1
|
Rey MD, Labella-Ortega M, Guerrero-Sánchez VM, Carleial R, Castillejo MÁ, Ruggieri V, Jorrín-Novo JV. A first draft genome of holm oak ( Quercus ilex subsp. ballota), the most representative species of the Mediterranean forest and the Spanish agrosylvopastoral ecosystem " dehesa". Front Mol Biosci 2023; 10:1242943. [PMID: 37905231 PMCID: PMC10613499 DOI: 10.3389/fmolb.2023.1242943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/20/2023] [Indexed: 11/02/2023] Open
Abstract
The holm oak (Quercus ilex subsp. ballota) is the most representative species of the Mediterranean Basin and the agrosylvopastoral Spanish "dehesa" ecosystem. Being part of our life, culture, and subsistence since ancient times, it has significant environmental and economic importance. More recently, there has been a renewed interest in using the Q. ilex acorn as a functional food due to its nutritional and nutraceutical properties. However, the holm oak and its related ecosystems are threatened by different factors, with oak decline syndrome and climate change being the most worrying in the short and medium term. Breeding programs informed by the selection of elite genotypes seem to be the most plausible biotechnological solution to rescue populations under threat. To achieve this and other downstream analyses, we need a high-quality and well-annotated Q. ilex reference genome. Here, we introduce the first draft genome assembly of Q. ilex using long-read sequencing (PacBio). The assembled nuclear haploid genome had 530 contigs totaling 842.2 Mbp (N50 = 3.3 Mbp), of which 448.7 Mb (53%) were repetitive sequences. We annotated 39,443 protein-coding genes of which 94.80% were complete and single-copy genes. Phylogenetic analyses showed no evidence of a recent whole-genome duplication, and high synteny of the 12 chromosomes between Q. ilex and Quercus lobata and between Q. ilex and Quercus robur. The chloroplast genome size was 142.3 Kbp with 149 protein-coding genes successfully annotated. This first draft should allow for the validation of omics data as well as the identification and functional annotation of genes related to phenotypes of interest such as those associated with resilience against oak decline syndrome and climate change and higher acorn productivity and nutraceutical value.
Collapse
Affiliation(s)
- María-Dolores Rey
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Cordoba, UCO-CeiA3, Cordoba, Spain
| | - Mónica Labella-Ortega
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Cordoba, UCO-CeiA3, Cordoba, Spain
| | - Víctor M. Guerrero-Sánchez
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Cordoba, UCO-CeiA3, Cordoba, Spain
| | | | - María Ángeles Castillejo
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Cordoba, UCO-CeiA3, Cordoba, Spain
| | - Valentino Ruggieri
- Biomeets Consulting ITNIG—Carrer d’ Alaba 61 08005 Catalonia, Barcelona, Spain
| | - Jesús V. Jorrín-Novo
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Cordoba, UCO-CeiA3, Cordoba, Spain
| |
Collapse
|
2
|
Teyssier C, Rogier O, Claverol S, Gautier F, Lelu-Walter MA, Duruflé H. Comprehensive Organ-Specific Profiling of Douglas Fir ( Pseudotsuga menziesii) Proteome. Biomolecules 2023; 13:1400. [PMID: 37759800 PMCID: PMC10526743 DOI: 10.3390/biom13091400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
The Douglas fir (Pseudotsuga menziesii) is a conifer native to North America that has become increasingly popular in plantations in France due to its many advantages as timber: rapid growth, quality wood, and good adaptation to climate change. Tree genetic improvement programs require knowledge of a species' genetic structure and history and the development of genetic markers. The very slow progress in this field, for Douglas fir as well as the entire genus Pinus, can be explained using the very large size of their genomes, as well as by the presence of numerous highly repeated sequences. Proteomics, therefore, provides a powerful way to access genomic information of otherwise challenging species. Here, we present the first Douglas fir proteomes acquired using nLC-MS/MS from 12 different plant organs or tissues. We identified 3975 different proteins and quantified 3462 of them, then examined the distribution of specific proteins across plant organs/tissues and their implications in various molecular processes. As the first large proteomic study of a resinous tree species with organ-specific profiling, this short note provides an important foundation for future genomic annotations of conifers and other trees.
Collapse
Affiliation(s)
| | - Odile Rogier
- INRAE, ONF, BioForA, UMR 0588, 45075 Orleans, France
| | - Stéphane Claverol
- Plateforme de Protéomique, Université de Bordeaux, 33405 Bordeaux, France
| | | | | | | |
Collapse
|
3
|
Castillejo MA, Pascual J, Jorrín-Novo JV, Balbuena TS. Proteomics research in forest trees: A 2012-2022 update. FRONTIERS IN PLANT SCIENCE 2023; 14:1130665. [PMID: 37089649 PMCID: PMC10114611 DOI: 10.3389/fpls.2023.1130665] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 03/14/2023] [Indexed: 05/03/2023]
Abstract
This review is a compilation of proteomic studies on forest tree species published in the last decade (2012-2022), mostly focused on the most investigated species, including Eucalyptus, Pinus, and Quercus. Improvements in equipment, platforms, and methods in addition to the increasing availability of genomic data have favored the biological knowledge of these species at the molecular, organismal, and community levels. Integration of proteomics with physiological, biochemical and other large-scale omics in the direction of the Systems Biology, will provide a comprehensive understanding of different biological processes, from growth and development to responses to biotic and abiotic stresses. As main issue we envisage that proteomics in long-living plants will thrive light on the plant responses and resilience to global climate change, contributing to climate mitigation strategies and molecular breeding programs. Proteomics not only will provide a molecular knowledge of the mechanisms of resilience to either biotic or abiotic stresses, but also will allow the identification on key gene products and its interaction. Proteomics research has also a translational character being applied to the characterization of the variability and biodiversity, as well as to wood and non-wood derived products, traceability, allergen and bioactive peptides identification, among others. Even thought, the full potential of proteomics is far from being fully exploited in forest tree research, with PTMs and interactomics being reserved to plant model systems. The most outstanding achievements in forest tree proteomics in the last decade as well as prospects are discussed.
Collapse
Affiliation(s)
- María Angeles Castillejo
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Cordoba, Cordoba, Spain
- *Correspondence: María Angeles Castillejo,
| | - Jesús Pascual
- Plant Physiology, Department of Organisms and Systems Biology, University of Oviedo, Oviedo, Spain
- University Institute of Biotechnology of Asturias, University of Oviedo, Oviedo, Spain
| | - Jesus V. Jorrín-Novo
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Cordoba, Cordoba, Spain
| | - Tiago Santana Balbuena
- Department of Agricultural, Livestock and Environmental Biotechnology, School of Agriculture and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, São Paulo, Brazil
| |
Collapse
|
4
|
Guerrero-Sánchez VM, López-Hidalgo C, Rey MD, Castillejo MÁ, Jorrín-Novo JV, Escandón M. Multiomic Data Integration in the Analysis of Drought-Responsive Mechanisms in Quercus ilex Seedlings. PLANTS (BASEL, SWITZERLAND) 2022; 11:3067. [PMID: 36432796 PMCID: PMC9696786 DOI: 10.3390/plants11223067] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/03/2022] [Accepted: 11/10/2022] [Indexed: 06/16/2023]
Abstract
The integrated analysis of different omic layers can provide new knowledge not provided by their individual analysis. This approach is also necessary to validate data and reveal post-transcriptional and post-translational mechanisms of gene expression regulation. In this work, we validated the possibility of applying this approach to non-model species such as Quercus ilex. Transcriptomics, proteomics, and metabolomics from Q. ilex seedlings subjected to drought-like conditions under the typical summer conditions in southern Spain were integrated using a non-targeted approach. Two integrative approaches, PCA and DIABLO, were used and compared. Both approaches seek to reduce dimensionality, preserving the maximum information. DIABLO also allows one to infer interconnections between the different omic layers. For easy visualization and analysis, these interconnections were analyzed using functional and statistical networks. We were able to validate results obtained by analyzing the omic layers separately. We identified the importance of protein homeostasis with numerous protease and chaperones in the networks. We also discovered new key processes, such as transcriptional control, and identified the key function of transcription factors, such as DREB2A, WRKY65, and CONSTANS, in the early response to drought.
Collapse
|
5
|
Maldonado-Alconada AM, Castillejo MÁ, Rey MD, Labella-Ortega M, Tienda-Parrilla M, Hernández-Lao T, Honrubia-Gómez I, Ramírez-García J, Guerrero-Sanchez VM, López-Hidalgo C, Valledor L, Navarro-Cerrillo RM, Jorrin-Novo JV. Multiomics Molecular Research into the Recalcitrant and Orphan Quercus ilex Tree Species: Why, What for, and How. Int J Mol Sci 2022; 23:9980. [PMID: 36077370 PMCID: PMC9456323 DOI: 10.3390/ijms23179980] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022] Open
Abstract
The holm oak (Quercus ilex L.) is the dominant tree species of the Mediterranean forest and the Spanish agrosilvopastoral ecosystem, "dehesa." It has been, since the prehistoric period, an important part of the Iberian population from a social, cultural, and religious point of view, providing an ample variety of goods and services, and forming the basis of the economy in rural areas. Currently, there is renewed interest in its use for dietary diversification and sustainable food production. It is part of cultural richness, both economically (tangible) and environmentally (intangible), and must be preserved for future generations. However, a worrisome degradation of the species and associated ecosystems is occurring, observed in an increase in tree decline and mortality, which requires urgent action. Breeding programs based on the selection of elite genotypes by molecular markers is the only plausible biotechnological approach. To this end, the authors' group started, in 2004, a research line aimed at characterizing the molecular biology of Q. ilex. It has been a challenging task due to its biological characteristics (long life cycle, allogamous, high phenotypic variability) and recalcitrant nature. The biology of this species has been characterized following the central dogma of molecular biology using the omics cascade. Molecular responses to biotic and abiotic stresses, as well as seed maturation and germination, are the two main objectives of our research. The contributions of the group to the knowledge of the species at the level of DNA-based markers, genomics, epigenomics, transcriptomics, proteomics, and metabolomics are discussed here. Moreover, data are compared with those reported for Quercus spp. All omics data generated, and the genome of Q. ilex available, will be integrated with morphological and physiological data in the systems biology direction. Thus, we will propose possible molecular markers related to resilient and productive genotypes to be used in reforestation programs. In addition, possible markers related to the nutritional value of acorn and derivate products, as well as bioactive compounds (peptides and phenolics) and allergens, will be suggested. Subsequently, the selected molecular markers will be validated by both genome-wide association and functional genomic analyses.
Collapse
Affiliation(s)
- Ana María Maldonado-Alconada
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Cordoba, UCO-CeiA3, 14014 Cordoba, Spain
| | - María Ángeles Castillejo
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Cordoba, UCO-CeiA3, 14014 Cordoba, Spain
| | - María-Dolores Rey
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Cordoba, UCO-CeiA3, 14014 Cordoba, Spain
| | - Mónica Labella-Ortega
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Cordoba, UCO-CeiA3, 14014 Cordoba, Spain
| | - Marta Tienda-Parrilla
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Cordoba, UCO-CeiA3, 14014 Cordoba, Spain
| | - Tamara Hernández-Lao
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Cordoba, UCO-CeiA3, 14014 Cordoba, Spain
| | - Irene Honrubia-Gómez
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Cordoba, UCO-CeiA3, 14014 Cordoba, Spain
| | - Javier Ramírez-García
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Cordoba, UCO-CeiA3, 14014 Cordoba, Spain
| | - Víctor M. Guerrero-Sanchez
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Cordoba, UCO-CeiA3, 14014 Cordoba, Spain
- Cardiovascular Proteomics Laboratory, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | - Cristina López-Hidalgo
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Cordoba, UCO-CeiA3, 14014 Cordoba, Spain
- Plant Physiology, Department of Organisms and Systems Biology, University Institute of Biotechnology of Asturias (IUBA), University of Oviedo, 33006 Asturias, Spain
| | - Luis Valledor
- Plant Physiology, Department of Organisms and Systems Biology, University Institute of Biotechnology of Asturias (IUBA), University of Oviedo, 33006 Asturias, Spain
| | - Rafael M. Navarro-Cerrillo
- Evaluation and Restoration of Agronomic and Forest Systems ERSAF, Department of Forest Engineering, University of Córdoba, 14014 Cordoba, Spain
| | - Jesús V. Jorrin-Novo
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Cordoba, UCO-CeiA3, 14014 Cordoba, Spain
| |
Collapse
|
6
|
Untargeted MS-Based Metabolomics Analysis of the Responses to Drought Stress in Quercus ilex L. Leaf Seedlings and the Identification of Putative Compounds Related to Tolerance. FORESTS 2022. [DOI: 10.3390/f13040551] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The effect and responses to drought stress were analyzed in Quercus ilex L. seedlings using a nontargeted metabolomic approach, implementing the approaches of previous studies in which other -omics platforms, transcriptomics, and proteomics were employed. This work aimed to characterize the Q. ilex leaf metabolome, determining possible mechanisms and molecular markers of drought tolerance and identifying putative bioactive compounds. Six-month-old seedling leaves subjected to drought stress imposed by water withholding under high-temperature and irradiance conditions were collected when leaf fluorescence decreased by 20% (day 17) and 45% (day 24) relative to irrigated seedlings. A total of 3934 compounds were resolved, with 616 being variable and 342 identified, which belonged to five chemical families. Out of the identified compounds, 33 were variable, mostly corresponding to amino acids, carboxylic acids, benzenoids, flavonoids and isoprenoids. Epigallocatechin, ellagic acid, pulegone, indole-3-acrylic acid and dihydrozeatin-O-glucoside were up-accumulated under drought conditions at both sampling times. An integrated multi-omics analysis of phenolic compounds and related enzymes was performed, revealing that some enzymes involved in the flavonoid pathways (chalcone synthase, anthocyanidin synthase and anthocyanidin reductase) were up-accumulated at day 24 in non-irrigated seedlings. Some putative markers of tolerance to drought in Q. ilex are proposed for assisting breeding programs based on the selection of elite genotypes.
Collapse
|
7
|
Escandón M, Bigatton ED, Guerrero-Sánchez VM, Hernández-Lao T, Rey MD, Jorrín-Novo JV, Castillejo MA. Identification of Proteases and Protease Inhibitors in Seeds of the Recalcitrant Forest Tree Species Quercus ilex. FRONTIERS IN PLANT SCIENCE 2022; 13:907042. [PMID: 35832232 PMCID: PMC9271950 DOI: 10.3389/fpls.2022.907042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/06/2022] [Indexed: 05/09/2023]
Abstract
Proteases and protease inhibitors have been identified in the recalcitrant species Quercus ilex using in silico and wet methods, with focus on those present in seeds during germination. In silico analyses showed that the Q. ilex transcriptome database contained 2,240 and 97 transcripts annotated as proteases and protease inhibitors, respectively. They belonged to the different families according to MEROPS, being the serine and metallo ones the most represented. The data were compared with those previously reported for other Quercus species, including Q. suber, Q. lobata, and Q. robur. Changes in proteases and protease inhibitors alongside seed germination in cotyledon and embryo axis tissues were assessed using proteomics and in vitro and in gel activity assays. Shotgun (LC-MSMS) analysis of embryo axes and cotyledons in nonviable (NV), mature (T1) and germinated (T3) seeds allowed the identification of 177 proteases and 12 protease inhibitors, mostly represented by serine and metallo types. Total protease activity, as determined by in vitro assays using azocasein as substrate, was higher in cotyledons than in embryo axes. There were not differences in activity among cotyledon samples, while embryo axis peaked at germinated T4 stage. Gel assays revealed the presence of protease activities in at least 10 resolved bands, in the Mr range of 60-260 kDa, being some of them common to cotyledons and embryo axes in either nonviable, mature, and germinated seeds. Bands showing quantitative or qualitative changes upon germination were observed in embryo axes but not in cotyledons at Mr values of 60-140 kDa. Proteomics shotgun analysis of the 10 bands with protease activity supported the results obtained in the overall proteome analysis, with 227 proteases and 3 protease inhibitors identified mostly represented by the serine, cysteine, and metallo families. The combined use of shotgun proteomics and protease activity measurements allowed the identification of tissue-specific (e.g., cysteine protease inhibitors in embryo axes of mature acorns) and stage-specific proteins (e.g., those associated with mobilization of storage proteins accumulated in T3 stage). Those proteins showing differences between nonviable and viable seeds could be related to viability, and those variables between mature and germinated could be associated with the germination process. These differences are observed mostly in embryo axes but not in cotyledons. Among them, those implicated in mobilization of reserve proteins, such as the cathepsin H cysteine protease and Clp proteases, and also the large number of subunits of the CNS and 26S proteasome complex differentially identified in embryos of the several stages suggests that protein degradation via CNS/26S plays a major role early in germination. Conversely, aspartic proteases such as nepenthesins were exclusively identified in NV seeds, so their presence could be used as indicator of nonviability.
Collapse
Affiliation(s)
- Monica Escandón
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Córdoba, Córdoba, Spain
| | - Ezequiel D. Bigatton
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Córdoba, Córdoba, Spain
- Agricultural Microbiology, Faculty of Agricultural Science, National University of Córdoba, CONICET, Córdoba, Argentina
| | - Victor M. Guerrero-Sánchez
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Córdoba, Córdoba, Spain
| | - Tamara Hernández-Lao
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Córdoba, Córdoba, Spain
| | - Maria-Dolores Rey
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Córdoba, Córdoba, Spain
| | - Jesus V. Jorrín-Novo
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Córdoba, Córdoba, Spain
- Jesus V. Jorrín-Novo,
| | - Maria Angeles Castillejo
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Córdoba, Córdoba, Spain
- *Correspondence: Maria Angeles Castillejo,
| |
Collapse
|
8
|
Amaral J, Lamelas L, Valledor L, Castillejo MÁ, Alves A, Pinto G. Comparative proteomics of Pinus-Fusarium circinatum interactions reveal metabolic clues to biotic stress resistance. PHYSIOLOGIA PLANTARUM 2021; 173:2142-2154. [PMID: 34537969 DOI: 10.1111/ppl.13563] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 09/02/2021] [Accepted: 09/15/2021] [Indexed: 05/24/2023]
Abstract
Fusarium circinatum, causing pine pitch canker (PPC), affects conifers productivity and health worldwide. Selection and breeding for resistance arises as the most promising approach to fight PPC. Therefore, it is crucial to explore the response of hosts with varying levels of susceptibility to PPC to unveil the genes/pathways behind these phenotypes. We evaluated the dynamics of the needle proteome of a susceptible (Pinus radiata) and a relatively resistant (Pinus pinea) species upon F. circinatum inoculation by GeLC-MS/MS. Integration with physiological data and validation of key genes by qPCR allowed to identify core pathways regulating these contrasting responses. In P. radiata, the pathogen may target both the secondary metabolism to negatively regulate immune response and chloroplast redox proteins to increase energy-producing pathways for amino acid production in its favour. In contrast, chloroplast redox regulation may assure redox homeostasis in P. pinea, as well as nonenzymatic antioxidants. The presence of membrane trafficking-related proteins exclusively in P. pinea likely explains its defence response against F. circinatum. A crosstalk between abscisic acid and epigenetic regulation of gene expression is also proposed in PPC response. These results are useful to support breeding programs aiming to achieve PPC resistance.
Collapse
Affiliation(s)
- Joana Amaral
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Laura Lamelas
- Plant Physiology, Department of Organisms and Systems Biology, University of Oviedo, Oviedo, Asturias, Spain
| | - Luis Valledor
- Plant Physiology, Department of Organisms and Systems Biology, University of Oviedo, Oviedo, Asturias, Spain
| | - María Ángeles Castillejo
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Cordoba, Cordoba, Spain
| | - Artur Alves
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Glória Pinto
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
9
|
San-Eufrasio B, Castillejo MÁ, Labella-Ortega M, Ruiz-Gómez FJ, Navarro-Cerrillo RM, Tienda-Parrilla M, Jorrín-Novo JV, Rey MD. Effect and Response of Quercus ilex subsp. ballota [Desf.] Samp. Seedlings From Three Contrasting Andalusian Populations to Individual and Combined Phytophthora cinnamomi and Drought Stresses. FRONTIERS IN PLANT SCIENCE 2021; 12:722802. [PMID: 34490021 PMCID: PMC8417417 DOI: 10.3389/fpls.2021.722802] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 07/22/2021] [Indexed: 05/09/2023]
Abstract
Quercus ilex L. is the dominant species in the Mediterranean forest and agrosilvopastoral ecosystem "dehesa." Currently, this forest species is threatened by natural and anthropogenic agents, especially by the decline syndrome, which is caused by Phytophthora cinnamomi and drought periods. Although the morphological and physiological responses of Q. ilex to combined stress (P. cinnamomi and drought) have been examined already, little is known at the molecular level. In this study, we studied the effect and response of 8-month seedlings from three contrasting Andalusian populations (Seville [Se], Granada [Gr], and Almeria [Al]) to the individual and combined stresses of P. cinnamomi and drought from morphological, physiological, biochemical, and proteomics data. Whereas, seedling damage (leaf chlorosis and necrosis) and mortality were greater under the combined stresses in the three populations, the effect of each individual stress was population-dependent. Resilient individuals were found in all the populations at different percentages. The decrease in leaf chlorophyll fluorescence, photosynthetic activity, and stomatal conductance observed in undamaged seedlings was greater in the presence of both stresses, the three populations responding similarly to drought and P. cinnamomi. Biochemical and proteomic analyses of undamaged seedlings from the two most markedly contrasting populations (Se and Al) revealed the absence of significant differences in the contents in photosynthetic pigments, amino acids, and phenolics among treatments. The Se and Al populations exhibited changes in protein profile in response to the different treatments, with 83 variable proteins in the former population and 223 in the latter. Variable proteins belonged to 16 different functional groups, the best represented among which were protein folding, sorting and degradation, carbohydrate, amino acid, and secondary metabolism, photosynthesis, and ROS scavenging. While photosynthetic proteins were mainly downaccumulated, those of stress-responsive were upaccumulated. Although no treatment-specific response was observed in any functional group, differences in abundance were especially marked under the combined stresses. The following variable proteins are proposed as putative markers for resilience in Q. ilex, namely, aldehyde dehydrogenase, glucose-6-phosphate isomerase, 50S ribosomal protein L5, and α-1,4-glucan-protein synthase [UDP-forming].
Collapse
Affiliation(s)
- Bonoso San-Eufrasio
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Córdoba, Córdoba, Spain
| | - María Ángeles Castillejo
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Córdoba, Córdoba, Spain
| | - Mónica Labella-Ortega
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Córdoba, Córdoba, Spain
| | - Francisco J. Ruiz-Gómez
- Evaluation and Restoration of Agronomic and Forest Systems ERSAF, Department of Forest Engineering, University of Córdoba, Córdoba, Spain
| | - Rafael M. Navarro-Cerrillo
- Evaluation and Restoration of Agronomic and Forest Systems ERSAF, Department of Forest Engineering, University of Córdoba, Córdoba, Spain
| | - Marta Tienda-Parrilla
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Córdoba, Córdoba, Spain
| | - Jesús V. Jorrín-Novo
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Córdoba, Córdoba, Spain
| | - María-Dolores Rey
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Córdoba, Córdoba, Spain
| |
Collapse
|
10
|
Guerrero-Sánchez VM, Castillejo MÁ, López-Hidalgo C, Alconada AMM, Jorrín-Novo JV, Rey MD. Changes in the transcript and protein profiles of Quercus ilex seedlings in response to drought stress. J Proteomics 2021; 243:104263. [PMID: 34000457 DOI: 10.1016/j.jprot.2021.104263] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/05/2021] [Accepted: 05/11/2021] [Indexed: 02/07/2023]
Abstract
Quercus ilex is the dominant tree species in natural forest ecosystems across the Mediterranean Basin and in the agrosilvopastoral system dehesa, which has a high ecological and economical significance. As in other forestry species, survival in Q. ilex is threatened by long periods of drought. This paper reports the transcriptome and proteome profiles of 6-month-old seedlings subjected to severe drought conditions. Drought was imposed by water withholding in seedlings grown in perlite for 28 days. Seedling leaves were collected when leaf fluorescence had decreased by 20% and 45% relative to well-watered seedlings. The transcriptome and proteome were analyzed by using Illumina and shotgun platforms. The quality and confidence of the mRNA and protein identifications and quantifications were assessed, obtaining 25,169 transcripts and 3312 proteins. Variable transcripts and proteins were analyzed by Venn diagram, Pearson's correlation, GO enrichment, KEGG pathways, multivariate analysis and interaction networks. Despite the poor correlation between mRNA and protein, both platforms gave a complementary view of the changes in the abundance of several gene products under drought conditions and indicated that gene expression regulation and translation to phenotype is quite complex and gene-specific. As a general tendency, while transcripts and proteins of the metabolism were down-accumulated, those of stress related were up-accumulated. Out of the variable dataset, four gene products (viz., FtSH6, CLPB1, CLPB3, and HSP22) were up-accumulated at both omics levels at the two surveyed times, being the first work where they are described in drought response in forest species. These chaperones and proteases could be considered as potential drought tolerance markers to be used in the selection of elite, resilient genotypes, and in breeding programs.
Collapse
Affiliation(s)
- Víctor Manuel Guerrero-Sánchez
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Cordoba, UCO-CeiA3, 14014 Cordoba, Spain
| | - María Ángeles Castillejo
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Cordoba, UCO-CeiA3, 14014 Cordoba, Spain
| | - Cristina López-Hidalgo
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Cordoba, UCO-CeiA3, 14014 Cordoba, Spain
| | - Ana María Maldonado Alconada
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Cordoba, UCO-CeiA3, 14014 Cordoba, Spain
| | - Jesús Valentín Jorrín-Novo
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Cordoba, UCO-CeiA3, 14014 Cordoba, Spain
| | - María-Dolores Rey
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Cordoba, UCO-CeiA3, 14014 Cordoba, Spain.
| |
Collapse
|
11
|
Jorrin Novo JV. Proteomics and plant biology: contributions to date and a look towards the next decade. Expert Rev Proteomics 2021; 18:93-103. [PMID: 33770454 DOI: 10.1080/14789450.2021.1910028] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
INTRODUCTION This review presents the view of the author, that is opinionable and even speculative, on the field of proteomics, its application to plant biology knowledge, and translation to biotechnology. Written in a more academic than scientific style, it is based on past original and review articles by the author´s group, and those published by leading scientists in the last two years. AREAS COVERED Starting with a general definition and references to historical milestones, it covers sections devoted to the different platforms employed, the plant biology discourse in the protein language, challenges and future prospects, ending with the author opinion. EXPERT OPINION In 25 years, five proteomics platform generations have appeared. We are now moving from proteomics to Systems Biology. While feasible with model organisms, proteomics of orphan species remains challenging. Proteomics, even in its simplest approach, sheds light on plant biological processes, central dogma, and molecular bases of phenotypes of interest, and it can be translated to areas such as food traceability and allergen detection. Proteomics should be validated and optimized to each experimental system, objectives, and hypothesis. It has limitations, artifacts, and biases. We should not blindly accept proteomics data and just create a list of proteins, networks, and avoid speculative biological interpretations. From the hundred to thousand proteins identified and quantified, it is important to obtain a focus and validate some of them, otherwise it is merely. We are starting to have the protein pieces, so let, from now, build the proteomics and biological puzzle.
Collapse
Affiliation(s)
- J V Jorrin Novo
- Dpt. Biochemistry and Molecular Biology, Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, ETSIAM, University of Cordoba, Cordoba , Spain
| |
Collapse
|
12
|
Molecular Research on Stress Responses in Quercus spp.: From Classical Biochemistry to Systems Biology through Omics Analysis. FORESTS 2021. [DOI: 10.3390/f12030364] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The genus Quercus (oak), family Fagaceae, comprises around 500 species, being one of the most important and dominant woody angiosperms in the Northern Hemisphere. Nowadays, it is threatened by environmental cues, which are either of biotic or abiotic origin. This causes tree decline, dieback, and deforestation, which can worsen in a climate change scenario. In the 21st century, biotechnology should take a pivotal role in facing this problem and proposing sustainable management and conservation strategies for forests. As a non-domesticated, long-lived species, the only plausible approach for tree breeding is exploiting the natural diversity present in this species and the selection of elite, more resilient genotypes, based on molecular markers. In this direction, it is important to investigate the molecular mechanisms of the tolerance or resistance to stresses, and the identification of genes, gene products, and metabolites related to this phenotype. This research is being performed by using classical biochemistry or the most recent omics (genomics, epigenomics, transcriptomics, proteomics, and metabolomics) approaches, which should be integrated with other physiological and morphological techniques in the Systems Biology direction. This review is focused on the current state-of-the-art of such approaches for describing and integrating the latest knowledge on biotic and abiotic stress responses in Quercus spp., with special reference to Quercus ilex, the system on which the authors have been working for the last 15 years. While biotic stress factors mainly include fungi and insects such as Phytophthora cinnamomi, Cerambyx welensii, and Operophtera brumata, abiotic stress factors include salinity, drought, waterlogging, soil pollutants, cold, heat, carbon dioxide, ozone, and ultraviolet radiation. The review is structured following the Central Dogma of Molecular Biology and the omic cascade, from DNA (genomics, epigenomics, and DNA-based markers) to metabolites (metabolomics), through mRNA (transcriptomics) and proteins (proteomics). An integrated view of the different approaches, challenges, and future directions is critically discussed.
Collapse
|
13
|
Juarez-Escobar J, Guerrero-Analco JA, Zamora-Briseño JA, Elizalde-Contreras JM, Bautista-Valle MV, Bojórquez-Velázquez E, Loyola-Vargas VM, Mata-Rosas M, Ruíz-May E. Tissue-specific proteome characterization of avocado seed during postharvest shelf life. J Proteomics 2021; 235:104112. [PMID: 33450407 DOI: 10.1016/j.jprot.2021.104112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 01/04/2021] [Accepted: 01/04/2021] [Indexed: 12/15/2022]
Abstract
Avocado is a nutritious and economically important fruit, generating significant income for exporter countries. Recently, by-products of this fruit such as seeds and peels, have raised interest in different industries. However, the biochemical features of the nutraceutical value of these tissues have not been analyzed using molecular approaches during the postharvest shelf life (PSL). We carried out comparative proteomics using tandem mass tagging (TMT) and synchronous-precursor selection (SPS)-MS3. We analyzed testa, cotyledon, and embryo axes from avocado seeds at detachment from the tree (unripe), and after five (breaker) and ten days (ripe) of PSL. We identified 1968 proteins, from which 933 were specific to the testa, 167 to the embryo axis, and 23 to the cotyledon. The testa had a more dynamic proteome than the other tissues, resembling similar stress responses to those observed in peel tissues, such as down-accumulation of translational machinery, cell wall catabolism and synthesis of secondary metabolites. In contrast, the up-accumulation of the biosynthesis of l-glutamine, L-isoleucine, and l-serine was observed in all tissues. Our study provides the basic biochemical and physiological features of avocado seed during PSL and demonstrates that avocado seed tissues could potentially be used as a costless source of high-value compounds. SIGNIFICANCE: Avocado seed as a fruit by-product is a source of different valuable molecules, including those with nutraceutical properties. During PSL, several biochemical and physiological modifications occur in this dispersal unit, which also includes the alteration of several key metabolites' content. However, the proteome profile associated with different metabolic pathways that regulate the inner content of seed metabolites has not been previously studied. Our tissue-specific proteomics TMT-SPS-MS3-based provides the first evidence of molecular and physiological changes in avocado tissues during PSL delivering fundamental knowledge of this organ. In this vein, the modulation of secondary metabolites, amino acid, and sugar metabolism of avocado tissues during PLS can encourage these by-products exploitation in multiple industries.
Collapse
Affiliation(s)
- Janet Juarez-Escobar
- Red de Estudios Moleculares Avanzados, Clúster Científico y Tecnológico BioMimic®, Instituto de Ecología A.C. (INECOL), Carretera Antigua a Coatepec No. 351, Congregación el Haya, CP 91070, Xalapa, Veracruz, Mexico
| | - José A Guerrero-Analco
- Red de Estudios Moleculares Avanzados, Clúster Científico y Tecnológico BioMimic®, Instituto de Ecología A.C. (INECOL), Carretera Antigua a Coatepec No. 351, Congregación el Haya, CP 91070, Xalapa, Veracruz, Mexico
| | - Jesús Alejandro Zamora-Briseño
- Red de Estudios Moleculares Avanzados, Clúster Científico y Tecnológico BioMimic®, Instituto de Ecología A.C. (INECOL), Carretera Antigua a Coatepec No. 351, Congregación el Haya, CP 91070, Xalapa, Veracruz, Mexico
| | - José M Elizalde-Contreras
- Red de Estudios Moleculares Avanzados, Clúster Científico y Tecnológico BioMimic®, Instituto de Ecología A.C. (INECOL), Carretera Antigua a Coatepec No. 351, Congregación el Haya, CP 91070, Xalapa, Veracruz, Mexico
| | - Mirna V Bautista-Valle
- Red de Estudios Moleculares Avanzados, Clúster Científico y Tecnológico BioMimic®, Instituto de Ecología A.C. (INECOL), Carretera Antigua a Coatepec No. 351, Congregación el Haya, CP 91070, Xalapa, Veracruz, Mexico
| | - Esaú Bojórquez-Velázquez
- Red de Estudios Moleculares Avanzados, Clúster Científico y Tecnológico BioMimic®, Instituto de Ecología A.C. (INECOL), Carretera Antigua a Coatepec No. 351, Congregación el Haya, CP 91070, Xalapa, Veracruz, Mexico
| | - Víctor M Loyola-Vargas
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán (CICY), Mérida, Yucatán, Mexico
| | - Martín Mata-Rosas
- Red de Manejo Biotecnológico de Recursos, Instituto de Ecología A. C., Cluster BioMimic®, Carretera Antigua a Coatepec 351, Congregación el Haya, CP 91070 Xalapa, Veracruz, Mexico
| | - Eliel Ruíz-May
- Red de Estudios Moleculares Avanzados, Clúster Científico y Tecnológico BioMimic®, Instituto de Ecología A.C. (INECOL), Carretera Antigua a Coatepec No. 351, Congregación el Haya, CP 91070, Xalapa, Veracruz, Mexico.
| |
Collapse
|
14
|
Dissecting the Seed Maturation and Germination Processes in the Non-Orthodox Quercus ilex Species Based on Protein Signatures as Revealed by 2-DE Coupled to MALDI-TOF/TOF Proteomics Strategy. Int J Mol Sci 2020; 21:ijms21144870. [PMID: 32660160 PMCID: PMC7402289 DOI: 10.3390/ijms21144870] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 12/15/2022] Open
Abstract
Unlike orthodox species, seed recalcitrance is poorly understood, especially at the molecular level. In this regard, seed maturation and germination were studied in the non-orthodox Quercus ilex by using a proteomics strategy based on two-dimensional gel electrophoresis coupled to matrix-assisted laser desorption ionization/time of flight (2-DE-MALDI-TOF).Cotyledons and embryo/radicle were sampled at different developmental stages, including early (M1–M3), middle (M4–M7), and late (M8–M9) seed maturation, and early (G1–G3) and late (G4–G5) germination. Samples corresponding to non-germinating, inviable, seeds were also included. Protein extracts were subjected to 2-dimensional gel electrophoresis (2-DE) and changes in the protein profiles were analyzed. Identified variable proteins were grouped according to their function, being the energy, carbohydrate, lipid, and amino acid metabolisms, together with protein fate, redox homeostasis, and response to stress are the most represented groups. Beyond the visual aspect, morphometry, weight, and water content, each stage had a specific protein signature. Clear tendencies for the different protein groups throughout the maturation and germination stages were observed for, respectively, cotyledon and the embryo axis. Proteins related to metabolism, translation, legumins, proteases, proteasome, and those stress related were less abundant in non-germinating seeds, it related to the loss of viability. Cotyledons were enriched with reserve proteins and protein-degrading enzymes, while the embryo axis was enriched with proteins of cell defense and rescue, including heat-shock proteins (HSPs) and antioxidants. The peaks of enzyme proteins occurred at the middle stages (M6–M7) in cotyledons and at late ones (M8–M9) in the embryo axis. Unlike orthodox seeds, proteins associated with glycolysis, tricarboxylic acid cycle, carbohydrate, amino acid and lipid metabolism are present at high levels in the mature seed and were maintained throughout the germination stages. The lack of desiccation tolerance in Q. ilex seeds may be associated with the repression of some genes, late embryogenesis abundant proteins being one of the candidates.
Collapse
|
15
|
Responses and Differences in Tolerance to Water Shortage under Climatic Dryness Conditions in Seedlings from Quercus spp. and Andalusian Q. ilex Populations. FORESTS 2020. [DOI: 10.3390/f11060707] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Analyzing differences in tolerance to drought in Quercus spp., and the characterization of these responses at the species and individual population level, are imperative for the selection of resilient elite genotypes in reforestation programs. The main objective of this work was to evaluate differences in the response and tolerance to water shortage under in five Quercus spp. and five Andalusian Q. ilex populations at the inter- and intraspecies level. Six-month-old seedlings grown in perlite were subjected to drought treatments by withholding water for 28 days under mean 37 °C temperature, 28 W m−2 solar irradiance, and 41% humidity. The use of perlite as the substrate enabled the establishment of severe drought stress with reduction in water availability from 73% (field capacity) to 28% (dryness), corresponding to matric potentials of 0 and −30 kPa. Damage symptoms, mortality rate, leaf water content, photosynthetic, and biochemical parameters (amino acids, sugars, phenolics, and pigments) were determined. At the phenotypic level, based on damage symptoms and mortality, Q. ilex behaved as the most drought tolerant species. Drought caused a significant decrease in leaf fluorescence, photosynthesis rate, and stomatal conductance in all Quercus spp. analyzed, being less pronounced in Q. ilex. There were not differences between irrigated and non-irrigated Q. ilex seedlings in the content of sugar and photosynthetic pigments, while the total amino acid and phenolic content significantly increased under drought conditions. As a response to drought, living Q. ilex seedlings adjust stomata opening and gas exchange, and keep hydrated, photosynthetically active, and metabolically competent. At the population level, based on damage symptoms, mortality, and physiological parameters, the eastern Andalusian populations were more tolerant than the western ones. These observations inform the basis for the selection of resilient genotypes to be used in breeding and reforestation programs.
Collapse
|
16
|
Komatsu S. Plant Proteomic Research 2.0: Trends and Perspectives. Int J Mol Sci 2019; 20:ijms20102495. [PMID: 31117165 PMCID: PMC6566193 DOI: 10.3390/ijms20102495] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 05/20/2019] [Indexed: 02/07/2023] Open
Affiliation(s)
- Setsuko Komatsu
- Faculty of Environmental and Information Sciences, Fukui University of Technology, Fukui 910-8505, Japan.
| |
Collapse
|
17
|
Recent Advances in MS-Based Plant Proteomics: Proteomics Data Validation Through Integration with Other Classic and -Omics Approaches. PROGRESS IN BOTANY 2019. [DOI: 10.1007/124_2019_32] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|