risk for SCZ, with duplication of the 16p11.2 locus increasing the risk 14.5-fold. METHODS To dissect the contribution of induced excitatory neurons (iENs) versus GABAergic (gamma-aminobutyric acidergic) neurons (iGNs) to SCZ pathophysiology, we induced iNs from CRISPR (clustered regularly interspaced short palindromic repeats)-Cas9 isogenic and SCZ patient-derived induced pluripotent stem cells and analyzed SCZ-related phenotypes in iEN monocultures and iEN/iGN cocultures. RESULTS In iEN/iGN cocultures, neuronal firing and synchrony were reduced at later, but not earlier, stages of in vitro development. These were fully recapitulated in iEN monocultures, indicating a primary role for iENs. Moreover, isogenic iENs showed reduced dendrite length and deficits in calcium handling. iENs from 16p11.2 duplication-carrying patients with SCZ displayed overlapping deficits in network synchrony, dendrite outgrowth, and calcium handling. Transcriptomic analysis of both iEN cohorts revealed molecular markers of disease related to the glutamatergic synapse, neuroarchitecture, and calcium regulation. CONCLUSIONS Our results indicate the presence of 16p11.2 duplication-dependent alterations in SCZ patient-derived iENs. Transcriptomics and cellular phenotyping reveal overlap between isogenic and patient-derived iENs, suggesting a central role of glutamatergic, morphological, and calcium dysregulation in 16p11.2 duplication-mediated pathogenesis. Moreover, excitatory dysfunction during early neurodevelopment is implicated as the basis of SCZ pathogenesis in 16p11.2 duplication carriers. Our results support network synchrony and calcium handling as outcomes directly linked to this genetic risk variant.
Collapse
Affiliation(s)
- Euan Parnell
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, Illinois; Northwestern University Center for Autism and Neurodevelopment, Chicago, Illinois
| | - Lorenza Culotta
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, Illinois; Northwestern University Center for Autism and Neurodevelopment, Chicago, Illinois
| | - Marc P Forrest
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, Illinois; Northwestern University Center for Autism and Neurodevelopment, Chicago, Illinois
| | - Hiba A Jalloul
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, Illinois; Northwestern University Center for Autism and Neurodevelopment, Chicago, Illinois
| | - Blair L Eckman
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, Illinois; Northwestern University Center for Autism and Neurodevelopment, Chicago, Illinois
| | - Daniel D Loizzo
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, Illinois; Northwestern University Center for Autism and Neurodevelopment, Chicago, Illinois
| | - Katherine K E Horan
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, Illinois; Northwestern University Center for Autism and Neurodevelopment, Chicago, Illinois
| | - Marc Dos Santos
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, Illinois; Northwestern University Center for Autism and Neurodevelopment, Chicago, Illinois
| | - Nicolas H Piguel
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, Illinois; Northwestern University Center for Autism and Neurodevelopment, Chicago, Illinois
| | - Derek J C Tai
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Hanwen Zhang
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, Illinois; Department of Psychiatry and Behavioral Neurosciences, The University of Chicago, Chicago, Illinois
| | - Tracy S Gertler
- Division of Neurology, Department of Pediatrics, Ann and Robert H Lurie Childrens Hospital of Chicago, Chicago, Illinois; Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Dina Simkin
- Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Alan R Sanders
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, Illinois; Department of Psychiatry and Behavioral Neurosciences, The University of Chicago, Chicago, Illinois
| | - Michael E Talkowski
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts; Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Pablo V Gejman
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, Illinois; Department of Psychiatry and Behavioral Neurosciences, The University of Chicago, Chicago, Illinois
| | - Evangelos Kiskinis
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, Illinois; Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Jubao Duan
- Center for Psychiatric Genetics, NorthShore University HealthSystem, Evanston, Illinois; Department of Psychiatry and Behavioral Neurosciences, The University of Chicago, Chicago, Illinois
| | - Peter Penzes
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, Illinois; Northwestern University Center for Autism and Neurodevelopment, Chicago, Illinois; Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, Illinois.
| |
Collapse
|
7
|
Lim M, Carollo A, Neoh MJY, Esposito G. Mapping miRNA Research in Schizophrenia: A Scientometric Review. Int J Mol Sci 2022; 24:ijms24010436. [PMID: 36613876 PMCID: PMC9820708 DOI: 10.3390/ijms24010436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022] Open
Abstract
Micro RNA (miRNA) research has great implications in uncovering the aetiology of neuropsychiatric conditions due to the role of miRNA in brain development and function. Schizophrenia, a complex yet devastating neuropsychiatric disorder, is one such condition that had been extensively studied in the realm of miRNA. Although a relatively new field of research, this area of study has progressed sufficiently to warrant dozens of reviews summarising findings from past to present. However, as a majority of reviews cannot encapsulate the full body of research, there is still a need to synthesise the diversity of publications made in this area in a systematic but easy-to-understand manner. Therefore, this study adopted bibliometrics and scientometrics, specifically document co-citation analysis (DCA), to review the literature on miRNAs in the context of schizophrenia over the course of history. From a literature search on Scopus, 992 papers were found and analysed with CiteSpace. DCA analysis generated a network of 13 major clusters with different thematic focuses within the subject area. Finally, these clusters are qualitatively discussed. miRNA research has branched into schizophrenia, among other medical and psychiatric conditions, due to previous findings in other forms of non-coding RNA. With the rise of big data, bioinformatics analyses are increasingly common in this field of research. The future of research is projected to rely more heavily on interdisciplinary collaboration. Additionally, it can be expected that there will be more translational studies focusing on the application of these findings to the development of effective treatments.
Collapse
Affiliation(s)
- Mengyu Lim
- Psychology Program, School of Social Sciences, Nanyang Technological University, Singapore 639818, Singapore
| | - Alessandro Carollo
- Department of Psychology and Cognitive Science, University of Trento, 38068 Rovereto, Italy
| | - Michelle Jin Yee Neoh
- Psychology Program, School of Social Sciences, Nanyang Technological University, Singapore 639818, Singapore
| | - Gianluca Esposito
- Department of Psychology and Cognitive Science, University of Trento, 38068 Rovereto, Italy
- Correspondence:
| |
Collapse
|
8
|
Recent Developments in Autism Genetic Research: A Scientometric Review from 2018 to 2022. Genes (Basel) 2022; 13:genes13091646. [PMID: 36140813 PMCID: PMC9498399 DOI: 10.3390/genes13091646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/12/2022] [Accepted: 09/12/2022] [Indexed: 12/13/2022] Open
Abstract
Genetic research in Autism Spectrum Disorder (ASD) has progressed tremendously in recent decades. Dozens of genetic loci and hundreds of alterations in the genetic sequence, expression, epigenetic transformation, and interactions with other physiological and environmental systems have been found to increase the likelihood of developing ASD. There is therefore a need to represent this wide-ranging yet voluminous body of literature in a systematic manner so that this information can be synthesised and understood at a macro level. Therefore, this study made use of scientometric methods, particularly document co-citation analysis (DCA), to systematically review literature on ASD genetic research from 2018 to 2022. A total of 14,818 articles were extracted from Scopus and analyzed with CiteSpace. An optimized DCA analysis revealed that recent literature on ASD genetic research can be broadly organised into 12 major clusters representing various sub-topics. These clusters are briefly described in the manuscript and potential applications of this study are discussed.
Collapse
|
9
|
Adnan M, Motiwala F, Trivedi C, Sultana T, Mansuri Z, Jain S. Clozapine for Management of Childhood and Adolescent-Onset Schizophrenia: A Systematic Review and Meta-Analysis. J Child Adolesc Psychopharmacol 2022; 32:2-11. [PMID: 35099269 DOI: 10.1089/cap.2021.0092] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Background: Schizophrenia at a young age deserves investigation because of the greater severity and burden of illness on individuals and health care than its adult onset. For this study, we included both childhood-onset schizophrenia and early-onset schizophrenia. We used the common term "childhood and adolescent-onset schizophrenia (CAOS)" for either type. This systematic review provides an overview of the clinical use, efficacy, and safety of clozapine treatment in managing CAOS. Methods: We conducted a systematic literature search in PubMed, Embase, and PsycINFO databases. We searched for randomized controlled trials (RCTs), open-label studies (OLSs), review articles, meta-analytic and observational studies. Our literature search resulted in 1242 search results. After the title, abstract, and full article review, 18 studies qualified (double-blind RCTs n = 4; OLS n = 4; observational studies n = 7; case reports n = 3). Results: Clozapine use in CAOS was generally well tolerated and not associated with any fatalities. Clozapine use in the short term (6 weeks) and long term (2-9 years) was superior in efficacy than other antipsychotics in CAOS management. Improvement in overall symptoms was maintained during long-term follow-up over the years in OLSs. Clozapine appeared to have a favorable clinical response and shorter hospital stays. Sedation and hypersalivation were commonly reported (90%), constipation was next in frequency (13%-50%). Neutropenia was seen in 6%-15% of cases and agranulocytosis (<0.1%). Although weight gain was common (up to 64%), followed by metabolic changes (8%-22%), treatment-onset diabetes was less frequent (<6%). Akathisia, tachycardia, and blood pressure changes were less commonly seen. Conclusions: Limited studies indicate that clozapine is a safe and efficacious option for CAOS management. We need large-scale and well-designed long-term RCTs for the use of clozapine in the management of CAOS.
Collapse
Affiliation(s)
- Mahwish Adnan
- Department of Psychiatry, Centre for Addiction and Mental Health, University of Toronto, Toronto, Canada
| | - Fatima Motiwala
- Department of Psychiatry, Texas Tech University Health Science Center at Odessa/Permian Basin Odessa, Midland, Texas, USA
| | - Chintan Trivedi
- Department of Psychiatry, Texas Tech University Health Science Center at Odessa/Permian Basin Odessa, Midland, Texas, USA
| | - Tania Sultana
- Department of Psychiatry, Manhattan Psychiatric Center, New York, New York, USA
| | - Zeeshan Mansuri
- Department of Psychiatry, Boston Children's Hospital/Harvard Medical School, Boston, Massachusetts, USA
| | - Shailesh Jain
- Department of Psychiatry, Texas Tech University Health Science Center at Odessa/Permian Basin Odessa, Midland, Texas, USA
| |
Collapse
|
10
|
Abashkin DA, Kurishev AO, Karpov DS, Golimbet VE. Cellular Models in Schizophrenia Research. Int J Mol Sci 2021; 22:ijms22168518. [PMID: 34445221 PMCID: PMC8395162 DOI: 10.3390/ijms22168518] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 12/11/2022] Open
Abstract
Schizophrenia (SZ) is a prevalent functional psychosis characterized by clinical behavioural symptoms and underlying abnormalities in brain function. Genome-wide association studies (GWAS) of schizophrenia have revealed many loci that do not directly identify processes disturbed in the disease. For this reason, the development of cellular models containing SZ-associated variations has become a focus in the post-GWAS research era. The application of revolutionary clustered regularly interspaced palindromic repeats CRISPR/Cas9 gene-editing tools, along with recently developed technologies for cultivating brain organoids in vitro, have opened new perspectives for the construction of these models. In general, cellular models are intended to unravel particular biological phenomena. They can provide the missing link between schizophrenia-related phenotypic features (such as transcriptional dysregulation, oxidative stress and synaptic dysregulation) and data from pathomorphological, electrophysiological and behavioural studies. The objectives of this review are the systematization and classification of cellular models of schizophrenia, based on their complexity and validity for understanding schizophrenia-related phenotypes.
Collapse
Affiliation(s)
- Dmitrii A. Abashkin
- Mental Health Research Center, Clinical Genetics Laboratory, Kashirskoe Sh. 34, 115522 Moscow, Russia; (D.A.A.); (A.O.K.); (D.S.K.)
| | - Artemii O. Kurishev
- Mental Health Research Center, Clinical Genetics Laboratory, Kashirskoe Sh. 34, 115522 Moscow, Russia; (D.A.A.); (A.O.K.); (D.S.K.)
| | - Dmitry S. Karpov
- Mental Health Research Center, Clinical Genetics Laboratory, Kashirskoe Sh. 34, 115522 Moscow, Russia; (D.A.A.); (A.O.K.); (D.S.K.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Str. 32, 119991 Moscow, Russia
| | - Vera E. Golimbet
- Mental Health Research Center, Clinical Genetics Laboratory, Kashirskoe Sh. 34, 115522 Moscow, Russia; (D.A.A.); (A.O.K.); (D.S.K.)
- Correspondence:
| |
Collapse
|
11
|
Hoffmann A, Spengler D. Single-Cell Transcriptomics Supports a Role of CHD8 in Autism. Int J Mol Sci 2021; 22:3261. [PMID: 33806835 PMCID: PMC8004931 DOI: 10.3390/ijms22063261] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/16/2021] [Accepted: 03/20/2021] [Indexed: 12/16/2022] Open
Abstract
Chromodomain helicase domain 8 (CHD8) is one of the most frequently mutated and most penetrant genes in the autism spectrum disorder (ASD). Individuals with CHD8 mutations show leading symptoms of autism, macrocephaly, and facial dysmorphisms. The molecular and cellular mechanisms underpinning the early onset and development of these symptoms are still poorly understood and prevent timely and more efficient therapies of patients. Progress in this area will require an understanding of "when, why and how cells deviate from their normal trajectories". High-throughput single-cell RNA sequencing (sc-RNAseq) directly quantifies information-bearing RNA molecules that enact each cell's biological identity. Here, we discuss recent insights from sc-RNAseq of CRISPR/Cas9-editing of Chd8/CHD8 during mouse neocorticogenesis and human cerebral organoids. Given that the deregulation of the balance between excitation and inhibition (E/I balance) in cortical and subcortical circuits is thought to represent a major etiopathogenetic mechanism in ASD, we focus on the question of whether, and to what degree, results from current sc-RNAseq studies support this hypothesis. Beyond that, we discuss the pros and cons of these approaches and further steps to be taken to harvest the full potential of these transformative techniques.
Collapse
Affiliation(s)
| | - Dietmar Spengler
- Translational Research in Psychiatry, Max Planck Institute of Psychiatry, 80804 Munich, Germany;
| |
Collapse
|
12
|
Wang M, Li A, Sekiya M, Beckmann ND, Quan X, Schrode N, Fernando MB, Yu A, Zhu L, Cao J, Lyu L, Horgusluoglu E, Wang Q, Guo L, Wang YS, Neff R, Song WM, Wang E, Shen Q, Zhou X, Ming C, Ho SM, Vatansever S, Kaniskan HÜ, Jin J, Zhou MM, Ando K, Ho L, Slesinger PA, Yue Z, Zhu J, Katsel P, Gandy S, Ehrlich ME, Fossati V, Noggle S, Cai D, Haroutunian V, Iijima KM, Schadt E, Brennand KJ, Zhang B. Transformative Network Modeling of Multi-omics Data Reveals Detailed Circuits, Key Regulators, and Potential Therapeutics for Alzheimer's Disease. Neuron 2021; 109:257-272.e14. [PMID: 33238137 PMCID: PMC7855384 DOI: 10.1016/j.neuron.2020.11.002] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 09/16/2020] [Accepted: 10/30/2020] [Indexed: 01/11/2023]
Abstract
To identify the molecular mechanisms and novel therapeutic targets of late-onset Alzheimer's Disease (LOAD), we performed an integrative network analysis of multi-omics profiling of four cortical areas across 364 donors with varying cognitive and neuropathological phenotypes. Our analyses revealed thousands of molecular changes and uncovered neuronal gene subnetworks as the most dysregulated in LOAD. ATP6V1A was identified as a key regulator of a top-ranked neuronal subnetwork, and its role in disease-related processes was evaluated through CRISPR-based manipulation in human induced pluripotent stem cell-derived neurons and RNAi-based knockdown in Drosophila models. Neuronal impairment and neurodegeneration caused by ATP6V1A deficit were improved by a repositioned compound, NCH-51. This study provides not only a global landscape but also detailed signaling circuits of complex molecular interactions in key brain regions affected by LOAD, and the resulting network models will serve as a blueprint for developing next-generation therapeutic agents against LOAD.
Collapse
Affiliation(s)
- Minghui Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA,Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA,Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA,These authors contributed equally
| | - Aiqun Li
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA,Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA,Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA,These authors contributed equally
| | - Michiko Sekiya
- Department of Alzheimer’s Disease Research, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan 474-8511,Department of Experimental Gerontology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan 467-8603,These authors contributed equally
| | - Noam D. Beckmann
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA,Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA,These authors contributed equally
| | - Xiuming Quan
- Department of Alzheimer’s Disease Research, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan 474-8511,These authors contributed equally
| | - Nadine Schrode
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA,Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA
| | - Michael B. Fernando
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA,Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA
| | - Alex Yu
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA,Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA
| | - Li Zhu
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York NY 10029,Alzheimer’s Disease Research Center, Icahn School of Medicine at Mount Sinai, New York NY 10029,The New York Stem Cell Foundation Research Institute, New York, NY 10019
| | - Jiqing Cao
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York NY 10029,Alzheimer’s Disease Research Center, Icahn School of Medicine at Mount Sinai, New York NY 10029,The New York Stem Cell Foundation Research Institute, New York, NY 10019
| | - Liwei Lyu
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA,Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA
| | - Emrin Horgusluoglu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA,Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA,Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Qian Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA,Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA,Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Lei Guo
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA,Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA,Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Yuan-shuo Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA,Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA,Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Ryan Neff
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA,Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA,Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Won-min Song
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA,Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA,Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Erming Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA,Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA,Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Qi Shen
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA,Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA,Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Xianxiao Zhou
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA,Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA,Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Chen Ming
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA,Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA,Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Seok-Man Ho
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA,Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA
| | - Sezen Vatansever
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA,Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA,Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - H. Ümit Kaniskan
- Department of Pharmacological Sciences and Oncological Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA,Mount Sinai Center for Therapeutics Discovery, Icahn School of Medicine at Mount Sinai, New York, NY10029, United States
| | - Jian Jin
- Department of Pharmacological Sciences and Oncological Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA,Mount Sinai Center for Therapeutics Discovery, Icahn School of Medicine at Mount Sinai, New York, NY10029, United States.,Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY10029, United States
| | - Ming-Ming Zhou
- Department of Pharmacological Sciences and Oncological Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA
| | - Kanae Ando
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Tokyo, Japan 192-0397
| | - Lap Ho
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA,Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA,Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Paul A. Slesinger
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA
| | - Zhenyu Yue
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York NY 10029
| | - Jun Zhu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA,Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Pavel Katsel
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA,Psychiatry, JJ Peters VA Medical Center, 130 West Kingsbridge Road, Bronx, NY 10468, USA
| | - Sam Gandy
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA,Department of Neurology, Icahn School of Medicine at Mount Sinai, New York NY 10029,Alzheimer’s Disease Research Center, Icahn School of Medicine at Mount Sinai, New York NY 10029
| | - Michelle E. Ehrlich
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York NY 10029,Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York NY 10029
| | - Valentina Fossati
- The New York Stem Cell Foundation Research Institute, New York, NY 10019
| | - Scott Noggle
- The New York Stem Cell Foundation Research Institute, New York, NY 10019
| | - Dongming Cai
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York NY 10029,Alzheimer’s Disease Research Center, Icahn School of Medicine at Mount Sinai, New York NY 10029,Neurology, JJ Peters VA Medical Center, 130 West Kingsbridge Road, Bronx, NY 10468, USA
| | - Vahram Haroutunian
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA,Alzheimer’s Disease Research Center, Icahn School of Medicine at Mount Sinai, New York NY 10029,Psychiatry, JJ Peters VA Medical Center, 130 West Kingsbridge Road, Bronx, NY 10468, USA
| | - Koichi M. Iijima
- Department of Alzheimer’s Disease Research, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan 474-8511,Department of Experimental Gerontology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan 467-8603,Senior author
| | - Eric Schadt
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA,Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA,Senior author
| | - Kristen J. Brennand
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA,Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA,Senior author
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA,Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA,Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA,Senior author,Lead Contact,Correspondence: (B.Z.)
| |
Collapse
|
13
|
Ronan V, Yeasin R, Claud EC. Childhood Development and the Microbiome-The Intestinal Microbiota in Maintenance of Health and Development of Disease During Childhood Development. Gastroenterology 2021; 160:495-506. [PMID: 33307032 PMCID: PMC8714606 DOI: 10.1053/j.gastro.2020.08.065] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/25/2020] [Accepted: 08/29/2020] [Indexed: 12/11/2022]
Abstract
The composition of the intestinal microbiome affects health from the prenatal period throughout childhood, and many diseases have been associated with dysbiosis. The gut microbiome is constantly changing, from birth throughout adulthood, and several variables affect its development and content. Features of the intestinal microbiota can affect development of the brain, immune system, and lungs, as well as body growth. We review the development of the gut microbiome, proponents of dysbiosis, and interactions of the microbiota with other organs. The gut microbiome should be thought of as an organ system that has important effects on childhood development. Dysbiosis has been associated with diseases in children and adults, including autism, attention deficit hyperactivity disorder, asthma, and allergies.
Collapse
Affiliation(s)
- Victoria Ronan
- Department of Pediatrics, The University of Chicago, Chicago, Illinois
| | - Rummanu Yeasin
- Department of Pediatrics, The University of Chicago, Chicago, Illinois; Windsor University School of Medicine, Cayon, St Kitts, West Indies
| | - Erika C Claud
- Department of Pediatrics, The University of Chicago, Chicago, Illinois.
| |
Collapse
|
14
|
Mørch-Johnsen L, Smelror RE, Andreou D, Barth C, Johannessen C, Wedervang-Resell K, Wortinger LA, Díaz R, Victoria G, Ueland T, Andreassen OA, Myhre AM, Rund BR, Ulloa RE, Agartz I. Negative Symptom Domains Are Associated With Verbal Learning in Adolescents With Early Onset Psychosis. Front Psychiatry 2021; 12:825681. [PMID: 35069300 PMCID: PMC8777217 DOI: 10.3389/fpsyt.2021.825681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 12/16/2021] [Indexed: 01/09/2023] Open
Abstract
Background: Early-onset psychosis (EOP) is among the leading causes of disease burden in adolescents. Negative symptoms and cognitive deficits predicts poorer functional outcome. A better understanding of the association between negative symptoms and cognitive impairment may inform theories on underlying mechanisms and elucidate targets for development of new treatments. Two domains of negative symptoms have been described in adult patients with schizophrenia: apathy and diminished expression, however, the factorial structure of negative symptoms has not been investigated in EOP. We aimed to explore the factorial structure of negative symptoms and investigate associations between cognitive performance and negative symptom domains in adolescents with EOP. We hypothesized that (1) two negative symptom factors would be identifiable, and that (2) diminished expression would be more strongly associated with cognitive performance, similar to adult psychosis patients. Methods: Adolescent patients with non-affective EOP (n = 169) were included from three cohorts: Youth-TOP, Norway (n = 45), Early-Onset Study, Norway (n = 27) and Adolescent Schizophrenia Study, Mexico (n = 97). An exploratory factor analysis was performed to investigate the underlying structure of negative symptoms (measured with the Positive and Negative Syndrome Scale (PANSS)). Factor-models were further assessed using confirmatory factor analyses. Associations between negative symptom domains and six cognitive domains were assessed using multiple linear regression models controlling for age, sex and cohort. The neurocognitive domains from the MATRICS Consensus Cognitive Battery included: speed of processing, attention, working memory, verbal learning, visual learning, and reasoning and problem solving. Results: The exploratory factor analysis of PANSS negative symptoms suggested retaining only a single factor, but a forced two factor solution corroborated previously described factors of apathy and diminished expression in adult-onset schizophrenia. Results from confirmatory factor analysis indicated a better fit for the two-factor model than for the one-factor model. For both negative symptom domains, negative symptom scores were inversely associated with verbal learning scores. Conclusion: The results support the presence of two domains of negative symptoms in EOP; apathy and diminished expression. Future studies on negative symptoms in EOP should examine putative differential effects of these symptom domains. For both domains, negative symptom scores were significantly inversely associated with verbal learning.
Collapse
Affiliation(s)
- Lynn Mørch-Johnsen
- Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Psychiatry and Department of Clinical Research, Østfold Hospital, Grålum, Norway
| | - Runar Elle Smelror
- Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Dimitrios Andreou
- Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway.,Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm Health Care Services, Stockholm County Council, Stockholm, Sweden
| | - Claudia Barth
- Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Cecilie Johannessen
- Department of Neurohabilitation, Oslo University Hospital Ullevål, Oslo, Norway
| | - Kirsten Wedervang-Resell
- Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Laura A Wortinger
- Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Ricardo Díaz
- Research Department, Arete Proyectos y Administración, Mexico City, Mexico
| | - Gamaliel Victoria
- Planning of Prevention Programs in the Directorate of Integral Attention to Girls, Boys and Adolescents, System for the Integral Development of the Family, Mexico City, Mexico
| | - Torill Ueland
- Division of Mental Health and Addiction, Norwegian Centre for Mental Disorders Research, Oslo University Hospital, Oslo, Norway.,Department of Psychology, University of Oslo, Oslo, Norway
| | - Ole A Andreassen
- Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Division of Mental Health and Addiction, Norwegian Centre for Mental Disorders Research, Oslo University Hospital, Oslo, Norway
| | - Anne M Myhre
- Division of Mental Health and Addiction, Norwegian Centre for Mental Disorders Research, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Bjørn Rishovd Rund
- Department of Psychology, University of Oslo, Oslo, Norway.,Research Department, Vestre Viken Hospital Trust, Drammen, Norway
| | - Rosa Elena Ulloa
- Developmental Psychopharmacology at the Research Division, Child Psychiatric Hospital, Mexico City, Mexico
| | - Ingrid Agartz
- Norwegian Centre for Mental Disorders Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway.,Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm Health Care Services, Stockholm County Council, Stockholm, Sweden.,Institute of Clinical Medicine, K.G. Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| |
Collapse
|
15
|
Schizophrenia in a genomic era: a review from the pathogenesis, genetic and environmental etiology to diagnosis and treatment insights. Psychiatr Genet 2020; 30:1-9. [PMID: 31764709 DOI: 10.1097/ypg.0000000000000245] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Schizophrenia is a common multigenic and debilitating neurological disorder characterized by chronic psychotic symptoms and psychosocial impairment. Complex interactions of genetics and environmental factors have been implicated in etiology of schizophrenia. There is no central pathophysiology mechanism, diagnostic neuropathology, or biological markers have been defined for schizophrenia. However, a number of different hypotheses including neurodevelopmental and neurochemical hypotheses have been proposed to explain the neuropathology of schizophrenia. This review provides an overview of pathogenesis, genetic and environmental etiologies to diagnosis and treatment insights in clinical management of schizophrenia in light of the recent discoveries of genetic loci associated with susceptibility to schizophrenia.
Collapse
|
16
|
Collo G, Mucci A, Giordano GM, Merlo Pich E, Galderisi S. Negative Symptoms of Schizophrenia and Dopaminergic Transmission: Translational Models and Perspectives Opened by iPSC Techniques. Front Neurosci 2020; 14:632. [PMID: 32625059 PMCID: PMC7315891 DOI: 10.3389/fnins.2020.00632] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 05/22/2020] [Indexed: 12/18/2022] Open
Abstract
Negative symptoms (NS) represent a heterogeneous dimension of schizophrenia (SCZ), associated with a poor functional outcome. A dysregulated dopamine (DA) system, including a reduced D1 receptor activation in the prefrontal cortex, DA hypoactivity in the caudate and alterations in D3 receptor activity, seems to contribute to the pathogenesis of NS. However, failure to take into account the NS heterogeneity has slowed down progress in research on their neurobiological correlates and discoveries of new effective treatments. A better neurobiological characterization of NS is needed, and this requires objective quantification of their features that can be applied in translational models, such as animal models and human inducible pluripotent stem cells (iPSC). In this review we summarize the evidence for dopaminergic alterations relevant to NS in translational animal models focusing on dysfunctional motivation, a core aspect of NS. Among others, experiments on mutant rodents with an overexpression of DA D2 or D3 receptors and the dopamine deficient mice are discussed. In the second part we summarize the findings from recent studies using iPSC to model the pathogenesis of SCZ. By retaining the genetic background of risk genetic variants, iPSC offer the possibility to study the effect of de novo mutations or inherited polymorphisms from subgroups of patients and their response to drugs, adding an important tool for personalized psychiatry. Given the key role of DA in NS, we focus on findings of iPSC-derived DA neurons. Since implementation of iPSC-derived neurons to study the neurobiology of SCZ is a relatively recent acquisition, the available data are limited. We highlight some methodological aspects of relevance in the interpretation of in vitro testing results, including limitations and strengths, offering a critical viewpoint for the implementation of future pharmacological studies aimed to the discovery and characterization of novel treatments for NS.
Collapse
Affiliation(s)
- Ginetta Collo
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Armida Mucci
- Department of Psychiatry, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Giulia M. Giordano
- Department of Psychiatry, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Emilio Merlo Pich
- Research & Development, Alfasigma Schweiz, Zofingen, Switzerland
- Department of Brain Sciences, Imperial College London, London, United Kingdom
| | - Silvana Galderisi
- Department of Psychiatry, University of Campania “Luigi Vanvitelli”, Naples, Italy
| |
Collapse
|
17
|
Varderidou-Minasian S, Verheijen BM, Schätzle P, Hoogenraad CC, Pasterkamp RJ, Altelaar M. Deciphering the Proteome Dynamics during Development of Neurons Derived from Induced Pluripotent Stem Cells. J Proteome Res 2020; 19:2391-2403. [PMID: 32357013 PMCID: PMC7281779 DOI: 10.1021/acs.jproteome.0c00070] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
![]()
Neuronal development is a complex
multistep process that shapes
neurons by progressing though several typical stages, including axon
outgrowth, dendrite formation, and synaptogenesis. Knowledge of the
mechanisms of neuronal development is mostly derived from the study
of animal models. Advances in stem cell technology now enable us to
generate neurons from human induced pluripotent stem cells (iPSCs).
Here we provide a mass spectrometry-based quantitative proteomic signature
of human iPSC-derived neurons, i.e., iPSC-derived induced glutamatergic
neurons and iPSC-derived motor neurons, throughout neuronal differentiation.
Tandem mass tag 10-plex labeling was carried out to perform proteomic
profiling of cells at different time points. Our analysis reveals
significant expression changes (FDR < 0.001) of several key proteins
during the differentiation process, e.g., proteins involved in the
Wnt and Notch signaling pathways. Overall, our data provide a rich
resource of information on protein expression during human iPSC neuron
differentiation.
Collapse
Affiliation(s)
- Suzy Varderidou-Minasian
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, 3584 CH Utrecht, The Netherlands.,Netherlands Proteomics Center, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Bert M Verheijen
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Philipp Schätzle
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Casper C Hoogenraad
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - R Jeroen Pasterkamp
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Maarten Altelaar
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Padualaan 8, 3584 CH Utrecht, The Netherlands.,Netherlands Proteomics Center, Padualaan 8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
18
|
Hoffmann A, Ziller M, Spengler D. Focus on Causality in ESC/iPSC-Based Modeling of Psychiatric Disorders. Cells 2020; 9:E366. [PMID: 32033412 PMCID: PMC7072492 DOI: 10.3390/cells9020366] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/31/2020] [Accepted: 02/03/2020] [Indexed: 12/14/2022] Open
Abstract
Genome-wide association studies (GWAS) have identified an increasing number of genetic variants that significantly associate with psychiatric disorders. Despite this wealth of information, our knowledge of which variants causally contribute to disease, how they interact, and even more so of the functions they regulate, is still poor. The availability of embryonic stem cells (ESCs) and the advent of patient-specific induced pluripotent stem cells (iPSCs) has opened new opportunities to investigate genetic risk variants in living disease-relevant cells. Here, we analyze how this progress has contributed to the analysis of causal relationships between genetic risk variants and neuronal phenotypes, especially in schizophrenia (SCZ) and bipolar disorder (BD). Studies on rare, highly penetrant risk variants have originally led the field, until more recently when the development of (epi-) genetic editing techniques spurred studies on cause-effect relationships between common low risk variants and their associated neuronal phenotypes. This reorientation not only offers new insights, but also raises issues on interpretability. Concluding, we consider potential caveats and upcoming developments in the field of ESC/iPSC-based modeling of causality in psychiatric disorders.
Collapse
Affiliation(s)
| | | | - Dietmar Spengler
- Department of Translational Research in Psychiatry, Max-Planck Institute of Psychiatry, 80804 Munich, Germany; (A.H.); (M.Z.)
| |
Collapse
|
19
|
Molecular Psychiatry: Trends and Study Examples. Int J Mol Sci 2020; 21:ijms21020459. [PMID: 31936889 PMCID: PMC7013872 DOI: 10.3390/ijms21020459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 01/09/2020] [Indexed: 11/17/2022] Open
Abstract
In contrast to about 20–30 years ago, the concept that psychiatric diseases have a molecular basis is now widely accepted [...]
Collapse
|
20
|
Driver DI, Thomas S, Gogtay N, Rapoport JL. Childhood-Onset Schizophrenia and Early-onset Schizophrenia Spectrum Disorders: An Update. Child Adolesc Psychiatr Clin N Am 2020; 29:71-90. [PMID: 31708054 DOI: 10.1016/j.chc.2019.08.017] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The clinical severity, impact on development, and poor prognosis of childhood-onset schizophrenia may represent a more homogeneous group. Positive symptoms in children are necessary for the diagnosis, and hallucinations are more often multimodal. In healthy children and children with a variety of other psychiatric illnesses, hallucinations are not uncommon and diagnosis should not be based on these alone. Childhood-onset schizophrenia is an extraordinarily rare illness that is poorly understood but seems continuous with the adult-onset disorder. Once a diagnosis is confirmed, aggressive medication treatment combined with family education and individual counseling may prevent further deterioration.
Collapse
Affiliation(s)
- David I Driver
- Child Psychiatry Branch, National Institutes of Mental Health (NIMH), National Institutes Health (NIH), Building 10, Room 4N313C, 10 Center Drive, Bethesda, MD 20814, USA.
| | - Shari Thomas
- Healthy Foundations Group, 4350 East West Highway, Suite 200, Bethesda, Maryland 20814, USA
| | - Nitin Gogtay
- National Institutes Health (NIH), NSC Building, Room 6104, 6001 Executive Boulevard, Rockville, MD 20852, USA
| | - Judith L Rapoport
- National Institutes Health (NIH), Building 10-CRC, Room 6-5332, 10 Center Drive, Bethesda, MD 20814, USA
| |
Collapse
|
21
|
Hoffmann A, Ziller M, Spengler D. Progress in iPSC-Based Modeling of Psychiatric Disorders. Int J Mol Sci 2019; 20:E4896. [PMID: 31581684 PMCID: PMC6801734 DOI: 10.3390/ijms20194896] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 09/29/2019] [Accepted: 09/30/2019] [Indexed: 12/19/2022] Open
Abstract
Progress in iPSC-based cellular systems provides new insights into human brain development and early neurodevelopmental deviations in psychiatric disorders. Among these, studies on schizophrenia (SCZ) take a prominent role owing to its high heritability and multifarious evidence that it evolves from a genetically induced vulnerability in brain development. Recent iPSC studies on patients with SCZ indicate that functional impairments of neural progenitor cells (NPCs) in monolayer culture extend to brain organoids by disrupting neocorticogenesis in an in vitro model. In addition, the formation of hippocampal circuit-like structures in vitro is impaired in patients with SCZ as is the case for glia development. Intriguingly, chimeric-mice experiments show altered oligodendrocyte and astrocyte development in vivo that highlights the importance of cell-cell interactions in the pathogenesis of early-onset SCZ. Likewise, cortical imbalances in excitatory-inhibitory signaling may result from a cell-autonomous defect in cortical interneuron (cIN) development. Overall, these findings indicate that genetic risk in SCZ impacts neocorticogenesis, hippocampal circuit formation, and the development of distinct glial and neuronal subtypes. In light of this remarkable progress, we discuss current limitations and further steps necessary to harvest the full potential of iPSC-based investigations on psychiatric disorders.
Collapse
Affiliation(s)
- Anke Hoffmann
- Department of Translational Research in Psychiatry, Max-Planck Institute of Psychiatry, 80804 Munich, Germany.
| | - Michael Ziller
- Department of Translational Research in Psychiatry, Max-Planck Institute of Psychiatry, 80804 Munich, Germany.
| | - Dietmar Spengler
- Department of Translational Research in Psychiatry, Max-Planck Institute of Psychiatry, 80804 Munich, Germany.
| |
Collapse
|