1
|
St-Onge F, Whitsett A, St-Onge JF, Cruz J, Abdulsadek R, Alghurairy H, Alambrouk T, Hilal H, Coey J, Yussuf Moosa N. The Relationship Between Perimesenteric Fat and Measures of Central Adiposity in Young Adults. Cureus 2024; 16:e73097. [PMID: 39650874 PMCID: PMC11621396 DOI: 10.7759/cureus.73097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2024] [Indexed: 12/11/2024] Open
Abstract
Visceral fat has been identified as a key contributor to metabolic disorders owing to its association with decreased adipocytokine function. Perivascular adipose tissue (PVAT), a specialized local deposit of adipose tissue surrounding arteries, has been shown to regulate vascular tone through adipocytokine functions but is compromised in obesity, contributing to increased vascular resistance. This study aimed to investigate the correlation between PVAT of the superior mesenteric artery (SMA), visceral adipose tissue (VAT), body mass index (BMI), and waist-to-hip ratio (WHR). WHR and BMI were anthropometric measurements used to assess body composition. A GE LOGIQ ultrasound system with a 12 MHz abdominal probe transducer was used to measure VAT at the SMA, VAT at the umbilicus, and PVAT of SMA in 31 healthy participants, male and female, aged 18-30. Pearson's correlation matrix was generated to assess the strength of the correlation between variables, and ANOVA was used to assess the statistical significance of Pearson's correlation coefficient (r) values. PVAT positively correlated with BMI, WHR, and VAT (p<0.05). Interestingly, PVAT was more strongly correlated with BMI than with WHR and should be considered when evaluating PVAT if ultrasound is not available. Perimesenteric fat is also associated with adiposity. Further investigation is required to assess the associations between PVAT of other named arteries with measures of adiposity in older adults and patients with cardiovascular disease (CVD). In addition, given the vascular dysfunction associated with excess PVAT, correlations with factors such as blood flow and pressure should be considered.
Collapse
Affiliation(s)
- Francis St-Onge
- School of Medicine, Northumbria University, Newcastle Upon Tyne, GBR
- School of Medicine, St. George's University School of Medicine, St. Georges, GRD
| | - Allyson Whitsett
- School of Medicine, St. George's University School of Medicine, St. Georges, GRD
| | - Jean-Felix St-Onge
- School of Medicine, St. George's University School of Medicine, St. Georges, GRD
| | - Jeriel Cruz
- School of Medicine, St. George's University School of Medicine, St. Georges, GRD
| | - Rajab Abdulsadek
- School of Medicine, St. George's University School of Medicine, St. Georges, GRD
| | | | - Tarek Alambrouk
- School of Medicine, St. George's University School of Medicine, St. Georges, GRD
| | - Haider Hilal
- School of Medicine, St. George's University School of Medicine, Newcastle Upon Tyne, GBR
| | - James Coey
- School of Medicine, St. George's University School of Medicine, Newcastle Upon Tyne, GBR
| | | |
Collapse
|
2
|
Wang Y, Wang X, Chen Y, Zhang Y, Zhen X, Tao S, Dou J, Li P, Jiang G. Perivascular fat tissue and vascular aging: A sword and a shield. Pharmacol Res 2024; 203:107140. [PMID: 38513826 DOI: 10.1016/j.phrs.2024.107140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 02/16/2024] [Accepted: 03/11/2024] [Indexed: 03/23/2024]
Abstract
The understanding of the function of perivascular adipose tissue (PVAT) in vascular aging has significantly changed due to the increasing amount of information regarding its biology. Adipose tissue surrounding blood vessels is increasingly recognized as a key regulator of vascular disorders. It has significant endocrine and paracrine effects on the vasculature and is mediated by the production of a variety of bioactive chemicals. It also participates in a number of pathological regulatory processes, including oxidative stress, immunological inflammation, lipid metabolism, vasoconstriction, and dilation. Mechanisms of homeostasis and interactions between cells at the local level tightly regulate the function and secretory repertoire of PVAT, which can become dysregulated during vascular aging. The PVAT secretion group changes from being reducing inflammation and lowering cholesterol to increasing inflammation and increasing cholesterol in response to systemic or local inflammation and insulin resistance. In addition, the interaction between the PVAT and the vasculature is reciprocal, and the biological processes of PVAT are directly influenced by the pertinent indicators of vascular aging. The architectural and biological traits of PVAT, the molecular mechanism of crosstalk between PVAT and vascular aging, and the clinical correlation of vascular age-related disorders are all summarized in this review. In addition, this paper aims to elucidate and evaluate the potential benefits of therapeutically targeting PVAT in the context of mitigating vascular aging. Furthermore, it will discuss the latest advancements in technology used for targeting PVAT.
Collapse
Affiliation(s)
- Yan Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xianmin Wang
- Xinjiang Uygur Autonomous Region Hospital of Traditional Chinese Medicine, Xinjiang 830000, China
| | - Yang Chen
- School of Traditional Chinese Medicine, Xinjiang Medical University, Xinjiang 830011, China
| | - Yuelin Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xianjie Zhen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Siyu Tao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jinfang Dou
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Peng Li
- Xinjiang Uygur Autonomous Region Hospital of Traditional Chinese Medicine, Xinjiang 830000, China
| | - Guangjian Jiang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; School of Traditional Chinese Medicine, Xinjiang Medical University, Xinjiang 830011, China.
| |
Collapse
|
3
|
Jüttner AA, Ataei Ataabadi E, Golshiri K, de Vries R, Garrelds IM, Danser AHJ, Visser JA, Roks AJM. Adiponectin secretion by perivascular adipose tissue supports impaired vasodilation in a mouse model of accelerated vascular smooth muscle cell and adipose tissue aging. Vascul Pharmacol 2024; 154:107281. [PMID: 38320678 DOI: 10.1016/j.vph.2024.107281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 01/26/2024] [Accepted: 02/02/2024] [Indexed: 02/08/2024]
Abstract
OBJECTIVE Perivascular adipose tissue (PVAT) function during aging has not been investigated in detail so far and its effect on vasodilation remains to be fully elucidated. The aim of this study was to investigate endothelium-dependent vasodilation of thoracic aorta in a mouse model of accelerated, selective vascular smooth muscle and PVAT aging, induced by SM22α-Cre-driven genetic deletion of the endonuclease ERCC1 (SMC-KO mice) versus healthy littermates (LM). We hypothesized that PVAT enhances vasodilation in LM, possibly through adiponectin secretion, which might be compromised in SMC-KO animals. METHODS Thoracic aorta was isolated from SMC-KO animals and LM and segments with and without PVAT were mounted in wire myography setups. The endothelium-dependent vasodilation was assessed via acetylcholine dose-response curves and pathway contribution was studied. Moreover, adiponectin secretion was measured after stimulating the aortic segments with PVAT with acetylcholine. RESULTS Adiponectin, secreted by PVAT, led to increased NO-contribution to endothelium-dependent vasodilation in healthy LM, although this did not increase maximum relaxation due to loss of EDH. Endothelium-dependent vasodilation was decreased in SMC-KO animals due to reduced NO-contribution and complete EDH loss. Despite strong lipodystrophy the PVAT partially compensated for lost vasodilation in SMC-KO. LM PVAT contained acetylcholinesterase that attenuated acetylcholine responses. This was lost in SMC-KO. CONCLUSIONS PVAT-derived adiponectin is able to partially compensate for age-related decline in NO-mediated vasodilation, even during strong lipodystrophy, in conditions of absence of compensating EDH. In aorta with healthy PVAT acetylcholinesterase modulates vascular tone, but this is lost during aging, further compensating for decreased acetylcholine responsiveness. Thus, preservation of adiponectin levels, through relatively increased production in lipodystrophic PVAT, and reduction of cholinesterase might be regulatory mechanisms of the PVAT to preserve cholinergic vasodilation during aging.
Collapse
Affiliation(s)
- A A Jüttner
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC, University Medical Center, Wytemaweg 80, 3015 CN Rotterdam, the Netherlands.
| | - E Ataei Ataabadi
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC, University Medical Center, Wytemaweg 80, 3015 CN Rotterdam, the Netherlands.
| | - K Golshiri
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC, University Medical Center, Wytemaweg 80, 3015 CN Rotterdam, the Netherlands.
| | - R de Vries
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC, University Medical Center, Wytemaweg 80, 3015 CN Rotterdam, the Netherlands.
| | - I M Garrelds
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC, University Medical Center, Wytemaweg 80, 3015 CN Rotterdam, the Netherlands.
| | - A H J Danser
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC, University Medical Center, Wytemaweg 80, 3015 CN Rotterdam, the Netherlands.
| | - J A Visser
- Division of Endocrinology, Department of Internal Medicine, Erasmus MC, University Medical Center, Wytemaweg 80, 3015 CN Rotterdam, the Netherlands.
| | - A J M Roks
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC, University Medical Center, Wytemaweg 80, 3015 CN Rotterdam, the Netherlands.
| |
Collapse
|
4
|
Awata WMC, Sousa AH, de Mello MMB, Dourado TMH, Pinheiro LC, Elias-Oliveira J, Rodrigues VF, Carlos D, Castro MM, Tirapelli CR. AT 1 receptors modulate ethanol-induced loss of anticontractile effect of perivascular adipose tissue. Biochem Pharmacol 2023; 217:115840. [PMID: 37783376 DOI: 10.1016/j.bcp.2023.115840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 10/04/2023]
Abstract
Ethanol consumption activates renin-angiotensin-aldosterone system (RAAS), which plays a major role in the pro-contractile and hypertensive effects linked to ethanol. We hypothesized that ethanol consumption induces loss of the anticontractile effect of perivascular adipose tissue (PVAT)through RAAS-mediated mechanisms. We examined the contribution of angiotensin II type 1 receptors (AT1R) to ethanol-induced PVAT dysfunction. With this purpose, male Wistar Hannover rats were treated with ethanol 20 % (in volume ratio) and/or losartan (antagonist of AT1R; 10 mg/kg/day, gavage) for 9 weeks. Losartan prevented the increase in blood pressure and the loss of the anticontractile effect of PVAT induced by ethanol consumption. PVAT dysfunction occurred after 3 and 9 weeks of treatment with ethanol in an endothelium-dependent manner. Blockade of AT1R prevented ethanol-induced reduction of adiponectin levels in PVAT from ethanol-treated rats. Functional assays revealed that ethanol impaired the anticontractile effect of PVAT-derived angiotensin (1-7) and endothelial nitric oxide (NO). In conclusion, AT1R are implicated in ethanol-induced loss of the anticontractile effect of PVAT. In PVAT, AT1R activation decreases the production of adiponectin, a PVAT-derived factor that promotes vasorelaxation in an endothelium-dependent manner. In the endothelium, AT1R favors the production of superoxide (O2•-) leading to a reduction in NO bioavailability. These responses impair the vasodilator action induced by PVAT-derived angiotensin (1-7), which occurs via Mas receptors located in endothelial cells. Ethanol-induced PVAT dysfunction favors vascular hypercontractility, a response that could contribute to the hypertensive state associated with ethanol consumption.
Collapse
Affiliation(s)
- Wanessa M C Awata
- Programa de Pós-Graduação em Farmacologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, São Paulo, Brazil; Laboratório de Farmacologia, Escola de Enfermagem de Ribeirão Preto, USP, Ribeirão Preto, São Paulo, Brazil
| | - Arthur H Sousa
- Programa de Pós-Graduação em Farmacologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, São Paulo, Brazil; Laboratório de Farmacologia, Escola de Enfermagem de Ribeirão Preto, USP, Ribeirão Preto, São Paulo, Brazil
| | - Marcela M B de Mello
- Programa de Pós-Graduação em Farmacologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Thales M H Dourado
- Programa de Pós-Graduação em Farmacologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, São Paulo, Brazil; Laboratório de Farmacologia, Escola de Enfermagem de Ribeirão Preto, USP, Ribeirão Preto, São Paulo, Brazil
| | - Lucas C Pinheiro
- Laboratório de Farmacologia, Escola de Enfermagem de Ribeirão Preto, USP, Ribeirão Preto, São Paulo, Brazil
| | - Jefferson Elias-Oliveira
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, USP, Ribeirão Preto, São Paulo, Brazil
| | - Vanessa F Rodrigues
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, USP, Ribeirão Preto, São Paulo, Brazil
| | - Daniela Carlos
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, USP, Ribeirão Preto, São Paulo, Brazil
| | - Michele M Castro
- Programa de Pós-Graduação em Farmacologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Carlos R Tirapelli
- Laboratório de Farmacologia, Escola de Enfermagem de Ribeirão Preto, USP, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
5
|
Abd Rami AZ, Aminuddin A, Hamid AA, Mokhtar MH, Ugusman A. Nicotine Impairs the Anti-Contractile Function of Perivascular Adipose Tissue by Inhibiting the PPARγ-Adiponectin-AdipoR1 Axis. Int J Mol Sci 2023; 24:15100. [PMID: 37894791 PMCID: PMC10606313 DOI: 10.3390/ijms242015100] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Nicotine is an addictive compound found in cigarette smoke that leads to vascular dysfunction and cardiovascular diseases. Perivascular adipose tissue (PVAT) exerts an anti-contractile effect on the underlying vasculature through the production of adipokines, such as adiponectin, which acts on adiponectin receptors 1 (adipoR1) to cause vasorelaxation. Peroxisome proliferator-activated receptor gamma (PPARγ) is a transcription factor that regulates adiponectin gene expression and PVAT development. This study aimed to determine the effect of nicotine on the anti-contractile function of PVAT via the PPARγ-adiponectin-adipoR1 axis. Male Sprague Dawley rats were divided into a control group (given normal saline), a nicotine group (given 0.8 mg/kg of nicotine), and a nicotine + PPARγ agonist group (given nicotine and 5 mg/kg of telmisartan). Thoracic aorta PVAT was harvested after 21 days of treatment. The results showed that nicotine reduced the anti-contractile effect of PVAT on the underlying thoracic aorta. Nicotine also decreased the gene and protein expression of PPARγ, adiponectin, and adipoR1 in PVAT. Treatment with telmisartan restored the anti-contractile effect of PVAT and increased the gene and protein expression of PPARγ, adiponectin, and adipoR1 in PVAT. In conclusion, nicotine attenuates the anti-contractile function of PVAT through inhibition of the PPARγ-adiponectin-adipoR1 axis.
Collapse
Affiliation(s)
| | - Amilia Aminuddin
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia; (A.Z.A.R.); (A.A.H.); (M.H.M.)
| | | | | | - Azizah Ugusman
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia; (A.Z.A.R.); (A.A.H.); (M.H.M.)
| |
Collapse
|
6
|
Javier Cano-Martínez L, De Los Santos S, Mauricio Coral-Vázquez R, Pablo Méndez J, Trejo S, Roque-Ramírez B, Carlos Pérez-Razo J, Canto P. Variations in protein levels of the apelinergic system in adipose tissue of hypertensive individuals with class 3 obesity. Gene X 2023; 854:147107. [PMID: 36513190 DOI: 10.1016/j.gene.2022.147107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/18/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
The aim of this study was to investigate the expression of apelin (APLN) and its receptor (APLNR) in visceral adipose tissue (VAT), and its effect on the downstream expression of endothelial nitric oxide synthase (eNOS) in individuals with class 3 obesity, with or without hypertension. Seventy-five unrelated individuals presenting obesity class 3 with or without hypertension were included. Gene expression of APLN, and APLNR were analyzed in VAT, by reverse transcription quantitative polymerase chain reaction. The APLN, APLNR and eNOS (total and phosphorylated) levels in VAT were evaluated by Western blot. Analysis of differences between groups of APLN, APLNR and eNOS were performed by a logistic regression adjusting by confounding factors. Forty-five individuals with hypertension formed the case group, and 30 individuals constituted the control group. The APLN mRNA and protein levels were higher in the group of individuals with hypertension versus individuals without hypertension (p = 0.027 and p = 0.036, respectively). Meanwhile, APLNR mRNA and protein levels in subjects with hypertension were lower versus the group of subjects without hypertension (p = 0.001 and p = 0.008, respectively). Further, the group with hypertension presented a lower level of phosphorylation of eNOS Ser1177, compared to the control group (p = 0.002). In conclusion, individuals with class 3 obesity and hypertension present a modified APLN/APLNR expression in visceral adipose tissue, which could be secondary to reduced eNOS phosphorylation.
Collapse
Affiliation(s)
- Luis Javier Cano-Martínez
- Unidad de Investigación en Obesidad, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México; Subdirección de Investigación Clínica, Dirección de Investigación, Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán", Ciudad de México, México
| | - Sergio De Los Santos
- Unidad de Investigación en Obesidad, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México; Subdirección de Investigación Clínica, Dirección de Investigación, Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán", Ciudad de México, México
| | - Ramón Mauricio Coral-Vázquez
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México, México; Subdirección de Enseñanza e Investigación, Centro Médico Nacional 20 de Noviembre, Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado, Ciudad de México, México
| | - Juan Pablo Méndez
- Unidad de Investigación en Obesidad, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México; Subdirección de Investigación Clínica, Dirección de Investigación, Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán", Ciudad de México, México
| | - Silvia Trejo
- Clínica Integral de Cirugía para la Obesidad y Enfermedades Metabólicas. Hospital General "Dr. Rubén Leñero", CDMX, Ciudad de México, México
| | - Bladimir Roque-Ramírez
- Laboratorio de Nutrigenética y Nutrigenómica, Instituto Nacional de Medicina Genómica CDMX, Ciudad de México, México
| | - Juan Carlos Pérez-Razo
- División de Medicina Genómica, Subdirección de Enseñanza e Investigación, Centro Médico Nacional 20 de Noviembre, Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado, Ciudad de México, México
| | - Patricia Canto
- Unidad de Investigación en Obesidad, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México; Subdirección de Investigación Clínica, Dirección de Investigación, Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán", Ciudad de México, México.
| |
Collapse
|
7
|
Shi H, Wu H, Winkler MA, Belin de Chantemèle EJ, Lee R, Kim HW, Weintraub NL. Perivascular adipose tissue in autoimmune rheumatic diseases. Pharmacol Res 2022; 182:106354. [PMID: 35842184 PMCID: PMC10184774 DOI: 10.1016/j.phrs.2022.106354] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/27/2022] [Accepted: 07/11/2022] [Indexed: 01/14/2023]
Abstract
Perivascular adipose tissue (PVAT) resides at the outermost boundary of the vascular wall, surrounding most conduit blood vessels, except for the cerebral vessels, in humans. A growing body of evidence suggests that inflammation localized within PVAT may contribute to the pathogenesis of cardiovascular disease (CVD). Patients with autoimmune rheumatic diseases (ARDs), e.g., systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), psoriasis, etc., exhibit heightened systemic inflammation and are at increased risk for CVD. Data from clinical studies in patients with ARDs support a linkage between dysfunctional adipose tissue, and PVAT in particular, in disease pathogenesis. Here, we review the data linking PVAT to the pathogenesis of CVD in patients with ARDs, focusing on the role of novel PVAT imaging techniques in defining disease risk and responses to biological therapies.
Collapse
Affiliation(s)
- Hong Shi
- Division of Rheumatology, Medical College of Georgia at Augusta University, Augusta, GA, USA; Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Hanping Wu
- Department of Radiology and Imaging, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Michael A Winkler
- Department of Radiology and Imaging, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Eric J Belin de Chantemèle
- Division of Cardiology, Department of Medicine, Medical College of Georgia at Augusta University, Augusta, GA, USA; Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Richard Lee
- Department of Surgery, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Ha Won Kim
- Division of Cardiology, Department of Medicine, Medical College of Georgia at Augusta University, Augusta, GA, USA; Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Neal L Weintraub
- Division of Cardiology, Department of Medicine, Medical College of Georgia at Augusta University, Augusta, GA, USA; Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA, USA.
| |
Collapse
|
8
|
Kagota S, Futokoro R, McGuire JJ, Maruyama-Fumoto K, Shinozuka K. Modulation of Vasomotor Function by Perivascular Adipose Tissue of Renal Artery Depends on Severity of Arterial Dysfunction to Nitric Oxide and Severity of Metabolic Parameters. Biomolecules 2022; 12:biom12070870. [PMID: 35883426 PMCID: PMC9312868 DOI: 10.3390/biom12070870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 02/04/2023] Open
Abstract
Perivascular adipose tissue (PVAT) enhances vascular relaxation of mesenteric arteries in SHRSP.Z-Leprfa/IzmDmcr rats (SPZF), a metabolic syndrome model. We investigated and compared the effects of PVAT on the renal artery in SPZF with those on SHR/NDmcr-cp rats (CP). Renal arteries with and without PVAT were isolated from 23-week-old SPZF and CP. The effects of PVAT on acetylcholine- and nitroprusside-induced relaxation were examined using bioassays with phenylephrine-contracted arterial rings. Acetylcholine-induced relaxations without PVAT in SPZF and CP were 0.7- and 0.5-times lower in females than in males, respectively. In the presence of PVAT, acetylcholine-induced relaxations increased 1.4- and 2-times in male and female CP, respectively, but did not differ in SPZF. Nitroprusside-induced relaxation with and without PVAT was 0.7-times lower in female than in male SPZF but did not differ in CP. Angiotensin-II type-1 receptor (AT1R)/AT1R-associated protein mRNA ratios were lower in CP than in the SPZF and negatively correlated with the difference in arterial relaxation with and without PVAT. The effects of renal artery PVAT differed between the SPZF and CP groups. Higher levels of enhanced AT1R activity in SPZF PVAT may drive these differences by impairing the vascular smooth muscle responses to nitric oxide.
Collapse
Affiliation(s)
- Satomi Kagota
- Department of Pharmacology, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women’s University, Nishinomiya 663 8179, Japan; (R.F.); (K.M.-F.); (K.S.)
- Institute for Bioscience, Mukogawa Women’s University, Nishinomiya 663 8179, Japan
- Correspondence: ; Tel.: +81-798-45-9944
| | - Risa Futokoro
- Department of Pharmacology, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women’s University, Nishinomiya 663 8179, Japan; (R.F.); (K.M.-F.); (K.S.)
| | - John J. McGuire
- Departments of Medical Biophysics, Physiology & Pharmacology, Schulich School of Medicine & Dentistry, Western University, London, ON N6A 5C1, Canada;
| | - Kana Maruyama-Fumoto
- Department of Pharmacology, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women’s University, Nishinomiya 663 8179, Japan; (R.F.); (K.M.-F.); (K.S.)
| | - Kazumasa Shinozuka
- Department of Pharmacology, School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women’s University, Nishinomiya 663 8179, Japan; (R.F.); (K.M.-F.); (K.S.)
| |
Collapse
|
9
|
Nakladal D, Sijbesma JWA, Visser LM, Tietge UJF, Slart RHJA, Deelman LE, Henning RH, Hillebrands JL, Buikema H. Perivascular adipose tissue-derived nitric oxide compensates endothelial dysfunction in aged pre-atherosclerotic apolipoprotein E-deficient rats. Vascul Pharmacol 2021; 142:106945. [PMID: 34801679 DOI: 10.1016/j.vph.2021.106945] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 11/05/2021] [Accepted: 11/15/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND AND AIMS Atherosclerosis is a major contributor to global mortality and is accompanied by vascular inflammation and endothelial dysfunction. Perivascular adipose tissue (PVAT) is an established regulator of vascular function with emerging implications in atherosclerosis. We investigated the modulation of aortic relaxation by PVAT in aged rats with apolipoprotein E deficiency (ApoE-/-) fed a high-fat diet as a model of early atherosclerosis. METHODS AND RESULTS ApoE-/- rats (N = 7) and wild-type Sprague-Dawley controls (ApoE+/+, N = 8) received high-fat diet for 51 weeks. Hyperlipidemia was confirmed in ApoE-/- rats by elevated plasma cholesterol (p < 0.001) and triglyceride (p = 0.025) levels. Early atherosclerosis was supported by increased intima/media thickness ratio (p < 0.01) and ED1-positive macrophage influx in ApoE-/- aortic intima (p < 0.001). Inflammation in ApoE-/- PVAT was characteristic by an increased [18F]FDG uptake (p < 0.01), ED1-positive macrophage influx (p = 0.0003), mRNA expression levels of CD68 (p < 0.001) and IL-1β (p < 0.01), and upregulated iNOS protein (p = 0.011). The mRNAs of MCP-1, IL-6 and adiponectin remained unchanged in PVAT. Aortic PVAT volume measured with micro-PET/CT was increased in ApoE-/- rats (p < 0.01). Maximal endothelium-dependent relaxation (EDR) to acetylcholine in ApoE-/- aortic rings without PVAT was severely impaired (p = 0.012) compared with controls, while ApoE-/- aortic rings with PVAT showed higher EDR than controls. All EDR responses were blocked by L-NMMA and the expression of eNOS mRNA was increased in ApoE-/- PVAT (p = 0.035). CONCLUSION Using a rat ApoE-/- model of early atherosclerosis, we capture a novel mechanism by which inflammatory PVAT compensates severe endothelial dysfunction by contributing NO upon cholinergic stimulation.
Collapse
Affiliation(s)
- D Nakladal
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713GZ Groningen, the Netherlands.
| | - J W A Sijbesma
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713GZ Groningen, the Netherlands
| | - L M Visser
- Department of Pathology & Medical Biology, Pathology division, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713GZ Groningen, the Netherlands
| | - U J F Tietge
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands; Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden; Clinical Chemistry, Karolinska University Laboratory, Karolinska University Hospital, SE-141 86 Stockholm, Sweden
| | - R H J A Slart
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713GZ Groningen, the Netherlands; Faculty of Science and Technology Biomedical, Photonic Imaging, University of Twente, Enschede, the Netherlands
| | - L E Deelman
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713GZ Groningen, the Netherlands
| | - R H Henning
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713GZ Groningen, the Netherlands
| | - J L Hillebrands
- Department of Pathology & Medical Biology, Pathology division, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713GZ Groningen, the Netherlands
| | - H Buikema
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713GZ Groningen, the Netherlands
| |
Collapse
|
10
|
Kagota S, Maruyama-Fumoto K, McGuire JJ, Shinozuka K. A Sodium Glucose Cotransporter 2 Inhibitor Fails to Improve Perivascular Adipose Tissue-Mediated Modulation of Vasodilation and Cardiac Function in Rats With Metabolic Syndrome. J Cardiovasc Pharmacol Ther 2021; 26:480-489. [PMID: 33764804 DOI: 10.1177/10742484211001853] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Arterial perivascular adipose tissue (PVAT) can elicit vasodilator signals complementary to those elicited by the endothelium in SHRSP.Z-Leprfa/IzmDmcr (SHRSP.ZF) rats, an animal model of metabolic syndrome (MetS). Here, we tested whether a glucose cotransporter 2 inhibitor (SGLT2-i; tofogliflozin) increased this PVAT effect to prevent the deterioration of cardiac function in aging SHRSP.ZF rats. Tofogliflozin treatments (1 or 10 mg/kg/day) or vehicle (control) were administered for 10 weeks by oral gavage to SHRSP.ZF rats, starting at 13 weeks of age. At 23 weeks of age, glucose levels in the serum and urine (24 h after the last administration) were determined using commercial kits. Vasodilator responsiveness of PVAT-surrounded or PVAT-free superior mesenteric arteries was determined using acetylcholine with organ-bath methods. Cardiac ventricular function and coronary flow were determined using Langendorff heart preparations. Serum and urine glucose levels in SGLT2-i treatment groups did not differ from those in the controls, but the ratios of glycated to non-glycated albumin were lower than those in the controls. Tofogliflozin treatments did not alter relaxations in the presence of PVAT or affect relaxations of PVAT-free arteries. Left ventricular systolic pressures, maximum rate of pressure decline, and coronary flow in ex vivo hearts did not differ among the treatment groups. PVAT effects and cardiac dysfunction were not altered by tofogliflozin treatment in SHRSP.ZF rats with MetS. These results do not provide strong evidence to support the use of SGLT2-i as a cardiovascular protective therapy in MetS, which occurs prior to the onset of type 2 diabetes.
Collapse
Affiliation(s)
- Satomi Kagota
- Department of Pharmacology, School of Pharmacy and Pharmaceutical Sciences, 12955Mukogawa Women's University, Nishinomiya, Japan.,Institute for Bioscience, 12955Mukogawa Women's University, Nishinomiya, Japan
| | - Kana Maruyama-Fumoto
- Department of Pharmacology, School of Pharmacy and Pharmaceutical Sciences, 12955Mukogawa Women's University, Nishinomiya, Japan
| | - John J McGuire
- Department of Medical Biophysics, Schulich School of Medicine & Dentistry, 6221Western University, London, Ontario, Canada
| | - Kazumasa Shinozuka
- Department of Pharmacology, School of Pharmacy and Pharmaceutical Sciences, 12955Mukogawa Women's University, Nishinomiya, Japan
| |
Collapse
|
11
|
Hu H, Garcia-Barrio M, Jiang ZS, Chen YE, Chang L. Roles of Perivascular Adipose Tissue in Hypertension and Atherosclerosis. Antioxid Redox Signal 2021; 34:736-749. [PMID: 32390459 PMCID: PMC7910418 DOI: 10.1089/ars.2020.8103] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Significance: Perivascular adipose tissue (PVAT), which is present surrounding most blood vessels, from the aorta to the microvasculature of the dermis, is mainly composed of fat cells, fibroblasts, stem cells, mast cells, and nerve cells. Although the PVAT is objectively present, its physiological and pathological significance has long been ignored. Recent Advances: PVAT was considered as a supporting component of blood vessels and a protective cushion to the vessel wall from the neighboring tissues during relaxation and contraction. Nonetheless, further extensive research found that PVAT actively regulates blood vessel tone through PVAT-derived vasoactive factors, including both relaxing and contracting factors. In addition, PVAT contributes to atherosclerosis through paracrine secretion of a large number of bioactive factors such as adipokines and cytokines. Thereby, PVAT regulates the functions of blood vessels through various mechanisms operating directly on PVAT or on the underlying vessel layers, including vascular smooth muscle cells (VSMCs) and endothelial cells (ECs). Critical Issues: PVAT is a unique adipose tissue that plays an essential role in maintaining the vascular structure and regulating vascular function and homeostasis. This review focuses on recent updates on the various PVAT roles in hypertension and atherosclerosis. Future Directions: Future studies should further investigate the actual contribution of alterations in PVAT metabolism to the overall systemic outcomes of cardiovascular disease, which remains largely unknown. In addition, the messengers and underlying mechanisms responsible for the crosstalk between PVAT and ECs and VSMCs in the vascular wall should be systematically addressed, as well as the contributions of PVAT aging to vascular dysfunction.
Collapse
Affiliation(s)
- Hengjing Hu
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang, China
| | - Minerva Garcia-Barrio
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Zhi-Sheng Jiang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang, China
| | - Yuqing Eugene Chen
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Lin Chang
- Department of Internal Medicine, Cardiovascular Center, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| |
Collapse
|
12
|
Chen Y, Qin Z, Wang Y, Li X, Zheng Y, Liu Y. Role of Inflammation in Vascular Disease-Related Perivascular Adipose Tissue Dysfunction. Front Endocrinol (Lausanne) 2021; 12:710842. [PMID: 34456867 PMCID: PMC8385491 DOI: 10.3389/fendo.2021.710842] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/21/2021] [Indexed: 12/12/2022] Open
Abstract
Perivascular adipose tissue (PVAT) is the connective tissue around most blood vessels throughout the body. It provides mechanical support and maintains vascular homeostasis in a paracrine/endocrine manner. Under physiological conditions, PVAT has anti-inflammatory effects, improves free fatty acid metabolism, and regulates vasodilation. In pathological conditions, PVAT is dysfunctional, secretes many anti-vasodilator factors, and participates in vascular inflammation through various cells and mediators; thus, it causes dysfunction involving vascular smooth muscle cells and endothelial cells. Inflammation is an important pathophysiological event in many vascular diseases, such as vascular aging, atherosclerosis, and hypertension. Therefore, the pro-inflammatory crosstalk between PVAT and blood vessels may comprise a novel therapeutic target for the prevention and treatment of vascular diseases. In this review, we summarize findings concerning PVAT function and inflammation in different pathophysiological backgrounds, focusing on the secretory functions of PVAT and the crosstalk between PVAT and vascular inflammation in terms of vascular aging, atherosclerosis, hypertension, diabetes mellitus, and other diseases. We also discuss anti-inflammatory treatment for potential vascular diseases involving PVAT.
Collapse
Affiliation(s)
- Yaozhi Chen
- Center for Cardiovascular Medicine, First Hospital of Jilin University, Changchun, China
| | - Zeyu Qin
- Department of Respiratory Medicine, First Hospital of Jilin University, Changchun, China
| | - Yaqiong Wang
- Department of Endocrinology and Metabolism, First Hospital of Jilin University, Changchun, China
| | - Xin Li
- Center for Cardiovascular Medicine, First Hospital of Jilin University, Changchun, China
| | - Yang Zheng
- Center for Cardiovascular Medicine, First Hospital of Jilin University, Changchun, China
- *Correspondence: Yunxia Liu, ; Yang Zheng,
| | - Yunxia Liu
- Center for Cardiovascular Medicine, First Hospital of Jilin University, Changchun, China
- *Correspondence: Yunxia Liu, ; Yang Zheng,
| |
Collapse
|
13
|
A New Function for Perivascular Adipose Tissue (PVAT): Assistance of Arterial Stress Relaxation. Sci Rep 2020; 10:1807. [PMID: 32019956 PMCID: PMC7000722 DOI: 10.1038/s41598-020-58368-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 01/06/2020] [Indexed: 12/19/2022] Open
Abstract
In health, PVAT secretes anti-contractile factors that relax the underlying artery. PVAT’s contributions to vascular function include more than production of vasoactive substances. We hypothesized that PVAT benefits the artery by assisting the function of stress (–induced) relaxation. Thoracic aorta rings from Sprague Dawley rats were mounted in isolated tissue baths with (+) and without (−) PVAT. A cumulative length tension (0–6 grams) was generated. The tension to which the tissue stress relaxed over 30 minutes was recorded; the tension lost was stress relaxation. The presence of PVAT increased the amount of stress relaxation (final tension in mgs; aortic ring −PVAT = 4578 ± 190; aortic ring + PVAT = 2730 ± 274, p < 0.05). PVAT left attached but not encompassing the aorta provided no benefit in cumulative stress relaxation (aortic ring +/− PVAT = 4122 ± 176; p > 0.05 vs −PVAT). A PVAT ring separated from the aorta demonstrated more profound stress relaxation than did the aortic ring itself. Finally, PVAT-assisted stress relaxation was observed in an artery with white fat (superior mesenteric artery) and in aorta from both male and female of another rat strain, the Dahl S rat. Knowledge of this new PVAT function supports PVAT as an essential player in vascular health.
Collapse
|
14
|
Kagota S, Maruyama-Fumoto K, Shimari M, McGuire JJ, Shinozuka K. Angiotensin II Type 1 Receptor Antagonist Azilsartan Restores Vascular Reactivity Through a Perivascular Adipose Tissue-Independent Mechanism in Rats with Metabolic Syndrome. Cardiovasc Drugs Ther 2019; 33:501-509. [DOI: 10.1007/s10557-019-06900-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|