1
|
Mossburg KJ, Barragan D, O NH, Kian AC, Maidment ADA, Cormode DP. Emerging nanoparticle-based x-ray imaging contrast agents for breast cancer screening. Nanomedicine (Lond) 2025; 20:1149-1166. [PMID: 40261216 DOI: 10.1080/17435889.2025.2496129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 04/17/2025] [Indexed: 04/24/2025] Open
Abstract
Breast cancer is one of the most common types of cancer, however, preventive screening has contributed to a significant reduction in mortality over the past four decades. The first-line screening methods for breast cancer, such as mammography and tomosynthesis, are x-ray-based modalities. Unfortunately, their cancer detection rates are low in patients with dense breasts. These, and other high-risk women, are now encouraged to receive supplemental screening. The supplemental imaging methods are diverse, including ultrasound, MRI, nuclear imaging, and X-ray-based modalities such as breast CT and contrast-enhanced mammography/tomosynthesis. Due to their low cost and wide availability, x-ray-based modalities see significant clinical use worldwide. These techniques benefit from the use of contrast agents, which are currently iodinated small molecules designed for other purposes. Consequently, developing new contrast agents that are specifically for breast cancer screening is of interest. This review describes these modalities and the nanoparticle-based contrast agents being researched for their enhanced performance. The relevant parameters for nanoparticle-based contrast agent design are evaluated, including contrast generation and potential biointeractions. Iodinated agents are discussed for comparison. Nanoparticles covered include silver sulfide, silver telluride, gold, and bismuth sulfide-based agents, among others. Finally, perspectives on future developments in this field are offered.
Collapse
Affiliation(s)
- Katherine J Mossburg
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Diego Barragan
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Nathaniel H O
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pharmaceutical Sciences, St. Joseph's University, Philadelphia, PA, USA
- Department of Physics, St. Joseph's University, Philadelphia, PA, USA
| | - Andrea C Kian
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Andrew D A Maidment
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - David P Cormode
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
2
|
Okpozo P, Schinke J, Viator JA. The use of gold and magnetite-gold composite nanoparticles for the enhanced detection of Salmonella LT2 cells under photoacoustic flow cytometry. J Colloid Interface Sci 2024; 680:64-77. [PMID: 39492080 DOI: 10.1016/j.jcis.2024.10.142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
Photoacoustic flow cytometry (PAFC) is an emerging technology that has generated significant interest in several research fields, particularly in bacteremia. The application of functionalised nanoparticles like gold and iron oxide-gold complex (Fe3O4-Au) has been realised to enhance the photoacoustic (PA) detection of bacteria cells under PAFC systems. Inclusively, the bacteria cell concentrations are statistically quantified through the number of time-signal detection counts. This study uses a similar technique by using gold (Au) and magnetite-gold complex (Fe3O4-Au) nanoparticles in the PAFC system to improve the detection of Salmonella LT2 (SLT2) cells under 532 nm laser irradiation, resulting in over a 200 % increase. However, this study's contribution comes from the post-processing and analysis of PA time signals after exposing various concentrations of SLT2 cells. Upon fast Fourier transform (FFT) analysis of time signals, a distinct peak frequency at 2.75 MHz was significantly attributed to SLT2 as its likely acoustic frequency fingerprint, even at its lowest concentrations (10 CFU/ml). Furthermore, an electromagnetic wave simulation (optical scattering and heat transfer in fluids) was employed to distinguish the PA and Photothermal contributions of the nanoparticles in the system. The resulting data consolidates the continuous wave transform (CWT) of the time signal, where 22.5 - 30 µs was strongly affiliated with PA, and 32-40 µs was that of the photo-thermal-acoustic effect-indicating that both signals can be used to detect and potentially confirm the eradication of SLT2 cells. Overall, magnetised Fe3O4-Au nanoparticles yielded more efficiency through its reproducible PA time signals with 0.84 standard deviations, and its 2.75 MHz frequency peak area matches most accurately with the SLT2 cell concentration by 97.3 %.
Collapse
Affiliation(s)
- Paul Okpozo
- School of Engineering, Sir Ian Wood Building, Robert Gordon University, Aberdeen AB10 7GJ, UK; Engineering, Manufacturing and Technology Centre, Boston College, Skirbeck Road, Boston PE21 6AU, UK.
| | - Jennifer Schinke
- Department of Biomedical Engineering, Duquesne University, 600 Forbes Avenue Pittsburgh, Pennsylvania 15282, USA.
| | - John A Viator
- Department of Biomedical Engineering, Duquesne University, 600 Forbes Avenue Pittsburgh, Pennsylvania 15282, USA.
| |
Collapse
|
3
|
Huang S, Hou Y, Tang Z, Suhail M, Cui M, Iqbal MZ, Kong X. Near-infrared-II responsive ovalbumin functionalized gold-genipin nanosystem cascading photo-immunotherapy of cancer. NANOTECHNOLOGY 2024; 35:365102. [PMID: 38861966 DOI: 10.1088/1361-6528/ad568c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/11/2024] [Indexed: 06/13/2024]
Abstract
Synergistic cancer therapies have attracted wide attention owing to their multi-mode tumor inhibition properties. Especially, photo-responsive photoimmunotherapy demonstrates an emerging cancer treatment paradigm that significantly improved treatment efficiency. Herein, near-infrared-II responsive ovalbumin functionalized Gold-Genipin nanosystem (Au-G-OVA NRs) was designed for immunotherapy and deep photothermal therapy of breast cancer. A facile synthesis method was employed to prepare the homogeneous Au nanorods (Au NRs) with good dispersion. The nanovaccine was developed further by the chemical cross-linking of Au-NRs, genipin and ovalbumin. The Au-G-OVA NRs outstanding aqueous solubility, and biocompatibility against normal and cancer cells. The designed NRs possessed enhanced localized surface plasmon resonance (LSPR) effect, which extended the NIR absorption in the second window, enabling promising photothermal properties. Moreover, genipin coating provided complimentary red fluorescent and prepared Au-G-OVA NRs showed significant intracellular encapsulation for efficient photoimmunotherapy outcomes. The designed nanosystem possessed deep photothermal therapy of breast cancer and 90% 4T1 cells were ablated by Au-G-OVA NRs (80μg ml-1concentration) after 1064 nm laser irradiation. In addition, Au-G-OVA NRs demonstrated outstanding vaccination phenomena by facilitating OVA delivery, antigen uptake, maturation of bone marrow dendritic cells, and cytokine IFN-γsecretion for tumor immunosurveillance. The aforementioned advantages permit the utilization of fluorescence imaging-guided photo-immunotherapy for cancers, demonstrating a straightforward approach for developing nanovaccines tailored to precise tumor treatment.
Collapse
Affiliation(s)
- Shuqi Huang
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Yike Hou
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Zhe Tang
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, People's Republic of China
| | - Muhamamd Suhail
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Mingyue Cui
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - M Zubair Iqbal
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Xiangdong Kong
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| |
Collapse
|
4
|
Wu Z, Stangl S, Hernandez-Schnelzer A, Wang F, Hasanzadeh Kafshgari M, Bashiri Dezfouli A, Multhoff G. Functionalized Hybrid Iron Oxide-Gold Nanoparticles Targeting Membrane Hsp70 Radiosensitize Triple-Negative Breast Cancer Cells by ROS-Mediated Apoptosis. Cancers (Basel) 2023; 15:cancers15041167. [PMID: 36831510 PMCID: PMC9954378 DOI: 10.3390/cancers15041167] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
Triple-negative breast cancer (TNBC) a highly aggressive tumor entity with an unfavorable prognosis, is treated by multimodal therapies, including ionizing radiation (IR). Radiation-resistant tumor cells, as well as induced normal tissue toxicity, contribute to the poor clinical outcome of the disease. In this study, we investigated the potential of novel hybrid iron oxide (Fe3O4)-gold (Au) nanoparticles (FeAuNPs) functionalized with the heat shock protein 70 (Hsp70) tumor-penetrating peptide (TPP) and coupled via a PEG4 linker (TPP-PEG4-FeAuNPs) to improve tumor targeting and uptake of NPs and to break radioresistance in TNBC cell lines 4T1 and MDA-MB-231. Hsp70 is overexpressed in the cytosol and abundantly presented on the cell membrane (mHsp70) of highly aggressive tumor cells, including TNBCs, but not on corresponding normal cells, thus providing a tumor-specific target. The Fe3O4 core of the NPs can serve as a contrast agent enabling magnetic resonance imaging (MRI) of the tumor, and the nanogold shell radiosensitizes tumor cells by the release of secondary electrons (Auger electrons) upon X-ray irradiation. We demonstrated that the accumulation of TPP-PEG4-FeAuNPs into mHsp70-positive TNBC cells was superior to that of non-conjugated FeAuNPs and FeAuNPs functionalized with a non-specific, scrambled peptide (NGL). After a 24 h co-incubation period of 4T1 and MDA-MB-231 cells with TPP-PEG4-FeAuNPs, but not with control hybrid NPs, ionizing irradiation (IR) causes a cell cycle arrest at G2/M and induces DNA double-strand breaks, thus triggering apoptotic cell death. Since the radiosensitizing effect was completely abolished in the presence of the ROS inhibitor N-acetyl-L-cysteine (NAC), we assume that the TPP-PEG4-FeAuNP-induced apoptosis is mediated via an increased production of ROS.
Collapse
Affiliation(s)
- Zhiyuan Wu
- Central Institute for Translational Cancer Research (TranslaTUM), Radiation Immuno Oncology Group, Klinikum Rechts der Isar der Technischen Universität München, 81675 Munich, Germany
| | - Stefan Stangl
- Central Institute for Translational Cancer Research (TranslaTUM), Radiation Immuno Oncology Group, Klinikum Rechts der Isar der Technischen Universität München, 81675 Munich, Germany
- Department of Nuclear Medicine, Klinikum Rechts der Isar, Technische Universität München, 81675 Munich, Germany
| | - Alicia Hernandez-Schnelzer
- Central Institute for Translational Cancer Research (TranslaTUM), Radiation Immuno Oncology Group, Klinikum Rechts der Isar der Technischen Universität München, 81675 Munich, Germany
| | - Fei Wang
- Central Institute for Translational Cancer Research (TranslaTUM), Radiation Immuno Oncology Group, Klinikum Rechts der Isar der Technischen Universität München, 81675 Munich, Germany
| | - Morteza Hasanzadeh Kafshgari
- Heinz-Nixdorf-Chair of Biomedical Electronics, TranslaTUM, Klinikum Rechts der Isar, Technische Universität München, 81675 Munich, Germany
| | - Ali Bashiri Dezfouli
- Central Institute for Translational Cancer Research (TranslaTUM), Radiation Immuno Oncology Group, Klinikum Rechts der Isar der Technischen Universität München, 81675 Munich, Germany
| | - Gabriele Multhoff
- Central Institute for Translational Cancer Research (TranslaTUM), Radiation Immuno Oncology Group, Klinikum Rechts der Isar der Technischen Universität München, 81675 Munich, Germany
- Department of Radiation Oncology, Klinikum Rechts der Isar, Technischen Universität München, 81675 Munich, Germany
- Correspondence: ; Tel.: +49-89-4140-4514; Fax: +49-89-4140-4299
| |
Collapse
|
5
|
Yang Y, Zheng X, Chen L, Gong X, Yang H, Duan X, Zhu Y. Multifunctional Gold Nanoparticles in Cancer Diagnosis and Treatment. Int J Nanomedicine 2022; 17:2041-2067. [PMID: 35571258 PMCID: PMC9094645 DOI: 10.2147/ijn.s355142] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 04/20/2022] [Indexed: 12/18/2022] Open
Abstract
Cancer is the second leading cause of death in the world, behind only cardiovascular diseases, and is one of the most serious diseases threatening human health nowadays. Cancer patients’ lives are being extended by the use of contemporary medical technologies, such as surgery, radiotherapy, and chemotherapy. However, these treatments are not always effective in extending cancer patients’ lives. Simultaneously, these approaches are often accompanied with a series of negative consequences, such as the occurrence of adverse effects and an increased risk of relapse. As a result, the development of a novel cancer-eradication strategy is still required. The emergence of nanomedicine as a promising technology brings a new avenue for the circumvention of limitations of conventional cancer therapies. Gold nanoparticles (AuNPs), in particular, have garnered extensive attention due to their many specific advantages, including customizable size and shape, multiple and useful physicochemical properties, and ease of functionalization. Based on these characteristics, many therapeutic and diagnostic applications of AuNPs have been exploited, particularly for malignant tumors, such as drug and nucleic acid delivery, photodynamic therapy, photothermal therapy, and X-ray-based computed tomography imaging. To leverage the potential of AuNPs, these applications demand a comprehensive and in-depth overview. As a result, we discussed current achievements in AuNPs in anticancer applications in a more methodical manner in this review. Also addressed in depth are the present status of clinical trials, as well as the difficulties that may be encountered when translating some basic findings into the clinic, in order to serve as a reference for future studies.
Collapse
Affiliation(s)
- Yan Yang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, People’s Republic of China
| | - Xi Zheng
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, People’s Republic of China
| | - Lu Chen
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, People’s Republic of China
| | - Xuefeng Gong
- POWERCHINA Chengdu Engineering Corporation Limited, Chengdu, 611130, People’s Republic of China
| | - Hao Yang
- POWERCHINA Chengdu Engineering Corporation Limited, Chengdu, 611130, People’s Republic of China
| | - Xingmei Duan
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, People’s Republic of China
| | - Yuxuan Zhu
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, People’s Republic of China
- Correspondence: Yuxuan Zhu, Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, People’s Republic of China, Email
| |
Collapse
|
6
|
Montiel Schneider MG, Martín MJ, Otarola J, Vakarelska E, Simeonov V, Lassalle V, Nedyalkova M. Biomedical Applications of Iron Oxide Nanoparticles: Current Insights Progress and Perspectives. Pharmaceutics 2022; 14:204. [PMID: 35057099 PMCID: PMC8780449 DOI: 10.3390/pharmaceutics14010204] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/01/2022] [Accepted: 01/14/2022] [Indexed: 01/08/2023] Open
Abstract
The enormous development of nanomaterials technology and the immediate response of many areas of science, research, and practice to their possible application has led to the publication of thousands of scientific papers, books, and reports. This vast amount of information requires careful classification and order, especially for specifically targeted practical needs. Therefore, the present review aims to summarize to some extent the role of iron oxide nanoparticles in biomedical research. Summarizing the fundamental properties of the magnetic iron oxide nanoparticles, the review's next focus was to classify research studies related to applying these particles for cancer diagnostics and therapy (similar to photothermal therapy, hyperthermia), in nano theranostics, multimodal therapy. Special attention is paid to research studies dealing with the opportunities of combining different nanomaterials to achieve optimal systems for biomedical application. In this regard, original data about the synthesis and characterization of nanolipidic magnetic hybrid systems are included as an example. The last section of the review is dedicated to the capacities of magnetite-based magnetic nanoparticles for the management of oncological diseases.
Collapse
Affiliation(s)
- María Gabriela Montiel Schneider
- INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS)-CONICET, Bahía Blanca 8000, Argentina; (M.G.M.S.); (M.J.M.); (J.O.); (V.L.)
| | - María Julia Martín
- INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS)-CONICET, Bahía Blanca 8000, Argentina; (M.G.M.S.); (M.J.M.); (J.O.); (V.L.)
| | - Jessica Otarola
- INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS)-CONICET, Bahía Blanca 8000, Argentina; (M.G.M.S.); (M.J.M.); (J.O.); (V.L.)
| | - Ekaterina Vakarelska
- Faculty of Chemistry and Pharmacy, University of Sofia, 1 James Bourchier Blvd., 1164 Sofia, Bulgaria;
| | - Vasil Simeonov
- Faculty of Chemistry and Pharmacy, University of Sofia, 1 James Bourchier Blvd., 1164 Sofia, Bulgaria;
| | - Verónica Lassalle
- INQUISUR, Departamento de Química, Universidad Nacional del Sur (UNS)-CONICET, Bahía Blanca 8000, Argentina; (M.G.M.S.); (M.J.M.); (J.O.); (V.L.)
| | - Miroslava Nedyalkova
- Faculty of Chemistry and Pharmacy, University of Sofia, 1 James Bourchier Blvd., 1164 Sofia, Bulgaria;
| |
Collapse
|
7
|
Ding W, Liang Z, El-Kott AF, El-Kenawy AE. Investigation of anti-human ovarian cancer effects of decorated Au nanoparticles on Thymbra spicata extract modified Fe3O4 nanoparticles. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
8
|
Low LE, Wang Q, Chen Y, Lin P, Yang S, Gong L, Lee J, Siva SP, Goh BH, Li F, Ling D. Microenvironment-tailored nanoassemblies for the diagnosis and therapy of neurodegenerative diseases. NANOSCALE 2021; 13:10197-10238. [PMID: 34027535 DOI: 10.1039/d1nr02127c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Neurodegenerative disorder is an illness involving neural dysfunction/death attributed to complex pathological processes, which eventually lead to the mortality of the host. It is generally recognized through features such as mitochondrial dysfunction, protein aggregation, oxidative stress, metal ions dyshomeostasis, membrane potential change, neuroinflammation and neurotransmitter impairment. The aforementioned neuronal dysregulations result in the formation of a complex neurodegenerative microenvironment (NME), and may interact with each other, hindering the performance of therapeutics for neurodegenerative disease (ND). Recently, smart nanoassemblies prepared from functional nanoparticles, which possess the ability to interfere with different NME factors, have shown great promise to enhance the diagnostic and therapeutic efficacy of NDs. Herein, this review highlights the recent advances of stimuli-responsive nanoassemblies that can effectively combat the NME for the management of ND. The first section outlined the NME properties and their interrelations that are exploitable for nanoscale targeting. The discussion is then extended to the controlled assembly of functional nanoparticles for the construction of stimuli-responsive nanoassemblies. Further, the applications of stimuli-responsive nanoassemblies for the enhanced diagnosis and therapy of ND are introduced. Finally, perspectives on the future development of NME-tailored nanomedicines are given.
Collapse
Affiliation(s)
- Liang Ee Low
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China. and Biofunctional Molecule Exploratory (BMEX) Research Group, School of Pharmacy, Monash University Malaysia, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Qiyue Wang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China. and Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Ying Chen
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China. and Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Peihua Lin
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China. and Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Shengfei Yang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China. and Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Linji Gong
- National Center for Translational Medicine, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Jiyoung Lee
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China.
| | - Sangeetaprivya P Siva
- Chemical Engineering Discipline, School of Engineering, Monash University Malaysia, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Bey-Hing Goh
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China. and Biofunctional Molecule Exploratory (BMEX) Research Group, School of Pharmacy, Monash University Malaysia, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Fangyuan Li
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China. and Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Daishun Ling
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China. and Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China and National Center for Translational Medicine, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China and Key Laboratory of Biomedical Engineering of the Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, 310027, P. R. China
| |
Collapse
|
9
|
Aslan N, Ceylan B, Koç MM, Findik F. Metallic nanoparticles as X-Ray computed tomography (CT) contrast agents: A review. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128599] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
10
|
Taheri-Ledari R, Zhang W, Radmanesh M, Mirmohammadi SS, Maleki A, Cathcart N, Kitaev V. Multi-Stimuli Nanocomposite Therapeutic: Docetaxel Targeted Delivery and Synergies in Treatment of Human Breast Cancer Tumor. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2002733. [PMID: 32945130 DOI: 10.1002/smll.202002733] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/12/2020] [Indexed: 02/05/2023]
Abstract
A versatile breast cancer-targeting nanocomposite therapeutic combining docetaxel (DXL), polyvinyl alcohol (PVA) network for controlled release, and silica-protected magnetic iron oxide nanoparticles (Fe3 O4 NPs) for targeted delivery and gold nanoparticles (AuNPs) for plasmonic photothermal therapy (PPTT) is presented in this work. First, the designed nanocomposite is magnetically directed for cancer-targeted therapy confirmed by computerized tomography (CT) scans. Second, 10% DXL by mass is loaded into PVA, a pH and temperature responsive gel, for controlled release. Third, PPTT is confirmed with Au/Fe3 O4 /PVA-10%DXL using a prototype circulation system and then for tumor treatment in vivo; Au/Fe3 O4 /PVA-10%DXL is conveniently directed and the entrapped DXL is selectively released (≈96%) via the interaction of green and near-infrared (NIR) light with the localized surface plasmon resonance of AuNPs. A 75% cell death is reported from in vitro studies with DXL doses as low as 20 µg mL-1 of Au/Fe3 O4 /PVA-10%DXL, and a 70% tumor growth inhibition is demonstrated by in vivo experiments with the biosafety studies confirming minimal side effects to other organs. Overall, the developed Au/Fe3 O4 /PVA-10%DXL has a strong potential to simultaneously enhance CT imaging contrast together with the targeted delivery of DXL.
Collapse
Affiliation(s)
- Reza Taheri-Ledari
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Wenjie Zhang
- Department of Nuclear Medicine, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Chengdu, Sichuan Province, 610041, P. R. China
| | - Maral Radmanesh
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Seyedeh Shadi Mirmohammadi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Nicole Cathcart
- Department of Chemistry and Biochemistry, Wilfrid Laurier University, 75 University Ave. W., Waterloo, Ontario, N2L 3C5, Canada
| | - Vladimir Kitaev
- Department of Chemistry and Biochemistry, Wilfrid Laurier University, 75 University Ave. W., Waterloo, Ontario, N2L 3C5, Canada
| |
Collapse
|